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ABSTRACT

Random embedding assumes an important role in representation learning. Gaus-
sian embedding and Rademacher embedding are two widely used random em-
beddings. Although they usually enjoy robustness and effectiveness, their com-
putational complexity is high, i.e. O(nk) for embedding an n-dimensional vector
into k-dimensional space. The alternatives include partial subsampled randomized
Hadamard (P-SRHT) embedding and sparse sign embedding, which are still not
of linear complexity or cannot run efficiently in practical implementation. In this
paper, a fast and robust Rademacher-like embedding (RLE) is proposed, based
on a smaller Rademacher matrix and several auxiliary random arrays. Specifi-
cally, it embeds an n-dimensional vector into k-dimensional space in just O(n)

time and space (assuming k is not larger than O(n% )). Our theoretic analysis re-
veals that the proposed RLE owns most of desirable properties of the Rademacher
embedding while preserving lower complexity. To validate the practical efficiency
and effectiveness, the proposed RLE is applied to single-pass randomized singular
value decomposition (single-pass RSVD) for streaming data, and the randomized
Arnoldi process based on sketched ordinary least-squares. Numerical experiments
show that, with the proposed RLE the single-pass RSVD achieves 1.7x speed-up
on average while keeping same or better accuracy, and the randomized Arnodli
process enables a randomized GMRES algorithm running 1.3x faster on average
for solving Az = b than that based on other embeddings.

1 INTRODUCTION

Random embedding, which projects high-dimensional vectors into low-dimensional vectors while
still maintaining key properties, serves as a core tool for many fundamental representation learning
and other related fields Woodruff| (2014); Martinsson & Tropp| (2020). Therefore, efficient and
effective random embedding has attracted numerous research attention in recent years [Iropp et al.
(2019); Liberty| (2013)); ILi et al.| (2023). Notice that a synonym of random embedding is sketching,
and random embedding has the same meaning as sketching in this work.

For handling high-dimensional data, random embedding is a required technique. Take singular value
decomposition (SVD) as an example. When the dimension of data reaches millions or even billions,
time cost and memory cost of classical SVD algorithm are intolerable. To tackle this problem,
randomized SVD (RSVD) utilizes random embedding to project the high-dimensional data into
much lower-dimensional space and then performs the decomposition Martinsson & Tropp| (2020);
Tropp et al.| (2019); [Yu et al.| (2018)); Feng et al.| (2024); [Yu et al.| (2017)Musco & Muscol (2015)).
Another example is Arnoldi process, which can be leveraged for obtaining eigenvalues/eigenvectors
or solving linear equation systems. For large-scale data, the randomized Arnoldi process based on
embedding is more preferable for both efficiency and robustness|Balabanov & Grigori| (2022).

The efficiency of random embedding plays an indispensable role. For example, random embedding
in the single-pass RSVD [Tropp et al.| (2019) takes up majority of computing time. Besides, slow
random embedding in the randomized Arnoldi process Balabanov & Grigori (2022) can lead to even
worse performance than classical Arnoldi process.

Gaussian embedding is probably the most commonly-used embedding algorithm |Gourru et al.
(2022); He et al.[ (2015); Ren et al.| (2016); | Yiksel et al.| (2021). It enjoys very good robustness,
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and can be regarded as the most natural and simplest embedding algorithm Martinsson & Tropp
(2020). In RSVD algorithms, Gaussian embedding is often adopted. Rademacher embedding is also
a commonly-used embedding algorithm |Verbin & Zhang| (2012); Rakhshan & Rabusseau| (2022). It
can achieve similar embedding performance to Gaussian embedding, although its theoretic bounds
may be a little bit worse than Gaussian embedding |Martinsson & Tropp|(2020) in certain scenarios.
Gaussian embedding and Rademacher embedding are both dense embedding, which enjoys good
robustness and little risk of embedding distortion. Their main shortcoming is that the complexity of
projecting an n-dimensional vector into a k-dimensional vector is O(nk).

To make embedding more efficient, fast transform techniques and several sparse embedding algo-
rithms have been proposed [Tropp et al.| (2019); Martinsson & Tropp| (2020). Partial subsampled
randomized Hadamard (P-SRHT) embedding adopts fast Hadamard transform to make accelera-
tion. For an n X k P-SRHT embedding matrix, time complexity of applying embedding one time
can be O(nlogn) or O(nlog(2k)). Sparse sign embedding is another alternative option. Notice
that Count Sketch is a special kind of sparse sign embedding, with the highest sparsity. For small
k, Count Sketch can lead to disastrous performance in practice Martinsson & Tropp| (2020); Tropp
et al|(2019), and so does the very sparse random projection method |Li et al.|(2006). An improved
version of sparse sign embedding for practical applications was proposed in|Iropp et al.|(2019)). For
an n X k sparse sign matrix, time complexity of applying embedding one time can be O(n). How-
ever, the trade-off of robustness and efficiency may restrict the application of sparse sign embedding.
Moreover, it relies on sparse data structure and arithmetic which may affect actual efficiency due to
irregular cache visiting |Martinsson & Tropp| (2020).

The aim of this work is to resolve the challenge of performing robust random embedding in lower
complexity and practical efficiency. The main contribution of this paper can be concluded as follows.

(1) A Rademacher-like random embedding (RLE) approach is proposed, which utilizes a smaller
Rademacher matrix and several random arrays to implicitly generate an embedding matrix and per-
form embedding. Particularly, it can embed an n-dimensional vector into k-dimensional space in

just O(n + k2) time and space complexity, which is linear complexity if & is not larger than O(nz).

(2) Theoretical analysis of the proposed RLE approach is presented, where we prove its linear time
and space complexity, that the square of the 2-norm of high-dimensional vector remains unchanged
after embedding into low-dimensional space, and other properties as a random embedding.

(3) The proposed random embedding is employed in single-pass RSVD algorithm and randomized
Arnoldi process. The latter facilitates a randomized GMRES algorithm. Numerical experiments
show that with the proposed approach, the single-pass RSVD is accelerated by 1.7x on average
while keeping same or even better accuracy, and the randomized GMRES is accelerated by 1.3x on
average for the problems of solving Az = b.

