
Under review as a conference paper at ICLR 2024

LIFT: EFFICIENT LAYER-WISE FINETUNING
FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning is widely applied in language language processing to adapt the model
for downstream tasks. However, as model sizes grow rapidly, fine-tuning the
full model is computationally expensive. Conventional studies mainly focused
on parameter-efficiency, but reducing the number of trainable parameters does
not translate to less backward computation and fine-tuning speedup. Parameter-
efficient fine-tuning still needs to perform complete backward pass to the foremost
layer to calculate required gradients. For example, applying LoRA on Llama
reduces the trainable parameters by 100⇥ but the fine-tuning throughput is only
1.2⇥ better. To achieve real training throughput improvement, we propose LIFT:
a Layer-wIse Fine-Tuning strategy that only learns one layer at a time. This
approach not only reduces the number of trainable parameters but also improves
the finetuning throughput. We thoroughly evaluated the effectiveness of LIFT on
BERT, GPT, and LLaMA models. LIFT saves the fine-tuning memory upto 3.7
⇥ and improves the throughput by 2.1x to 2.7x compared to full fine-tuning with
comparable final quality. We further shows that LIFT is orthogonal with existing
methods like LoRA and combining them can achieve both compute-efficiency and
parameter-efficiency.

1 INTRODUCTION

Large pre-trained transformer-based language models, particularly bidirectional masked language
models from the BERT family (Devlin et al., 2019; Liu et al., 2019; 2021a), have led to significant
improvements in many natural language processing tasks. These models are pre-trained on large,
annotated corpora using the language modeling objective, and then fine-tuned on task-specific
supervised data, resulting in impressive achievements in various domains (Radford et al., 2022;
Copilot; Chowdhery et al., 2022). However, the large size of these models makes them prohibitively
expensive to train and fine-tune, preventing researchers to explore efficient methods for adapting the
models to different scenarios.

Existing efficient fine-tuning methods mostly focus on reducing the number of learnable parameters,
but pay less attention to the measured fine-tuning throughput. Existing studies attempt either to adapt
only a small number of parameters (Zaken et al., 2021b), or learnable soft prompts (Liu et al., 2021a;
Li & Liang, 2021b), or tiny external modules (Hu et al., 2021; Houlsby et al., 2019; Liu et al., 2022)
for new tasks. While the number of learned and stored parameters can be significantly reduced, the
back-propagation cost keeps high and un-optimized.

Parameter-efficiency does NOT necessarily translate to measured speedup, and the measured
speedup is what the community should focus on. For example, when using Adapter (Houlsby et al.,
2019), which has 275 ⇥ fewer trainable parameters, the fine-tuning throughput is only 1.25 ⇥ better
than fine-tuning the full model. To provide a more concrete example, consider fine-tuning BERT
with 12 blocks. Despite the 1st and 12th blocks having the same number of parameters, the cost to
calculate corresponding gradients is drastically different due to the location and depth of learnable
parameters. The 1st block requires back-propagation all the way back to the very first layer, while
the 12th block only needs to back-propagate to one layer before. Thus same number of learnable
parameters can result in very different back-propagation costs, which reveals that simply learning
less parameters does not always lead to higher training throughput.

1

Under review as a conference paper at ICLR 2024

Table 1. The comparison between existing fine-tuning methods focus on parameter efficiency.

Method Storage Peak Memory Saving Backprop
FLOPs Saving

No Inference
OverheadOptim State Attn

Adapter (Houlsby et al., 2019) yes yes no no no
Prefix (Li & Liang, 2021a) yes yes no no no
BitFit (Zaken et al., 2021b) yes yes yes no no

LST (Sung et al., 2022) yes yes yes yes no
AutoFreeze (Liu et al., 2021b) no no no yes yes

LoRA (Hu et al., 2021) yes yes yes no yes

LIFT(ours) yes yes yes yes yes

To mitigate the gap and bring fine-tuning throughput improvements, we propose Layer-wIse Fine
Tuning (LIFT) approach: which only updates one layer in each iteration and freezes the rest of
the parameters. LIFT allows us to train language models only to a shallower location (x mark in
Figure 1.Right) while existing methods require back-propagation to the foremost layer, even when
the number of learnable parameters is much smaller Figure 1.Left). Such a learning scheme not only
reduces the number of learnable parameters (since most layers are frozen), but also leads to less
backward computation (by reducing the back-propagation depth to half), resulting in a measured
speedup. Unlike previous studies where most parameters are forever frozen during the fine-tuning
process, LIFT optimizes parameters in an iterative manner, allowing every parameter to be updated
We demonstrate that learning one layer at each iteration does not result in inferior quality, while
reducing memory and computation costs.

