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ABSTRACT

Random subspace method has wide security applications such as providing certified
defenses against adversarial and backdoor attacks, and building robustly aligned
LLM against jailbreaking attacks. However, the explanation of random subspace
method lacks sufficient exploration. Existing state-of-the-art feature attribution
methods such as Shapley value and LIME are computationally impractical and
lacks security guarantee when applied to random subspace method. In this work,
we propose EnsembleSHAP, an intrinsically faithful and secure feature attribution
for random subspace method that reuses its computational byproducts. Specifically,
our feature attribution method is 1) computationally efficient, 2) maintains essential
properties of effective feature attribution (such as local accuracy), and 3) offers
guaranteed protection against privacy-preserving attacks on feature attribution
methods. To the best of our knowledge, this is the first work to establish provable
robustness against explanation-preserving attacks. We also perform comprehensive
evaluations for our explanation’s effectiveness when faced with different empirical
attacks, including backdoor attacks, adversarial attacks, and jailbreak attacks.
WARNING: This document may include content that could be considered offensive
or harmful.

1 INTRODUCTION

Random subspace method (Ho, 1998), also referred to as attribute bagging (Bryll et al., 2003), is
an ensemble learning method that combines the prediction results on random subsets of features
to obtain the final prediction. While it was initially proposed to enhance decision trees (Ho, 1998),
this method gained widespread adaptation recently in security applications (Jia et al., 2021; Levine
& Feizi, 2020b; Robey et al., 2023; Zhang et al., 2023; Wang et al., 2021; Zeng et al., 2023; Cao
et al., 2023), such as providing certified defenses (Levine & Feizi, 2020b; Zeng et al., 2023; Zhang
et al., 2023; Wang et al., 2021) against adversarial attacks, and enhancing the robustness of large
language models against jailbreaking attacks (Cao et al., 2023; Robey et al., 2023). This method
begins by generating predictions for multiple sub-sampled versions of a given input sample using a
base model. It then creates an ensemble model that aggregates these predictions using a majority
vote to determine the final prediction. As this approach only requires black-box access to the base
model, it can be applied across different base model architectures (Levine & Feizi, 2020b; Zeng
et al., 2023; Zhang et al., 2023; Wang et al., 2021; Robey et al., 2023). Understanding the output of
the random subspace method is crucial. For instance, in defending against jailbreaking attacks, it’s
essential for users to pinpoint the specific elements of the input prompt that lead to its classification
as ‘harmful’ (or ‘non-harmful’). Additionally, when a certified defense is compromised by strong
empirical attacks, it becomes important for users to determine the specific adversarial words that
caused the misclassification.

However, existing leading feature attribution methods for black-box models (Lundberg & Lee,
2017a; Chen et al., 2023b; Ribeiro et al., 2016; Enouen et al., 2023; Paes et al., 2024; Amara et al.,
2024; Mosca et al., 2022; Lopardo et al., 2023) such as Shapley values (Lundberg & Lee, 2017a;
Chen et al., 2023b) and LIME (Ribeiro et al., 2016) have following disadvantages when applied to
random subspace method. Firstly, they incur prohibitively high computational costs. Specifically,
these methods involve randomly perturbing the input sample numerous times, denoted by M . The
explained model then generates a prediction for each perturbed version of the input. In the case of the
random subspace method, the objective is to explain the behavior of the ensemble model. Therefore,
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for each perturbed input version, N sub-sampled variants of it are created and each is evaluated to
generate the ensemble model’s prediction, resulting in M ×N total queries to the base model for
just one input sample. In practical applications, both N and M can exceed 1, 000 (Enouen et al.,
2023; Zeng et al., 2023; Levine & Feizi, 2020b), which significantly increases the computational cost.
Secondly, current feature attribution methods do not provide security guarantees against the recently
proposed explanation-preserving attack (Nadeem et al., 2023; Noppel & Wressnegger, 2023). In this
type of attack, an adversary can perturb certain features of the input sample to cause misclassifications,
and at the same time conceal these changes by preserving the original explanation.

Our contributions. In this work, we propose a computationally efficient feature attribution method
for random subspace method that is inherently faithful and secure. We conduct a theoretical analysis
to show that our method maintains key properties of Shapley value and is provably robust against
explanation-perserving attacks on feature attribution methods. We note that this is the first work
to establish provable robustness against explanation-preserving attacks. We carry out empirical
evaluations to assess the effectiveness of our explanations across various security applications.

2 BACKGROUND AND RELATED WORK

We begin by introducing the random subspace method and its security applications, followed by a
discussion on existing feature attribution methods and their limitations.

2.1 RANDOM SUBSPACE METHOD

Random subspace-based method (Ho, 1998) is a is a versatile approach that is agnostic to model
architecture and scalable to large neural networks. This method employs a base model to generate
predictions for random feature subsets, which are then aggregated to produce the ensemble prediction.
Next, we summarize a general framework for the random subspace method and introduce its security
applications.

Building an ensemble model. Suppose we have a testing input x = {x1, x2, · · · , xd} that consists
of d elements, where each element represents a feature of the input. For instance, when x is a text,
each xi represents a word. We use f : X → [C] to represent the base model (e.g., an off-the-shelf text
classifier), where X is the space of model input and [C] represents the set of unique labels {1, 2, ..., C}
that base model can output. For example, in a binary classification problem,[C] = {1, 2}. For the
simplicity of notation, we define a simplified base model h that can take subsets of x (denoted by z)
as input. Specifically, we define h : P(x) → [C] as h(z) = f(ABLATE(x, z)), where P(x) is the
power set of x, z ∈ P(x) is a subset of x and ABLATE replaces all features of x not in z by a special
value (e.g., the ‘[MASK]’ token). That is, xi = xi if xi ∈ z, and xi = SpecialV alue if xi /∈ z.

The random subspace method first uses the simplified base model h to make predictions for random
subsets of x. Formally, we define the probability that a label c ∈ [C] is predicted by the base model
as:

pc(x, h, k) = Ez∼U(x,k)[I(h(z) = c)], (1)
where I is an indicator function whose output is 1 if the condition is satisfied and 0 otherwise, and
z ∼ U(x, k) is a subset of x with size k that is randomly sampled from the uniform distribution. i.e.,
Pr(z = z′ | z ∼ U(x, k)) = 1

(dk)
for any z′ ⊆ x satisfying |z′| = k. Then the label with the largest

probability is viewed as the predicted label of the ensemble classifier H for the testing input x, i.e.,
H(x, h, k) = argmax

c
pc(x, h, k). (2)

In practice, the Random Subspace Method approximates the probability pc through Monte Carlo
sampling. Initially, it generates N groups of features from the original set x by sampling without
replacement according to a uniform distribution U(x, k). These subsets are represented as a collection
of feature groups G = {z1, . . . ,zN}. For each of these feature groups zj , the method employs a
base classifier to predict a label. It then counts the occurrences nc of each possible label c within a
predetermined set of labels 1, 2, . . . , C, where C represents the total number of unique labels. The
calculation of nc is formally described by:

nc(x, h, k) =

N∑︂
j=1

I(h(zj) = c), c = 1, 2, · · · , C, (3)
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where I denotes the indicator function, returning 1 when its condition is met and 0 otherwise.
Consequently, the label probability pc(x, h, k) is estimated by nc(x,h,k)

N .