2 BACKGROUND

In this section, we will introduce the most commonly used random embedding methods and their
typical applications to representation learning. For the readability of algorithms, we adopt MAT-
LAB expression, e.g., h1.; 1.; corresponds to the submatrix consisting of the first j rows and first j
columns. And throughout the paper, || - || denotes the 2-norm (spectral norm), while || - ||r denotes
Frobenious norm.

2.1 RANDOM EMBEDDING
Random embedding aims to project a high-dimensional vector into low-dimensional space, i.e.

y = O, (1)
where z € R”, © € RF*" and y € R¥. Usually k < n and one can assume k is less than O(n?).

At the same time, y should preserve key properties of x. It is required that the 2-norm of y satisfy
the following equation in mathematical expectation [Martinsson & Tropp| (2020):

Ellyl*] = ll=[I* - 2)
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If ©; ; obeys Normal(0, k~') distribution and each entry of © is independently identically dis-
tributed, then © is a Gaussian embedding matrix. It is noticeable that Gaussian embedding is re-
garded as the most natural embedding algorithms and have the most extensive applications Martins-
son & Tropp| (2020). it can be proven that the rescaled Gaussian embedding satisfies (2). The time
and space complexity of Gaussian embedding is O(nk).

If ©; ; is independently equal to ﬁ with probability 0.5 and is equal to *ﬁ otherwise, then ©

is a Rademacher embedding matrix. It can be proven that Rademacher embedding satisfies (2).
Rademacher embedding can achieve similar performance as Gaussian embedding, making it favor-
able in many practical applications. However, the time complexity as well as space complexity of
Rademacher sketching matrices is also O(nk).

A robustness criterion of embedding relies on the concepts of e-subspace embedding and data obliv-
ious embedding, which are explained in Appendix A.2. If the embedding matrix © is an (¢, d, d)
oblivious /5 — {5 subspace embedding, it can be applied to many basic algorithms with theoretic
safety, e.g. the randomized Arnoldi process Balabanov & Grigori| (2022)). The Gaussian embed-
ding and Rademacher embedding both satisfy this. The demand of matrix dimension for being
an (¢,0,d) oblivious o — {2 subspace embedding reflects the effectiveness of the embedding
method. Theoretical results in [Balabanov & Nouy| (2019) shows that if © is a Rademacher ma-
trix with k > 7.87¢72(6.9d + log(1/§)) for R and k > 7.87¢2(13.8d + log(1/§)) for C, then
O € RF*™is an (¢, 6, d) oblivious 5 — £ subspace embedding.

To accelerate the process of random embedding, the sketching algorithms based on fast transform
are developed. A famous example is P-SRHT embedding. If © denotes P-SRHT embedding matrix,
O is the first k row of SRHT embedding matrix ©', where ©’ can be denoted with \/% DHS, where
D is a diagonal matrix whose entrices are 1 or -1, H is a normalized Walsh-Hadamart matrix and
S is a randomly sampling matrix. P-SRHT embedding can be performed much faster, with time
complexity of O(nlogn) or O(nlog k). However, P-SRHT embedding is less robust than Gaussian
embedding or Rademacher embedding in certain scenarios.

Sparse sign embedding is even faster, with time complexity and space complexity of O(n). If ©
can be denoted with \/% [s1, -, sn] where s; are identically independently distributed random
vectors with just C' non-zeros, then © is a sparse sign embedding matrix. [Cohen| (2016) pointed
out that a sparse sign matrix is an oblivious subspace embedding with constant distortion for an
arbitrary d-dimensional subspace of R” when C' = O(logd) and k = O(dlogd). However, in
many applications like RSVD, d is large so that C' = O(logd) and k = O(dlogd) cause a time
complexity higher than O(n), and ultra sparse sketching (e.g. C' = 1, equivalent to Count Sketch)
may cause disastrous performance [Iropp et al.|(2019). To facilitate the practical applications of
sparse sign embedding matrices, [Tropp et al.| (2019) proposed a practically applicable sparse sign
embedding, which has the same form but C = min(k, 8) instead of C' = O(logd). However,
the above setting is heuristic, and in practice induces a non-negligible time constant. Moreover,
another main disadvantage of sparse sign embedding is that we must use sparse data structures and
arithmetic to achieve its benefits [ Martinsson & Tropp| (2020).

Therefore, whether random embedding algorithm can be even faster (has linear time and space
complexity with small time constant) and robust as well is still in question.

2.2 TYPICAL APPLICATIONS OF RANDOM EMBEDDING

In this subsection, we briefly introduce two important applications of random embedding algorithms:
single-pass RSVD Tropp et al.|(2019) and randomized Arnoldi process|/Balabanov & Grigori|(2022).
As the random embedding is the core of this paper, we only present the pseudo code and the use of
random embedding in these algorithms.

The single-pass RSVD algorithm is shown in Algorithm 1, and in [Tropp et al.| (2019) the perfor-
mance of the practical sparse sign embedding is tested. The single-pass RSVD algorithm is designed
for processing streaming data, and also applicable when the data is too big to store in memory. The
sketching process of the single-pass RSVD algorithm in Tropp et al.[(2019) takes up the majority of
time cost, where the acceleration of random embedding is of significance.

Random embedding also has application in the Krylov subspace iterative methods, e.g. the random-
ized Arnoldi process Balabanov & Grigori|(2022)) shown in Algorithm 2, which can be employed to
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Algorithm 1 Single-Pass Randomized SVD

Input: AcR™*"™, rank parameter k, sketching parameter r, sketching parameter s.
Output: U c R™** S cRFXF 1/ cR>E,

I: I A, Aand Zare r x m,r X n, s X m and s X n random embedding matrices, respectively.
2: X + zeros(r,n),Y < zeros(m,r), Z < zeros(s, s).