In this paper, we show that LIFT has several key advantages:

• LIFT neither modifies the pre-trained architecture nor increases the prompt sequence length.
LIFT can be generally applied to various language models without adding inference latency.

• LIFT reduces the training memory while keeping each layer has a chance to be updated.
This allows LIFT to maintain competitive accuracy with full fine-tuning.

• LIFT not only saves up to 3.7 times memory, but also increases throughput by 2.0 to 2.6
times, making fine-tuning more efficient and lowers barriers to fine-tune large models.

• LIFT is orthogonal to many prior methods and can be combined with many of them (e.g.,
prefix-tuning (Li & Liang, 2021a), LoRA (Hu et al., 2021)) to further boost performance
and reduce storage.

We show that LIFT is surprisingly effective on various models and tasks, and has a large practical
utility in fine-tuning models in memory- and compute- constrained environments. We also perform
ablation studies of different LIFT settings to provide insights for future efficient algorithm design.

2 RELATED WORK

2.1 TRANSFORMER LANGUAGE MODELS

The Transformer architecture (Vaswani et al., 2017) heavily relies on self-attention mechanisms in its
sequence-to-sequence design. When it was first proposed, (Radford et al., a) applied this model to
language modeling by stacking of Transformer decoders, consisting of multi-head attention (MHA)
followed by fully-connected networks (FFNs).Since then, Transformer-based language models have
become the dominant approach in natural language processing, achieving state-of-the-art results
in various tasks. A new methodology emerged with the release of BERT (Devlin et al., 2019) and
GPT-2 (Radford et al., b) - both of which are large Transformer models pre-trained on vast amounts
of text - that demonstrates a significant performance boost when fine-tuned on task-specific data, as
opposed to training on such data from scratch. Increasing the size of Transformer models tends to
result in improved performance and is an ongoing area of research. Till now, GPT-3 (Brown et al.,
2020) and OPT (Zhang et al., 2022) hold the largest single transformer language model size of ⇠
170B parameters*. The tremendous model sizes and extensive resource requirements raise the need
to tune transformers efficiently to adapt to different downstream tasks.

*GPT-4 technical report refrained from specifying the model size.

2

Under review as a conference paper at ICLR 2024

2.2 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) methods aim to enable efficient adaptation without fine-
tuning all the model’s parameters. PEFT methods can be classified in multiple ways.

Selective Methods propose fine-tuning only a subset of models. For instance, (Zaken et al., 2021a;
Cai et al., 2020) analyzed the bias terms and concluded that fine-tuning only the bias terms can be as
competitive as fine-tuning the entire model. However, this method is no longer competitive and shows
inferior performance when the dataset size grows (Zaken et al., 2021a). Instead of learning a static set
of parameters, researchers have also experimented with learning dynamic parts. FreezeOut (Brock
et al., 2017) proposes gradually freezing layers and excluding front layers from the backward pass to
accelerate training. Later, AutoFreeze (Liu et al., 2021b) verified the effectiveness of this approach
on language models. However, these methods still require a significant amount of computation during
the starting stage and result in inferior final performance.

Additive Methods add new layers to models instead of updating existing parameters, and only these
additional layers are learned during fine-tuning (Houlsby et al., 2019; Rebuffi et al., 2017; Lin et al.,
2020; Hu et al., 2021). Existing approaches, such as adapters (Houlsby et al., 2019), added the layers
sequentially, resulting in increased latency during inference. LoRA (Hu et al., 2021) attempted to
address this issue by merging the learned weights into the main model. Later, IA3 (Liu et al., 2022)
introduced novel ways to add parameters with parameter-accuracy trade-offs and LST (Sung et al.,
2022) proposes a highway structure and only learn the tiny side channels to reduce memory usage.
Additive methods requires manual design and many of them do not save backward computation
FLOPs (IA3, LoRA, Adapter). Further, sometime they even bring forward overhead (e.g., Adapter,
LST) thus less preferred in practice.

Prompt-Based Methods suggest optimizing the input word embeddings instead of fine-tuning and
aim to control the behavior of a language model by modifying the input text. They design continuous
and differentiable forms of prompt engineering (soft prompt) to ease optimization. Soft prompts can
be trained for the input layer only (Liu et al., 2021a; Lester et al., 2021) or for all layers (Li & Liang,
2021b). However, these approaches either use up available model input length or introduce extra
inference overheads. Furthermore, they cannot reduce back-propagation costs as well.

