
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A RADEMACHER-LIKE RANDOM EMBEDDING WITH
LINEAR COMPLEXITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Random embedding assumes an important role in representation learning. Gaus-
sian embedding and Rademacher embedding are two widely used random em-
beddings. Although they usually enjoy robustness and effectiveness, their com-
putational complexity is high, i.e. O(nk) for embedding an n-dimensional vector
into k-dimensional space. The alternatives include partial subsampled randomized
Hadamard (P-SRHT) embedding and sparse sign embedding, which are still not
of linear complexity or cannot run efficiently in practical implementation. In this
paper, a fast and robust Rademacher-like embedding (RLE) is proposed, based
on a smaller Rademacher matrix and several auxiliary random arrays. Specifi-
cally, it embeds an n-dimensional vector into k-dimensional space in just O(n)

time and space (assuming k is not larger than O(n
1
2)). Our theoretic analysis re-

veals that the proposed RLE owns most of desirable properties of the Rademacher
embedding while preserving lower complexity. To validate the practical efficiency
and effectiveness, the proposed RLE is applied to single-pass randomized singular
value decomposition (single-pass RSVD) for streaming data, and the randomized
Arnoldi process based on sketched ordinary least-squares. Numerical experiments
show that, with the proposed RLE the single-pass RSVD achieves 1.7x speed-up
on average while keeping same or better accuracy, and the randomized Arnodli
process enables a randomized GMRES algorithm running 1.3x faster on average
for solving Ax = b than that based on other embeddings.

1 INTRODUCTION

Random embedding, which projects high-dimensional vectors into low-dimensional vectors while
still maintaining key properties, serves as a core tool for many fundamental representation learning
and other related fields Woodruff (2014); Martinsson & Tropp (2020). Therefore, efficient and
effective random embedding has attracted numerous research attention in recent years Tropp et al.
(2019); Liberty (2013); Li et al. (2023). Notice that a synonym of random embedding is sketching,
and random embedding has the same meaning as sketching in this work.

For handling high-dimensional data, random embedding is a required technique. Take singular value
decomposition (SVD) as an example. When the dimension of data reaches millions or even billions,
time cost and memory cost of classical SVD algorithm are intolerable. To tackle this problem,
randomized SVD (RSVD) utilizes random embedding to project the high-dimensional data into
much lower-dimensional space and then performs the decomposition Martinsson & Tropp (2020);
Tropp et al. (2019); Yu et al. (2018); Feng et al. (2024); Yu et al. (2017)Musco & Musco (2015).
Another example is Arnoldi process, which can be leveraged for obtaining eigenvalues/eigenvectors
or solving linear equation systems. For large-scale data, the randomized Arnoldi process based on
embedding is more preferable for both efficiency and robustness Balabanov & Grigori (2022).

The efficiency of random embedding plays an indispensable role. For example, random embedding
in the single-pass RSVD Tropp et al. (2019) takes up majority of computing time. Besides, slow
random embedding in the randomized Arnoldi process Balabanov & Grigori (2022) can lead to even
worse performance than classical Arnoldi process.

Gaussian embedding is probably the most commonly-used embedding algorithm Gourru et al.
(2022); He et al. (2015); Ren et al. (2016); Yüksel et al. (2021). It enjoys very good robustness,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and can be regarded as the most natural and simplest embedding algorithm Martinsson & Tropp
(2020). In RSVD algorithms, Gaussian embedding is often adopted. Rademacher embedding is also
a commonly-used embedding algorithm Verbin & Zhang (2012); Rakhshan & Rabusseau (2022). It
can achieve similar embedding performance to Gaussian embedding, although its theoretic bounds
may be a little bit worse than Gaussian embedding Martinsson & Tropp (2020) in certain scenarios.
Gaussian embedding and Rademacher embedding are both dense embedding, which enjoys good
robustness and little risk of embedding distortion. Their main shortcoming is that the complexity of
projecting an n-dimensional vector into a k-dimensional vector is O(nk).

To make embedding more efficient, fast transform techniques and several sparse embedding algo-
rithms have been proposed Tropp et al. (2019); Martinsson & Tropp (2020). Partial subsampled
randomized Hadamard (P-SRHT) embedding adopts fast Hadamard transform to make accelera-
tion. For an n × k P-SRHT embedding matrix, time complexity of applying embedding one time
can be O(n log n) or O(n log(2k)). Sparse sign embedding is another alternative option. Notice
that Count Sketch is a special kind of sparse sign embedding, with the highest sparsity. For small
k, Count Sketch can lead to disastrous performance in practice Martinsson & Tropp (2020); Tropp
et al. (2019), and so does the very sparse random projection method Li et al. (2006). An improved
version of sparse sign embedding for practical applications was proposed in Tropp et al. (2019). For
an n × k sparse sign matrix, time complexity of applying embedding one time can be O(n). How-
ever, the trade-off of robustness and efficiency may restrict the application of sparse sign embedding.
Moreover, it relies on sparse data structure and arithmetic which may affect actual efficiency due to
irregular cache visiting Martinsson & Tropp (2020).

The aim of this work is to resolve the challenge of performing robust random embedding in lower
complexity and practical efficiency. The main contribution of this paper can be concluded as follows.

(1) A Rademacher-like random embedding (RLE) approach is proposed, which utilizes a smaller
Rademacher matrix and several random arrays to implicitly generate an embedding matrix and per-
form embedding. Particularly, it can embed an n-dimensional vector into k-dimensional space in
just O(n+ k2) time and space complexity, which is linear complexity if k is not larger than O(n

1
2).

(2) Theoretical analysis of the proposed RLE approach is presented, where we prove its linear time
and space complexity, that the square of the 2-norm of high-dimensional vector remains unchanged
after embedding into low-dimensional space, and other properties as a random embedding.

(3) The proposed random embedding is employed in single-pass RSVD algorithm and randomized
Arnoldi process. The latter facilitates a randomized GMRES algorithm. Numerical experiments
show that with the proposed approach, the single-pass RSVD is accelerated by 1.7x on average
while keeping same or even better accuracy, and the randomized GMRES is accelerated by 1.3x on
average for the problems of solving Ax = b.

2 BACKGROUND

In this section, we will introduce the most commonly used random embedding methods and their
typical applications to representation learning. For the readability of algorithms, we adopt MAT-
LAB expression, e.g., h1:j,1:j corresponds to the submatrix consisting of the first j rows and first j
columns. And throughout the paper, ∥ · ∥ denotes the 2-norm (spectral norm), while ∥ · ∥F denotes
Frobenious norm.

2.1 RANDOM EMBEDDING

Random embedding aims to project a high-dimensional vector into low-dimensional space, i.e.

y = Θx, (1)

where x ∈ Rn, Θ ∈ Rk×n and y ∈ Rk. Usually k≪n and one can assume k is less than O(n
1
2).

At the same time, y should preserve key properties of x. It is required that the 2-norm of y satisfy
the following equation in mathematical expectation Martinsson & Tropp (2020):

E[∥y∥2] = ∥x∥2 . (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

If Θi,j obeys Normal(0, k−1) distribution and each entry of Θ is independently identically dis-
tributed, then Θ is a Gaussian embedding matrix. It is noticeable that Gaussian embedding is re-
garded as the most natural embedding algorithms and have the most extensive applications Martins-
son & Tropp (2020). it can be proven that the rescaled Gaussian embedding satisfies (2). The time
and space complexity of Gaussian embedding is O(nk).