3: fori<+ 1,2,--- ,mdo

4: A; < the i-th part of A. > 221 A; = A and A; only contains the i-th row of A.
5: X« X+TA,Y « Y+ AN, Z— Z+AAET > random embedding.
6: end for

7: Q + qr(Y,0) > economic QR factorization.
8: P <+ qr(XT,0) > economic QR factorization.
9: O« (AQ)*Z((EP)H)T
10: [U, X, V] « svd(C, ’econ’) > economic singular value decomposition.
1: U+~ QU(,1:k), 2+ X(1:k,1:k),V« PV(,1:k)

Algorithm 2 The Randomized Arnoldi Process

Input: AcR"*", beR", x R, m, O cRkxn.
Output: V., € R™<(m+D F ¢ Rm+Dxm,

1: Calculate residual r < b — Axg
2: Initialize H to be an (m + 1) x m zero matrix
) e
351 Tors V1 Tor]
4: forj=1,2,--- ;mdo
5: Wi < AUj
6: pj < Ow; > random embedding
7: Solve z; = arg min,, ||S;z — p,|| > solving sketched OLS problem
8: Vj+1 < Wy —‘/ij,With‘/j = [’Ul,"' ,’Uj]
9: Sj+1 < Ovjp > random embedding
10: Hyjy1, ¢ [Z]T7 H5j+1|HT
. ) Vil ) Sit1
A O RS R |
12: end for o o
13: Return V1 = [v1,02,+ ,Umy1), Hm = H.

compute largest or smallest eigenvalues and eigenvectors, as well as to solve linear equation system.
In the randomized Arnoldi process, sketched ordinary least-squares (OLS) problems are solved for
orthogonalized basis vectors in Krylov subspace:

(OV))z = Ow;, ie. min|(OV;)z — Ouw,|, 3)

where © € R**” is a random embedding matrix and k < n. In/Balabanov & Grigori| (2022), P-
SRHT is adopted to sketch, and Rademacher sketching is also recommended in|Balabanov & Grigori
(2022). The accuracy of the solution of the sketched OLS problem in Algorithm 2 directly affects the
accuracy of Arnoldi process, and further the convergency of GMRES algorithm for solving Az = .
Moreover, the sketching process takes up considerable time in randomized Arnoldi process and the
GMRES iteration in the case of a sparse A matrix.

In this paper, we will test our proposed random embedding on the above two applications to validate
the practical efficiency of the proposed algorithm.

3 THE O(n + k*)-COMPLEXITY RADEMACHER-LIKE EMBEDDING

In this section, we first introduce the idea of the proposed RLE approach. Then, the framework
of RLE embedding, including setup phase and execution phase, is presented. After that, relevant
theoretic analysis is presented.
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3.1 THE IDEA

To obtain the dense random embedding algorithm with linear complexity, it is obvious that the
embedding matrix can not be generated in explicit form, as the lowest time complexity for writing a
k x n matrix is O(nk). Thus we should generate the random embedding matrices implicitly.

For Rademacher embedding, the entrices can only be ﬁ or —ﬁ, which means that many entries

in related positions have the same values. More particularly, any two rows of © € R¥*™ have 5
same entries and % different entries in mathematical expectation.

Given a 2 X n Rademacher matrix, if we know which columns have same entries in the two rows
beforehand, then we can calculate the sketching y = Oz in just n + 4 flops instead of 2n flops
(supposing the factor ﬁ multiplied afterward). The specific way is as follows. Firstly, we calculate
the first partial sum of x corresponding to the ©’s columns with same entries and then we calculate
the second partial sum of x on the other entries. While doing the partial sums, the signs of entries in
the first row of © are considered. After that, we can directly add the first partial sum to the two rows
of y, which was initialized to zero. Then, we can just add the second partial sum to the first row of
y and subtract the second partial sum from the other row of y. But how to know the positions of the
columns with same entries beforehand? The answer is, we first assign these positions randomly.

The above simple case of 2 x n matrix implies that we can utilize partial sum to fast calculate the
result of Rademacher embedding. Therefore, aiming at accelerating the Rademacher embedding, we
pursue a method which does not explicitly generate the embedding matrix, assigns the positions of
the matrix columns with same entries in advance, and calculates the result of embedding leveraging

the partial sums of z multiplying ﬁ or *ﬁ~

3.2 THE SETUP PHASE AND EXECUTION PHASE OF RLE

If the Rademacher matrix is in general k£ x n, it is not as simple as the case of the 2 x n matrix,
because the positions on which two rows of the matrix have same entries depend on which two rows
are considered. To overcome this difficulty, we propose a new random embedding method including
two phases: the setup phase generates random vector, matrix and tensors, implicitly representing the
embedding matrix; the execution phase calculates the result y with the embedding.

The mechanism of the proposed embedding can be illustrated by Fig. 1, which explains how to
calculate the i-th element of y in (1). The idea starts from using a smaller Rademacher matrix
P € RS*™ and calculating random partial sums in Px as building blocks for obtain the final result.
Notice that P has ¢ rows, much fewer than k rows, and each row of P can be regarded as a basic
random sequence. Then, for each row (element) of Pz, the original sum of n elements are randomly
split to k" partial sums. We set &’ to be a small multiple of k. These partial sums are stored in a
temporary array sum with ¢ x k' values. Notice the circle with blue border in Fig. 1 stands for
a partial sum. This random splitting runs for £ times, so that sum is actually a £ x ¢ x k' tensor.
Again, ¢ is also a small number. Matrix C' € Z*" is for realizing the random splitting, i.e., the j-th
term in the sum for calculating Pz is accumulated into the C'(l, j)-th column of sum(l,:, ).

While calculating the i-th element of y, we first randomly choose which ¢ x k' partial sum array
is to be used. Suppose this random choice is an index R(¢). The partial sums in sum(R(i),,:)
are accumulated to get y;. This accumulation is performed column by column, but for each column
only one element with random row index is adopted. This random row index depends on which 2-D
partial sum array is chosen, i’s value and which column is for accumulation. So, itisa & x k x k’
integer tensor, denoted by E. In Fig. 1, we assume for the specific 7 the 2nd ¢ x &k’ partial sum array
is chosen. It can be see that, the formation of partial sum array and the accumulation mechanism
ensure that every element in x has a contribution to y;. Finally, while accumulating each partial
sum, an extra random sign (1 or -1) is multiplied to enforce more randomness. The random signs

are denoted by S € ZgX’”kl, with same dimensions as .