2.3 GREEDY LAYER-WISE UNSUPERVISED LEARNING

Another related method is greedy layer-wise unsupervised learning (Bengio et al., 2006; Hinton et al.,
2006), which trains one layer at a time for Deep Belief Networks (DBN) in the pre-deep-learning era.
It is shown to be effective as an initialization for deep supervised architectures, which accelerates the
training when there were no General-Purpose GPU accelerators. We recognize the potential of this
idea and realize such Block Coordinate Descent based optimization can be applied to supervisely
fine-tune large language models. We emphasize that the supervised layer-wise learning that we
propose is distinct from early unsupervised layer-wise learning: instead of introducing extra modules
as in previous work, we maintain the complete forward pass but simplify the backpropagation to only
update one layer. Through our experiments, we not only show that layer-wise learning can efficiently
fine-tune large language models with measured fine-tuning throughput, but we also find that different
learning patterns can significantly affect the performance (in Appendix), calling for further analysis
and attention on layer-wise learning.

3 METHOD

3.1 PRELIMINARIES

Consider a pre-trained language model F⇥ (·) with a set of parameters ⇥ = {W1,W2, . . . ,Wn}.
Here, Wi refers to the parameters in the i-th layer among a total of n layers. F⇥ can be a multi-
task learner like GPT (Radford et al., b; Brown et al., 2020), which is based on the Transformer
architecture (Vaswani et al., 2017). This pre-trained model can be adapted to downstream tasks such
as summarization, question-answering, machine reading comprehension (MRC), and description to
sentences (E2E). Each downstream task is represented by a training dataset of context-target pairs,
denoted by Z = {(xi, yi)}i=1,..,N , where both xi and yi are sequences of tokens. For example, in

3

Under review as a conference paper at ICLR 2024

m

: frozen parameters: learnable parameters : activations not in memory: activations in memory

vm

: optimizer states and m v

@Aknowledge DBN and explain the difference

(a) Layer-wise Fine-tuning (ours)

……

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

……

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

……

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

Iterations 100-200

Iterations 200-300

Iterations 300-400

(b) Full Fine-tuning.

(d) Adapter Fine-tuning

(c) Low-Rank Adaption Fine-tuning

……

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

…… FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

……

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

FFN

A
ttn

FFN

LIFT reduces back-propagations depth by half in average.LIFT does not require back-propagations /
storing activations for front frozen layers.

Figure 1. The overview of LIFT, and its comparison between LoRA (Hu et al., 2021), Adapter (Houlsby et al.,
2019) and Fine-tune Full network (FT-Full for short). In LIFT, there is only one layer (Transformer Block)
being updated in each iterations, therefore, the back-propagation can be stopped in the middle thus reduces the
back-propagation depth by half (in average). Existing methods focus mainly on parameter-efficiency but still
have to back-propagate to the very first layer. This leads to high computation costs as the back-propagation
FLOPs is 2 ⇥ larger compared to the forward.

E2E, xi represents the information and yi represents its corresponding restaurant description. In
summarization, xi is the content of an article and yi is its summary.

Vanilla Full Fine-Tuning. During full fine-tuning, the model is initialized with pre-trained weights
⇥0 and updated to ⇥0+�⇥ by repeatedly following the gradient to optimize the conditional language
modeling objective.

min
⇥

X

(x,y)2Z

|y|X

t=1

L (yt, F⇥(x, y<t)) (1)

W �⇥ = rF⇥ (X), where X 2 Z and Z is the training dataset. Since all parameters are updated,
the model has the greatest number of learnable parameters, k�⇥k = k⇥k thus delivers the best model
quality. However, this also results in the largest training cost: the back-propagation is performed all
the way to the foremost layer and Adam-based (Kingma & Ba, 2014) optimizer needs to keep first-
and second- momentum buffers to stabilize convergence (2 ⇥ as large as the model size k⇥k).

Parameter-Efficient Fine-Tuning. For common approaches like LoRA (Hu et al., 2021) and
Adapter (Houlsby et al., 2019), they propose to learn a much smaller number of parameters

min
⇥

X

(x,y)2Z

|y|X

t=1

L
�
yt, F⇥0+�(⇥)(x, y<t)

�
(2)

When k�(⇥)k << k⇥k, learning fewer parameters reduces the memory required for optimizer states.
However, the intermediate activations may still be high, as shown in Figure 1, and become more
expensive as batch size increases. Existing PEFT methods distribute learnable parameters evenly
through the model, as in {�(W1),�(W2), . . . ,�(Wn)}, therefore back-propagation still needs to
go through the foremost layer, and required computation is not improved.