If Θi,j is independently equal to 1√
k

with probability 0.5 and is equal to − 1√
k

otherwise, then Θ

is a Rademacher embedding matrix. It can be proven that Rademacher embedding satisfies (2).
Rademacher embedding can achieve similar performance as Gaussian embedding, making it favor-
able in many practical applications. However, the time complexity as well as space complexity of
Rademacher sketching matrices is also O(nk).

A robustness criterion of embedding relies on the concepts of ϵ-subspace embedding and data obliv-
ious embedding, which are explained in Appendix A.2. If the embedding matrix Θ is an (ϵ, δ, d)
oblivious ℓ2 → ℓ2 subspace embedding, it can be applied to many basic algorithms with theoretic
safety, e.g. the randomized Arnoldi process Balabanov & Grigori (2022). The Gaussian embed-
ding and Rademacher embedding both satisfy this. The demand of matrix dimension for being
an (ϵ, δ, d) oblivious ℓ2 → ℓ2 subspace embedding reflects the effectiveness of the embedding
method. Theoretical results in Balabanov & Nouy (2019) shows that if Θ is a Rademacher ma-
trix with k ≥ 7.87ϵ−2(6.9d + log(1/δ)) for R and k ≥ 7.87ϵ−2(13.8d + log(1/δ)) for C, then
Θ ∈ Rk×n is an (ϵ, δ, d) oblivious ℓ2 → ℓ2 subspace embedding.

To accelerate the process of random embedding, the sketching algorithms based on fast transform
are developed. A famous example is P-SRHT embedding. If Θ denotes P-SRHT embedding matrix,
Θ is the first k row of SRHT embedding matrix Θ′, where Θ′ can be denoted with

√
n
kDHS, where

D is a diagonal matrix whose entrices are 1 or -1, H is a normalized Walsh-Hadamart matrix and
S is a randomly sampling matrix. P-SRHT embedding can be performed much faster, with time
complexity of O(n log n) or O(n log k). However, P-SRHT embedding is less robust than Gaussian
embedding or Rademacher embedding in certain scenarios.

Sparse sign embedding is even faster, with time complexity and space complexity of O(n). If Θ
can be denoted with

√
n
C [s1, · · · , sn] where si are identically independently distributed random

vectors with just C non-zeros, then Θ is a sparse sign embedding matrix. Cohen (2016) pointed
out that a sparse sign matrix is an oblivious subspace embedding with constant distortion for an
arbitrary d-dimensional subspace of Rn when C = O(log d) and k = O(d log d). However, in
many applications like RSVD, d is large so that C = O(log d) and k = O(d log d) cause a time
complexity higher than O(n), and ultra sparse sketching (e.g. C = 1, equivalent to Count Sketch)
may cause disastrous performance Tropp et al. (2019). To facilitate the practical applications of
sparse sign embedding matrices, Tropp et al. (2019) proposed a practically applicable sparse sign
embedding, which has the same form but C = min(k, 8) instead of C = O(log d). However,
the above setting is heuristic, and in practice induces a non-negligible time constant. Moreover,
another main disadvantage of sparse sign embedding is that we must use sparse data structures and
arithmetic to achieve its benefits Martinsson & Tropp (2020).

Therefore, whether random embedding algorithm can be even faster (has linear time and space
complexity with small time constant) and robust as well is still in question.

2.2 TYPICAL APPLICATIONS OF RANDOM EMBEDDING

In this subsection, we briefly introduce two important applications of random embedding algorithms:
single-pass RSVD Tropp et al. (2019) and randomized Arnoldi process Balabanov & Grigori (2022).
As the random embedding is the core of this paper, we only present the pseudo code and the use of
random embedding in these algorithms.

The single-pass RSVD algorithm is shown in Algorithm 1, and in Tropp et al. (2019) the perfor-
mance of the practical sparse sign embedding is tested. The single-pass RSVD algorithm is designed
for processing streaming data, and also applicable when the data is too big to store in memory. The
sketching process of the single-pass RSVD algorithm in Tropp et al. (2019) takes up the majority of
time cost, where the acceleration of random embedding is of significance.

Random embedding also has application in the Krylov subspace iterative methods, e.g. the random-
ized Arnoldi process Balabanov & Grigori (2022) shown in Algorithm 2, which can be employed to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Single-Pass Randomized SVD
Input: A∈Rm×n, rank parameter k, sketching parameter r, sketching parameter s.
Output: U ∈Rm×k, Σ∈Rk×k, V ∈Rn×k.

1: Γ, ∆, Λ and Ξ are r ×m, r × n, s×m and s× n random embedding matrices, respectively.
2: X ← zeros(r, n), Y ← zeros(m, r), Z ← zeros(s, s).
3: for i← 1, 2, · · · ,m do
4: Ai ← the i-th part of A. ▷

∑m
i=1 Ai = A and Ai only contains the i-th row of A.

5: X ← X + ΓAi, Y ← Y +Ai∆
T , Z ← Z + ΛAiΞ

T ▷ random embedding.
6: end for
7: Q← qr(Y, 0) ▷ economic QR factorization.
8: P ← qr(XT , 0) ▷ economic QR factorization.
9: C ← (ΛQ)+Z((ΞP)+)T

10: [U, Σ, V]← svd(C, ’econ’) ▷ economic singular value decomposition.
11: U ← QU(:, 1 : k), Σ← Σ(1 : k, 1 : k), V ← PV (:, 1 : k)

Algorithm 2 The Randomized Arnoldi Process
Input: A∈Rn×n, b∈Rn, x0∈Rn, m, Θ∈Rk×n.
Output: Vm+1 ∈ Rn×(m+1), Hm ∈ R(m+1)×m.

1: Calculate residual r ← b−Ax0

2: Initialize H to be an (m+ 1)×m zero matrix
3: s1 ← Θr

∥Θr∥ , v1 ← r
∥Θr∥

4: for j = 1, 2, · · · ,m do
5: wj ← Avj
6: pj ← Θwj ▷ random embedding
7: Solve zj = argminz ∥Sjz − pj∥ ▷ solving sketched OLS problem
8: vj+1 ← wj − Vjzj , with Vj = [v1, · · · , vj]
9: sj+1 ← Θvj+1 ▷ random embedding

10: H1:j+1,j ← [zTj , ∥sj+1∥]T
11: vj+1 ← vj+1

∥sj+1∥ , sj+1 ← sj+1

∥sj+1∥
12: end for
13: Return Vm+1 = [v1, v2, · · · , vm+1], Hm = H .

compute largest or smallest eigenvalues and eigenvectors, as well as to solve linear equation system.
In the randomized Arnoldi process, sketched ordinary least-squares (OLS) problems are solved for
orthogonalized basis vectors in Krylov subspace:

(ΘVj)z ≈ Θwj , i.e. min
z
∥(ΘVj)z −Θwj∥, (3)

where Θ ∈ Rk×n is a random embedding matrix and k < n. In Balabanov & Grigori (2022), P-
SRHT is adopted to sketch, and Rademacher sketching is also recommended in Balabanov & Grigori
(2022). The accuracy of the solution of the sketched OLS problem in Algorithm 2 directly affects the
accuracy of Arnoldi process, and further the convergency of GMRES algorithm for solving Ax = b.
Moreover, the sketching process takes up considerable time in randomized Arnoldi process and the
GMRES iteration in the case of a sparse A matrix.

In this paper, we will test our proposed random embedding on the above two applications to validate
the practical efficiency of the proposed algorithm.