The pseudo codes for the execution phase of the proposed RLE approach (i.e. computing y = Ox)
are shown in Algorithm 3. Z denotes the set of all integers.

From the above explanation and Alg. 3, we see that the proposed algorithm relies on the small-sized
Rademacher matrix P, the random integer vector/matrix/tensor R, C' and F, and the random sign
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y = sum(1,:,:) € RSXK ) P9£ € RS \

OHO+O¥ - - - +0O

=l 2 K OHOHOH - - - HO!
7 7

accordingto C(2,:)

element with row index E(2,i,:)
Figure 1: Illustration of the proposed Rademacher-like embedding (RLE) algorithm ((=2,£(=2). P
is a (xn Rademacher matrix. R, C' and F are random integer vector, matrix and tensor, respectively.
S is a random sign tensor. Right: generation of partial sums; Left: calculation of y;. Circle stands
for an item in summation or a partial sum, and curved arrow depicts contribution to summation.

Algorithm 3 Execution Phase of the Proposed Rademacher-Like Embedding

Input: x € R™, Rademacher matrix P € RS$*™ random integer vector R € 7, random integer

matrix C' € Z&*", random integer tensor £ € Z&*¥*¥ | random sign tensor S € Z&*F*K',
> R’s value range is [1, £], C’s value range is [1, k'], E’s value range is [1, (]

Output: y € R”. >y = O.
1: Initialize y to the zero vector, and sum to the zero tensor € REXCXE >k =wk
2: fori=1,2,--- ,&£do
3 forj=1,2,--- ,(do
4 forl=1,2,--- ;ndo
5: U — Ci,l
6: SUMY j o < SUM; j o + T X P > calculate the partial sums.
7 end for
8 end for

9: end for
10: for:=1,2,--- ,k do
11: forj=1,2,--- k' do

12: a<+ R;, b+ Ea,z’,j, C Sa,i,j

13: Yi < Yi T SuMgpj X € > accumulate the partial sums with random signs.
14: end for

15: end for

16: Return y = [y1,y2, -, yi]”.

tensor S. So, generating them constitutes the setup phase of RLE approach. For all the random
vector/matrix/tensor used, we let them follow the uniform distribution in their value range.

A key point of the proposed method is that the relevant dimonsion parameters are all small numbers.
¢ and ¢ are usually integers no more than 3. And, ¥’ = wk, where w is also usually no more than
3. This guarantees the low complexity of performing this random embedding. Finally, we should
pointed out the proposed method is equivalent to multiplying a random matrix © and z, where ©
is very similar to Rademacher matrix. We will explain this in next subsection, after proving some
good properties of this embedding matrix ©.

3.3 THEORETIC ANALYSIS

Firstly, we analyze the computational complexity of RLE.

Theorem 1. The time complexity and space complexity of proposed RLE approach are both O(n +
k2). If k is not larger than O(n?), they are linear complexity.
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Proof. We divide the proof into two parts: complexity for setup and complexity for execution.

The setup phase includes the generation of a { X n Rademarcher matrix P, a k-dimensional random
integer vector R, a & X n random integer matrix C, and two £ X k X wk random tensors (£ and
S). Because (, £ and w are small constants, the time complexity and space complexity of the setup
phase of RLE approach are all O(n + k?).

For execution phase, from Alg. 3 we see that the calculation of sum is of O(£(n) time complexity
and O(&Cwk) space complexity. The calculation of y costs O(wk?) time and O(k) space. So, the
time complexity of the execution phase is O(n + k?) and the space complexity is O(k).

To summarize, the time complexity and space complexity of proposed RLE approach are both O (n+
k2). If k is not larger than O(n2), O(n + k2) becomes O(n), which is a linear complexity. O

The properties of the embedding matrix © implicitly generated by the proposed RLE are as follows.

Theorem 2. Suppose © € R¥*™ is the random matrix implicitly generated with the proposed RLE
approach. Then, every entry of © is ﬁ or —ﬁ.

Proof. From Alg. 3 or Fig. 1 we can see, with the proposed RLE approach y; is a linear combination
of all elements of x, and the combinational coefficients are the elements in P multiplied by a random
sign. As y; equals to the i-th element of Ox and P is a Rademacher matrix with elements being ﬁ

L inati ients, i ies i 1 oor—-L
or = the combinational coefficients, i.e. entries in ©, must be N O
Theorem 3. Suppose © € R*¥*™ is the random matrix implicitly generated with the proposed RLE
approach, ©; ; and Oy, are any two different entries in ©. Then, ©; ; and O, ;. are independent to
each other in mathematics. In other words, the entries in © are pairwisely independent. Moreover,
the rows of ©: ry,r9,--- , 1) are mutually independent, and the entries in the same row of © are

mutually independent.

Proof. From Alg. 3 or Fig. 1 we can see that, the entry of O is the entry of Rademarcher matrix P
multiplied by a random sign (from S). If j # r, ©; ; and O, ,. correspond to two different entries in
P (in column j and r respectively). Thus, ©; ; and ©; , are independent of each other. Otherwise,
i # | must hold. In this case, the signs (from S) for ©; ; and O, are independently multiplied.
Thus, ©; ; and O, are also independent to each other. Also due to the independence of the signs
(from S), 1,79, -+ , . are mutually independent. Moreover, the entries in the same row of © are
mutually independent, because they depend on different entries of P. O

Theorem 4. Each entry in © € RF*" which is generated implicitly with the proposed RLE approach
has a probability of 0.5 being ﬁ and being —ﬁ. Moreover, E[@TO] = I, where I denotes the

identity matrix, and the diagonal element of ©T © is always 1.