4

Under review as a conference paper at ICLR 2024

FT-Full
LoRA
LIFT

0 25 50 75 100

1
0

49

3
8
17

8
8
8

14
14
14

Model Weights Forward Backward Optimizer States

FT-Full
LoRA
LIFT

0 50 100 150 200

2
1

48

78
86
93

36
39
36

14
14
14

(a) Memory usage (GB) of input size: 1x512 (b) Memory usage (GB) of input size: 4x4096

FT-Full
LoRA
LIFT

0 50 100 150 200

2
3

3

24
67

113

63
64
63 FT-Full

LoRA
LIFT

0 1250 2500 3750 5000

17
15

36

370
2,023

2,750

1,490
1,511
1,483

(d) Latency profiling (ms) of input size: 4x4096(c) Latency profiling (ms) of input size: 1x512

: frozen parameters: learnable parameters : activations not in memory: activations in memory: optimizer states and m v

Figure 2. The memory and latency profiling results for Llama-7B with different batch-size and sequence length.
LIFT improves both backward memory and latency thus significantly improving fine-tuning throughput, while
conventional PEFT methods only reduce the number of learnable parameters.

3.2 LAYER-WISE FINE-TUNING (LIFT)

In order to make it easier for more devices to use expensive language models, we propose a new
fine-tuning system that reduces back-propagation costs without sacrificing parameter-efficiency. In
this section, we will introduce our LIFT algorithm, which is both simple and effective. It offers
memory saving, latency reduction, and high usability and versatility. We will discuss the key elements
and provide a step-by-step methodology for designing and implementing LIFT.

The core idea of our proposed LIFT is "learning one layer/block at a time" (shown in Figure 1.Right).
For a given pre-trained language model F⇥ (·) with a total of N blocks, let the set of all transformer
blocks be B = {B1, . . . ,BN}. In each iteration, LIFT first performs the normal forward pass.
During the backward pass, LIFT selects one layer B` 2 C as the candidate, and only the selected
candidate is updated/learned.

During the fine-tuning process of LIFT, a single candidate is selected and updated. The selection
policy can be either (i) front to end, (ii) end to front, or (iii) random. For simplicity and generality,
we set the order to be front-to-end, as shown in the right side of Figure 1. In Appendix, we provide
more detailed ablation and compare different layerwise fine-tuning schemes. LIFT optimizes each
block for the same number of iterations within an epoch. For the first batch of iterations, the 1st block
is fine-tuned, and back-propagation requires to be performed until the foremost layer. Then, LIFT
selects the 2nd block, and the back-propagation depth is reduced by one, and similarly for later steps.

Unlike previous PEFT methods, which have a fixed set of learnable parameters and most of the
parameters are forever frozen, LIFT allows each parameter to have a chance to be updated and
learned during fine-tuning. This enhances the learning capacity and leads to better performance (see
Section 4). Proper implementations ensure that this does not result in extra memory overhead. When
switching from one selected block to another, LIFT can offload the first- and second-moment terms
for the untrained blocks to the CPU and recover them when needed. The offloading and loading can
be pipelined with training, and the overhead can be covered. Thus, LIFT can ensure convergence
without keeping all moment terms in memory.

3.3 ANALYSIS OF LIFT’S SAVING

We next analyze and discuss why and how LIFT are more memory- and computation- efficient.

PEFT Only Recues the Optimizer States Consider the widely used Adam-based optimizers
gt = rF (✓t); vt = �1vt�1 + (1� �1)gt; mt = �1nt�1 + (1� �1)g

2
t (3)

When |v| and |m| have the same size of learnable parameters, vanilla full-finetuning requires storing
all first- and second momentum, resulting in a 2⇥ increase in memory cost. This becomes a bottleneck
when fine-tuning resource-constrained devices, especially given the large parameter size of language
models. Figure. 2.(a) shows that optimizer states and model weights alone dominate more than 70%
of the memory. Applying LoRA can significantly improve memory usage.

5

Under review as a conference paper at ICLR 2024

However, simply reducing the number of learnable parameters does not result in a practical speedup.
As shown in Figure. 2.(C), even if LoRA only optimizes 1% of the parameters, the backward process
(yellow parts) remains computationally expensive. This is because regardless of whether LoRA is
used or not, back-propagation still needs to be performed on the very first layer, as the learnable
parameters are evenly distributed across the model. As the batch size increases and the sequence
length grows, the benefits of existing PEFT methods in terms of memory (Figure. 2.(B)) and latency
(Figure. 2.(C)) become less significant.

LIFT Cuts Back-propagation Depth by Half and Speedup Fine-tuning Different from conven-
tional methods that require back-propagation through all layers, LIFT only needs to back-propagate
the SELECTED block. The backward pass can safely stop since there are no learnable parameters in
the front blocks.

This significantly reduces the amount of backward computation and improves the fine-tuning through-
put, as backward computation is usually twice as large as forward computation. By applying LIFT,
the back-propagation depth is halved on average, reducing computational cost by 1/2 during the
backward pass. Additionally, computation for gradients of weights for FFNs after selected layers is
skipped, further reducing backward FLOPs by 1/3. Overall, LIFT reduces backward computation by
2/3 and results in significant savings (Figure. 2 (c, d)). These improvements are not limited by the
batch size or sequence length (Figure. 2 (b, d)).