Security applications of random subspace method. Random subspace method is recently used
to build state-of-the-art certified defenses (Levine & Feizi, 2020b; Zeng et al., 2023; Wang et al.,
2021; Zhang et al., 2023). Many previous studies (Levine & Feizi, 2020b; Zhang et al., 2023) showed
that the ensemble model built by a random subspace method is certifiably robust against adversarial
attacks, i.e., its prediction for a testing input remains unchanged once the ℓ0-norm perturbation to the
testing input is bounded. Another strand of research (Robey et al., 2023; Cao et al., 2023) uses the
random subspace method to build robust LLM against jailbreaking attacks, leveraging the fragility
of adversarially-generated jailbreaking prompts to perturbations. These methods first use the LLM
to generate responses for each of the perturbed input prompts, and these responses are then labeled
as either ‘harmful’ or ‘non-harmful’ by checking keywords. Lastly, these labels are aggregated to
determine whether the input prompt should be approved or rejected.

Existing studies mainly focus on robustness, leaving the explanation of the random subspace method
unexplored. Next, we introduce feature attribution for random subspace method.

2.2 FEATURE ATTRIBUTION

Feature attribution aims to explain why a model makes a certain prediction for an input by at-
tributing the prediction to the most important features in the input. Existing feature attribution
techniques (Lundberg & Lee, 2017a; Chen et al., 2023b; Ribeiro et al., 2016; Paes et al., 2024; Mosca
et al., 2022; Petsiuk et al., 2018; Sundararajan et al., 2017; Shrikumar et al., 2017; Smilkov et al.,
2017) fall into two main categories: 1) white-box methods, exemplified by integrated gradients (Sun-
dararajan et al., 2017) and DeepLIFT (Shrikumar et al., 2017), and 2) black-box methods, including
LIME (Ribeiro et al., 2016) and Shapley values (Lundberg & Lee, 2017a; Mosca et al., 2022; Chen
et al., 2023b; Sundararajan & Najmi, 2020). White-box methods require knowledge of the explained
model’s architecture, parameters, and gradients, whereas black-box methods do not rely on such
detailed knowledge. This study concentrates on black-box feature attribution methods due to their
general applicability across various model architectures.

Attacks to feature attribute methods. Recent studies (Noppel & Wressnegger, 2023; Nadeem
et al., 2023) have proposed the explanation-preserving attack to feature attribution methods. This
attack involves adversarially perturbing the input sample in a manner that induces misclassifications
while retaining the original explanation. This attack could be employed to conceal ongoing input
manipulation (Zhang et al., 2020). For instance, an attacker could replace certain words in a clean
sentence with adversarial alternatives, leading to misclassification, while those words still maintain
low relevance in the resulting explanation.

Limitations of existing feature attribute methods. Existing state-of-the-art black-box feature
attribution methods (Lundberg & Lee, 2017a; Chen et al., 2023b; Ribeiro et al., 2016; Enouen
et al., 2023; Paes et al., 2024; Amara et al., 2024; Mosca et al., 2022; Lopardo et al., 2023; Petsiuk
et al., 2018) have following limitations. Firstly, they are computationally inefficient when applied
to the random subspace method. Techniques such as LIME (Ribeiro et al., 2016) and Shapley
values (Lundberg & Lee, 2017a; Enouen et al., 2023; Chen et al., 2023b) necessitate a large number
of queries (e.g., 1,000) to the black-box model using perturbed versions of the test input. As detailed in
Section 2.1, each query to the ensemble classifier requires aggregating the prediction outcomes from
all sub-sampled versions of the perturbed test input, leading to prohibitively high computation costs.
Secondly, these methods lack theoretical guarantees regarding their performance when subjected
to explanation-preserving attacks. In the next section, we design a feature attribution method that
overcomes these limitations.

3 ALGORITHM DESIGN

3.1 PROBLEM FORMULATION

Consider an ensemble model H with base model h and sub-sampling size k. For a given test input x,
consisting of d features (denoted by x = {x1, x2, · · · , xd}), let ŷ represent the predicted label for
x, such that H(x, h, k) = ŷ. The goal of feature attribution (Sundararajan et al., 2017; Paes et al.,
2024; Amara et al., 2024; Lopardo et al., 2023; Chuang et al., 2024) is to assign an importance score
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αŷ
i to each element xi ∈ x, indicating its contribution to the ensemble model’s prediction of ŷ. The

user can later consider the top-e features with the highest importance scores to be the most important.
For instance, if x is a text consisting of d words, each word would receive an importance score. By
ranking these scores, users can easily identify the most influential words leading to the ensemble
model’s prediction.

3.2 DESIGN GOAL

Our approach is guided by three primary design goals. First, the feature attribution method should be
computationally efficient, as predictions from an ensemble model are already resource-intensive, so
the method must avoid repeatedly using the ensemble model for predictions. Second, it should adhere
to key properties of effective feature attribution (Lundberg & Lee, 2017a), such as local accuracy.
Third, the method must be certifiably robust against explanation-preserving attacks. Specifically, if
an adversary modifies a small number of features in the input to change the model’s prediction, the
most important features reported by the attribution method should include these adversarial features.

3.3 OUR DESIGN

Next, we introduce our EnsembleSHAP. Following existing feature attribution works (Sundararajan
et al., 2017; Lopardo et al., 2023; Chuang et al., 2024), we design an importance score to measure the
contribution of each feature to the model’s output label (denoted as ŷ). Specifically, we define the
important score of the i-th feature for the predicted label ŷ as:

αŷ
i (x, h, k) =

1

k
Ez∼U(x,k)[I(xi ∈ z) · I(h(z) = ŷ)]. (4)

This importance score of a feature xi can be seen as the probability that a randomly sampled feature
group contains xi and predicts for ŷ. The intuition behind this importance value is that the output
generated by the ensemble model reflects the aggregated impact of all feature groups. For any
given feature group zj ∈ G having size k, the contribution of each feature to this group’s result is
equally divided, amounting to 1

k of the group’s outcome. If a feature is not in a given group, then
the contribution of this feature to this group’s result is 0. Consequently, the contribution of a single
feature is the aggregate of its contributions across all groups. This intuition leads to the property of
local accuracy, which will be discussed in Section 4.

In practice, we use Monte Carlo sampling to approximate the importance scores. We first sub-sample
N times to get a set of feature groups, denoted by G = {z1, . . . ,zN}, and get the base model’s
prediction for each of these feature groups. Then the importance score can be naively approximated
as 1

k·N
∑︁N

j=1[I(xi ∈ zj) · I(h(zj) = ŷ)]. When the number of sub-sampled groups (denoted as N )
is large, each feature is likely to appear in a similar number of groups. However, with a smaller N ,
variations in the appearance frequency can result in an unfair assessment of their importance. Features
that appear more frequently in sub-sampled feature groups are likely to have greater importance. To
solve this problem, we observe that the important score of feature i for the predicted label ŷ can be
rewritten as:

αŷ
i (x, h, k) =

1

k
Pr(xi ∈ z) · Pr(h(z) = ŷ|xi ∈ z) =

1

d
Pr(h(z) = ŷ|xi ∈ z), (5)

where z represents the randomly sub-sampled feature group. Then the importance score can be
approximated by:

αŷ
i (x, h, k) ≈

1

d ·
∑︁N

j=1 I(xi ∈ zj)

N∑︂
j=1

I(xi ∈ zj) · I(h(zj) = ŷ), (6)

where d is the total number of features. The introduction of the new normalization term,
∑︁N

j=1 I(xi ∈
zj), helps to mitigate the issue of unbalanced frequency. This is shown by experiments in Appendix D.

Computation cost. Our method utilizes the predictions from the base model for each feature group
zj ∈ G, which are already computed for producing the prediction of the ensemble model. Therefore,
given that random subspace method has already been deployed, our method adds negligible additional
computational time (around 0.03 s). Experimental results can be found in Appendix F.
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4 THEORETICAL ANALYSIS

In this section, we begin by establishing the predicted label probability pŷ on perturbed testing
inputs to support subsequent theoretical analysis. Then we demonstrate that our method adheres to
fundamental properties for effective feature attribution. Finally, we provide theoretical guarantees
regarding our method’s performance under attacks to feature attribution. For simplicity, we abuse the
notation and use i to represent the feature xi for theoretical analysis.