3 THE O(n+ k2)-COMPLEXITY RADEMACHER-LIKE EMBEDDING

In this section, we first introduce the idea of the proposed RLE approach. Then, the framework
of RLE embedding, including setup phase and execution phase, is presented. After that, relevant
theoretic analysis is presented.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 THE IDEA

To obtain the dense random embedding algorithm with linear complexity, it is obvious that the
embedding matrix can not be generated in explicit form, as the lowest time complexity for writing a
k × n matrix is O(nk). Thus we should generate the random embedding matrices implicitly.

For Rademacher embedding, the entrices can only be 1√
k

or − 1√
k

, which means that many entries
in related positions have the same values. More particularly, any two rows of Θ ∈ Rk×n have n

2
same entries and n

2 different entries in mathematical expectation.

Given a 2 × n Rademacher matrix, if we know which columns have same entries in the two rows
beforehand, then we can calculate the sketching y = Θx in just n + 4 flops instead of 2n flops
(supposing the factor 1√

k
multiplied afterward). The specific way is as follows. Firstly, we calculate

the first partial sum of x corresponding to the Θ’s columns with same entries and then we calculate
the second partial sum of x on the other entries. While doing the partial sums, the signs of entries in
the first row of Θ are considered. After that, we can directly add the first partial sum to the two rows
of y, which was initialized to zero. Then, we can just add the second partial sum to the first row of
y and subtract the second partial sum from the other row of y. But how to know the positions of the
columns with same entries beforehand? The answer is, we first assign these positions randomly.

The above simple case of 2 × n matrix implies that we can utilize partial sum to fast calculate the
result of Rademacher embedding. Therefore, aiming at accelerating the Rademacher embedding, we
pursue a method which does not explicitly generate the embedding matrix, assigns the positions of
the matrix columns with same entries in advance, and calculates the result of embedding leveraging
the partial sums of x multiplying 1√

k
or − 1√

k
.

3.2 THE SETUP PHASE AND EXECUTION PHASE OF RLE

If the Rademacher matrix is in general k × n, it is not as simple as the case of the 2 × n matrix,
because the positions on which two rows of the matrix have same entries depend on which two rows
are considered. To overcome this difficulty, we propose a new random embedding method including
two phases: the setup phase generates random vector, matrix and tensors, implicitly representing the
embedding matrix; the execution phase calculates the result y with the embedding.

The mechanism of the proposed embedding can be illustrated by Fig. 1, which explains how to
calculate the i-th element of y in (1). The idea starts from using a smaller Rademacher matrix
P ∈ Rζ×n and calculating random partial sums in Px as building blocks for obtain the final result.
Notice that P has ζ rows, much fewer than k rows, and each row of P can be regarded as a basic
random sequence. Then, for each row (element) of Px, the original sum of n elements are randomly
split to k′ partial sums. We set k′ to be a small multiple of k. These partial sums are stored in a
temporary array sum with ζ × k′ values. Notice the circle with blue border in Fig. 1 stands for
a partial sum. This random splitting runs for ξ times, so that sum is actually a ξ × ζ × k′ tensor.
Again, ξ is also a small number. Matrix C ∈ Zξ×n is for realizing the random splitting, i.e., the j-th
term in the sum for calculating Px is accumulated into the C(l, j)-th column of sum(l, :, :).

While calculating the i-th element of y, we first randomly choose which ζ × k′ partial sum array
is to be used. Suppose this random choice is an index R(i). The partial sums in sum(R(i), :, :)
are accumulated to get yi. This accumulation is performed column by column, but for each column
only one element with random row index is adopted. This random row index depends on which 2-D
partial sum array is chosen, i’s value and which column is for accumulation. So, it is a ξ × k × k′

integer tensor, denoted by E. In Fig. 1, we assume for the specific i the 2nd ζ × k′ partial sum array
is chosen. It can be see that, the formation of partial sum array and the accumulation mechanism
ensure that every element in x has a contribution to yi. Finally, while accumulating each partial
sum, an extra random sign (1 or -1) is multiplied to enforce more randomness. The random signs
are denoted by S ∈ Zξ×k×k′

, with same dimensions as E.

The pseudo codes for the execution phase of the proposed RLE approach (i.e. computing y = Θx)
are shown in Algorithm 3. Z denotes the set of all integers.

From the above explanation and Alg. 3, we see that the proposed algorithm relies on the small-sized
Rademacher matrix P , the random integer vector/matrix/tensor R, C and E, and the random sign

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Naive Rademacher embedding (b) Embedding with the proposed RLE

=

Setup Execution

. . .

. . .

𝑃𝑥 ∈ ℝ𝜁 𝑠𝑢𝑚(1, : , :) ∈ ℝ𝜁×𝑘′

. . .

+ + + +

𝑠𝑢𝑚(2, : , :) ∈ ℝ𝜁×𝑘′

. . .

randomly select column according to 𝐶(1, :)

randomly select column

according to 𝐶(2, :)

× =

𝑥

Θ

𝑦

𝑦𝑖 = + + + . . .

select from 𝑠𝑢𝑚(𝑅(𝑖), : , :)

element with row index 𝐸(2, 𝑖, :)

multiply random sign 𝑆(2, 𝑖, :)

Figure 1: Illustration of the proposed Rademacher-like embedding (RLE) algorithm (ζ=2, ξ=2). P
is a ζ×n Rademacher matrix. R, C and E are random integer vector, matrix and tensor, respectively.
S is a random sign tensor. Right: generation of partial sums; Left: calculation of yi. Circle stands
for an item in summation or a partial sum, and curved arrow depicts contribution to summation.

Algorithm 3 Execution Phase of the Proposed Rademacher-Like Embedding
Input: x ∈ Rn, Rademacher matrix P ∈ Rζ×n, random integer vector R ∈ Zk, random integer
matrix C ∈ Zξ×n, random integer tensor E ∈ Zξ×k×k′

, random sign tensor S ∈ Zξ×k×k′
.

▷ R’s value range is [1, ξ], C’s value range is [1, k′], E’s value range is [1, ζ]
Output: y ∈ Rk. ▷ y = Θx.

1: Initialize y to the zero vector, and sum to the zero tensor ∈ Rξ×ζ×k′
▷ k′ = ωk

2: for i = 1, 2, · · · , ξ do
3: for j = 1, 2, · · · , ζ do
4: for l = 1, 2, · · · , n do
5: u← Ci,l

6: sumi,j,u ← sumi,j,u + xl × Pj,l ▷ calculate the partial sums.
7: end for
8: end for
9: end for

10: for i = 1, 2, · · · , k do
11: for j = 1, 2, · · · , k′ do
12: a← Ri, b← Ea,i,j , c← Sa,i,j

13: yi ← yi + suma,b,j × c ▷ accumulate the partial sums with random signs.
14: end for
15: end for
16: Return y = [y1, y2, · · · , yk]T .

tensor S. So, generating them constitutes the setup phase of RLE approach. For all the random
vector/matrix/tensor used, we let them follow the uniform distribution in their value range.

A key point of the proposed method is that the relevant dimonsion parameters are all small numbers.
ζ and ξ are usually integers no more than 3. And, k′ = ωk, where ω is also usually no more than
3. This guarantees the low complexity of performing this random embedding. Finally, we should
pointed out the proposed method is equivalent to multiplying a random matrix Θ and x, where Θ
is very similar to Rademacher matrix. We will explain this in next subsection, after proving some
good properties of this embedding matrix Θ.

3.3 THEORETIC ANALYSIS

Firstly, we analyze the computational complexity of RLE.

Theorem 1. The time complexity and space complexity of proposed RLE approach are both O(n+

k2). If k is not larger than O(n
1
2), they are linear complexity.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proof. We divide the proof into two parts: complexity for setup and complexity for execution.