LIFT is Parameter-Efficient and Freezing Layers Saves Memory The first memory saving
comes from optimizer states. Only the one selected block in LIFT is learnable, and other optimizer-
related buffers do not need to be in memory. Therefore, LIFT also benefits from fewer learnable
parameters and saves memory.

The second memory saving comes from intermediate activations.Take the form of a linear layer:
Y` = W`x+ b` (4)

where the corresponding gradients are
@L

@x
=

@L

@Y`
W`;

@L

@W`
= xT @L

@Y`
;

@L

@b`
=

@L

@Y`
(5)

For learnable blocks, all layers within a single block B` and all activations x must be saved in
memory for fine-tuning. This results in crucial memory overhead especially when the batch size
grows. For frozen layers, the activations x are no longer required, as we only need @L

@x to keep the
chain rule for back-propagation. For attention layers, the backward @L

@x is not activation-free, thus
all attention outputs need to be stored in order to perform backward in conventional PEFT methods
(Figure 1.(b, c,d)). With LIFT, only blocks after selected layers need to store the attention outputs, as
front layers do not require gradients (Figure 1.(a)). We will expand and discuss the real-measured
speedup and savings in Section 4.5.

4 EXPERIMENTS

To evaluate the effectiveness , we thoughtfully benchmark LIFT on various sized models, including
BERT (Devlin et al., 2018), OPT (Zhang et al., 2022) and LLaMA (Touvron et al., 2023). Our
experiments cover a wide range of natural language understanding (NLU) and generation (NLG)
tasks, including the GLUE (Wang et al., 2018), QA benchmarks, and Stanford Alapaca (Taori et al.,
2023). We first compare the accuracy of LIFT and other methods then benchmark the accuracy.
All experiments were conducted using NVIDIA A100 GPUs, PyTorch 2.0. The Transformers
version (Wolf et al., 2020) is 4.30 and PEFT verison is 0.4.0. We will release our codebase for when
less anonymous.

4.1 BASELINES

To compare with other baselines, we follow the setups from prior work and reuse their reported
numbers when possible. We focus on the comparison with LoRA and its variants as these methods
introduce no inference overhead.

Fine-Tune Full (FT-Full) is a common approach for adaptation. During fine-tuning, the model is
initialized with pre-trained weights and biases and all model parameters perform gradient updates. In
our experiments, we report the number of learning all layers.

6

Under review as a conference paper at ICLR 2024

Table 2. Performance comparison of BERT (Devlin et al., 2018) on GLUE benchmark (Wang et al., 2018).
Each result is averaged from 3 runs. For each task, the numbers highlighted in red and blue indicate the best
and second-best respectively. LIFT shows on-par performance with FT-Full while existing methods sometimes
suffers from performance degration.

Method Avg. GLUE Benchmark
CoLA MNLI MRPC QNLI QQP RTE SST-2

FT-Full 80.2 58.3±1.1 83.7±0.1 82.6±0.7 90.7±0.1 90.7±0.1 63.4±2.1 91.6±0.7

Adapter 78.4 51.8±4.1 79.2±0.4 84.3±1.3 88.6±0.2 85.3±0.2 68.2±1.7 91.0±1.1

BitFit 78.1 51.1±0.5 78.6±0.8 83.6±2.6 88.5±1.0 86.0±0.1 67.9±3.3 90.7±1.3

LoRA 79.0 56.5±0.7 84.1±0.3 81.4±1.0 90.2±0.3 84.1±0.1 65.0±2.2 91.3±0.5

LIFT 79.5 56.9±1.9 83.2±0.4 81.9±1.2 89.6±0.4 88.3±0.1 63.5±2.3 91.4±0.7

Adapter Tuning is originally proposed as a parameter-efficient approach that inserts extra layers
between the original modules and only learn the tiny extra modules to adapt to downstream tasks
(Houlsby et al., 2019). We follow the original design and append layers after both attention and MLP
modules in our experiments for BERT.

Prefix Tuning draws its inspiration from prompting and only updates virtual tokens prepended to the
input (Li & Liang, 2021a). It has been proved effective for LLMs on a variety of NLG tasks. In our
experiments, we follow the original prefix tuning setting for OPT and LLaMA on QA benchmarks,
and the LLaMA-Adapter implementation (Zhang et al., 2023) for instruction-tuning.

Bias-only Tuning is a simple variant of fine-tuning where only the bias vectors are trained while
everything else is frozen. We referenced the implementation from BitFit (Zaken et al., 2021a).