Proof. From Alg. 3 we see that, each entry of © is lastly multiplied by a random sign from S. Let
p; ; denote the probability of ©; ; being ﬁ before this last operation. Let p; ; denote the probability

of ©; ; being ﬁ after the last operation. Then we have (also based on Theorem 2):
pij =05 xp;; +0.5x(1-p;;)=05. 4)

Therefore, each entry in © € R¥*™ which is implicitly generated by the above algorithm has 0.5
probability of being ﬁ and being —ﬁ. Let I’ denote ©7'O. Then, its diagonal elements satisfy

k k kg
Fi, = ZQO,i@o,i = 2931 = Z 7= 1. (5)
o=1 o=1 o=1

For non-diagonal elements of F', we have:
k k
E[Fi ;] =E[Y_ 0,:00,] = > E[0,:6,,] =0, (6)
o=1

o=1
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where the last equality is due to each entry of © has 0.5 probability of being ﬁ and being — ﬁ and
the pairwise independence stated in Theorem 3. Therefore, we have E[©@70] = I. O

The proofs of the following theorems are given in Appendix A.1 and A.2, respectively.

Theorem 5. Suppose © € RF*™ is a random matrix generated implicitly with the proposed RLE
approach and x is an n-dimensional vector. Then, E[||Oz]|?] = ||z||%

Theorem 6. Suppose 0 < € < 0.572,0 < 6 < 1 and © € R¥*™ is the matrix generated implicitly
with the proposed RLE approach. If k > 7.87¢~%(6.9d + log(L)) for R and k > 7.87¢~2(13.8d +

log(1)) for C, © is an (e, 6, d) oblivious {3 — 3 subspace embedding.

Theorem 6 states the proposed RLE ensures theoretic safety, and its statement about (e, d, d) oblivi-
ous ¢, — {5 subspace embedding is the same as that for the Rademacher embedding |[Balabanov &
Nouy| (2019). A difference between the proposed RLE and the Rademacher embedding is that the
mutual independence of whole matrix entries does not hold for the former. This is the reason that
we name the proposed approach a Rademacher-like embedding. It is noticed that, the proposed RLE
algorithm has an O(n + k?) computational complexity, which is a linear complexity when & is not

larger than O(n% ). This is a remarkable advantage for practical usage.

4 NUMERICAL EXPERIMENTS

The proposed RLE approach is applied to the single-pass randomized SVD and randomized Arnoldi
process to evaluate its effectiveness and efficiency. The parameter &, ¢, w are set to 2, 1, 2, respec-
tively. All programs are implemented in C++ and Intel MKL, and the experiments are conducted on
a single core of a computer with Xeon Gold 6230R CPU@2.10GHz and 128 GB RAM.

4.1 RESULTS ON SINGLE-PASS RSVD wWITH STREAMING DATA

We have implemented the single-pass RSVD algorithm in [Tropp et al.| (2019). And, the random
embedding steps there are implemented with Gaussian embedding, sparse sign embedding, and the
proposed RLE embedding, respectively. The test matrices include those generated synthetically
following Martinsson & Tropp| (2020) and those from [Feng et al.| (2023). Their dimensions are
listed in Table 1.

Particularly, “noise” is generated by:
diag(1,---,1,0,---,0) + 107*GG", (7

where the number of 1 is 20 and G is a standard Gaussian matrix. “pol” and “exp” are random
matrices whose singular values satisfy the following two formulas respectively:

1 i< 20 ©
TV =192 i>20

1 i<20
71T Y 10701200 ;5 9 ®

“Weather” are directly generated by the open-source code of [Tropp et al.|(2019). “inv” and “sqrt” are
two random matrices whose singular values satisfy o; = % and o; = ﬁ, respectively. “MNIST” is

from Lecun et al.|(1998)), and “FeretMat” is a dense matrix generated based on Phillips et al.[(2000).
The parameter k is set to 10 just like that in the numerical experiments in [Tropp et al.| (2019).
Moreover, the parameter 7 is set to & + 1 and the parameter s is set to 2r + 1 as is suggested by

Tropp et al.| (2019). Particularly, » = 11 and s = 23 in our experiments. Below are the two metrics
of the relative error of RSVD.

A= A=A 4]
T4 — 4]

(10)
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Table 1: Results of the single-pass RSVD (Alg. 1) with different random embedding approaches.

Case m Gaussian Embedding Sparse Sign Embedding Proposed RLE
Tiot(s) errs erry Tio(s) errs  erry Tiot(s) errs erry Sp1 Spo
noise 1.0E3 1.0E3 0.0863 31.3 6.53 0.112 2.70 0.37  0.0850 6.92 0.78 1.02 1.32
exp 1.0E3 1.0E3 0.0978 3.89 1.02 0.111 2.80 0.83  0.0800 2.31 0.70 1.22 1.38
pol 1.0E3 1.0E3 0.0863 1.35 0.58 0.113 1.83 0.71  0.0750 1.81 0.66 1.15 1.50
Weather 1.9E4 7.3E3 3.04 17.0 0.31 3.60 437 0.74 1.78 27.7 0.50 1.71 2.02
MNIST 6.0E4 7.8E2 1.10 391 1.01 147 294 0.76 0.900 3.42 0.79 1.22 1.63
inv 4.0E4 40E4 320 269 141 338 645 2.10 18.1 5.58 1.90 1.77 1.87
sqit  4.0E4 4.0E4 319 7.66 0.72 340 583 0.3 19.0 8.70 0.69 1.68 1.79
FERET 1.0E5 39E5 1248 - - 1179 - - 617 - - 2021091

Average 9.69 1.65 946 0.86 8.06 0.86 1.5 1.7

m and n are the dimensions of test matrix, 7.+ denote the total time for performing single-pass randomized
SVD (time for reading data is omitted), errs and errs denote the relative error in 2-norm and Frobenious
norm, respectively. Spi1 and Sp2 denote the speed-up ratios of the proposed RLE based single-pass RSVD
algorithm over those based on Gaussian sketching and sparse sign sketching, respectively.