The setup phase includes the generation of a ζ ×n Rademarcher matrix P , a k-dimensional random
integer vector R, a ξ × n random integer matrix C, and two ξ × k × ωk random tensors (E and
S). Because ζ, ξ and ω are small constants, the time complexity and space complexity of the setup
phase of RLE approach are all O(n+ k2).

For execution phase, from Alg. 3 we see that the calculation of sum is of O(ξζn) time complexity
and O(ξζωk) space complexity. The calculation of y costs O(ωk2) time and O(k) space. So, the
time complexity of the execution phase is O(n+ k2) and the space complexity is O(k).

To summarize, the time complexity and space complexity of proposed RLE approach are both O(n+

k2). If k is not larger than O(n
1
2), O(n+ k2) becomes O(n), which is a linear complexity.

The properties of the embedding matrix Θ implicitly generated by the proposed RLE are as follows.
Theorem 2. Suppose Θ ∈ Rk×n is the random matrix implicitly generated with the proposed RLE
approach. Then, every entry of Θ is 1√

k
or − 1√

k
.

Proof. From Alg. 3 or Fig. 1 we can see, with the proposed RLE approach yi is a linear combination
of all elements of x, and the combinational coefficients are the elements in P multiplied by a random
sign. As yi equals to the i-th element of Θx and P is a Rademacher matrix with elements being 1√

k

or − 1√
k

, the combinational coefficients, i.e. entries in Θ, must be 1√
k

or − 1√
k

.

Theorem 3. Suppose Θ ∈ Rk×n is the random matrix implicitly generated with the proposed RLE
approach, Θi,j and Θl,r are any two different entries in Θ. Then, Θi,j and Θl,r are independent to
each other in mathematics. In other words, the entries in Θ are pairwisely independent. Moreover,
the rows of Θ: r1, r2, · · · , rk are mutually independent, and the entries in the same row of Θ are
mutually independent.

Proof. From Alg. 3 or Fig. 1 we can see that, the entry of Θ is the entry of Rademarcher matrix P
multiplied by a random sign (from S). If j ̸= r, Θi,j and Θl,r correspond to two different entries in
P (in column j and r respectively). Thus, Θi,j and Θl,r are independent of each other. Otherwise,
i ̸= l must hold. In this case, the signs (from S) for Θi,j and Θl,r are independently multiplied.
Thus, Θi,j and Θl,r are also independent to each other. Also due to the independence of the signs
(from S), r1, r2, · · · , rk are mutually independent. Moreover, the entries in the same row of Θ are
mutually independent, because they depend on different entries of P .

Theorem 4. Each entry in Θ ∈ Rk×n which is generated implicitly with the proposed RLE approach
has a probability of 0.5 being 1√

k
and being − 1√

k
. Moreover, E[ΘTΘ] = I , where I denotes the

identity matrix, and the diagonal element of ΘTΘ is always 1.

Proof. From Alg. 3 we see that, each entry of Θ is lastly multiplied by a random sign from S. Let
p∗i,j denote the probability of Θi,j being 1√

k
before this last operation. Let pi,j denote the probability

of Θi,j being 1√
k

after the last operation. Then we have (also based on Theorem 2):

pi,j = 0.5× p∗i,j + 0.5× (1− p∗i,j) = 0.5. (4)

Therefore, each entry in Θ ∈ Rk×n which is implicitly generated by the above algorithm has 0.5
probability of being 1√

k
and being − 1√

k
. Let F denote ΘTΘ. Then, its diagonal elements satisfy

Fi,i =

k∑
o=1

Θo,iΘo,i =

k∑
o=1

Θ2
o,i =

k∑
o=1

1

k
= 1. (5)

For non-diagonal elements of F , we have:

E[Fi,j] = E[
k∑

o=1

Θo,iΘo,j] =

k∑
o=1

E[Θo,iΘo,j] = 0, (6)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where the last equality is due to each entry of Θ has 0.5 probability of being 1√
k

and being− 1√
k

and
the pairwise independence stated in Theorem 3. Therefore, we have E[ΘTΘ] = I .

The proofs of the following theorems are given in Appendix A.1 and A.2, respectively.
Theorem 5. Suppose Θ ∈ Rk×n is a random matrix generated implicitly with the proposed RLE
approach and x is an n-dimensional vector. Then, E[∥Θx∥2] = ∥x∥2.

Theorem 6. Suppose 0 < ϵ < 0.572, 0 < δ < 1 and Θ ∈ Rk×n is the matrix generated implicitly
with the proposed RLE approach. If k ≥ 7.87ϵ−2(6.9d+ log(1ϵ)) for R and k ≥ 7.87ϵ−2(13.8d+

log(1ϵ)) for C, Θ is an (ϵ, δ, d) oblivious ℓ2 → ℓ2 subspace embedding.

Theorem 6 states the proposed RLE ensures theoretic safety, and its statement about (ϵ, δ, d) oblivi-
ous ℓ2 → ℓ2 subspace embedding is the same as that for the Rademacher embedding Balabanov &
Nouy (2019). A difference between the proposed RLE and the Rademacher embedding is that the
mutual independence of whole matrix entries does not hold for the former. This is the reason that
we name the proposed approach a Rademacher-like embedding. It is noticed that, the proposed RLE
algorithm has an O(n + k2) computational complexity, which is a linear complexity when k is not
larger than O(n

1
2). This is a remarkable advantage for practical usage.

4 NUMERICAL EXPERIMENTS

The proposed RLE approach is applied to the single-pass randomized SVD and randomized Arnoldi
process to evaluate its effectiveness and efficiency. The parameter ξ, ζ, ω are set to 2, 1, 2, respec-
tively. All programs are implemented in C++ and Intel MKL, and the experiments are conducted on
a single core of a computer with Xeon Gold 6230R CPU@2.10GHz and 128 GB RAM.

4.1 RESULTS ON SINGLE-PASS RSVD WITH STREAMING DATA

We have implemented the single-pass RSVD algorithm in Tropp et al. (2019). And, the random
embedding steps there are implemented with Gaussian embedding, sparse sign embedding, and the
proposed RLE embedding, respectively. The test matrices include those generated synthetically
following Martinsson & Tropp (2020) and those from Feng et al. (2023). Their dimensions are
listed in Table 1.

Particularly, “noise” is generated by:

diag(1, · · · , 1, 0, · · · , 0) + 10−4GG∗, (7)

where the number of 1 is 20 and G is a standard Gaussian matrix. “pol” and “exp” are random
matrices whose singular values satisfy the following two formulas respectively:

σi =

{
1 i ≤ 20

(i− 19)−2 i > 20
(8)

σi =

{
1 i ≤ 20

10−0.1(n−20) i > 20
(9)

“Weather” are directly generated by the open-source code of Tropp et al. (2019). “inv” and “sqrt” are
two random matrices whose singular values satisfy σi =

1
i and σi =

1√
i
, respectively. “MNIST” is

from Lecun et al. (1998), and “FeretMat” is a dense matrix generated based on Phillips et al. (2000).

The parameter k is set to 10 just like that in the numerical experiments in Tropp et al. (2019).
Moreover, the parameter r is set to k + 1 and the parameter s is set to 2r + 1 as is suggested by
Tropp et al. (2019). Particularly, r = 11 and s = 23 in our experiments. Below are the two metrics
of the relative error of RSVD.

errs =
∥A−Ak∥ − ∥A−A∗

k∥
∥A−A∗

k∥
(10)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results of the single-pass RSVD (Alg. 1) with different random embedding approaches.