Low-Rank Adaptions (LoRA) is a method that factorizes the large weight matrix into lower ranks
and only learns the low-rank parts during fine-tuning (Hu et al., 2021). We use the official settingand
Huggingface’s implementation to run our experiments.

Layer-Wise fine-tuning (LIFT, ours) does not introduce any additional modules to the original
architecture and only alters the way of updating weights during fine-tuning. In the followings, we
will first show that our LIFT can achieve performance that is comparable to previous fine-tuning
methods. Note that LIFT is orthogonal with most PFET methods, We also evaluate the performance
by combing LIFT and LoRA to show the generalization ability of LIFT. We then demonstrate the
efficiency improvement on various model sizes and workloads.

4.2 PERFORMANCE ON NATURAL LANGUAGE UNDERSTANDING (GLUE)

For natural language understanding (NLU) tasks, we use the pre-trained BERT-base (110M) models
from the HuggingFace Transformers library (Wolf et al., 2020) and evaluate the performance of
different efficient adaptation approaches on tasks from the GLUE benchmark. we set learning rate at
1e-4, weight decay to be 0, sequence length at 256 and batch size at 32. To make a fair comparison,
we train all settings same epochs at 3 and no extra epochs are allocated to LIFT. All 12 blocks in
BERT are fine-tuned from front to end in each epoch.

Based on Table 2, we observe that while conventional efficient learning approaches sacrifice perfor-
mance to some degree, LIFT closely matches the baseline performance (FT-Full) and consistently
outperforms other efficient fine-tuning methods on several benchmarks. Notably, on the QQP task,
LIFT improves performance by 3⇠4% in comparison with existing PEFT approachs.

4.3 PERFORMANCE ON QA BENCHMARKS

We next evaluate the LIFT’s performance on larger OPT (Zhang et al., 2022) and LLaMA (Touvron
et al., 2023) models. We include zero-shot as a new baseline and replace the adapter setting (Houlsby
et al., 2019) with prefix tuning (Li & Liang, 2021a) as the latter one’s performance is more competitive
on large language models. We reference the setting from (Wu et al., 2023) and set to learning to 5e-6
for FT-Full and 5e-5 for other settings. We use the standard warmup strategy and cosine annealing
decay to adjust learning during 3 training epochs.

7

Under review as a conference paper at ICLR 2024

Table 3. Performance comparison of OPT-1.3B (Zhang et al., 2022) and LLaMA-7B (Touvron et al., 2023)
on QA benchmarks. The best and second-best results are highlighted with color. While LIFT demonstrates
competitive performance, the performance improvement is significantly larger on challenging tasks (where
zero-shot cannot handle) compared other PEFT methods, as no parameters are forever frozen in LIFT .

Language
Model Method QA Benchmarks

PIQA HellaSwag SciQ OpenBookQA WebQs ARC-e ARC-c

OPT-1.3B

Zero-shot 72.5 41.5 84.4 23.4 4.7 57.0 23.4
FT-Full 75.6±1.2 47.3±2.7 91.7±0.3 37.2±3.1 34.8±1.1 61.7±0.7 31.4±2.2

LoRA 73.5±1.1 42.8±3.3 93.7±0.2 26.4±4.4 19.8±1.9 59.7±0.7 28.1±1.7

LIFT 73.9±1.4 43.1±2.9 92.6±0.2 29.0±5.7 27.5±1.9 60.1±0.9 27.8±2.2

LIFT + LoRA 73.8±1.7 44.7±3.2 91.8±0.7 27.4±4.0 17.8±3.1 60.1±2.2 27.1±2.9

LLaMA-7B

Zero-shot 77.4 56.4 89.7 28.2 0.0 67.3 38.2
FT-Full 82.4±0.8 59.4±2.1 95.6±0.3 47.8±5.5 44.2±1.7 77.4±0.4 49.9±1.5

LoRA 81.6±0.9 59.8±2.5 96.2±0.5 38.0±4.7 33.1±2.0 74.5±0.3 40.2±2.0

LIFT 81.1±1.1 60.4±1.9 96.3±0.4 37.6±4.9 44.1±2.1 75.8±0.3 46.8±2.1

LIFT + LoRA 81.4±1.0 61.3±2.23 95.9±0.5 37.1±4.0 39.7±2.5 74.7±0.7 39.9±1.8

Table 4. Performance comparison of LLaMA (Touvron et al., 2023) on Stanford Alpaca instruction-tuning
dataset (Taori et al., 2023). The GPT-4 score is evaluated following Vicuna’s (Chiang et al., 2023) pipeline
where the comparison reference is chatgpt-3.5-turbo.