[A— Akl — 1A — Aklle
erry = 11
! 14— A7l b
Here Aj, denotes the best rank & approximation matrix to A and Ay, denotes the rank % approximation
to A generated by the RSVD algorithm. As the computation of A;; for “FERET” causes memory
overflow in our machine, we could not obtain the relative errors for “FERET”.

The results are listed as Table 1. From it, we can see the single-pass RSVD equipped with the pro-
posed RLE shows 1.5x average speed-up and 1.7x average speed-up compared with those equipped
with the Gaussian random embedding and sparse sign embedding, respectively. It is noticeable that
in this experiment, Gaussian embedding is coded by matrix-vector multiplication function in MKL,
which makes it even faster than sparse sign embedding in small test cases. Even though, the pro-
posed RLE approach shows prominent advantages. Moreover, proposed algorithm also shows good
accuracy, whose relative 2-norm error is remarkably smaller than Gaussian embedding and sparse
sign embedding.

4.2 RESULTS ON RANDOMIZED ARNOLDI PROCESS

We have implemented a randomized GMRES algorithm which combines the standard GMRES |Saad
& Schultz| (1986) and the randomized Arnoldi process (Alg.2) Balabanov & Grigori| (2022)). The
embedding process utilizes P-SRHT embedding, sparse sign embedding and the proposed RLE. The
P-SRHT embedding utilizes the efficient open-source code in[SRH, The standard GMRES [Saad &
Schultz| (1986) is also implemented for comparison. They are used to solve linear equation Az = b
and the test cases are from SparseSuite Matrix Collection matl Particularly, “rajat31” is a case
with a 4. 7TE6x4.7E6 sparse coefficient matrix. The matrix dimensions of Case “memchip” and
“circuitSM” are 2.7E6x2.7E6 and 5.6E6x5.6E6, respectively. And, more experimental results and
the ablation study are presented in Appendix A.3 and A.4. We use the decrease trends of relative

HAﬁﬂbH to evaluate the performance of different versions of GMRES, which are shown

in Figure 2. The embedding dimension k is set to 200, and ILU(3) factorization is applied as the
preconditioning .

residual

From the experimental results, we can see that with the proposed approach, randomized Arnoldi
process can proceed much faster than the standard Arnoldi process and P-SRHT based randomized
Arnoldi process. As the standard GMRES does not have a setup phase, its time cost is low in first
a few of iteration steps. However, the high-dimensional Gram-Schmidt orthogonalization makes
the standard GMRES run slowly in the latter iteration steps. As the sparse sign embedding has
comparably larger time constant and may lose data locality, it does not show prominent advantage
over the efficiently implemented P-SRHT. Compared with P-SRHT and sparse sign, the proposed
RLE approach shows prominent advantages. On the test cases, the randomized GMRES with pro-
posed RLE approach shows 1.4x, 1.3x and 1.3x speed-ups on average over the standard Arnoldi
process, the P-SRHT based randomized GMRES and the sparse sign embedding based randomized
GMRES respectively, for reaching convergence or the maximum of 100 iterations. Moreover, the
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Figure 2: Convergence behaviors and runtime trends of the original GMRES and the randomized
GMRES algorithms utilizing the randomized Arnoldi process (Alg. 2) with different embedding
approaches for “rajat31”, “memchip”, “circuitSM” (from top to bottom respectively).

convergence rate of the randomized Arnoldi process with the proposed RLE is very similar to that
of standard Arnoldi process, which indicates the robustness of proposed RLE.

5 CONCLUSION

In this paper, a fast and robust random embedding algorithm, named Rademacher-like embedding
(RLE), is proposed. The theoretic analysis of the proposed approach is given, which proves it is a
Rademacher-like random embedding with O(n + k?) computational complexity for embedding an
n-dimensional vector into k-dimensional space. The numerical experiments on single-pass RSVD
show that, compared with the sparse sign embedding the proposed RLE enables 1.7x average speed-
up with same or even better accuracy. And the experiments on randomized Arnoldi process shows
that the proposed RLE enables an accelerated GMRES algorithm which runs 1.3x faster on average
without the loss of accuracy.

In the future, we will explore the parallel version of RLE approach. From Fig. 1 we can see the
calculation of y can be easily parallelized. For the generation of partial sums, some skills can also
apply to make it well parallelized.

10
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A APPENDIX

A.1 PROOF OF THEOREM 5

Proof. Firstly, we have

E[|©z]?] = E[lzT 0T 0x]. (12)
As © is independently generated without x, we have
E[|0z|?] = Elz"|E[6T O]E[z]. (13)
With Theorem 4, we have that E[©7©] = I. Therefore, we can derive
E[|©z|*] = E[+"]E[z]. (14)
As x is deterministic, we further derive
E[|0z]*) = 2"z = |l (15)
which completes the proof. O

A.2 DEFINITIONS ON OBLIVIOUS SUBSPACE EMBEDDING AND PROOF OF THEOREM 6

First of all, we introduce the definitions on oblivious subspace embedding (OSE). Then we will prove
Theorem 6 with the help of Theorem 3, and the proof inherits from the proof of the (Balabanov &
Nouy, [2019, Proposition 3.7).

A.2.1 THEORETICAL ASPECTS OF RANDOM EMBEDDING

In theory, the embedding matrix © is desired to have some theoretic properties. For numerical
stability of random embedding, the distortion after embedding is often estimated in probability.
With the following two definitions, embedding distortion can be depicted in theory.

Definition 1. Given € < 1, the embedding matrix © € RF*™ is an e-subspace embedding for
subspace K C R", if for any vectors x,y € K,

[(z,y) = (©z,0y)| < el - [lyl, (16)

where (z,y) denotes the inner product of vector « and y.

Definition 2. The embedding matrix © € RF*" is an (e, 6, d) oblivious o — {5 subspace embed-
ding, if it is an e-subspace embedding for any fixed d-dimensional subspace K C R"™ with probability
at least 1 — 6.

If © is an (¢, §, d) oblivious f5 — ¢5 subspace embedding, © can be applied to many basic algo-
rithms with theoretic safety. For example, theoretic results in Balabanov & Grigori| (2022) shows
that if © is an (e, d, d) oblivious {5 — {2 subspace embedding, numerical stability of randomized
Arnoldi process can be guaranteed.

