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Abstract

Learning disentangled causal representations is a challenging problem that has
gained significant attention recently due to its implications for extracting mean-
ingful information for downstream tasks. In this work, we define a new notion
of causal disentanglement from the perspective of independent causal mecha-
nisms. We propose ICM-VAE, a framework for learning causally disentangled
representations supervised by causally related observed labels. We model causal
mechanisms using learnable flow-based diffeomorphic functions to map noise
variables to latent causal variables. Further, to promote the disentanglement of
causal factors, we propose a causal disentanglement prior that utilizes the known
causal structure to encourage learning a causally factorized distribution in the latent
space. Under relatively mild conditions, we provide theoretical results showing the
identifiability of causal factors and mechanisms up to permutation and elementwise
reparameterization. We empirically demonstrate that our framework induces highly
disentangled causal factors, improves interventional robustness, and is compatible
with counterfactual generation.

1 Introduction

Disentangled representation learning aims to learn meaningful and compact representations that
capture semantic aspects of data by structurally disentangling the factors of variation [1]. Such
representations have been shown to offer useful properties such as better interpretability, robustness
to distribution shifts, efficient out-of-distribution sampling, and fairness [2]. However, disentangled
representation learning typically assumes that the underlying factors are independent, which is
unrealistic in practice. The factors generating the data can contain correlations or even causal
relationships that are disregarded when factors are assumed to be independent. Further, a generative
model learning from an independent prior assumes that all combinations of the latent factors are
equally likely to appear in the training data. Thus, disentangling the factors would yield a sub-optimal
likelihood since the assumed support could be well outside the support of the training data.

Recently, there has been a growing interest in bridging causality [3] and representation learn-
ing [1]. The goal of causal representation learning is to map unstructured low-level data
to high-level abstract causal variables of interest [4]. The key assumption is that high-
dimensional observations are generated from a set of underlying low-dimensional causally re-
lated factors of variation. Causal representations also adhere to the principle of independent
causal mechanisms (ICM) [5], which states that the mechanisms that generate each causal
variable are independent such that a change in one mechanism does not affect another [6, 7].
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Figure 1: We learn causal models represent-
ing images as causal variables z. The bot-
tom shows the effect of intervening on the
pendulum’s angle and generating a counter-
factual image.

Learning a generative model that captures the causal
structure among latent factors can be crucial for reason-
ing about the world under interventions. For example,
a pendulum, light source, and shadow, as seen in Figure
1, may be causally related but are separate entities in
the world that can be independently manipulated. For
instance, manipulating the pendulum’s angle will affect
the shadow’s position and length. These hypothetical
scenarios could be counterfactually generated from a
causal generative model.

Our contributions are as follows: (1) Based on the
ICM principle, we propose the notion of causal disen-
tanglement for causal models from the perspective of
mechanisms and design a causal disentanglement prior
to causally factorize the learned distribution over causal
variables. (2) We propose ICM-VAE, a framework for
causal representation learning under supervision from
labels, where causal variables are derived from learned
flow-based diffeomorphic causal mechanisms. (3) Uti-
lizing the structure from our causal disentanglement
prior, we theoretically show the identifiability of the learned causal factors and mechanisms up to
permutation and elementwise parameterization. (4) We experimentally validate our method and show
that our model can almost perfectly disentangle the causal factors, improve interventional robustness,
and generate consistent counterfactual instances in the weakly supervised setting.

2 Preliminaries

Let X ⊂ Rd denote the support of the observed data x assumed to be generated from latent factors of
variation z with domain Z ⊂ Rn, where n≪ d. We assume x can be decomposed as x = g(z) + ξ
where ξ ∼ N (0, σ2I) are mutually independent noise terms for reconstruction. Let g : Z → X be
the decoder (or mixing) that maps the factors to the data space.

Identifiability. The goal of learning a useful representation that recovers the true underlying data-
generating factors is closely tied to the problem of blind source separation (BSS) and independent
component analysis (ICA) [8, 9, 10]. Provably showing that a learning algorithm achieves this goal
up to tolerable ambiguities under certain conditions is formalized as the identifiability of a model. In
this section, we use the notion of ∼-equivalence from [11] to formulate identifiability.
Definition 1. Let ∼ be an equivalence relation on θ. We say that the generative model is ∼-identifiable
if

pθ(x) = pθ̂(x) =⇒ θ ∼ θ̂ (1)

If two different choices of model parameter θ and θ̂ lead to the same marginal density pθ(x),
this implies that they are equal and pθ(x, z) = pθ̂(x, z), pθ(z) = pθ̂(z), and pθ(z|x) = pθ̂(z|x).
However, [11] showed that it is impossible to achieve marginal density equivalence pθ(x) = pθ̂(x)
with an unconditional prior pθ(z). Since the VAE is unidentifiable without some form of additional
restriction on the function class of the mixing function or auxiliary information, [11] proposed a
theory of identifiability using a conditionally factorial prior. In iVAE [11], each factor zi is assumed to
have a univariate exponential family distribution given the conditioning variable u, where a function λ
determines the natural parameters of the distribution. The general PDF of the conditional distribution
proposed by [11] is defined as follows:

pT,λ(z|u) =
∏
i

pθ(zi|u) =
∏
i

hi(zi) exp

[
k∑

j=1

Ti,j(zi)λi,j(u)− ψi(u)

]
(2)

where hi(zi) is the base measure, Ti : Z → Rk and Ti = (Ti,1, . . . , Ti,k) are the sufficient statistics,
λi(u) = (λi,1(u), . . . , λi,k(u)) are the corresponding natural parameters, k is the dimension of each
sufficient statistic, and the remaining term ψi(u) acts as a normalizing constant. A prior conditioned
on auxiliary information u can guarantee that the joint densities pθ(x, z) = pθ̂(x, z) are equivalent up
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to some equivalence class. The following two definitions from [11] describe the conditions necessary
to achieve the identifiability of a learned model up to linear transformation and block permutation
indeterminacies, respectively.
Definition 2. Let ∼ be an equivalence relation on θ, X = g(Z), and X̂ = ĝ(Z). We say that θ and
θ̂ are linearly-equivalent if and only if there exists an invertible matrix A ∈ Rnk×nk and vectors
b, c ∈ Rnk such that ∀x ∈ X , T(g−1(x)) = AT̂(ĝ−1(x)) + b and ATλ(u) + c = λ̂(u). We denote
this equivalence as θ ∼A θ̂.
Definition 3 (Permutation equivalence). We say θ and θ̂ are permutation-equivalent, denoted θ ∼P θ̂,
if and only if P is permutation matrix that has block-permutation structure respecting T. That is,
there exist n invertible k× k matrices A1, . . . , An and an n-permutation π such that for all z ∈ Rnk,
P ẑ = [zπ(1)A

T
1 , zπ(2)A

T
2 , . . . , zπ(n)A

T
n ]

T .