Language
Model Method Latency

(ms)
Memory

(GB) Loss (↓) GPT-4
Score (↑)

Reference
Score

LLaMA-7B

FT-Full 514 91 0.34 474 608
Adapter 476 42 0.44 398 628
LoRA 403 41 0.41 404 616
LIFT 221 32 0.36 470 614

LLaMA-13B

FT-Full 892 166 0.25 505 594
Adapter 704 71 0.38 474 624
LoRA 674 68 0.31 486 610
LIFT 365 57 0.28 494 608

Evaluation on OPT-1.3B and LLaMA-7B are conducted on seven QA benchmarks and the results are
attached in Table 8. While LIFT can in many cases outperform previous approaches, we notice that
the performance gap is more obvious on challenging tasks as WebQs, ARC-e, and ARC-c, where
zero-shot fails to yield high quality answers. This suggests that LIFT has higher fine-tuning capacity
as all parameters have a chance to be updated, while the most parameters are forever frozen in
conventional methods. We also attach the corresponding validation curve in Appendix.

Furthermore, since LIFT is a simple and general method, we present the results of combining LIFT
and LoRA in the last rows of Table 8. This combination yields answers of comparable quality and
suggests that we can leverage both the speedup in fine-tuning from LIFT and the storage savings
from LoRA.

4.4 PERFORMANCE ON INSTRUCTION TUNING

With growing attention ChatGPT (OpenAI, 2022) has received, the demand for to tailoring the model
to their domain-specific needs (e.g., Law, Biomedical, Health Care) has been increasing rapidly.
We start with LLaMA-7B and LLaMA-13B (Touvron et al., 2023) and align pretrained language
models with instructions following the self-instruct (Wang et al., 2022) and using data from Stanford
Alpaca (Taori et al., 2023). We train the models with batch 2, accumulation steps 8 and learning rate
2e-5 for FT-Full and 4e-4 for other methods. All results are obtained from training with 3 epochs.

For evaluation, we report the fine-tuning and loss and GPT4-score, following Vicuna (Chiang et al.,
2023) setting to use GPT-4 as the automated evaluation using 80 provided questions. The quality
of the answers are evaluated based on helpfulness, relevance, accuracy, and details. This is an
pair-to-pair comparison and we choose ChatGPT-3.5-turbo as the baseline in our experiments.

Table 4 shows that LIFT generates close-quality answers as FT-Full, while other methods like LoRA
and Adapter more or less suffer from performance degradation in term of training loss when aligning

8

Under review as a conference paper at ICLR 2024

bs=1 bs=2 bs=4

21512289 391213131
502284179

FT-Full LoRA LIFT(Ours)

bs=1 bs=2 bs=4

416221123
764

403217
967

514288

bs=1 bs=2 bs=4

860
440232

1,595
809

423

1,990

1,012
534

bs=1 bs=2 bs=4

1,897

958
486

3,526

1,782

860

4,269

2,174

1,099

LLaMA-7B, length 512 LLaMA-7B, length 1024 LLaMA-7B, length 2048 LLaMA-7B, length 4096

bs=1 bs=2 bs=4

373229 424037

909188

bs=1 bs=2 bs=4

503732
554240

929191

bs=1 bs=2 bs=4

78
5037

83
5542

118
9290

bs=1 bs=2 bs=4

132

78
50

139

83
55

193

119
89

LLaMA-7B, length 512 LLaMA-7B, length 1024 LLaMA-7B, length 2048 LLaMA-7B, length 4096

La
te

nc
y

(m
s)

M
em

or
y

(G
B

)

bs=1 bs=2 bs=4

355203126 656367204
872501294

bs=1 bs=2 bs=4

706365207
1,317

674375
1,707

892509

bs=1 bs=2 bs=4

1,490
745383

2,788
1,388

707

3,536

1,777
924

bs=1 bs=2 bs=4

3,280

1,646
815

6,154

3,081

1,525

7,555

3,823

1,916

La
te

nc
y

(m
s)

LLaMA-13B, length 512 LLaMA-13B, length 1024 LLaMA-13B, length 2048 LLaMA-13B, length 4096

bs=1 bs=2 bs=4

574945 686560

166165161

bs=1 bs=2 bs=4

785749
896865

175166165

bs=1 bs=2 bs=4

118
7857

131
8967

212
175164

bs=1 bs=2 bs=4

201

118
78

215

131
89

306

211
175

M
em

or
y

(G
B

)

LLaMA-13B, length 512 LLaMA-13B, length 1024 LLaMA-13B, length 2048 LLaMA-13B, length 4096

Figure 3. The compute-, and memory-efficiency comparison for LIFT on different sized models with varying
length settings. We report the average latency and peak memory. LIFT significantly improves training throughput
while using lower memory footprint than previous methods. The improvement is more significant for large
models and batch sizes.

with instructions. For GPT-4 score, the trends is also similar: LIFT has better answer quality and the
gap between LLaMA generated answers and ChatGPT reference are smaller.