4.1 DEFINE pŷ ON FEATURE SUBSETS

Before theoretical analysis, we first define the predicted label probability pŷ when a subset of features
S ⊆ x is present. In this case, random subspace method sub-samples feature groups with size k from
S. Particularly, given any feature subset S, we define the probability that the label ŷ is predicted by
the base model (when features not in S are removed) as:

pŷ(S, h, k) = Ez∼U(S,k)[I(h(z) = ŷ)], (7)

where z ∼ U(S, k) is a subset of S with size k that is randomly sampled from the uniform distribution.
i.e., Pr(z = z′ | z ∼ U(S, k)) = 1

(|S|
k )

for any z′ ⊆ S. We note that there is a special case when

|S| < k, which means that intended random sub-sampling of k features from S cannot proceed as
usual. To address this, we let pŷ(S, h, k) = 1

C , which means that the base model randomly guesses
the label. We note that this assumption is necessary if we want to define Shapley value for random
subspace method, because it is impossible to sub-sample k features from less than k features. In the
following section, we utilize this definition to establish a Shapley value for random subspace method.

4.2 SHAPLEY VALUE BASED EXPLANATION FOR RANDOM SUBSPACE METHOD

Derived from game theory (Shapley et al., 1953), Shapley values are intended for credit assignment
among players in cooperative games. A game is represented by a set of players D and a value function
v(S) : P(D) → R, where P(D) means the power set of D. The Shapley value for player i is defined
as:

ϕi(v) =
∑︂

S⊆D\{i}

|S|!(d− |S| − 1)!

d!
(v(S ∪ {i})− v(S)). (8)

Shapley value has long been regarded as the gold standard for feature attribution (Lundberg & Lee,
2017a; Mosca et al., 2022; Chen et al., 2023b; Sundararajan & Najmi, 2020; Paes et al., 2024;
Amara et al., 2024; Sundararajan et al., 2017). In order to explain the output of a machine learning
model, many existing works (Paes et al., 2024; Amara et al., 2024; Sundararajan et al., 2017) use the
probability of the model’s output as the value function. Similarly, we can define a Shapley value for
random subspace method. Specifically, we let the label probability pŷ be the value function v and
let the input feature set x be the set of players D. Then the Shapley value for feature i, denoted as
ϕi(pŷ), can be written as:∑︂

S⊆x\{i}

|S|!(d− |S| − 1)!

d!
(pŷ(S ∪ {i}, h, k)− pŷ(S, h, k)). (9)

This value is empirically challenging to compute because pŷ should be evaluated on all feature
subsets, while evaluating pŷ on a single feature subset requires N forward passes of the base model.
In the next part, we demonstrate that our computationally efficient importance score maintains the
key properties of Shapley value.

4.3 PROPERTIES OF ENSEMBLESHAP

EnsembleSHAP possesses local accuracy and symmetry as derived from Shapley values (Lundberg &
Lee, 2017b; Chen et al., 2023a), whilst substituting the remaining two properties inherent to Shapley
values, specifically dummy and linearity, with order consistency (with Shapley value). The linearity
property is omitted because its application is not straightforward in the context of subspace methods.
Furthermore, the relaxation of the dummy property is from the observation that in many cases,
people are more interested in the comparative importance of features over their absolute importance
scores (Lopardo et al., 2023; Xue et al., 2024). We introduce these properties below.
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The first property is local accuracy. This property ensures that the explanation accurately reflects the
behavior of the ensemble model for the testing input x. It can be formally stated as follows.

Property 1. (Local accuracy). For any x, h, and k, the importance score of all features sum up to
pŷ(x, h, k), i.e.,

∑︁
i∈x αŷ

i (x, h, k) = pŷ(x, h, k).

The second property is symmetry. The symmetry property states that if two features contribute equally
to all possible feature subsets S ⊆ x, then feature i and j should receive the same importance score.

Property 2. (Symmetry). Given a pair of features (i, j), if for any S ⊆ x\{i, j}, pŷ(S∪{i}, h, k) =
pŷ(S ∪ {j}, h, k), then αŷ

i (x, h, k) = αŷ
j (x, h, k).

The third property is order consistency (with Shapley value). This property ensures that if Shapley
value ranks a feature as more significant, our attribution approach will also give it a higher importance.
The Shapley value for random subspace method is defined in Section 4.2.

Property 3. (Order consistency with Shapley value). Given a pair of features (i, j), αŷ
i (x, h, k) ≥

αŷ
j (x, h, k) if and only if ϕi(pŷ) ≥ ϕj(pŷ), where ϕi(pŷ) and ϕj(pŷ) respectively represent Shapley

values of i and j.

We provide the proof details in Appendix A. Our method essentially relaxes the dummy property of
Shapley value to simplify its complex computation. Despite this alteration, the utility of the Shapley
value is preserved in most scenarios due to the property of order consistency. This observation is
supported by these commonly used metrics for feature attribution, such as the fidelity score (Miró-
Nicolau et al., 2024; Chuang et al., 2024), perturbation curves (Paes et al., 2024; Chen et al., 2020)
and faithfulness (Lopardo et al., 2023). These metrics rely on the relative order of importance scores
rather than their absolute values.

4.4 CERTIFIED DETECTION OF ADVERSARIAL FEATURES

In this part, we demonstrate that our explanation method provably detects adversarial features that
causes model misclassifiation, therefore is provably secure against explanation-preserving attacks.
We suppose the attacker can modify at most T features of the original testing input x to change the
predicted label of the ensemble classifier. We denote the set of all possible perturbed test inputs x′ as
B(x, T ), and we use x ⊖ x′ to denote the set of modified features. Here, we focus on top-e most
important features reported by our method. i.e., e features with highest importance scores for the
predicted label. We denote this set of features before attack as E(x), and use E(x′) to represent
the new set of top-e most important features for x′. Our goal is to derive the certified detection size
D(x, T ), which is the intersection size lower bound between the set of modified features and the set
of reported important features, which is formally defined as:

D(x, T ) = argmax
r

, s.t.|(x′ ⊖ x) ∩ E(x′)| ≥ r, (10)

∀x′ ∈ B(x, T ),H(x′) ̸= H(x). (11)

We have the following result:

Theorem 1. Given a testing input x which is originally predicted as ŷ. We suppose there exists
x′ ∈ B(x, T ) such that H(x′) ̸= ŷ. Then D(x, T ) is the solution of the following optimization
problem:

D(x, T ) = argmax
r

r, s.t. ∀ŷ′ ̸= ŷ : (12)

1

T − r + 1
· [ ∆
2k

− r − 1

d
+

d∑︂
i=d−T+r

αŷ′

qi
(x, h, k)] ≥ αŷ′

we−r+1
(x, h, k) +

1

d
− 1

k

(︁
d−1−T
k−1

)︁(︁
d
k

)︁ (13)

or (14)
∆

2k
(

1

T − r + 1
− k − 1

e− r + 1
) (15)

≥ 1

e− r + 1

e−r+1∑︂
i=1

αŷ′

wi
(x, h, k) +

r − 1

d · (T − r + 1)
− 1

T − r + 1

d∑︂
i=d−T+r

αŷ′

qi
(x, h, k) (16)
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where ∆ = p
ŷ
(x, h, k)− pŷ′(x, h, k), p

c
(or pc) represents the probability lower (or upper) bound of

some label c ∈ [C], αŷ′

i (x, h, k) (or αŷ′

i (x, h, k)) represents the lower (or upper) bound of the feature
i’s importance score for some label ŷ′ ̸= ŷ, {w1, · · · , wd} denotes the set of all features in descending
order of the important value upper bound αŷ′

(x, h, k), i.e., αŷ′

w1
(x, h, k) ≥ αŷ′

w2
(x, h, k) ≥ · · · ≥

αŷ′

wd
(x, h, k), and {q1, · · · , qd} denotes the set of all features in descending order of the important

value lower bound αŷ′
(x, h, k), i.e., αŷ′

q1
(x, h, k) ≥ αŷ′

q2
(x, h, k) ≥ · · · ≥ αŷ′

qd
(x, h, k).