Meanwhile, to extend the embedding for the field of real numbers to the field of complex numbers,a
very useful proposition was proposed in the supplementary material of Balabanov & Nouy|(2019)).

Proposition 1. (Balabanov & Nouy, 2019, supplementary material) Let © be a real random matrix.
If © is (¢,0,2d) oblivious lo — Ly subspace embedding for subspaces of vectors in R™, then it is
(€, 0,d) oblivious Uy — o subspace embedding for subspaces of vectors in C".

The dimension of embedding matrices for (e, , d) oblivious ¢ — ¢5 subspace embedding is often
used to evaluate the effectiveness of different embedding methods. Theoretical results in [Balabanov
& Nouy|(2019) shows that if © is a rescaled Rademacher matrix with & > 7.87¢~2(6.9d+1log(1/6))
for R and k > 7.87¢2(13.8d + log(1/6)) for C, then © € R¥*" is an (¢, §, d) oblivious f5 — lo
subspace embedding. Theorem 6 states that the same error bound holds for the proposed RLE
approach.

13
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A.2.2 THE PROOF OF THEOREM 6

In this subsection, we use O to denote the embedding matrix generated by the RLE approach and r;
to denote the i-th row of ©. Define @);(«) for an arbitrary n-dimensional vector « as:

_ vk

With Theorem 3, we can see that );(«) is mutually independent. So,

ElQi(a)] = E[il Oéj\/gri,j] = ilE[Oéj\/ETi,ﬂ = \/Eil a;E[r ;] =0,  (18)

E[Qi()] =E[()  a; \/Eri,j)Q] = %E[Z(aﬂ“i,j)z + > (ayriri )]

;o (17

j=1 j=1 I=1 j=1,j#
=SB (o, PIHED. Y (o)) =~ pad+0) (1Y
Jj=1 =1 j=1,j#1 Jj=1
- 2
= o]

Define W (a) as:
k

k
k
Wia) = Zria)? = 2(q) . 20
@ =30 o = 30k )
Below we first prove Lemma 5.2 and Lemma 5.1 in (2003) still hold for the RLE ap-
proach.

Lemma 1. Forall h € [0, %) all n > 1 and all unit vectors «,
1 3
2 4
Elexp(hQ1()”)] £ ——, Elexp(Q1(a)”)] < w2 (1)

2h
L=

Proof. Based on the proof of Lemma 5.2 of |Achlioptas|(2003)), we see that (21) holds if the entry in
r1 is mutually independent and has 0.5 probability to be 1 and 0.5 probability to be -1. Because the

r1 dervied from the RLE satifies these conditions (see Theorem 3), (21) holds. O
Lemma 2. For any € > 0 and any unit vector o € R",
k k 2 3
Pr[W(a) > (1+¢€)—] < exp(_,(i _ i)%
n 22 3 22)
k k. e &
Pr(W (a) < (1= )] < exp(—3 (5 — T))

Proof. The proof can be naturally inherited from that for Lemma 5.1 in[Achlioptas| (2003), because
we can leverage the mutual independence of Q1 (), Q2(), - - - , Qx () derived from the proposed
RLE.

For arbitrary h, we can derive:

k. kv . exp(hW («))
Pr[W(a) > (1+ e)ﬁ] = Prlexp(hW(a)) > exp(h(1 + e)n)} =P [—exp(h(l o5 > 1] o
< Elexp(hW (a) exp(—h(1 + e)%)] =exp(—h(1+ E)S)]E[exp(hW(a)]
With the mutual independence of @Qq(a),Qa(), -+ ,Qr(), it is obvious to see

Q1(a),Q2(a), -+, Qr () are identically independently distributed (i.i.d). Thus we have:

k k
Elexp(hW ()] = E[] [ exp(h@?)] = [ ] Elexp(hQ})] = (Elexp(hQi(a)?))*  (24)

i=1 i=1

14
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Thus, we have:

Pr[W(e) > (1 + 6)%] < exp(—h(1+ 6)%)(E[6Xp(h621(04)2)])k (25)
With Lemma 1 and given h = % 1; < %, we have:
PriW(a) > (14 e)ﬁ] < exp(—h(1+ €)E)(;)k =((1+¢) exp(—e))g
n n 1_ 2k
" (26)
k 2 3
<exp(-5(5 ~ 3))
The last inequality is due to — % (elog(1+€)) < —%(% - %) Furthermore, we can similarly derive
that:
P (0) < (1- %] < exp(h(1 — ) &) Blexp(~hQ1 (0)2)* e
_ 2)2
PV (a) < (1 - 0] < exp(h(t — 0 ™) I~ 1 ()2 + TPy
' (28)
k h  h?
= exp(h(1~ ) )1 = 2 1+ T giQ (0"
With Lemma 1 and given given h = 3 < 7, we have:
_ok VSR SLOYY:
PV (@) < (1 0] < exp(n(1 0y - 24 3Ly
B € 32, e(l —e)k
== 2(1+¢) i 8(1+ 6)2) exp( 2(1+¢) ) 29
k 2 3
<exp(-5(5 —5)
O

Below we present the proof of Theorem 6. The idea of proof is naturally inherited from the proof of
Proposition 3.7 in|[Balabanov & Nouy|(2019).

Proof. This proof can be naturally inherited from the proof of Proposition 3.7 in|Balabanov & Nouy|
(2019), with the help of the above Lemmas.