4.5 EFFICIENCY COMPARISON

We have demonstrated that LIFT can be a viable alternative to prior methods, and now further
investigate its efficiency in comparison to other fine-tuning techniques. We will be examining two
key aspects - the training throughput and the peak memory footprint. These numbers were measured
on Eight Nvidia A100 (80G) SXM GPUs using the Accelerate’s library auto parallelism.

We thoughtfully profile LIFT on various models sizes and compare the results in Figure. 3. Conven-
tional wisdom suggests that fewer learnable parameters would always result in lower training memory
and computation. But in first two rows of Figure. 3, we find that the latency saving from existing
methods is limited. From the last two rows of Figure. 3, we notice that even the memory reduction
would saturate the fine-tuning memory is no longer dominated model weights and optimizer states.

In contrast, LIFT only propagates gradients until the selected layer, avoiding unnecessary backward
computations on front layers and reducing the computation required by calculating weight gradients
in later FFN layers, thus achieving consistent and measured speedup compared with previous methods.
The saving ratio does not saturate when fine-tuning workloads increases (LLaMA-7B and 13B latency
results), while peak memory usage keeps similar with existing PEFT method.

5 CONCLUSION

We propose LIFT, a cost-effective method for fine-tuning language models that can reduce back-
propagation computation. LIFT does not neither change the model architecture nor reduces input
sequence length, and preserves high model quality while improves the training throughput up to 1.8
to 2.7⇥ by reducing back-propagation costs. The saving becomes more significant with larger model
sizes and batch sizes. LIFT accelerates fine-tuning process and thereby democratize language models
to a wider range of scenarios.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. Advances in neural information processing systems, 19, 2006.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Freezeout: Accelerate training
by progressively freezing layers. arXiv preprint arXiv:1706.04983, 2017.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs],
July 2020. URL http://arxiv.org/abs/2005.14165.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce activations, not trainable
parameters for efficient on-device learning. arXiv preprint arXiv:2007.11622, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Github Copilot. Copilot: Your ai pair programmer. URL https://github.com/features/
copilot.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs], May 2019. URL
http://arxiv.org/abs/1810.04805. arXiv: 1810.04805.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Brian Lester, Rami Al-Rfou, and Noah Constant. The Power of Scale for Parameter-Efficient Prompt
Tuning. arXiv:2104.08691 [cs], April 2021. URL http://arxiv.org/abs/2104.08691.
arXiv: 2104.08691.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021a.

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation.
arXiv:2101.00190 [cs], January 2021b. URL http://arxiv.org/abs/2101.00190.

10

http://arxiv.org/abs/2005.14165
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/features/copilot
https://github.com/features/copilot
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2101.00190

Under review as a conference paper at ICLR 2024

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model via
parameter-efficient transfer learning. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 441–459, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.findings-emnlp.41. URL https://aclanthology.org/2020.
findings-emnlp.41.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin
Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning,
2022.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. GPT
Understands, Too. arXiv:2103.10385 [cs], March 2021a. URL http://arxiv.org/abs/
2103.10385. arXiv: 2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning. arXiv preprint arXiv:2102.01386, 2021b.

OpenAI. Introducing chatgpt, December 2022. URL https://openai.com/blog/chatgpt.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Language Under-
standing by Generative Pre-Training. pp. 12, a.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. pp. 24, b.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356,
2022.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. arXiv:1705.08045 [cs, stat], November 2017. URL http://arxiv.org/
abs/1705.08045. arXiv: 1705.08045.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
efficient transfer learning, 2022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions,
2022.

11

https://aclanthology.org/2020.findings-emnlp.41
https://aclanthology.org/2020.findings-emnlp.41
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
https://openai.com/blog/chatgpt
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1705.08045
https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2024

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed, and Alham Fikri Aji.
Lamini-lm: A diverse herd of distilled models from large-scale instructions, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models, 2021a.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. CoRR, abs/2106.10199, 2021b. URL
https://arxiv.org/abs/2106.10199.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao,
and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init attention.
arXiv preprint arXiv:2303.16199, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

12

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2106.10199

	Introduction
	Related Work
	Transformer Language Models
	Parameter-Efficient Fine-Tuning (PEFT)
	Greedy Layer-wise Unsupervised Learning

	Method
	Preliminaries
	Layer-Wise Fine-Tuning (LIFT)
	Analysis of LIFT's Saving

	Experiments
	Baselines
	Performance on Natural Language Understanding (GLUE)
	Performance on QA Benchmarks
	Performance on Instruction Tuning
	Efficiency Comparison

	Conclusion
	Broader Impact
	Range Selection and Contribution Analysis
	Training Schedule of LIFT
	Iteration Policy of LIFT