Linear equivalence indicates the true representation is a linear transformation of the learned repre-
sentation and only guarantees the learned representation captures the true representation. In general,
linear-equivalent identifiability does not guarantee that the factors of variation are disentangled since
the linear transformation can mix up the variables (i.e. one component of g−1 corresponds to multiple
components of ĝ−1). Permutation equivalence implies that the i-th factor zi of one representation
corresponds to a unique factor in another representation, given the permutation π. To truly disentangle
factors of variation, we must ensure that each coordinate of the learned representation is equal to the
scaled and shifted coordinate of the ground truth up to some permutation. To this end, we define the
notion of disentanglement similar to [12] as follows.
Definition 4 (Permutation Disentanglement). Given some ground-truth model, a learned model θ̂ is
said to be disentangled if θ and θ̂ are permutation-equivalent.

3 Causal Mechanism Equivalence

In causal representation learning, we assume that the underlying factors z are causally related
and described by a latent structural causal model with unknown causal mechanisms. Although
the existing notions of disentanglement may be suitable for independent factors of variation [11],
they fail to capture important information in a causal model where the factors are causally related.
As formulated in Def. 2 and Def. 3, linear or permutation equivalent identifiability [11] cannot
capture the causal mechanisms accurately or distinguish the mechanisms afflicted to factors. For a
counterexample to the definitions, see Appendix B.2. The framework of iVAE captures identifiability
in the sense that the joint distributions of the latent variables of two different models are equivalent.
However, for a causally factorized model, we have that pθ(z) = pθ̂(z) does not imply pθ(zi|zpai) =
pθ̂(zi|zpai). That is, the ground-truth causal factors and the learned causal factors should entail the
same causal conditional mechanisms, where the minimal conditioning set is the set of causal parents.
Based on the intuition that causal models are described by mechanisms, we define a new notion of
disentanglement that takes into account conditional distributions of causal variables under the Markov
factorization. The new causal conditional equivalence preserves information about the independent
causal mechanisms (ICM), which is a unique formulation for a causal model and important for
performing correct interventions. The following two definitions describe the conditions necessary to
satisfy causal mechanism equivalence.
Definition 5 (Causal Mechanism Permutation Equivalence). Let ∼ be an equivalence relation
between θ̂ and θ, X = g(Z), and X̂ = ĝ(Z). If the factors z are causally related, we say that θ is
causal mechanism permutation equivalent to θ̂ if and only if:

1. There exists a permutation matrix P such that I = P · J where I and J are indices of z and
ẑ, respectively.

2. Given an equivalence pair (i, j), i.e., Pij ̸= 0, from this permutation matrix, one has
Ti(zi|zpai) = DijT̂j(zj |zpaj ),∀zi ∈ Zj ,∀ẑj ∈ Zi, where Dij is a scaling coefficient.

3. For all i, j ∈ {1, . . . , n}, we have the mechanism equivalence λi(zpai , u) = Dijλ̂j(zpaj , u),
where D is a diagonal scaling matrix.

Definition 6 (Causal Disentanglement). Given some ground-truth model θ, a learned model θ̂ is said
to be causally disentangled if θ and θ̂ are causal mechanism permutation-equivalent.
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Figure 2: Architecture of ICM-VAE Framework, which contains two main components: (i) Structural
Causal Flow (SCF), and (ii) Causal Disentanglement Prior.

4 Proposed Framework

We design a framework to achieve causal disentanglement. We propose ICM-VAE, a VAE-based
framework based on the independent causal mechanisms (ICM) principle that achieves disentangle-
ment of causal mechanisms. Figure 2 shows the overall architecture of our proposed framework.

Structural Causal Flow. Rather than assuming the limiting linear causal graphical model (CGM),
as done in [13], we consider causal mechanisms to be complex nonlinear functions. Diverging
from the strictly additive noise model assumption, we propose to parameterize causal mechanisms
with a more general diffeomorphic1 function. Flow-based models [14] are often quite expressive
in low-dimensional settings, which makes them desirable for learning complex distributions due to
efficient and exact evaluation of densities. We parameterize the causal mechanisms with a conditional
flow, which we refer to as the latent structural causal flow (SCF), that learns to map the independent
noise distribution to a distribution over causal variables. This module is inspired by the causal
autoregressive flow proposed by [15]. This type of model is more realistic and general to better
capture the complex distribution over the latent causal variables compared to simple linear mappings
and leads to counterfactual identifiability [16]. The SCF, denoted as fRF, is the reduced form (RF) of
a nonlinear SCM function that conceptually maps noise variables ϵ to causal variables z as follows

z = fRF(ϵ) (3)

where fRF : E → Z is derived from the recursive substitution of causal mechanisms fi in topological
order of the causal graph as follows

zi = fi(ϵi; zpai), ∀i ∈ {1, . . . , n} (4)

realized as a function of the noise term and parent variables. The noise encoding ϵi is exactly the
SCM noise variable corresponding to the causal variable zi.

Assuming that the causal structure is known as apriori in the form of a binary adjacency matrix
obtained via an off-the-shelf causal discovery algorithm, such as the PC algorithm [17], we outline a
flow-based procedure. In order to implement a diffeomorphic function fRF, we need to ensure that
it is bijective and has a differentiable inverse. Flow-based models satisfy both these requirements.
Specifically, this flow is implemented as an affine autoregressive flow, where we derive each causal
variable one at a time in topological order such that each variable is dependent only on a subset of
previously derived variables (i.e. parents). Thus, the change of variables can be computed quite
easily for exact and efficient likelihood estimation. Let’s take the pendulum example in Figure
1 to illustrate. The causal structure is z1 → z3, z4 and z2 → z3, z4. Then, the SCF would be
fRF : (ϵ1, ϵ2, ϵ3, ϵ4) 7→ (z1 = f1(ϵ1), z2 = f2(ϵ2), z3 = f3(ϵ3, z1, z2), z4 = f4(ϵ4, z1, z2)), where
zi = fRF

i (ϵi; ϵpai) = fi(ϵi; zpai) and each fi are affine diffeomorphic transformations of the form

zi = fi(ϵi; zpai) = exp(ai) · ϵi + bi (5)

where ai = r1(zpai) and bi = r2(zpai) are the slope and offset parameters of the affine transformation,
respectively, learned via neural networks r1 and r2 that capture information about the causal parents.

1A diffeomorphism is a differentiable bijection with a differentiable inverse.
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Since the Jacobian of the function will be triangular by construction and the slope parameter is
learned for each variable, the slope is equivalent to the diagonal elements of the Jacobian matrix as
follows

log
∏
i

∣∣∣∣∂ϵi∂zi

∣∣∣∣ = ∑
i

log

∣∣∣∣∂fRF
i (ϵi; ϵpai)

∂ϵi

∣∣∣∣−1 =
∑
i

ai (6)

where ϵpai denotes the noise terms associated with the parents of causal variable zi. The structural
causal flow can easily be generalized to multivariate scenarios by masking groups of latent codes
corresponding to each causal variable.