We first consider embedding for R. The proof follows the standard framework in (2014).
Given a d-dimensional subspace V- C R", O = {x € V : ||z| = 1} be the unit sphere of
V. According to the (Bourgain et all [T989, Lemma 2.4), for any v > 0 there exists a y—net A/
of O satisfying #N < (1+ %)% For 0 < 5 < 1, let © be the RLE embedding matrix with
k> 6n=2(2dlog(1 + %) + log(%)). With Lemma 2 and an union bound argument, we obtain for a
fixedz € V

Pr(lal? ~ 0 < nlll?) > 1~ 2exp( L) (0)
Therefore, by leveraging an union bound for the probability of success, we have:
{lllz +yl* = 10 + »I?| < nllw + yl*, Yo,y € N} G1)
holds with probability at least 1 — §. We can further derive that:
{l(z,y) — (O, 0y)| < n,Va,y € N'} (32)

holds with probability at least 1 — d. Let a be some vector in O. Assuming y < 1, it can be proven
by induction that b = Zizo a;a;, where a; € N and 0 < o; < ~*. Then we can derive:

18a]* < > (0a;0a;)aia; < Y ((ai, aj)eia; +naiey) =1+ 7Y e)* <1+ %
i,5>0 ,j>0 i>0 (1-7)
(33)
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Similarly, we can obtain:

19al* > 1 - (34)

(1—7)?
Therefore, if (38) holds, we have:

n
11— 0alf| £ ~——35- (35)
(1—79)?
For a given € < W, let n = (1 — 7)2e. Since (32) holds for an arbitrary vector a € O, using
the parallelogram identity, we can derive:

[(z,y) — (O, Oy)| < e|z]| - ||yl (36)

holds for all z,y € V if (32) holds. Thus we conclude that © with k > 6¢~2(1 — ) ~*(2d log(1 +
%)+log(%)) isan (¢, 0, d) obvious o — ¢5 subspace embedding for V with probability at least 1—4.

The lower bound of the number of rows of © is obtained by taking v = arg min, ¢ g 1) (%)

0.0656. For C, we can leverage the Proposition 1 for the proof. If © is an (¢, 4, 2d) obvious embed-
ding for R, then O is an (e, d, d) obvious embedding for C'. Thus, we complete the proof of Theorem
6. O

~
~

A.3 MORE EXPERIMENT RESULTS ON RANDOMIZED ARNOLDI PROGRESS AND GMRES

Experiments on all test cases of randomized GMRES is listed in Table 2. To validate the efficiency
of our proposed RLE approach in more industrial scenarios, we test the proposed RLE approach
on famous power grid benchmarks, ibmpg |[Nassif| and thupg [Yang & Lil The test cases include
“ibmpg4t” which is a 1.2E6 x 1.2E6 sparse matrix with 4.8E6 non-zeros and “thupg5” which is a
2.0E7 x 2.0E7 sparse matrix with 8.8E7 non-zeros.

Table 2: Results of the randomized GMRES with different random embedding approaches.
Case n  nnz tgumres tp ts trie Sp1 Sp2 Sps

rajat31 4.7E6 2.0E7 67.3 48.0 442 368 1.8 13 1.2
memchip 2.7E6 1.5E7 104 9.97 995 7.16 15 14 14
circuitSM 5.6E6 6.0E7 8.66 10.2 122 838 1.0 1.2 1.5
ibmpgdt 1.2E6 4.8E6 17.8 13.1 12.8 10.1 1.8 1.3 1.3
thupg5 2.0E7 8.8E7 385 254 221 185 2.1 14 1.2
Average 1.6 1.3 1.3

nnz is the number of non-zeros. tga rEs denotes the runtime of standard GMRES, ¢ p denotes the runtime
of randomized GMRES with P-SRHT embedding, ts denotes the runtime of randomized GMRES with
sparse sign embedding, trr r denotes the runtime of randomized GMRES with the proposed RLE. Sp1,
Sp2, Sps are the speed-ups brought by the proposed RLE algorithm to the standard GMRES, randomized
GMRES with P-SRHT embedding, randomized GMRES with sparse sign embedding, respectively.

The experimental results are shown in Fig.3 and Fig.4, where we can see that the proposed RLE
approach is prominently faster than P-SRHT embedding and sparse sign embedding. Particularly,
on test case “ibmpg4t”, randomized GMRES with the proposed RLE approach shows 1.8x speed-
up, 1.3x speed-up, 1.3x speed-up compared with standard GMRES, randomized GMRES with P-
SRHT embedding, randomized GMRES with sparse sign embedding, respectively. On test case
“thupg5”, randomized GMRES with the proposed RLE approach shows 2.1x speed-up, 1.4x speed-
up, 1.2x speed-up compared with standard GMRES, randomized GMRES with P-SRHT embedding,
randomized GMRES with sparse sign embedding, respectively. Meanwhile, we can see that the
randomized GMRES with proposed RLE achieve similar convergence rate with standard GMRES,
which indicates the robustness of the proposed RLE in industrial scenarios.

A.4 ABLATION STUDY ON PARAMETERS FOR RLE

There are three parameters &, ¢ and w in RLE. We use the randomized Arnoldi process based on
RLE as an example to do the ablation study on these parameters.
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Figure 3: Convergence behaviors and runtime trends of the original GMRES and the randomized
GMRES algorithms utilizing the randomized Arnoldi process (Alg. 2) with different embedding
approaches for “ibmpg4t”.
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Figure 4: Convergence behaviors and runtime trends of the original GMRES and the randomized
GMRES algorithms utilizing the randomized Arnoldi process (Alg. 2) with different embedding
approaches for “thupg5”.

The three parameters can be set independently. But different setting may lead to a slight difference
in efficiency as well as accuracy. The runtime of execution stage of RLE is about O(£¢n + wk?).
Therefore, if n >> k2, the increase of ¢ and ¢ can have a large impact on the runtime of RLE. Fig. 5
shows the experimental results on randomized GMRES leveraging the randomized Arnoldi process
based on the RLE. From it we can see that, although different settings of parameters may have
impact on the efficiency, the difference of accuracy caused by the varied parameters is negligible.
With smaller £ and (, i.e. (¢ =2,( = 1)or (£ = 1, ( = 2), the runtime of GMRES is significantly
reduced. The reason is that for this case n = 4.7E6 which is much larger than k? (i.e. 200?).
Therefore, the increase of ¢ and ( causes the increase of runtime of RLE.
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Relative Residual

Figure 5: Performance of different settings of the three parameters (three numbers denotes &,
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