Case m n
Gaussian Embedding Sparse Sign Embedding Proposed RLE
Ttot(s) errs errf Ttot(s) errs errf Ttot(s) errs errf Sp1 Sp2

noise 1.0E3 1.0E3 0.0863 31.3 6.53 0.112 2.70 0.37 0.0850 6.92 0.78 1.02 1.32
exp 1.0E3 1.0E3 0.0978 3.89 1.02 0.111 2.80 0.83 0.0800 2.31 0.70 1.22 1.38
pol 1.0E3 1.0E3 0.0863 1.35 0.58 0.113 1.83 0.71 0.0750 1.81 0.66 1.15 1.50

Weather 1.9E4 7.3E3 3.04 17.0 0.31 3.60 43.7 0.74 1.78 27.7 0.50 1.71 2.02
MNIST 6.0E4 7.8E2 1.10 3.91 1.01 1.47 2.94 0.76 0.900 3.42 0.79 1.22 1.63

inv 4.0E4 4.0E4 32.0 2.69 1.41 33.8 6.45 2.10 18.1 5.58 1.90 1.77 1.87
sqrt 4.0E4 4.0E4 31.9 7.66 0.72 34.0 5.83 0.53 19.0 8.70 0.69 1.68 1.79

FERET 1.0E5 3.9E5 1248 - - 1179 - - 617 - - 2.02 1.91
Average 9.69 1.65 9.46 0.86 8.06 0.86 1.5 1.7

m and n are the dimensions of test matrix, Ttot denote the total time for performing single-pass randomized
SVD (time for reading data is omitted), errs and errs denote the relative error in 2-norm and Frobenious
norm, respectively. Sp1 and Sp2 denote the speed-up ratios of the proposed RLE based single-pass RSVD
algorithm over those based on Gaussian sketching and sparse sign sketching, respectively.

errf =
∥A−Ak∥F − ∥A−A∗

k∥F

∥A−A∗
k∥F

(11)

Here A∗
k denotes the best rank k approximation matrix to A and Ak denotes the rank k approximation

to A generated by the RSVD algorithm. As the computation of A∗
k for “FERET” causes memory

overflow in our machine, we could not obtain the relative errors for “FERET”.

The results are listed as Table 1. From it, we can see the single-pass RSVD equipped with the pro-
posed RLE shows 1.5x average speed-up and 1.7x average speed-up compared with those equipped
with the Gaussian random embedding and sparse sign embedding, respectively. It is noticeable that
in this experiment, Gaussian embedding is coded by matrix-vector multiplication function in MKL,
which makes it even faster than sparse sign embedding in small test cases. Even though, the pro-
posed RLE approach shows prominent advantages. Moreover, proposed algorithm also shows good
accuracy, whose relative 2-norm error is remarkably smaller than Gaussian embedding and sparse
sign embedding.

4.2 RESULTS ON RANDOMIZED ARNOLDI PROCESS

We have implemented a randomized GMRES algorithm which combines the standard GMRES Saad
& Schultz (1986) and the randomized Arnoldi process (Alg.2) Balabanov & Grigori (2022). The
embedding process utilizes P-SRHT embedding, sparse sign embedding and the proposed RLE. The
P-SRHT embedding utilizes the efficient open-source code in SRH. The standard GMRES Saad &
Schultz (1986) is also implemented for comparison. They are used to solve linear equation Ax = b
and the test cases are from SparseSuite Matrix Collection mat. Particularly, “rajat31” is a case
with a 4.7E6×4.7E6 sparse coefficient matrix. The matrix dimensions of Case “memchip” and
“circuit5M” are 2.7E6×2.7E6 and 5.6E6×5.6E6, respectively. And, more experimental results and
the ablation study are presented in Appendix A.3 and A.4. We use the decrease trends of relative
residual ∥Ax−b∥

∥b∥ to evaluate the performance of different versions of GMRES, which are shown
in Figure 2. The embedding dimension k is set to 200, and ILU(3) factorization is applied as the
preconditioning .

From the experimental results, we can see that with the proposed approach, randomized Arnoldi
process can proceed much faster than the standard Arnoldi process and P-SRHT based randomized
Arnoldi process. As the standard GMRES does not have a setup phase, its time cost is low in first
a few of iteration steps. However, the high-dimensional Gram-Schmidt orthogonalization makes
the standard GMRES run slowly in the latter iteration steps. As the sparse sign embedding has
comparably larger time constant and may lose data locality, it does not show prominent advantage
over the efficiently implemented P-SRHT. Compared with P-SRHT and sparse sign, the proposed
RLE approach shows prominent advantages. On the test cases, the randomized GMRES with pro-
posed RLE approach shows 1.4x, 1.3x and 1.3x speed-ups on average over the standard Arnoldi
process, the P-SRHT based randomized GMRES and the sparse sign embedding based randomized
GMRES respectively, for reaching convergence or the maximum of 100 iterations. Moreover, the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Iterative Steps

10-5

100

R
el

at
iv

e
R

es
id

ua
l

Standard
P-SRHT
Sparse Sign
Proposed

0 20 40 60 80 100
Iterative Steps

0

20

40

60

80

T
im

e
C

os
t (

s)

Standard
P-SRHT
Sparse Sign
Proposed

0 10 20 30 40
Iterative Steps

10-15

10-10

10-5

100

R
el

at
iv

e
R

es
id

ua
l

Standard
P-SRHT
Sparse Sign
Proposed

0 10 20 30 40
Iterative Steps

0

2

4

6

8

10

12

T
im

e
C

os
t (

s)

Standard
P-SRHT
Sparse Sign
Proposed

0 2 4 6 8 10 12
Iterative Steps

10-15

10-10

10-5

100

R
el

at
iv

e
R

es
id

ua
l

Standard
P-SRHT
Sparse Sign
Proposed

0 2 4 6 8 10 12
Iterative Steps

6

7

8

9

10

11

12

T
im

e
C

os
t (

s)

Standard
P-SRHT
Sparse Sign
Proposed

Figure 2: Convergence behaviors and runtime trends of the original GMRES and the randomized
GMRES algorithms utilizing the randomized Arnoldi process (Alg. 2) with different embedding
approaches for “rajat31”, “memchip”, “circuit5M” (from top to bottom respectively).

convergence rate of the randomized Arnoldi process with the proposed RLE is very similar to that
of standard Arnoldi process, which indicates the robustness of proposed RLE.

5 CONCLUSION

In this paper, a fast and robust random embedding algorithm, named Rademacher-like embedding
(RLE), is proposed. The theoretic analysis of the proposed approach is given, which proves it is a
Rademacher-like random embedding with O(n + k2) computational complexity for embedding an
n-dimensional vector into k-dimensional space. The numerical experiments on single-pass RSVD
show that, compared with the sparse sign embedding the proposed RLE enables 1.7x average speed-
up with same or even better accuracy. And the experiments on randomized Arnoldi process shows
that the proposed RLE enables an accelerated GMRES algorithm which runs 1.3x faster on average
without the loss of accuracy.

In the future, we will explore the parallel version of RLE approach. From Fig. 1 we can see the
calculation of y can be easily parallelized. For the generation of partial sums, some skills can also
apply to make it well parallelized.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

FXT Library. URL https://www.jjj.de/fxt/.

SuiteSparse Matrix Collection. URL https://sparse.tamu.edu/.

Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66(4):671–687, 2003. Special Issue on PODS
2001.

Oleg Balabanov and Laura Grigori. Randomized Gram–Schmidt process with application to GM-
RES. SIAM Journal on Scientific Computing, 44(3):A1450–A1474, 2022.