Generative Model. To achieve an identifiable model, we leverage auxiliary information as a weak
supervision signal [11]. Let u ∈ Rn be the auxiliary observed labels corresponding to the causally
related ground-truth factors with support U ⊂ Rn. We assume that the decoder g is diffeomorphic
onto its image. Several prior works [18, 11, 12], assume that the nonlinear mixing function mapping
Z to X is a diffeomorphism. Consider the pendulum system from Figure 1 consisting of a light
source, a pendulum, and a shadow. Given only the image, it is completely certain that we can identify
where each object appears in the image. So, we find it reasonable to assume a diffeomorphic mixing
function g for our exploration. Let θ = (g,T,λ, Gz) be the parameters of the conditional generative
model defined as follows

pθ(x, ϵ, z|u) = pθ(x|ϵ, z)pθ(ϵ, z|u) (7)
where

pθ(x|ϵ, z) = pθ(x|z) = pξ(x− g(z)) (8)
If we assume that the distribution over the noise ξ is Gaussian with infinitesimal variance, we can
model non-noisy observations as a special case of Eq. 8. The prior distribution in the generative
model is given by

pθ(ϵ, z|u) = p(ϵ)pθ(z|u) (9)
where we choose p(ϵ) as a standard Gaussian base distribution and p(z|u) is assumed to be condition-
ally factorial. However, the conditional prior in Eq. (2) cannot properly capture causal mechanisms
for causally related factors. We next define a causally factorized prior suitable to achieve causal
disentanglement.

Causal Disentanglement Prior. We aim to use a structured prior and perform conditioning in the
latent space, similar to previous work on nonlinear ICA [11], to enforce z to be a disentangled causal
representation. However, for a model incorporating causal structure, the form of the conditional
prior in Eq. (2) needs to be modified and generalized to causally factorized distributions. To enforce
the disentanglement of z, we parameterize the prior distribution to learn a mapping from u to z.
That is, since the goal of causal disentanglement is to map each latent/mechanism to exactly one
corresponding ground-truth factor/mechanism, we can explicitly incorporate this into the prior. Using
u as our observational labels, we parameterize the factorized causal conditionals with a conditional
flow between u and z to establish a bijective relationship. The goal is for the distribution over the
causal variables to tend towards the learned prior. The prior over z is defined as follows

pθ(z|u) =
n∏

i=1

pθ(zi|zpai , ui) =

n∏
i=1

p(ui)

∣∣∣∣∂λi(ui; zpai)

∂ui

∣∣∣∣−1 (10)

pθ(zi|zpai , ui) = hi(zi) exp(Ti(zi|zpai)λi(G
z
i ⊙ z, ui)− ψi(z, u)) (11)

where λi(G
z
i ⊙ z, ui) is the estimated parameter vector of the prior obtained via mechanism λi, Gz

i
is the ith column of the adjacency matrix of the causal graph of z, hi(z) is the base measure, and
Ti(z) = (z, z2) is the sufficient statistic. The prior induces a causal factorization of z with causal
conditionals pθ(zi|zpai , ui), where ui is introduced as a weak supervision signal for identifiability.
Eq. (10) is reminiscent of temporal priors that define a distribution over a latent variable conditioned
on the variable at a previous time step [19]. In our case, we view the causal factors as derived
autoregressively. With a slight abuse of notation, we define λ(z, u) to be the concatenation of all
λi(G

z
i ⊙ z, ui). The function λ(z, u) outputs the natural parameter vector for the causally factorized

distribution. We further require λ : Z × U → Z to learn a bijective map between u and learned
representation z to encourage disentanglement of the causal mechanisms. In practice, we choose
p(u) from a location-scale family such as Gaussian. The mechanism λi is defined as the following
diffeomorphic map:

λi(ui; zpai) = exp(ci) · ui + di (12)
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Figure 3: (Pendulum and Flow) Counterfactually generated images after intervening on causal factor
z1, z2, z3, and z4, individually, and propagating causal effects.

where ci = s1(zpai) and di = s2(zpai) are the slope and offset parameters of the flow, respectively,
learned via neural networks. To obtain a causally factorized conditional prior over z, we map the
base distribution p(u), which is known beforehand, to a distribution over z.

Learning Objective. Putting all the components together, ICM-VAE consists of a stochastic encoder
qϕ(ϵ, z|x, u), a decoder pθ(x|ϵ, z), and diffeomorphic causal transformations fi(·; ϵ). All components
are learnable and implemented as neural networks. Formally, we optimize the following variational
lower bound:

log pθ(x, u) ≥ Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ) + log pθ(x|z)− β{log qϕ(ϵ|x, u) + log qϕ(z|x, u)

− log p(ϵ)− log pθ(z|u)}
]

(13)

where β is the latent bottleneck parameter. We train the model by minimizing the negative of the
ELBO loss and learn to map low-level pixel data to noise variables and map the noise variable
distribution to a distribution over the causal variables. For a detailed derivation of the ELBO, see
Appendix B.3.

5 Identifiability Analysis

The causally factorized prior in Eq. (10) induces disentanglement of causal mechanisms. Theorem
1 extends the identifiability theorem of [11] to show causal mechanism equivalence identifiability
when we have a causal model. We note that the causal mechanism disentanglement implies the
disentanglement of causal factors. For a full proof of Theorem 1, see Appendix B.1.
Theorem 1 (Identifiability of ICM-VAE). Suppose that we observe data sampled from a generative
model defined according to (7)-(11) with two sets of model parameters θ = (g,T,λ, Gz) and
θ̂ = (ĝ, T̂, λ̂, Ĝz). Suppose the following assumptions hold

1. The set {x ∈ X |ϕξ(x) = 0} has measure zero, where ϕξ is the characteristic function of the
density pξ defined in Eq. (8).

2. The decoder g is diffeomorphic onto its image.

3. The sufficient statistics Ti are diffeomorphic.

4. [Sufficient Variability] There exists nk + 1 distinct points u0, . . . , unk such that the matrix

L = (λ(zpa(1) , u(1))− λ(z(0), u(0)), . . . ,λ(zpa(nk)
, u(nk))− λ(z(0), u(0))) (14)

of size nk × nk is invertible, the ground-truth function λ is affected sufficiently strongly by
each individual label ui and previously derived variables zpai , and ∀i, λi(zpai , ui) ̸= 0.

Then θ and θ̂ are causal mechanism permutation-equivalent, and the model θ̂ is causally disentangled.
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Figure 4: (CausalCircuit) Counterfactually generated samples as a result of intervening on z1. Observe
that the robot arm moves and turns on the blue, green, or red lights, which causally affect other lights.