In practice, the maximum r is found by binary search. The specifics for computing p
ŷ
, pŷ′ ,

αŷ′

i (x, h, k), and αŷ′

i (x, h, k) can be found in Appendix C, and the proof is available in Appendix B.
The proof intuition is that to change the label from ŷ to ŷ′, the attacker must ensure that more feature
groups predict for ŷ′. However, the attacker can only alter the predicted labels of feature groups that
include at least one feature in x⊖ x′. Consequently, the importance values of features within x⊖ x′

are likely to increase, making them more detectable. We provide more discussion in Appendix E.

5 EVALUATION ON SECURITY APPLICATIONS

We evaluate the effectiveness of our method for certified defense and defense against jailbreaking
attacks. For certified defense, we employ a backdoor attack (BadNets (Gu et al., 2017)) and an
adversarial attack (TextFooler (Jin et al., 2020)) to challenge the random subspace method (more
details are provided in Appendix J.3). We show that our method successfully identifies the exact
words responsible for the failure of certified defense. For defense against jailbreaking attacks, we
evaluate three types of such attacks: GCG (Zou et al., 2023), AutoDAN (Liu et al., 2023), and
DAN (Liu et al., 2023). We show that our method is capable of identifying the harmful query
embedded within the jailbreaking prompt.

5.1 EXPERIMENTAL SETUP

Random Subspace Method Implementation. For certified defense, we follow RanMASK (Zeng
et al., 2023) for constructing the ensemble classifier. For defense against jailbreaking attacks, we
adopt the RA-LLM (Cao et al., 2023) framework. More details are provided in Appendix J.4.

Datasets. We use classification datasets such as SST-2 (Socher et al., 2013), IMDB (Maas et al.,
2011), and AGNews (Zhang et al., 2015) for the study on certified defense mechanisms, and use
harmful behaviors dataset (Zou et al., 2023) for defense against jailbreaking attacks. More details can
be found in Appendix J.1.

Models. For certified defense, we use a pretrained BERT model (Devlin et al., 2018) as our base
model and fine-tune it using AdamW optimizer for 10 epochs on masked training samples to improve
the certification performance. The learning rate is set to 1× 10−5. For defense against jailbreaking
attacks, we directly use Vicuna-7B (Chiang et al., 2023) as our base model.

Hyper-parameters. Unless specifically mentioned, we use following hyperparameters by default.
For certified defense, the dropping rate (expressed as ρ = 1− k

d ) is set to 0.8, and N is set to 1, 000.
For defense against jailbreaking attacks, we set the dropping rate to 0.4, N to 500, and the threshold
τ to 0.1. The impact of these hyperparameters will be explored in an ablation study.

Evaluation Metrics. We use the following metrics. The faithfulness metric is reported across all our
experiments. Furthermore, in instances where there is ground-truth information regarding the key
words that significantly influence the prediction of the ensemble model (e.g., during empirical attacks
such as backdoor attacks), we implement extra metrics for predicting these key words. We denote
the test dataset by Dtest, the base model by h and the the prediction of the ensemble for some test
sample x by H(x).

•Faithfulness (Lopardo et al., 2023). We define the faithfulness of the feature attribution as the
percentage of label filps when the e features with highest importance scores are deleted. We use E(x)
to denote the e-most important features reported by the feature attribution method. Then faithfulness
is represented by: 1

|Dtest|
∑︁

x∈Dtest
I[H(x) ̸= H(x \ E(x))].

• Key word prediction. We define a set of ground-truth important words denoted by L(x). We let
the feature attribution method identify the top e most crucial words and measure the intersection of
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Table 1: Compare the faithfulness of our
method with baselines for certified defense. We
delete different ratios of most important words
and compute the rate of label changes.

Defense
scenarios

Dataset SST-2 IMDb AG-news

Ratio 10% 20% 10% 20% 10% 20%

No attack

Shapley 0.320 0.530 0.300 0.330 0.150 0.280
LIME 0.125 0.145 0.060 0.095 0.020 0.035
ICL 0.095 0.135 0.045 0.050 0.030 0.040
Ours 0.365 0.605 0.600 0.745 0.175 0.410

Backdoor
attack

Shapley 0.380 0.630 0.520 0.540 0.725 0.790
LIME 0.080 0.095 0.120 0.180 0.205 0.300
ICL 0.055 0.085 0.120 0.170 0.140 0.235
Ours 0.400 0.655 0.810 0.910 0.735 0.795

Adv.
attack

Shapley 0.600 0.840 0.845 0.840 0.850 0.960
LIME 0.100 0.160 0.280 0.335 0.200 0.265
ICL 0.130 0.170 0.305 0.365 0.115 0.130
Ours 0.680 0.880 0.980 1.000 0.905 0.970

Table 2: Compare the key-word prediction per-
formance of our method with baselines for cer-
tified defense. Each method reports the top-5
important words (e = 5).

Defense
scenarios

Dataset SST-2 IMDb AG-news

Metric Prec. Rec. Prec. Rec. Prec. Rec.

Backdoor
attack

Shapley 0.543 0.904 0.295 0.491 0.523 0.872
LIME 0.148 0.247 0.037 0.022 0.073 0.122
ICL 0.087 0.145 0.030 0.049 0.068 0.113
Ours 0.585 0.975 0.535 0.892 0.557 0.929

Adv.
attack

Shapley 0.361 0.680 0.282 0.142 0.528 0.343
LIME 0.146 0.319 0.067 0.025 0.242 0.128
ICL 0.098 0.210 0.076 0.040 0.080 0.046
Ours 0.378 0.717 0.384 0.184 0.530 0.356

Table 3: Compare the faithfulness of our
method with baselines for defense against jail-
breaking attacks.

Attack GCG AutoDAN DAN

Del. Ratio 10% 20% 10% 20% 10% 20%

Shapley 0.11 0.19 0.15 0.18 0.33 0.33
LIME 0.15 0.23 0.34 0.32 0.54 0.38
ICL 0 0 0.08 0.11 0.24 0.27
Ours 0.15 0.24 0.38 0.46 0.85 0.74

Table 4: Compare the keyword prediction per-
formance of our method with baselines for de-
fense against jailbreaking attacks (e = 10).

Attack GCG AutoDAN DAN

Metric Prec. Rec. Prec. Rec. Prec. Rec.

Shapley 0.651 0.571 0.306 0.260 0.137 0.119
LIME 0.654 0.575 0.335 0.281 0.332 0.289
ICL 0.544 0.466 0.252 0.212 0.078 0.064
Ours 0.664 0.584 0.434 0.379 0.378 0.287

these words with the set of ground-truth important words. Specifically, we have top-e precision=
|E(x)∩L(x)|

e , and top-e recall= |E(x)∩L(x)|
|L(x)| . As our final result, we report the average values of top-e

precision and top-e recall computed on D∗
test for different e values. D∗

test is a specific subset of Dtest

detailed in Appendix J.5.