Oleg Balabanov and Anthony Nouy. Randomized linear algebra for model reduction. Part I: Galerkin
methods and error estimation. Advances in Computational Mathematics, 45(5-6):2969–3019,
Dec. 2019.

Jean Bourgain, Joram Lindenstrauss, and V. D. Milman. Approximation of zonoids by zonotopes.
Acta Mathematica, 162:73–141, 1989.

Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, pp.
278–287, USA, 2016. Society for Industrial and Applied Mathematics. ISBN 9781611974331.

Xu Feng, Wenjian Yu, and Yuyang Xie. Pass-efficient randomized SVD with boosted accuracy. In
Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, and Grigorios
Tsoumakas (eds.), Machine Learning and Knowledge Discovery in Databases, pp. 3–20, Cham,
2023. Springer International Publishing.

Xu Feng, Wenjian Yu, Yuyang Xie, and Jie Tang. Algorithm 1043: Faster randomized SVD with
dynamic shifts. ACM Transactions on Mathematical Software, 50(2), 2024.

Antoine Gourru, Julien Velcin, Christophe Gravier, and Julien Jacques. Dynamic Gaussian embed-
ding of authors. In Proceedings of the ACM Web Conference 2022, WWW ’22, pp. 2109–2119,
New York, NY, USA, 2022. Association for Computing Machinery.

Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. Learning to represent knowledge graphs with
Gaussian embedding. In Proceedings of the 24th ACM International on Conference on Informa-
tion and Knowledge Management, CIKM ’15, pp. 623–632, New York, NY, USA, 2015. Associ-
ation for Computing Machinery.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random projections. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 287–296, 2006.

Yi Li, Honghao Lin, Simin Liu, Ali Vakilian, and David Woodruff. Learning the positions in
countsketch. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=iV9Cs8s8keU.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’13, pp. 581–588,
New York, NY, USA, 2013. Association for Computing Machinery.

Per-Gunnar Martinsson and Joel A. Tropp. Randomized numerical linear algebra: Foundations and
algorithms. Acta Numerica, 29:403–572, 2020.

Cameron Musco and Christopher Musco. Randomized block Krylov methods for stronger and faster
approximate singular value decomposition. In Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’15, pp. 1396–1404, Cambridge,
MA, USA, 2015. MIT Press.

11

https://www.jjj.de/fxt/
https://sparse.tamu.edu/
https://openreview.net/forum?id=iV9Cs8s8keU

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

S. R. Nassif. IBM power grid benchmarks. URL https://web.ece.ucsb.edu/˜lip/
PGBenchmarks/ibmpgbench.html.

P.J. Phillips, Hyeonjoon Moon, S.A. Rizvi, and P.J. Rauss. The feret evaluation methodology for
face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(10):1090–1104, 2000.

Beheshteh T. Rakhshan and Guillaume Rabusseau. Rademacher random projections with tensor
networks, 2022. URL https://arxiv.org/abs/2110.13970.

Zhou Ren, Hailin Jin, Zhe Lin, Chen Fang, and Alan Yuille. Joint image-text representation by
Gaussian visual-semantic embedding. In Proceedings of the 24th ACM International Conference
on Multimedia, MM ’16, pp. 207–211, New York, NY, USA, 2016. Association for Computing
Machinery.

Youcef Saad and Martin H Schultz. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–
869, 1986.

Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Streaming low-rank matrix
approximation with an application to scientific simulation. SIAM Journal on Scientific Computing,
41(4):A2430–A2463, 2019. URL https://doi.org/10.1137/18M1201068.

Elad Verbin and Qin Zhang. Rademacher-sketch: a dimensionality-reducing embedding for sum-
product norms, with an application to earth-mover distance. In Proceedings of the 39th Inter-
national Colloquium Conference on Automata, Languages, and Programming - Volume Part I,
ICALP’12, pp. 834–845, Berlin, Heidelberg, 2012. Springer-Verlag.

David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra. 2014.

J. Yang and Z. Li. THU power grid benchmarks. URL http://tiger.cs.tsinghua.edu.
cn/PGBench/.

Wenjian Yu, Yu Gu, and Jian Li. Single-pass PCA of large high-dimensional data. In Proceedings
of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, pp. 3350–3356,
2017.

Wenjian Yu, Yu Gu, and Yaohang Li. Efficient randomized algorithms for the fixed-precision low-
rank matrix approximation. SIAM Journal on Matrix Analysis and Applications, 39(3):1339–
1359, 2018.

Arda Yüksel, Berke Uğurlu, and Aykut Koç. Semantic change detection with Gaussian word em-
beddings. IEEE/ACM Trans. Audio, Speech and Lang. Proc., 29:3349–3361, Oct 2021.

12

https://web.ece.ucsb.edu/~lip/PGBenchmarks/ibmpgbench.html
https://web.ece.ucsb.edu/~lip/PGBenchmarks/ibmpgbench.html
https://arxiv.org/abs/2110.13970
https://doi.org/10.1137/18M1201068
http://tiger.cs.tsinghua.edu.cn/PGBench/
http://tiger.cs.tsinghua.edu.cn/PGBench/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOF OF THEOREM 5

Proof. Firstly, we have
E[∥Θx∥2] = E[xTΘTΘx]. (12)

As Θ is independently generated without x, we have

E[∥Θx∥2] = E[xT]E[ΘTΘ]E[x]. (13)

With Theorem 4, we have that E[ΘTΘ] = I . Therefore, we can derive

E[∥Θx∥2] = E[xT]E[x]. (14)

As x is deterministic, we further derive

E[∥Θx∥2] = xTx = ∥x∥2, (15)

which completes the proof.

A.2 DEFINITIONS ON OBLIVIOUS SUBSPACE EMBEDDING AND PROOF OF THEOREM 6

First of all, we introduce the definitions on oblivious subspace embedding (OSE). Then we will prove
Theorem 6 with the help of Theorem 3, and the proof inherits from the proof of the (Balabanov &
Nouy, 2019, Proposition 3.7).

A.2.1 THEORETICAL ASPECTS OF RANDOM EMBEDDING

In theory, the embedding matrix Θ is desired to have some theoretic properties. For numerical
stability of random embedding, the distortion after embedding is often estimated in probability.
With the following two definitions, embedding distortion can be depicted in theory.

Definition 1. Given ϵ < 1, the embedding matrix Θ ∈ Rk×n is an ϵ-subspace embedding for
subspace K ⊂ Rn, if for any vectors x, y ∈ K,

|⟨x, y⟩ − ⟨Θx,Θy⟩| ≤ ϵ∥x∥ · ∥y∥, (16)

where ⟨x, y⟩ denotes the inner product of vector x and y.

Definition 2. The embedding matrix Θ ∈ Rk×n is an (ϵ, δ, d) oblivious ℓ2 → ℓ2 subspace embed-
ding, if it is an ϵ-subspace embedding for any fixed d-dimensional subspace K ⊂ Rn with probability
at least 1− δ.

If Θ is an (ϵ, δ, d) oblivious ℓ2 → ℓ2 subspace embedding, Θ can be applied to many basic algo-
rithms with theoretic safety. For example, theoretic results in Balabanov & Grigori (2022) shows
that if Θ is an (ϵ, δ, d) oblivious ℓ2 → ℓ2 subspace embedding, numerical stability of randomized
Arnoldi process can be guaranteed.

Meanwhile, to extend the embedding for the field of real numbers to the field of complex numbers,a
very useful proposition was proposed in the supplementary material of Balabanov & Nouy (2019).