6 Experimental Evaluation

Table 1: Causal Disentanglement

Dataset Model D C IRS

Pendulum β-VAE 0.182 0.285 0.449
iVAE 0.483 0.385 0.670

CausalVAE 0.885 0.539 0.817
SCM-VAE 0.764 0.475 0.829

ICM-VAE (Ours) 0.997 0.882 0.869

Flow β-VAE 0.308 0.332 0.452
iVAE 0.730 0.481 0.674

CausalVAE 0.819 0.522 0.707
SCM-VAE 0.854 0.483 0.811

ICM-VAE (Ours) 0.988 0.598 0.893

CausalCircuit β-VAE 0.692 0.442 0.982
iVAE 0.745 0.541 0.992

CausalVAE 0.886 0.625 0.994
SCM-VAE 0.867 0.652 0.993

ICM-VAE (Ours) 0.982 0.689 0.999

We run experiments on the Pendulum, Flow, and
CausalCircuit datasets, each consisting of four
continuous-valued causal variables, and evaluate
disentanglement, completeness, interventional
robustness, and counterfactual generation.

Discussion. Our experiments show that learning
diffeomorphic causal mechanisms and incorpo-
rating the causal structure to learn a bijective λ
to estimate the parameters of the causally fac-
torized distribution significantly improves the
disentanglement and interventional robustness
of learned causal factors compared with base-
lines, as shown in Table 1. Consistent with our
intuition, iVAE fails to disentangle the causal
factors. The results indicate that ICM-VAE dis-
entangles the causal factors and mechanisms almost perfectly. A high DCI disentanglement score
indicates a permutation matrix mapping the latent factors to ground-truth generative factors in an ideal
one-to-one mapping [20, 21]. Further, our model improves the interventional robustness [22] of the
representation, where interventions on ground-truth factors map to interventions on the corresponding
learned factors. We also show counterfactually generated results of intervening on learned latent fac-
tors. Figure 4 shows the CausalCircuit system and the result of intervening on the robot arm factor and
propagating causal effects. We observe that the red light also turns on as the robot arm interacts with
the blue or green lights. On the other hand, when the arm interacts with the red light, only the red light
turns on and the other lights remain off. We observe a similar phenomenon in the Pendulum and Water
Flow systems in Figure 3. Our code is available at https://github.com/Akomand/ICM-VAE.

7 Conclusion

In this work, we propose a framework for causal representation learning under supervision from
labels. We model causal mechanisms as learned flow-based diffeomorphic transformations from
noise to causal variables. We propose the notion of causal mechanism disentanglement for causal
models and a causal disentanglement prior, which causally factorizes the learned distribution over
causal variables. We also theoretically show the identifiability of the learned causal factors up to
permutation and elementwise reparameterization. We experimentally validate our method and show
that our model almost perfectly disentangles the causal factors, improves interventional robustness,
and generates consistent counterfactual instances. We focus on causally disentangled representations
with a known causal structure. Future work includes incorporating causal discovery methods when
the causal graph is unknown and exploring identifiability results given only partially observed labels.
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Appendices

A Background

Structural Causal Model. In this work, we assume z is described by a structural causal model
(SCM), which is formally defined by a tuple M = ⟨Z, E , F ⟩, where Z is the domain of the set of
n endogenous causal variables z = {z1, . . . , zn}, E is the domain of the set of n exogenous noise
variables ϵ = {ϵ1, . . . , ϵn}, which is learned as an intermediate latent variable, and F = {f1, . . . , fn}
is a collection of n independent causal mechanisms of the form

zi = fi(ϵi, zpai) (15)

where ∀i, fi : Ei×
∏

j∈pai
Zj → Zi are causal mechanisms that determine each causal variable as a

function of the parents and noise, zpai are the parents of causal variable zi; and a probability measure
pE(ϵ) = pE1(ϵ1)pE2(ϵ2) . . . pEn(ϵn), which admits a product distribution. An SCM where the
exogenous noise variables are jointly independent (no hidden confounders) is known as a Markovian
model, which is the setting we assume for the purposes of this work. We depict the causal structure
of z by a causal directed acyclic graph (DAG) Gz with adjacency matrix Gz ∈ {0, 1}n×n.

B Theory

B.1 Restatement and Proof of Theorem 1

Definition 7 (Minimal Sufficient Statistic [12]). Given a parameterized distribution in the exponential
family, we say its sufficient statistic Ti is minimal when there exists no v ̸= 0 such that vTTi(z) is
constant for all z ∈ Z .

Definition 8 (Permutation-Scaling Matrix [12]). A matrix is permutation-scaling if every row or
column contains exactly one non-zero element.

Lemma 1 ([12]). A sufficient statistic T : Z → Rk is minimal if and only if there exist z(0), . . . , z(k)
belonging to the support of Z such that the following k-dimensional vectors are linearly independent:

T(z(1))−T(z(0)), . . . ,T(z(k))−T(z(0)) (16)

Definition 9. A conditional sufficient statistic T(z|y) : Z×Y → Rk describes the sufficient statistics
of the conditional distribution of z induced as a result of conditioning on variable y.

Definition 10. For all i, j ∈ {1, . . . , n}, if Ti(zi|zpai) and T̂i(zj |zpaj ) are causal permutation-
equivalent, then zi and zj are permutation-equivalent.

We adapt the theory from [12] and [11] and propose the following theorem for identifiability.

Theorem 1 (Identifiability of ICM-VAE). Suppose that we observe data sampled from a generative
model defined according to (7)-(11) with two sets of model parameters θ = (g,T,λ, Gz) and
θ̂ = (ĝ, T̂, λ̂, Ĝz). Suppose the following assumptions hold

1. The set {x ∈ X |ϕξ(x) = 0} has measure zero, where ϕξ is the characteristic function of the
density pξ defined in Eq. (8).

2. The decoder g is diffeomorphic onto its image.

3. The sufficient statistics Ti are diffeomorphic.

4. [Sufficient Variability] There exists nk + 1 distinct points u0, . . . , unk such that the matrix

L = (λ(zpa(1) , u(1))− λ(z(0), u(0)), . . . ,λ(zpa(nk)
, u(nk))− λ(z(0), u(0))) (17)

of size nk × nk is invertible, the ground-truth function λ is affected sufficiently strongly by
each individual label ui and previously derived variables zpai , and ∀i, λi(zpai , ui) ̸= 0.

Then θ and θ̂ are causal mechanism permutation-equivalent, and the model θ̂ is causally disentangled.
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Proof. In order to show that the set of parameters θ̂ is identifiable up to permutation, we break down
the proof into five main steps.