• Certified detection rate. We develop metrics for provable defense against explanation-preserving
attacks discussed in Section 4.4. We define certified detection rate as D(x, T )/T to measure the
percentage of detected adversarial features. We report the mean values of certified detection rate
computed on Dtest.

Compared Methods. We compare our method with the following baseline methods. Shapley
value (Chen et al., 2023b) and LIME (Ribeiro et al., 2016) are state-of-the-art techniques in feature
attribution but present computational challenges when applied directly to ensemble models. Con-
sequently, we implement these methods on the base model. Furthermore, we have adapted the ICL
method (Kroeger et al., 2023) for feature attribution purposes. This approach leverages the in-context
learning capabilities of large language models (LLMs). We provide implementation details of these
methods in Appendix J.2.

5.2 EXPERIMENTAL RESULTS

5.2.1 EXPLAIN CERTIFIED DEFENSE

We evaluate our method’s explanation effectiveness both in the absence of attacks and in scenarios
where the certified defense is compromised by strong empirical attacks.

No Attack. In Table 1, we present a comparison of our method’s faithfulness against other baseline
methods for clean test samples. We can see that our method surpasses all baselines in performance.
A visualization for IMDb dataset is provided by Figure 7 in the Appendix.

Backdoor Attack and Adversarial Attack. Table 10 in Appendix shows that a significant proportion
of testing samples can be compromised when the attacker could maliciously insert (or alter) a relatively
large number of words. Table 1 details our method’s capability in explaining model behavior to
sentences altered by the backdoor (or adversarial) attack. Specifically, for the adversarial attack
on the IMDb dataset, removing the 10% of words considered most critical by our method results
in a label change for 98%. Additionally, Table 2 and Table 11 (in Appendix) provides evidence
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Figure 1: Certified detection rate on text classification datasets. T is the number of modified
features, and e is the number of reported most important features.

that, in scenarios where these altered sentences misguide the ensemble model towards incorrect
predictions, our method exhibits superior capability in detecting the backdoor triggers (or adversarial
words) responsible for the ensemble model’s erroneous behavior. For example, on IMDB dataset,
our technique achieves a recall of 0.892, significantly higher than the 0.491 recall obtained using
Shapley value for backdoor attacks when e = 5. For a qualitative comparison, please see Figure 6
and Figure 7 in the Appendix.

5.2.2 EXPLAIN DEFENSE AGAINST JAILBREAKING ATTACKS

In this part, we demonstrate that our method enhances understanding of the decision-making processes
of the RA-LLM (Cao et al., 2023) when faced with jailbreaking prompts. Table 3 shows that our
method outperforms baselines in identifying the most important words that influence the RA-LLM’s
decisions for jailbreaking prompts. Table 4 and Table 12 (in Appendix) demonstrates that when a
jailbreaking prompt is detected as ‘harmful’ by RA-LLM, our method is capable of identifying the
harmful query embedded within the jailbreaking prompt that leads to this decision. This finding is
also supported by the qualitative results shown in Figure 9 in Appendix.

5.2.3 IMPACT OF HYPERPARAMETERS

We examine how the dropping rate ρ and the number of sub-sampled inputs N influence our method’s
faithfulness and key word prediction performance. Figures 10 and 11 in Appendix demonstrates
that both metrics generally improves with an increase in N , as it leads to a more precise estimation
of importance values. Furthermore, Figures 12 and 13 in Appendix reveals that while key word
prediction performance remains stable, there is a decline in faithfulness at a very large ρ value (e.g.,
ρ = 0.9). This is because the ensemble model becomes insensitive to the deletion of important
features at higher dropping rates. We have consistent findings for defense against jailbreaking attacks,
as illustrated in Figure 14 in Appendix.

5.3 CERTIFIED DETECTION OF ADVERSARIAL FEATURES

We evaluate the certified detection rate of our feature attribution on text classification datasets. By
default, we set the certification confidence 1 − β to 0.99, the dropping rate ρ to 0.8, and the sub-
sampling number N to 10,000. Figure 1 shows the results in default setting. We find that the certified
detection rate improves as the explanation reports more features as important features, and the rate
decreases when the attacker is able to modify a greater number of features. Figure 15, Figure 16, and
Figure 17 in Appendix shows the impact of β, N and ρ, respectively. We find that while the certified
detection rate is insensitive to the β value, it can be significantly enhanced by increasing N , or ρ.
Computation cost. Both feature attribution and certified detection with our method involve minimal
additional computational cost (less than 0.5 seconds), as demonstrated in Appendix F.

5.4 APPLICATION IN IMAGE DOMAIN

Our method is also applicable to the image domain for defending against adversarial patch at-
tacks Levine & Feizi (2020a); Brown et al. (2017). The details can be found in Appendix H.

6 CONCLUSION AND FUTURE WORK

In this work, we propose an efficient and provably robust feature attribution method for random
subspace method. Potential future directions include: 1) investigating the explanation of random
subspace method for privacy applications, such as machine unlearning Bourtoule et al. (2021) and
differential privacy Liu et al. (2020); and 2) developing provably secure feature attribution methods
for general machine learning models.
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7 ETHICS STATEMENT

Our proposed method, EnsembleSHAP, provides a secure and efficient feature attribution for the
random subspace method, and helps build ethical and explainable ML models. Our method can
be applied to security-sensitive applications such as defending against adversarial and backdoor
attacks and building robust language models (LLMs) resistant to jailbreaking attacks. By providing
explanations for model decisions, we aim to enhance users’ trust to AI systems. Nonetheless, this
also means that practitioners must take responsibility for how these explanations are communicated
to end users, ensuring that they are not misleading or overly simplified.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have carefully designed our experiments using publicly
available models and datasets. This allows other researchers to easily access the same resources
and replicate our findings. In the evaluation section of the paper, we provide all hyperparameter
settings for both certified defense scenarios and jailbreaking attack scenarios. Furthermore, we have
included detailed hyperparameter settings for all attack methods in Appendix J, ensuring that the
reproduction of adversarial attack experiments is fully transparent. Implementation details for each
baseline explanation method are also provided in the same appendix, enabling researchers to precisely
replicate the conditions under which the attacks were tested.

For the theoretical aspects of our work, we have included all proofs supporting our claims and
properties in Appendix A (for the feature attribution properties) and Appendix B (for certified
detection of adversarial features), providing a rigorous mathematical foundation for our contributions.
This ensures that others can verify the correctness of the theory for our method. Finally, we commit
to releasing our code upon paper acceptance.

REFERENCES

Kenza Amara, Rita Sevastjanova, and Mennatallah El-Assady. Syntaxshap: Syntax-aware explain-
ability method for text generation. arXiv preprint arXiv:2402.09259, 2024.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In IEEE S&P, 2021.

Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer. Adversarial patch.
arXiv preprint arXiv:1712.09665, 2017.

Robert Bryll, Ricardo Gutierrez-Osuna, and Francis Quek. Attribute bagging: improving accuracy of
classifier ensembles by using random feature subsets. Pattern recognition, 36(6):1291–1302, 2003.

Bochuan Cao, Yuanpu Cao, Lu Lin, and Jinghui Chen. Defending against alignment-breaking attacks
via robustly aligned llm. arXiv preprint arXiv:2309.14348, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

H Chen, G Zheng, and Y Ji. Generating hierarchical explanations on text classification via feature
interaction detection, arxiv, no. cd. Cd, 10:v1, 2020.

Hugh Chen, Ian C Covert, Scott M Lundberg, and Su-In Lee. Algorithms to estimate shapley value
feature attributions. Nature Machine Intelligence, 5(6):590–601, 2023a.

Hugh Chen, Ian C Covert, Scott M Lundberg, and Su-In Lee. Algorithms to estimate shapley value
feature attributions. Nature Machine Intelligence, 2023b.

Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. L-shapley and c-shapley: Efficient
model interpretation for structured data. arXiv preprint arXiv:1808.02610, 2018.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Yu-Neng Chuang, Guanchu Wang, Chia-Yuan Chang, Ruixiang Tang, Fan Yang, Mengnan Du,
Xuanting Cai, and Xia Hu. Large language models as faithful explainers. arXiv preprint
arXiv:2402.04678, 2024.

Charles J Clopper and Egon S Pearson. The use of confidence or fiducial limits illustrated in the case
of the binomial. Biometrika, 26(4):404–413, 1934.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

James Enouen, Hootan Nakhost, Sayna Ebrahimi, Sercan O Arik, Yan Liu, and Tomas Pfister.
Textgenshap: Scalable post-hoc explanations in text generation with long documents. arXiv
preprint arXiv:2312.01279, 2023.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Tin Kam Ho. The random subspace method for constructing decision forests. IEEE transactions on
pattern analysis and machine intelligence, 20(8):832–844, 1998.

Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrinsic certified robustness of bagging against
data poisoning attacks. In AAAI, 2021.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is bert really robust? a strong baseline for
natural language attack on text classification and entailment. In AAAI, 2020.

Haibo Jin, Andy Zhou, Joe Menke, and Haohan Wang. Jailbreaking large language models against
moderation guardrails via cipher characters. Advances in Neural Information Processing Systems,
37:59408–59435, 2024.

Nicholas Kroeger, Dan Ley, Satyapriya Krishna, Chirag Agarwal, and Himabindu Lakkaraju. Are
large language models post hoc explainers? arXiv preprint arXiv:2310.05797, 2023.

Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation framework
for machine learning. arXiv preprint arXiv:2110.14049, 2021.

Alexander Levine and Soheil Feizi. (de) randomized smoothing for certifiable defense against patch
attacks. Advances in neural information processing systems, 33:6465–6475, 2020a.

Alexander Levine and Soheil Feizi. Robustness certificates for sparse adversarial attacks by random-
ized ablation. In AAAI, 2020b.

Hongbin Liu, Jinyuan Jia, and Neil Zhenqiang Gong. On the intrinsic differential privacy of bagging.
arXiv preprint arXiv:2008.09845, 2020.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. arXiv preprint arXiv:2310.04451, 2023.

Gianluigi Lopardo, Frederic Precioso, and Damien Garreau. Faithful and robust local interpretability
for textual predictions. arXiv preprint arXiv:2311.01605, 2023.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. NIPS, 2017a.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. NIPS, 2017b.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In ACL HLT, 2011.

Miquel Miró-Nicolau, Antoni Jaume-i Capó, and Gabriel Moyà-Alcover. A comprehensive study on
fidelity metrics for xai. arXiv preprint arXiv:2401.10640, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Edoardo Mosca, Ferenc Szigeti, Stella Tragianni, Daniel Gallagher, and Georg Groh. Shap-based
explanation methods: a review for nlp interpretability. In COLING, 2022.

Azqa Nadeem, Daniël Vos, Clinton Cao, Luca Pajola, Simon Dieck, Robert Baumgartner, and Sicco
Verwer. Sok: Explainable machine learning for computer security applications. In EuroS&P, 2023.

Maximilian Noppel and Christian Wressnegger. Sok: Explainable machine learning in adversarial
environments. In IEEE S&P, 2023.

Lucas Monteiro Paes, Dennis Wei, Hyo Jin Do, Hendrik Strobelt, Ronny Luss, Amit Dhurandhar,
Manish Nagireddy, Karthikeyan Natesan Ramamurthy, Prasanna Sattigeri, Werner Geyer, et al.
Multi-level explanations for generative language models. arXiv preprint arXiv:2403.14459, 2024.

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
black-box models. arXiv preprint arXiv:1806.07421, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In SIGKDD, 2016.

Alexander Robey, Eric Wong, Hamed Hassani, and George J Pappas. Smoothllm: Defending large
language models against jailbreaking attacks. arXiv preprint arXiv:2310.03684, 2023.

Lloyd S Shapley et al. A value for n-person games. 1953.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In ICML, 2017.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, 2013.

Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In ICML,
2020.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In ICML,
2017.

Binghui Wang, Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Certified robustness of graph
neural networks against adversarial structural perturbation. In SIGKDD, 2021.

Tianyu Wu, Lingrui Mei, Ruibin Yuan, Lujun Li, Wei Xue, and Yike Guo. You know what i’m saying:
Jailbreak attack via implicit reference. arXiv preprint arXiv:2410.03857, 2024.

Anton Xue, Rajeev Alur, and Eric Wong. Stability guarantees for feature attributions with multiplica-
tive smoothing. NIPS, 2024.

Jiehang Zeng, Jianhan Xu, Xiaoqing Zheng, and Xuanjing Huang. Certified robustness to text
adversarial attacks by randomized [mask]. Computational Linguistics, 2023.

Jinghuai Zhang, Jinyuan Jia, Hongbin Liu, and Neil Zhenqiang Gong. Pointcert: Point cloud
classification with deterministic certified robustness guarantees. In CVPR, 2023.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. NIPS, 2015.

Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and Ting Wang. Interpretable
deep learning under fire. In USENIX Security, 2020.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A PROOFS FOR PROPERTIES

To simply notation, for all following proofs, we use z to denote subsets of x with size k. Next, we
provide our proof for each property.

Property 1 (Local Accuracy). For any x, h, and k, the importance score of all features sum up to
pŷ(x, h, k), i.e.,

∑︁
i∈x αŷ

i (x, h, k) = pŷ(x, h, k).

Proof. ∑︂
i∈x

αŷ
i (x, h, k) =

∑︂
i∈x

1

k
Ez∼U(x,k)[I(i ∈ z) · I(h(z) = ŷ)] (17)

=
1

k
Ez∼U(x,k)[I(h(z) = ŷ) ·

∑︂
i∈x

I(i ∈ z)] (18)

=Ez∼U(x,k)I(h(z) = ŷ) (19)

=pŷ(x, h, k) (20)

Property 2 (Symmetry). Given a pair of features (i, j), if for any S ⊆ x\{i, j}, pŷ(S∪{i}, h, k) =
pŷ(S ∪ {j}, h, k), then αŷ

i (x, h, k) = αŷ
j (x, h, k).

Proof. We let S = x− {i, j}. Then we have:

pŷ(x− {j}, h, k) = pŷ(x− {i}, h, k) (21)
1(︁

d−1
k

)︁ ∑︂
z⊆x,j /∈z

I(h(z) = ŷ) =
1(︁

d−1
k

)︁ ∑︂
z⊆x,i/∈z

I(h(z) = ŷ) (22)

(23)∑︂
z⊆x,j /∈z

I(h(z) = ŷ)−
∑︂

z⊆x,j /∈z,i/∈z

I(h(z) = ŷ) =
∑︂

z⊆x,i/∈z

I(h(z) = ŷ)−
∑︂

z⊆x,j /∈z,i/∈z

I(h(z) = ŷ)

(24)∑︂
z⊆x,j /∈z,i∈z

I(h(z) = ŷ) =
∑︂

z⊆x,j∈z,i/∈z

I(h(z) = ŷ) (25)

∑︂
z⊆x,j /∈z,i∈z

I(h(z) = ŷ) +
∑︂

z⊆x,j∈z,i∈z

I(h(z) = ŷ) =
∑︂

z⊆x,j∈z,i/∈z

I(h(z) = ŷ) +
∑︂

z⊆x,j∈z,i∈z

I(h(z) = ŷ)

(26)∑︂
z⊆x,i∈z

I(h(z) = ŷ) =
∑︂

z⊆x,j∈z

I(h(z) = ŷ) (27)

αŷ
i (x, h, k) = αŷ

j (x, h, k) (28)

Property 3 (Order consistency with Shapley value). Given a pair of features (i, j), αŷ
i (x, h, k) ≥

αŷ
j (x, h, k) if and only if ϕi(pŷ) ≥ ϕj(pŷ), where ϕi(pŷ) and ϕj(pŷ) respectively represent Shapley

values of i and j.