Proposition 1. (Balabanov & Nouy, 2019, supplementary material) Let Θ be a real random matrix.
If Θ is (ϵ, δ, 2d) oblivious ℓ2 → ℓ2 subspace embedding for subspaces of vectors in Rn, then it is
(ϵ, δ, d) oblivious ℓ2 → ℓ2 subspace embedding for subspaces of vectors in Cn.

The dimension of embedding matrices for (ϵ, δ, d) oblivious ℓ2 → ℓ2 subspace embedding is often
used to evaluate the effectiveness of different embedding methods. Theoretical results in Balabanov
& Nouy (2019) shows that if Θ is a rescaled Rademacher matrix with k ≥ 7.87ϵ−2(6.9d+log(1/δ))
for R and k ≥ 7.87ϵ−2(13.8d + log(1/δ)) for C, then Θ ∈ Rk×n is an (ϵ, δ, d) oblivious ℓ2 → ℓ2
subspace embedding. Theorem 6 states that the same error bound holds for the proposed RLE
approach.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2.2 THE PROOF OF THEOREM 6

In this subsection, we use Θ to denote the embedding matrix generated by the RLE approach and ri
to denote the i-th row of Θ. Define Qi(α) for an arbitrary n-dimensional vector α as:

Qi(α) =

√
k√
n
riα (17)

With Theorem 3, we can see that Qi(α) is mutually independent. So,

E[Qi(α)] = E[
n∑

j=1

αj

√
k

n
ri,j] =

n∑
j=1

E[αj

√
k

n
ri,j] =

√
k

n

n∑
j=1

αjE[ri,j] = 0 , (18)

E[Qi(α)
2] = E[(

n∑
j=1

αj

√
k

n
ri,j)

2] =
k

n
E[

n∑
j=1

(αjri,j)
2 +

n∑
l=1

n∑
j=1,j ̸=l

(αlαjri,lri,j)]

=
k

n
(E[

n∑
j=1

(αjri,j)
2] + E[

n∑
l=1

n∑
j=1,j ̸=l

(αlαjri,lri,j)]) =
k

n
(

n∑
j=1

1

k
α2
j + 0)

=
1

n
∥α∥2 .

(19)

Define W (α) as:

W (α) =

k∑
i=1

(

√
k

n
riα)

2 =

k∑
i=1

Q2
i (α) . (20)

Below we first prove Lemma 5.2 and Lemma 5.1 in Achlioptas (2003) still hold for the RLE ap-
proach.

Lemma 1. For all h ∈ [0, n
2), all n ≥ 1 and all unit vectors α,

E[exp(hQ1(α)
2)] ≤ 1√

1− 2h
n

, E[exp(Q1(α)
4)] ≤ 3

n2
. (21)

Proof. Based on the proof of Lemma 5.2 of Achlioptas (2003), we see that (21) holds if the entry in
r1 is mutually independent and has 0.5 probability to be 1 and 0.5 probability to be -1. Because the
r1 dervied from the RLE satifies these conditions (see Theorem 3), (21) holds.

Lemma 2. For any ϵ > 0 and any unit vector α ∈ Rn,

Pr[W (α) > (1 + ϵ)
k

n
] < exp(−k

2
(
ϵ2

2
− ϵ3

3
)),

Pr[W (α) < (1− ϵ)
k

n
] < exp(−k

2
(
ϵ2

2
− ϵ3

3
)).

(22)

Proof. The proof can be naturally inherited from that for Lemma 5.1 in Achlioptas (2003), because
we can leverage the mutual independence of Q1(α), Q2(α), · · · , Qk(α) derived from the proposed
RLE.

For arbitrary h, we can derive:

Pr[W (α) > (1 + ϵ)
k

n
] = Pr[exp(hW (α)) > exp(h(1 + ϵ)

k

n
)] = Pr[

exp(hW (α))

exp(h(1 + ϵ) kn)
> 1]

< E[exp(hW (α) exp(−h(1 + ϵ)
k

n
)] = exp(−h(1 + ϵ)

k

n
)E[exp(hW (α)]

(23)

With the mutual independence of Q1(α), Q2(α), · · · , Qk(α), it is obvious to see
Q1(α), Q2(α), · · · , Qk(α) are identically independently distributed (i.i.d). Thus we have:

E[exp(hW (α))] = E[
k∏

i=1

exp(hQ2
i)] =

k∏
i=1

E[exp(hQ2
i)] = (E[exp(hQ1(α)

2)])k (24)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Thus, we have:

Pr[W (α) > (1 + ϵ)
k

n
] < exp(−h(1 + ϵ)

k

n
)(E[exp(hQ1(α)

2)])k (25)

With Lemma 1 and given h = n
2

ϵ
1+ϵ < n

2 , we have:

Pr[W (α) > (1 + ϵ)
k

n
] < exp(−h(1 + ϵ)

k

n
)(

1√
1− 2h

n

)k = ((1 + ϵ) exp(−ϵ)) k
2

< exp(−k

2
(
ϵ2

2
− ϵ3

3
))

(26)

The last inequality is due to−k
2 (ϵ log(1+ϵ)) < −k

2 (
ϵ2

2 −
ϵ3

3). Furthermore, we can similarly derive
that:

Pr[W (α) < (1− ϵ)
k

n
] < exp(h(1− ϵ)

k

n
)(E[exp(−hQ1(α)

2)])k (27)

Pr[W (α) < (1− ϵ)
k

n
] < exp(h(1− ϵ)

k

n
)(E[1− hQ1(α)

2 +
(−hQ1(α)

2)2

2!
])k

= exp(h(1− ϵ)
k

n
)(1− h

n
+

h2

2
E[Q1(α)

4])k
(28)

With Lemma 1 and given given h = n
2

ϵ
1+ϵ < n

2 , we have:

Pr[W (α) < (1− ϵ)
k

n
] ≤ exp(h(1− ϵ)

k

n
)(1− h

n
+

3

2
(
h

n
)2)k

= (1− ϵ

2(1 + ϵ)
+

3ϵ2

8(1 + ϵ)2
)k exp(

ϵ(1− ϵ)k

2(1 + ϵ)
)

< exp(−k

2
(
ϵ2

2
− ϵ3

3
))

(29)

Below we present the proof of Theorem 6. The idea of proof is naturally inherited from the proof of
Proposition 3.7 in Balabanov & Nouy (2019).

Proof. This proof can be naturally inherited from the proof of Proposition 3.7 in Balabanov & Nouy
(2019), with the help of the above Lemmas.

We first consider embedding for R. The proof follows the standard framework in Woodruff (2014).
Given a d-dimensional subspace V ⊆ Rn, O = {x ∈ V : ∥x∥ = 1} be the unit sphere of
V . According to the (Bourgain et al., 1989, Lemma 2.4), for any γ > 0 there exists a γ−net N
of O satisfying #N ≤ (1 + 2

γ)
d. For 0 < η < 1

2 , let Θ be the RLE embedding matrix with
k ≥ 6η−2(2d log(1 + 2

γ) + log(1δ)). With Lemma 2 and an union bound argument, we obtain for a
fixed x ∈ V

Pr(|∥x∥2 − ∥Θx∥2| ≤ η∥x∥2) ≥ 1− 2 exp(
−kη2

6
). (30)

Therefore, by leveraging an union bound for the probability of success, we have:

{|∥x+ y∥2 − ∥Θ(x+ y)∥2| ≤ η∥x+ y∥2,∀x, y ∈ N} (31)

holds with probability at least 1− δ. We can further derive that:

{|⟨x, y⟩ − ⟨Θx,Θy⟩| ≤ η,∀x, y ∈ N} (32)

holds with probability at least 1− δ. Let a be some vector in O. Assuming γ < 1, it can be proven
by induction that b =