Step 1 (Equality of Denoised Distributions). Firstly, we show that we can transform the equality of
observed data distributions into a statement about the equality of noiseless distributions. Suppose we
have two sets of parameters θ and θ̂ such that their marginal distributions are equivalent as follows:

pθ(x|u) = pθ̂(x|u) (18)

for all pairs (x, u). Let g−1 = s ◦ a−1 be the encoding of causal factors z, where a−1 is the encoding
of the noise variables ϵ. Then, we have the following

∫
Z
pT,λ(z|u)pg(x|z) dz =

∫
Z
pT̂,λ̂(z|u)pĝ(x|z) dz (19)∫

Z
pT,λ(z|u)pξ(x− g(z)) dz =

∫
Z
pT̂,λ̂(z|u)pξ(x− ĝ(x)) dz (20)∫

X
pT,λ(g

−1(x̄)|u) detJg−1(x̄)pξ(x− x̄) dx̄ =

∫
X
pT̂,λ̂(ĝ

−1(x̄)|u) detJĝ−1(x̄)pξ(x− x̄) dx̄

(21)∫
Rd

pT,λ,g,u(x̄)pξ(x− x̄) dx̄ =

∫
Rd

pT̂,λ̂,ĝ,û(x̄)pξ(x− x̄) dx̄ (22)

(pT,λ,g,u ∗ pξ)(x) = (pT̂,λ̂,ĝ,û ∗ pξ)(x) (23)

F [pT,λ,g,u](w)ϕξ(w) = F [pT̂,λ̂,ĝ,û](w)ϕξ(w) (24)

F [pT,λ,g,u](w) = F [pT̂,λ̂,ĝ,û](w) (25)

pT,λ,g,u = pT̂,λ̂,ĝ,û (26)

where F is the Fourier transform. Eq. (24) and Eq. (26) use the fact that the Fourier transform is
invertible and Eq. (25) is an application of the fact that the Fourier transform of a convolution is the
product of their Fourier transforms. Thus, we have shown that if the distributions with added noise
are the same, then the noise-free distributions must also be the same over all possible values (x, u)
within the support.

Step 2 (Linear relationship). Define v = ĝ−1 ◦ g : Z → Ẑ . By replacing Eq. (26) with the
exponential form of the conditional prior from Eq. (10), we obtain the following:

pT,λ(z|u) = pT̂,λ̂(z|u) (27)

pT,λ(g
−1(x)|u) detJg−1(x) = pT̂,λ̂(ĝ

−1(x)|u) det Jĝ−1(x) (28)

n∏
i=1

hi(g
−1
i (x)) exp

[
k∑

j=1

Ti,j(g
−1
i (x)|g−1pai(x))λi,j(zpai , ui)− ψi(zpai , ui)

]
det Jg−1(x) =

n∏
i=1

hi(ĝ
−1
i (x)) exp

[
k∑

j=1

T̂i,j(ĝ
−1
i (x)|g−1pai(x))λ̂i,j(v(zpai), ui)− ψ̂i(zpai , ui)

]
det Jĝ−1(x)

(29)

Taking the logarithm of both sides of Eq. (29) yields the following

log detJg−1(x) +

n∑
i=1

log hi(g
−1
i (x)) +

k∑
j=1

Ti,j(g
−1
i (x)|g−1pai(x))λi,j(zpai , u)− ψi(zpai , ui)

= log det Jĝ−1(x) +

n∑
i=1

log ĥi(ĝ
−1
i (x)) +

k∑
j=1

T̂i,j(ĝ
−1
i (x)|g−1pai(x))λ̂i,j(v(zpai), u)

− ψ̂i(zpai , ui)
(30)
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Let u0, . . . , unk be the points provided by assumption 4 and define ∆λ(zpa, u) = λ(zpa, u) −
λ(z0, u0). The notation zpa indicates that each causal variable in z is derived from its parents. We
substitute each of the uℓ in the above equation to obtain nk + 1 distinct equations. Using u0 as a
pivot, we subtract the first equation for u0 from the remaining nk equations to obtain

∀ℓ ∈ 1, . . . , nk, T(g−1(x))T∆λ(zpaℓ , uℓ)−
∑
i

ψi(zpaℓ , uℓ)− ψi(z0, u0)

=T̂(ĝ−1(x))T∆λ̂(v(zpaℓ), uℓ)−
∑
i

ψ̂i(zpaℓ , uℓ)− ψ̂i(z0, u0)

(31)

Now, let L be the full-rank matrix described in the sufficient variability assumption (assumption 4),
and L̂ the matrix defined with respect to λ̂. Note that L̂ is not guaranteed to be full-rank. Regrouping
all normalizing constants ψ into a term bℓ = d(zpaℓ , z0, uℓ, u0) and letting b be the vector of all bℓ
for all ℓ ∈ {1, . . . , nk}, we obtain the following:

LTT(g−1(x)) = L̂T T̂(ĝ−1(x)) + b (32)

Since L is assumed to be invertible, we can multiply by the inverse of LT on both sides to obtain the
following

T(g−1(x)) = AT̂(ĝ−1(x)) + c (33)

where A = (LT )−1L̂ and c = (LT )−1b.

Step 3 (Invertibility of A). We show that A is an invertible matrix. By Lemma 1, we have that the
minimality of sufficient statistic Ti implies that the following set of vectors is linearly independent:

Ti(z
(1)
i )−Ti(z

(0)
i ), . . . ,Ti(z

(k)
i )−Ti(z

(0)
i ) (34)

Define
z(0) = [z

(0)
1 , . . . , z(0)n ]T ∈ Rn (35)

For all i ∈ {1, . . . , n} and p ∈ {1, . . . , k}, define the vectors

z(p,i) = [z
(0)
1 , . . . , z

(0)
i−1, z

(p)
i , z

(0)
i+1 . . . , z

(0)
n ]T ∈ Rn (36)

Now, for 1 ≤ p ≤ k and i ∈ {1, . . . , n}, we consider the following difference

T(z(p,i))−T(z(0)) = A[T̂(z(p,i))− T̂(z(0))] (37)

where the LHS is a vector filled with zeros except for the block corresponding to Ti(z
(p,i)
i )−T(z

(0)
i ).

Define
∆T(i) = [T(z(1,i))−T(z(0)) . . .T(z(k,i))−T(z(0))] (38)

and
∆T̂(i) = [T̂(z(1,i))− T̂(z(0)) . . . T̂(z(k,i))− T̂(z(0))] (39)

Then, we have that the columns of both these are linearly independent and all rows are filled with
zeros except the block of rows {(i − 1)k + 1, . . . , ik}. So, writing Eq. (37) in matrix form and
grouping all components, we have the following

[∆T(1), . . . ,∆T(n)] = A[∆T̂(1), . . . ,∆T̂(n)] (40)

Thus, we have a block diagonal matrix of size nk × nk. Since each block is invertible,
[∆T(1), . . . ,∆T(n)] must be invertible. This implies that A must be invertible. Thus, Eq. (33)
and the invertibility of A imply that θ ∼A θ̂.