Proof. By the definition of Shapley value for pŷ , for any feature l,

ϕl(pŷ) =
∑︂

S⊆x\{l}

|S|!(d− |S| − 1)!

d!
(pŷ(S ∪ {l}, h, k)− pŷ(S, h, k)) (29)

=

d−1∑︂
m=0

m!(d−m− 1)!

d!

∑︂
S⊆x\{l},|S|=m

(pŷ(S ∪ {l}, h, k)− pŷ(S, h, k)) (30)
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We define the unregularized marginal contribution of feature l ∈ x with respect to subset size m as:

∆l(pŷ,m) =
∑︂

S⊆x\{l},|S|=m

(pŷ(S ∪ {l}, h, k)− pŷ(S, h, k)). (31)

Shapley value is the weighted sum of ∆l(pŷ,m) for all 0 ≤ m ≤ d−1, and the weights are all positive.
Therefore, if our importance score is order consistent with ∆l(pŷ,m) for every 0 ≤ m ≤ d − 1,
then our importance score is order consistent with the Shapley value. We first use the definition
in Section 4.1 to handle special cases of m. When m < k − 1, we have

∑︁
S⊆x\{l},|S|=m(pŷ(S ∪

{l}, h, k)− pŷ(S, h, k)) = 0 for all l. When m = k − 1, we have:
∆l(pŷ, k − 1) (32)

=
∑︂

S⊆x\{l},|S|=k−1

(pŷ(S ∪ {l}, h, k)− pŷ(S, h, k)) (33)

=
∑︂

S⊆x\{l},|S|=k−1

(pŷ(S ∪ {l}, h, k)− 1

C
) (34)

=
∑︂

z⊆x,l∈z

(pŷ(z, h, k)−
1

C
) (35)

=
∑︂

z⊆x,l∈z

(I(h(z) = ŷ)− 1

C
) (36)

=
∑︂

z⊆x,l∈z

I(h(z) = ŷ)−
∑︂

z⊆x,l∈z

1

C
(37)

=k ·
(︃
n

k

)︃
· αŷ

l (x, h, k)−
∑︂

z⊆x,l∈z

1

C
. (38)

Hence αŷ
i (x, h, k) ≥ αŷ

j (x, h, k) if and only if ∆i(pŷ, k − 1) ≥ ∆j(pŷ, k − 1). Lastly, we consider
the case when k ≤ m ≤ d− 1. In this case,
∆l(pŷ,m) (39)

=
∑︂

S⊆x\{l},|S|=m

(pŷ(S ∪ {l}, h, k)− pŷ(S, h, k)) (40)

=
∑︂

S⊆x\{l},|S|=m

(
1(︁

m+1
k

)︁ ∑︂
z⊆S∪{l}

I(h(z) = ŷ)− 1(︁
m
k

)︁ ∑︂
z⊆S

I(h(z) = ŷ)) (41)

=
∑︂

S⊆x\{l},|S|=m

(
1(︁

m+1
k

)︁ ∑︂
z⊆S∪{l},l∈z

I(h(z) = ŷ) +
1(︁

m+1
k

)︁ ∑︂
z⊆S

I(h(z) = ŷ)− 1(︁
m
k

)︁ ∑︂
z⊆S

I(h(z) = ŷ))

(42)

=[
1(︁

m+1
k

)︁ ∑︂
S⊆x\{l},|S|=m

∑︂
z⊆S∪{l},l∈z

I(h(z) = ŷ)]− [(
1(︁
m
k

)︁ − 1(︁
m+1
k

)︁ ) ∑︂
S⊆x\{l},|S|=m

∑︂
z∈S

I(h(z) = ŷ))]

(43)

=[
1(︁

m+1
k

)︁ ·
(︃

d− k

m− k + 1

)︃ ∑︂
z⊆x,l∈z

I(h(z) = ŷ)]− [(
1(︁
m
k

)︁ − 1(︁
m+1
k

)︁ ) · (︃d− 1− k

m− k

)︃ ∑︂
z⊆x,l/∈z

I(h(z) = ŷ))]

(44)
We get Equation 44 from Equation 43 using combinatorial theory. For example, to find out how
many times a specific k-sized subset that does not include l appears across all possible selections, we
recognize that for each k-sized subset to be part of an m-sized subset, we must choose the remaining
m− k elements from the d− 1− k elements that are not part of our k-sized subset.

Suppose αŷ
i (x, h, k) ≥ αŷ

j (x, h, k), then
∑︁

z⊆x,i∈z I(h(z) = ŷ) ≥
∑︁

z⊆x,j∈z I(h(z) = ŷ) and∑︁
z⊆x,i/∈z I(h(z) = ŷ)) ≤

∑︁
z⊆x,j /∈z I(h(z) = ŷ)), which means ∆i(pŷ,m) ≥ ∆j(pŷ,m).

And vise versa. Therefore, our importance score is order consistent with ∆l(pŷ,m) for every
0 ≤ m ≤ d − 1, which implies that our importance score is order consistent with the Shapley
value.
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B PROOF FOR CERTIFIED DETECTION OF ADVERSARIAL FEATURES

Proof. Our goal is to derive the certified detection size D(x, T ), which is the intersection size lower
bound between the set of modified features x′ ⊖ x and the set of reported important features E(x′).
It is formally defined as:

D(x, T ) = argmax
r

, s.t.|(x′ ⊖ x) ∩ E(x′)| ≥ r,∀x′ ∈ B(x, T ),H(x′) ̸= H(x) (45)

Without loss of generality, we assume H(x′) = ŷ′ ̸= ŷ. We derive the certified detection size
utilizing the law of contraposition. Suppose the number of features in x′ ⊖ x that are also in E(x′)
is smaller than r, then we know that at least T − r + 1 features (denoted by U ) in x′ ⊖ x are not
reported in the explanation for x′. Similarly, we know at least e − r + 1 features (denoted by V )
in {1, 2, · · · , d} \ (x′ ⊖ x) are in E(x′). In other words, we know there exist U ⊆ x′ ⊖ x and
V ⊆ {1, 2, · · · , d}\(x′⊖x) such that maxu∈U αŷ′

u (x′, h, k) ≤ minv∈V αŷ′

v (x′, h, k) . Based on the
law of contraposition, we know that if we could show maxu∈U αŷ′

u (x′, h, k) > minv∈V αŷ′

v (x′, h, k)

for arbitrary U and V , i.e., minU maxu∈U αŷ′

u (x′, h, k) > maxV minv∈V αŷ′

v (x′, h, k), then we
know the certified intersection size is no smaller than r.

We note that U and V depends on the attacker’s choice of x′. To simplify the nota-
tion, we denote the U that achieves the minimum by U∗ and the V that achieves the
maximum by V ∗. Then, by considering the worst case x′, the problem becomes deter-
mining whether minx′∈B(x,T ),H(x′)=ŷ′(maxu∈U∗ αŷ′

u (x′, h, k) − minv∈V ∗ αŷ′

v (x′, h, k)) > 0.
To simplify, we tackle a more straightforward version of this problem by determining if
minx′∈B(x,T ),H(x′)=ŷ′ maxu∈U∗ αŷ′

u (x′, h, k) > maxx′∈B(x,T ),H(x′)=ŷ′ minv∈V ∗ αŷ′

v (x′, h, k).