∑
i≥0 αiai, where ai ∈ N and 0 ≤ αi ≤ γi. Then we can derive:

∥Θa∥2 ≤
∑
i,j≥0

⟨ΘaiΘaj⟩αiαj ≤
∑
i,j≥0

(⟨ai, aj⟩αiαj + ηαiαj) = 1 + η(
∑
i≥0

αi)
2 ≤ 1 +

η

(1− γ)2

(33)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Similarly, we can obtain:

∥Θa∥2 ≥ 1− η

(1− γ)2
(34)

Therefore, if (38) holds, we have:

|1− ∥Θa∥2| ≤ η

(1− γ)2
. (35)

For a given ϵ ≤ 1
2(1−γ)2 , let η = (1 − γ)2ϵ. Since (32) holds for an arbitrary vector a ∈ O, using

the parallelogram identity, we can derive:

|⟨x, y⟩ − ⟨Θx,Θy⟩| ≤ ϵ∥x∥ · ∥y∥ (36)

holds for all x, y ∈ V if (32) holds. Thus we conclude that Θ with k ≥ 6ϵ−2(1− γ)−4(2d log(1 +
2
γ)+log(1δ)) is an (ϵ, δ, d) obvious ℓ2 → ℓ2 subspace embedding for V with probability at least 1−δ.

The lower bound of the number of rows of Θ is obtained by taking γ = argminx∈(0,1)(
log(1+ 2

x)

(1−x)4) ≈
0.0656. For C, we can leverage the Proposition 1 for the proof. If Θ is an (ϵ, δ, 2d) obvious embed-
ding for R, then Θ is an (ϵ, δ, d) obvious embedding for C. Thus, we complete the proof of Theorem
6.

A.3 MORE EXPERIMENT RESULTS ON RANDOMIZED ARNOLDI PROGRESS AND GMRES

Experiments on all test cases of randomized GMRES is listed in Table 2. To validate the efficiency
of our proposed RLE approach in more industrial scenarios, we test the proposed RLE approach
on famous power grid benchmarks, ibmpg Nassif and thupg Yang & Li. The test cases include
“ibmpg4t” which is a 1.2E6 × 1.2E6 sparse matrix with 4.8E6 non-zeros and “thupg5” which is a
2.0E7 × 2.0E7 sparse matrix with 8.8E7 non-zeros.

Table 2: Results of the randomized GMRES with different random embedding approaches.
Case n nnz tGMRES tP tS tRLE Sp1 Sp2 Sp3

rajat31 4.7E6 2.0E7 67.3 48.0 44.2 36.8 1.8 1.3 1.2
memchip 2.7E6 1.5E7 10.4 9.97 9.95 7.16 1.5 1.4 1.4
circuit5M 5.6E6 6.0E7 8.66 10.2 12.2 8.38 1.0 1.2 1.5
ibmpg4t 1.2E6 4.8E6 17.8 13.1 12.8 10.1 1.8 1.3 1.3
thupg5 2.0E7 8.8E7 385 254 221 185 2.1 1.4 1.2

Average 1.6 1.3 1.3

nnz is the number of non-zeros. tGMRES denotes the runtime of standard GMRES, tP denotes the runtime
of randomized GMRES with P-SRHT embedding, tS denotes the runtime of randomized GMRES with
sparse sign embedding, tRLE denotes the runtime of randomized GMRES with the proposed RLE. Sp1,
Sp2, Sp3 are the speed-ups brought by the proposed RLE algorithm to the standard GMRES, randomized
GMRES with P-SRHT embedding, randomized GMRES with sparse sign embedding, respectively.

The experimental results are shown in Fig.3 and Fig.4, where we can see that the proposed RLE
approach is prominently faster than P-SRHT embedding and sparse sign embedding. Particularly,
on test case “ibmpg4t”, randomized GMRES with the proposed RLE approach shows 1.8x speed-
up, 1.3x speed-up, 1.3x speed-up compared with standard GMRES, randomized GMRES with P-
SRHT embedding, randomized GMRES with sparse sign embedding, respectively. On test case
“thupg5”, randomized GMRES with the proposed RLE approach shows 2.1x speed-up, 1.4x speed-
up, 1.2x speed-up compared with standard GMRES, randomized GMRES with P-SRHT embedding,
randomized GMRES with sparse sign embedding, respectively. Meanwhile, we can see that the
randomized GMRES with proposed RLE achieve similar convergence rate with standard GMRES,
which indicates the robustness of the proposed RLE in industrial scenarios.

A.4 ABLATION STUDY ON PARAMETERS FOR RLE

There are three parameters ξ, ζ and ω in RLE. We use the randomized Arnoldi process based on
RLE as an example to do the ablation study on these parameters.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Iterative Steps

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
R

es
id

ua
l

Standard
P-SRHT
Sparse Sign
Proposed

0 20 40 60 80 100
Iterative Steps

0

5

10

15

20

T
im

e
C

os
t (

s)

Standard
P-SRHT
Sparse Sign
Proposed

Figure 3: Convergence behaviors and runtime trends of the original GMRES and the randomized
GMRES algorithms utilizing the randomized Arnoldi process (Alg. 2) with different embedding
approaches for “ibmpg4t”.

0 20 40 60 80 100
Iterative Steps

10-6

10-4

10-2

100

R
el

at
iv

e
R

es
id

ua
l

Standard
P-SRHT
Sparse Sign
Proposed

0 20 40 60 80 100
Iterative Steps

0

100

200

300

400

T
im

e
C

os
t (

s)

Standard
P-SRHT
Sparse Sign
Proposed

Figure 4: Convergence behaviors and runtime trends of the original GMRES and the randomized
GMRES algorithms utilizing the randomized Arnoldi process (Alg. 2) with different embedding
approaches for “thupg5”.

The three parameters can be set independently. But different setting may lead to a slight difference
in efficiency as well as accuracy. The runtime of execution stage of RLE is about O(ξζn + ωk2).
Therefore, if n >> k2, the increase of ξ and ζ can have a large impact on the runtime of RLE. Fig. 5
shows the experimental results on randomized GMRES leveraging the randomized Arnoldi process
based on the RLE. From it we can see that, although different settings of parameters may have
impact on the efficiency, the difference of accuracy caused by the varied parameters is negligible.
With smaller ξ and ζ, i.e. (ξ = 2, ζ = 1) or (ξ = 1, ζ = 2), the runtime of GMRES is significantly
reduced. The reason is that for this case n = 4.7E6 which is much larger than k2 (i.e. 2002).
Therefore, the increase of ξ and ζ causes the increase of runtime of RLE.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 5: Performance of different settings of the three parameters (three numbers denotes ξ, ζ, ω,
respectively. i.e “1,2,2” denotes ξ = 1, ζ = 2, ω = 2) on “rajat31”.

18

	Introduction
	Background
	Random Embedding
	Typical Applications of Random Embedding

	The O(n+k2)-Complexity Rademacher-Like Embedding
	The Idea
	The Setup Phase and Execution Phase of RLE
	theoretic Analysis

	Numerical Experiments
	Results on Single-Pass RSVD with Streaming Data
	Results on Randomized Arnoldi Process

	Conclusion
	Appendix
	Proof of Theorem 5
	Definitions on Oblivious Subspace Embedding and Proof of Theorem 6
	Theoretical Aspects of Random Embedding
	The Proof of Theorem 6

	More Experiment Results on Randomized Arnoldi Progress and GMRES
	Ablation Study on Parameters for RLE