Step 4 (Linear relationship of natural parameters). In addition to showing the linear relationship
between the sufficient statistic, we also show the linear relationship linking λ and λ̂. Define
v = ĝ−1 ◦ g : Z → Ẑ . That is, there exists a diffeomorphism between the learned and ground-truth
factors. We rewrite Eq. (30) as follows:

T(g−1(x))Tλ(zpa, u) = T̂(ĝ−1(x))T λ̂(v(zpa), u) + κ(zpa, u) + γ(z) (41)
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where we combine all terms depending only on z into γ and those depending only on u into κ. Now,
we can rewrite the above as follows using the linear relationship between sufficient statistics:

T̂(ĝ−1(x))TATλ(zpa, u) + cTλ(zpa, u) = T̂(ĝ−1(x))T λ̂(v(zpa), u) + κ(zpa, u) + γ(z) (42)

T̂(ĝ−1(x))TATλ(zpa, u) = T̂(ĝ−1(x))T λ̂(v(zpa), u) + κ̄(zpa, u) + γ(z) (43)

where κ̄ absorbs all u-dependent terms. We can simplify this equality to the following:

T̂(ĝ−1(x))T (ATλ(zpa, u)− λ̂(v(zpa), u)) = κ̄(zpa, u) + γ(z) (44)

T(ĝ−1(x))T (ATλ(zpa, u)− λ̂(v(zpa), u)) = κ̄(zpa, u) + γ(ĝ−1(x)) (45)

Taking the finite difference between distinct values z and z̄ yields

[T(z)−T(z̄)]T (ATλ(zpa, u)− λ̂(v(zpa), u)) = γ(ĝ−1(x))− γ(ĝ−1(x̄)) (46)

Now, we can construct an invertible matrix [∆T(1) . . .∆T(n)] such that

[∆T(1) . . .∆T(n)]T (ATλ(zpa, u)− λ̂(v(zpa), u)) = [∆γ(1) . . .∆γ(n)] (47)

Due to this invertibility, we can simplify the above to obtain

ATλ(zpa, u) + γ = λ̂(v(zpa), u) (48)

where
γ = −[∆T(1) . . .∆T(n)]−T [∆γ(1) . . .∆γ(n)] (49)

We can rewrite this as follows to yield the equivalence of λ and λ̂

ATλ(zpa, u) + γ = λ̂(v(zpa), u) (50)

Step 5 (Permutation Equivalence). To show that A is a permutation-scaling matrix, we have to
show that any two columns cannot have nonzero entries on the same row.

• If Gz is fixed, we are done since the trivial permutation always holds. Since the decoder is
assumed to be diffeomorphic, there is a point-wise nonlinearity between each corresponding
factor of the representation. Thus, a bijective mapping establishes a component-wise
reparameterization (scaling) and trivial permutation.

• If Gz is learned, then for a learned sparse graph Ĝz if the following holds

π(Ĝz) = Gz (51)

then we still achieve permutation equivalence by permuting the causal graph.

We conclude that A must be a causal permutation-scaling matrix. Since λ captures the causal
dependencies between factors of z, we have that the following must be true

Ti(zi|zpai) = AijT̂j(zj |zpaj ) (52)

Thus, T, T̂ and λ, λ̂ must be causal mechanism permutation-equivalent, respectively, and z is
causally disentangled. Therefore, z is disentangled, and we have that θ ∼P θ̂, where P = A is a
permutation-scaling matrix.

B.2 Traditional disentanglement cannot guarantee independent causal mechanisms
equivalence

In this section, we provide a counterexample to show that the traditional notion of disentanglement
cannot capture the equivalence of causal mechanisms. For example, consider the running example of
the Pendulum system. We have four causal factors that are causally related. Let z denote the true
factors of variation and ẑ denote the learned factors, where each zi and ẑi correspond to the same
causal variable. For the sake of simplicity, suppose we have a linear SCM:
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Ground-truth SCM

z1 = ϵ1 ∼ N (0, 1)

z2 = ϵ2 ∼ N (0, 1)

z3 = az1 + bz2 + ϵ3
z4 = cz1 + dz2 + ϵ4

Learned SCM

ẑ1 = ϵ̂1 ∼ N (0, 1)

ẑ2 = ϵ̂2 ∼ N (0, 1)

ẑ3 = bẑ1 + aẑ2 + ϵ̂3
ẑ4 = dẑ1 + cẑ2 + ϵ̂4

Marginal

z1 ∼ N (0, 1)

z2 ∼ N (0, 1)

z3 ∼ N (0,
√
a2 + b2 + 12)

z4 ∼ N (0,
√
c2 + d2 + 12)

ẑ1 ∼ N (0, 1)

ẑ2 ∼ N (0, 1)

ẑ3 ∼ N (0,
√
b2 + a2 + 12)

ẑ4 ∼ N (0,
√
d2 + c2 + 12)

Observe that the causal mechanisms learned are different than the true causal mechanisms. In the
linear case, for simplicity, we swap the coefficients. We have the following equivalent marginal
distribution for true and learned factors:

p(z) = p(z1)p(z2)p(z3|z1, z2)p(z4|z1, z2) ≈ p(ẑ1)p(ẑ2)p(ẑ3|ẑ1, ẑ2)p(ẑ4|ẑ1, ẑ2) = p(ẑ)

However, traditional disentanglement does not imply an equivalence of all the individual causal
mechanisms of the true and learned factors. In the above example, the true SCM consists of different
mechanisms than the learned SCM, but both yield the same marginal distribution. This example
violates the causal mechanism permutation equivalence and causal disentanglement but satisfies
traditional disentanglement. We claim that learning a model that achieves equivalence of causal
mechanisms from the perspective of the ICM principle better captures disentanglement in the causal
setting.

B.3 Derivation of ICM-VAE ELBO

We aim to push the variational posterior distribution qϕ(ϵ, z|x, u) to the true joint posterior distribution
pθ(ϵ, z|x, u). Formally, the goal is to minimize the KL divergence as follows:
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D(qϕ(ϵ, z|x, u), pθ(ϵ, z|x, u)) =∫ ∫
qϕ(ϵ, z|x, u) log

qϕ(ϵ, z|x, u)
pθ(ϵ, z|x, u)

dϵ dz (53)

=

∫ ∫
qϕ(ϵ, z|x, u) log

qϕ(ϵ, z|x, u)pθ(x, u)
pθ(ϵ, z, u, x)

dϵ dz (54)

=

∫ ∫
qϕ(ϵ, z|x, u)

[
log pθ(x, u) + log

qϕ(ϵ, z|x, u)
pθ(ϵ, z, u, x)

]
dϵ dz (55)

=

∫ ∫
qϕ(ϵ, z|x, u) log pθ(x, u) + qϕ(ϵ, z|x, u) log

qϕ(ϵ, z|x, u)
pθ(ϵ, z, u, x)

dϵ dz (56)

= log pθ(x, u) +

∫ ∫
qϕ(ϵ, z|x, u) log

qϕ(ϵ, z|x, u)
pθ(ϵ, z, u, x)

dϵ dz (57)

= log pθ(x, u) +

∫ ∫
qϕ(ϵ, z|x, u) log

qϕ(ϵ, z|x, u)
pθ(x|ϵ, z, u)pθ(ϵ, z, u)

dϵ dz (58)

= log pθ(x, u) + Eϵ,z∼qϕ(ϵ,z|x,u)

[
log

qϕ(ϵ, z|x, u)
pθ(ϵ, z, u)

− log pθ(x|ϵ, z, u)
]

(59)

= log pθ(x, u) +D(qϕ(ϵ, z|x, u)||pθ(ϵ, z|u))− Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ, z, u)

]
(60)

So, we have the following:

D(qϕ(ϵ, z|x, u)||pθ(ϵ, z|x, u)) = log pθ(x, u) +D(qϕ(ϵ, z|x, u)||pθ(ϵ, z|u))

−Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ, z, u)

] (61)

Rearranging, we can simply the objective to the following:

log pθ(x, u)−D(qϕ(ϵ, z|x, u)||pθ(ϵ, z|x, u)) = Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ, z, u)

]
−D(qϕ(ϵ, z|x, u)||pθ(ϵ, z|u))

(62)

This implies that

log pθ(x, u)−D(qϕ(ϵ, z|x, u)||pθ(ϵ, z|x, u)) ≤ log pθ(x, u) (63)

Putting everything together yields the following evidence lower bound (ELBO)

log pθ(x, u)︸ ︷︷ ︸
Evidence

≥

Likelihood︷ ︸︸ ︷
Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ, z, u)

]
−

KL Term︷ ︸︸ ︷
D(qϕ(ϵ, z|x, u)||pθ(ϵ, z, u))︸ ︷︷ ︸

Evidence Lower Bound (ELBO)

(64)

Now, since ϵ and z are related by a diffeomorphism, we can simplify the objective as follows.

log pθ(x, u) ≥ Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ, z, u)

]
−D(qϕ(ϵ|x, u)||pθ(ϵ))

−D(qϕ(z|x, u)||pθ(z|u))
(65)

obtained by the following derivation
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log pθ(x, u) ≥

Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ, z, u)

]
− Eϵ,z∼qϕ(ϵ,z|x,u)

[
log

qϕ(ϵ, z|x, u)
pθ(ϵ, z)

]
(66)

= Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ, z, u)− log

qϕ(ϵ, z|x, u)
pθ(ϵ, z)

]
(67)

= Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ, z)− log qϕ(ϵ, z|x, u) + log pθ(ϵ, z)

]
(68)

= Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ) + log pθ(x|z)− log qϕ(ϵ, z|x, u) + log pθ(ϵ) + log pθ(z|u)

]
(69)

= Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ) + log pθ(x|z)− log qϕ(ϵ|x, u)− log qϕ(z|x, u)

+ log pθ(ϵ) + log pθ(z|u)
] (70)

C Additional Experimental Details

C.1 Dataset Details

Pendulum. The Pendulum dataset [13] is a synthetic dataset that consists of 7K images with
resolution 96× 96× 4 generated by 4 ground-truth causal variables: u1 = pendulum angle, u2 =
light position, u3 = shadow length, and u4 = shadow position, which are continuous values. Each
causal variable is determined from the following process with nonlinear functions. The causal graph
is shown in Figure 5a.

u1 ∼ U(−45, 45); θ = u1 ∗
π

200

u2 ∼ U(60, 145); ϕ = u2 ∗
π

200

x = 10 + 9.5 sin θ

y = 10− 9.5 cos θ

u3 = max(3,
∣∣∣−0.5− (10.5− 10 tanϕ)

tanϕ
− −0.5− (y − x tanϕ)

tanϕ

∣∣∣)
= max(3,

∣∣∣ (−10.5 + y) + (10− x) tanϕ

tanϕ

∣∣∣)
= max(3,

∣∣∣9.5 cos θ
tanϕ

+ 9.5 sin θ
∣∣∣)

u4 =
1

2

(−0.5− (10.5− 10 tanϕ)

tanϕ
+

−0.5− (y − x tanϕ)

tanϕ

)
=

1

2

( (−11.5− y) + (10 + x) tanϕ

tanϕ

)
=

−11 + 4.75 cos θ

tanϕ
+ (10 + 4.75 sin θ)

Flow. The Flow dataset [13] is a synthetic dataset that consists of 8K images with resolution
96× 96× 4 generated by 4 ground-truth causal variables: u1 = ball radius, u2 = water height, u3 =
hole position, and u4 = water flow, which are continuous values. The causal graph is shown in
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(a) Pendulum (b) Water Flow (c) CausalCircuit

Figure 5: Causal Graphs of Datasets

Figure 5b.

Causal Circuit. The Causal Circuit dataset is a new dataset created by [23] to explore research in
causal representation learning. The dataset consists of 512× 512× 3 resolution images generated by
4 ground-truth latent causal variables: robot arm position, red light intensity, green light intensity,
and blue light intensity. The images show a robot arm interacting with a system of buttons and lights.
The data is rendered using an open-source physics engine. The original dataset consists of pairs
of images before and after an intervention has taken place. For the purposes of this work, we only
utilize observational data of either the before or after system. The data is generated according to the
following process:

vR = 0.2 + 0.6 ∗ clip(u2 + u3 + bR, 0, 1)

vG = 0.2 + 0.6 ∗ bG
vB = 0.2 + 0.6 ∗ bB
u4 ∼ Beta(5vR, 5 ∗ (1− vR))

u3 ∼ Beta(5vG, 5 ∗ (1− vG))

u2 ∼ Beta(5vB , 5 ∗ (1− vB))

u1 ∼ U(0, 1)

where bR, bG, and bB are the pressed state of buttons that depends on how far the button is touched
from the center, u1 is the robot arm position, and u2, u3, and u4 are the intensities of the blue, green,
and red lights, respectively. The causal graph is shown in Figure 5c. From this generative process, we
selectively choose only images for which the causal graph is satisfied (the robot arm’s position and
the downstream effects). For example, the robot arm appearing over the green button, green button lit
up, and red button lit up is consistent with the assumption that the robot arm position causes changes
in which buttons light up according to the causal graph. The filtered dataset consists of roughly 35K
training samples and 10K testing samples.

C.2 Implementation details

For all experiments, we maximize the following ELBO with a bottleneck parameter β, which controls
the degree to which the latent representation is causally factorized.

log pθ(x, u) ≥ Eϵ,z∼qϕ(ϵ,z|x,u)

[
log pθ(x|ϵ) + log pθ(x|z)− β{log qϕ(ϵ|x, u) + log qϕ(z|x, u)

− log p(ϵ)− log pθ(z|u)}
]
(71)

For the Pendulum dataset, we linearly increase the β parameter throughout training from 0 to a final
value of 1 and set a learning rate of 0.001. We use roughly 6K samples for training and 1K samples
for testing and train for 8 · 103 steps using a batch size of 64. We use a Gaussian encoder and decoder
with mean and variance computed by fully connected neural networks.

For the Flow dataset, we linearly increase the β parameter throughout training from 0 to a final value
of 1 and set a learning rate of 0.001. We use roughly 6K samples for training and 2K for testing and
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train for 8 · 103 steps using a batch size of 64. We use a Gaussian encoder and decoder with mean
and variance computed by fully connected neural networks.

For the CausalCircuit dataset, we linearly increase β from 0 to a final value of 0.05 and set a learning
rate of 0.001. We use roughly 35K samples for training and 10K samples for testing and train for
3.5 · 104 steps using a batch size of 100. We use a convolutional neural network architecture with 6
layers and ReLU activation followed by a fully connected layer to estimate the mean and variance.
The noise level for the variance of the Gaussian distribution of the conditional prior is controlled by
σ2 ∈ {0.01, 0.00001}.

SCF. The structural causal flow and λ are implemented as an affine form autoregressive transformation
with the slope and offset computed by fully connected three-layer neural networks with 100 unit
hidden layers and ReLU activation. We set the dimension of each causal variable to 4 for all datasets.

Baselines. We compare ICM-VAE with four baselines: two acausal and two causal.

β-VAE [24] is an unsupervised disentanglement method that aims to promote disentanglement in
the latent space by encouraging the latent representation to be more factorized. However, β-VAE is
unable to effectively disentangle the factors of variation to a high degree, which is consistent with the
claim from [2] that unsupervised disentanglement is not possible without additional inductive biases.

iVAE [11] unifies nonlinear ICA and the VAE to develop a framework for learning identifiable
representations using auxiliary information in the form of a conditionally factorial prior. However,
the framework of iVAE assumes independent factors of variation, which is often an impractical
assumption. Due to this assumption, iVAE is unable to disentangle causally related factors.

CausalVAE [13] and SCM-VAE [25] extended the iVAE framework for causally related factors of
variation. CausalVAE utilizes a prior that still assumes mutual independence of the factors of variation.
Further, CausalVAE assumes a simple linear SCM, which is unrealistic in practice. SCM-VAE builds
on this work and consists of a post-nonlinear additive noise SCM and a label-specific causal prior.
However, the causal prior proposed still does not induce a causal factorization of latent factors. Thus,
CausalVAE and SCM-VAE are also unable to properly disentangle the causal factors.

We note that none of the identifiability results from baselines focus on causal mechanism equivalence.
Our proposed prior encourages a causally factorized latent space, which induces a mechanism
equivalence and causal disentanglement.

Evaluation Metrics. The DCI metric [20] quantifies the degree to which ground-truth factors and
learned latents are in one-to-one correspondence. We compute the DCI disentanglement (D) and
completeness (C) scores, which are based on a feature importance matrix quantifying the degree
to which each latent code is important for predicting each ground truth causal factor. The feature
importance matrix is computed using gradient-boosted trees (GBT). The informativeness (I) score is
the prediction error in the latent factors predicting the ground-truth generative factors and is constant
(I = 0) throughout all datasets and models, so we omit it for brevity. We train models with 3 random
seeds and select the median DCI score to report. It is often important that we achieve the robustness
of groups of features in the latent variable with respect to interventions on groups of generative
factors. To evaluate how changes in the generative factors affect the latent factors, we compute the
interventional robustness score (IRS) [22], which is similar to an R2 value.

Compute. We run our experiments on an Ubuntu 20.04 workstation with eight NVIDIA Tesla
V100-SXM2 GPUs with 32GB RAM.

C.3 Counterfactual Generation

Following [3], the process for obtaining counterfactual predictions consists of three steps

1. Abduction: given an observation x, we infer the distribution over the latent variable ϵ via
ϵ = a−1(x). In the context of ICM-VAE, we have that z = g−1(x) = fRF (ϵ).

2. Action: substitute the values of z with values based on the counterfactual query zzj←α

3. Prediction: using the modified model and the value of z, compute (decode to) the value of
x, the consequence of the counterfactual.
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D Related Work

Recently, [2] showed that it is impossible to learn a disentangled representation in an unsupervised
manner without some form of inductive bias. Notably, [26] proved that models with an independent
prior are not identifiable. Further, [27] showed that most existing disentanglement methods, such as
β-VAE [24], fail to disentangle factors when correlations exist in the data. However, results from
large-scale empirical studies [27, 18] have indicated that weak supervision in the form of labels or
contrastive data can effectively disentangle correlated or causal factors.

Several modeling paradigms have been recently employed to learn causal representations in the
weakly supervised setting by introducing auxiliary information into the data-generating process [8].
Previous work has focused on using supervised labels as auxiliary information to learn disentangled
causal representations [11, 13, 25]. Our work builds upon the ideas presented in iVAE [11] and causal
variants [13, 25] and extends them to consider a principled view of causal disentanglement in the
label supervised setting. [13] proposed a causal masking layer based on [28] and [29] and is limited
to linear SCMs. [25] extended this setting to a nonlinear setting and proposed a causal prior. Both
works proposed relatively simplistic models to learn causal mechanisms under the strictly additive
noise assumption and do not, from an empirical or theoretical perspective, focus on disentanglement.
[23] extended [18] to learn causal representations when interventional data is available as pre and
post-intervened views, [19] focused on learning causal representations in the temporal setting, and
[30] showed identifiability of causal representations in self-supervised learning. Although interesting,
studying causal representations in the presence of interventional data can often be an infeasible
assumption in practice. Thus, learning robust causal representations from only observational data
is desirable. [31] explored the notion of identifiability through independent mechanism analysis.
However, they studied an alternative to nonlinear ICA to achieve identifiability. We propose a causal
mechanism equivalence definition of identifiability extending upon the iVAE framework to learn
mechanism identifiable causal representations.

E Limitations

We acknowledge that causal discovery is also an important component of causal representation
learning. However, developing a causal discovery procedure for general nonlinear causal models,
as described in this work, without assuming a simplified form (such as additive noise), is still an
open problem [32, 33, 34]. We leave the extension of our work to incorporate causal discovery into
the learning process, with and without interventional data, as future work. Another limitation of
our current work is that the results only hold for continuous-valued ground-truth variables. We look
to extend our framework to be compatible with discrete-valued variables. Further, the DCI metric,
although suitable for evaluating disentanglement of causal representations [23], may need to be
extended to more robustly incorporate the notion of causal disentanglement. We leave the exploration
of such metrics as future work. For this work, we assume labels for all causal variables are observed.
Another direction for future work is exploring the extent to which causal disentanglement is still
possible when labels are only partially observed.
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