According to the definition of the ensemble model in Equation 2, in order to change the label from ŷ to
ŷ′, the attacker at least needs to change the predictions of 1

2

(︁
d
k

)︁
· (pŷ(x, h, k)− pŷ′(x, h, k)) feature

groups which are not predicted as ŷ to ŷ, where
(︁
d
k

)︁
is the number of unique feature groups, i.e.,

|{z ⊆ x : |z| = k}|. Since each of these changed feature groups contains at least one feature in x⊖x′,
for any x′ satisfying H(x′) = ŷ′, we have

∑︁
i∈x⊖x′ [α

ŷ′

i (x′, h, k)− αŷ′

i (x, h, k)] ≥ 1
k · pŷ−pŷ′

2 . It

follows that
∑︁

u∈U∗ [αŷ′

u (x′, h, k)−αŷ′

u (x, h, k)] ≥ 1
k ·

pŷ−pŷ′

2 −(r−1) · 1k
(d−1
k−1)
(dk)

= 1
k ·

pŷ−pŷ′

2 − r−1
d .

This is because for each modified feature not in U∗, the change of its importance value is bounded by
1
k · (

d−1
k−1)
(dk)

. So we have:

min
x′∈B(x,T ),H(x′)=ŷ′

max
u∈U∗

αŷ′

u (x′, h, k) (46)

≥ 1

T − r + 1
min

x′∈B(x,T ),H(x′)=ŷ′

∑︂
u∈U∗

αŷ′

u (x′, h, k) (47)

≥ 1

T − r + 1
[min
x⊖x′

∑︂
u∈U∗

αŷ′

u (x, h, k) + (
1

k
· pŷ(x, h, k)− pŷ′(x, h, k)

2
− r − 1

d
)] (48)

We use {w1, · · · , wd} to denote the set of all features in descending order of the important value
αŷ′

(x, h, k). We notice that to minimize
∑︁

u∈U∗ αŷ′

u (x, h, k), x′ ⊖ x includes features with lowest
αŷ′

(x, h, k)’s. Then we can denote the worst case x′ ⊖ x as {wd−T+1, · · · , wd}. It follows that
U∗ = {wd−T+r, · · · , wd} from the definition of U , which means:

min
x′∈B(x,T ),H(x′)=ŷ′

max
u∈U∗

αŷ′

u (x′, h, k) (49)

≥ 1

T − r + 1
[
1

2k
· (pŷ(x, h, k)− pŷ′(x, h, k))− r − 1

d
+

d∑︂
i=d−T+r

αŷ′

wi
(x, h, k)] (50)

If we consider each v in V ∗ individually, we can find an upper bound for
maxx′∈B(x,T ),H(x′)=ŷ′ minv∈V ∗ αŷ′

v (x′, h, k). By the definition of V , each feature v in
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V ∗ is not modified by the attacker. Hence at least
(︁
d−1−T
k−1

)︁
of the

(︁
d−1
k−1

)︁
unique fea-

ture groups with size k that contains v are unaffected by the attack. Therefore we have

αŷ′

v (x′, h, k)− αŷ′

v (x, h, k) ≤ 1
k

(d−1
k−1)−(

d−1−T
k−1 )

(dk)
. So we get:

max
x′∈B(x,T ),H(x′)=ŷ′

min
v∈V ∗

αŷ′

v (x′, h, k) (51)

≤max
x⊖x′

min
v∈V ∗

αŷ′

v (x, h, k) +
1

k

(︁
d−1
k−1

)︁
−

(︁
d−1−T
k−1

)︁(︁
d
k

)︁ (52)

We notice that to achieve the maximum, {1, 2, · · · , d} \ (x′ ⊖ x) includes features with highest
αŷ′

(x, h, k)’s. So we can denote the worst case {1, 2, · · · , d} \ (x′ ⊖ x) as {w1, · · · , wd−T }. Then
we have V ∗ = {w1, w2, · · · , we−r+1} in the worst case. So we have:

max
x′∈B(x,T ),H(x′)=ŷ′

min
v∈V ∗

αŷ′

v (x′, h, k) ≤ αŷ′

we−r+1
(x, h, k) +

1

k

(︁
d−1
k−1

)︁
−
(︁
d−1−T
k−1

)︁(︁
d
k

)︁ (53)

If we assume H(x′) = ŷ′, by combining Equation 50 and Equation 53, we get:

D(x, T ) ≥ r, if: (54)

αŷ′

we−r+1
(x, h, k) +

1

d
− 1

k

(︁
d−1−T
k−1

)︁(︁
d
k

)︁ (55)

≤ 1

T − r + 1
[
1

2k
· (pŷ(x, h, k)− pŷ′(x, h, k))− r − 1

d
+

d∑︂
i=d−T+r

αŷ′

wi
(x, h, k)], (56)

We can also consider all v ∈ V ∗ jointly. We use δi to denote αŷ′

i (x′, h, k)− αŷ′

i (x, h, k) for feature
i. We know that each feature group of size k that contains that least one modified feature at most
contains k − 1 unmodified features. This leads to the following inequality:∑︂

i∈x⊖x′

δi ≥
1

k − 1

∑︂
i/∈x⊖x′

δi (57)

We first rewrite the maximum importance score of features in U∗ as:

min
x′∈B(x,T ),H(x′)=ŷ′

max
u∈U∗

αŷ′

u (x′, h, k) (58)

≥ 1

T − r + 1
min

x′∈B(x,T ),H(x′)=ŷ′

∑︂
u∈U∗

αŷ′

u (x′, h, k) (59)

≥ 1

T − r + 1
min

x′∈B(x,T ),H(x′)=ŷ′

∑︂
u∈U∗

αŷ′

u (x, h, k) +
∑︂
u∈U∗

δu (60)

≥ 1

T − r + 1
[ min
x′∈B(x,T ),H(x′)=ŷ′

∑︂
u∈U∗

αŷ′

u (x, h, k)− r − 1

d
+

∑︂
i∈x⊖x′

δi] (61)

≥ 1

T − r + 1
( min
x′∈B(x,T ),H(x′)=ŷ′

∑︂
u∈U∗

αŷ′

u (x, h, k)− r − 1

d
) (62)

+
1

T − r + 1
max(

∑︂
i∈x⊖x′

δi,
1

2k
· (pŷ(x, h, k)− pŷ′(x, h, k))) (63)

≥ 1

T − r + 1
(

d∑︂
i=d−T+r

αŷ′

wi
(x, h, k)− r − 1

d
) (64)

+
1

T − r + 1
max(

∑︂
i∈x⊖x′

δi,
1

2k
· (pŷ(x, h, k)− pŷ′(x, h, k))) (65)
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We then write the minimum importance score of features in V ∗ as:

max
x′∈B(x,T ),H(x′)=ŷ′

min
v∈V ∗

αŷ′

v (x′, h, k) (66)

≤ max
x′∈B(x,T ),H(x′)=ŷ′

1

e− r + 1

∑︂
v∈V ∗

αŷ′

v (x′, h, k) (67)

≤ max
x′∈B(x,T ),H(x′)=ŷ′

1

e− r + 1
((k − 1)

∑︂
i∈x⊖x′

δi +
∑︂
v∈V ∗

αŷ′

v (x, h, k)) (68)

≤[
1

e− r + 1
max

x′∈B(x,T ),H(x′)=ŷ′

∑︂
v∈V ∗

αŷ′

v (x, h, k)] +
k − 1

e− r + 1

∑︂
i∈x⊖x′

δi (69)

≤ 1

e− r + 1

e−r+1∑︂
i=1

αŷ′

wi
(x, h, k) +

k − 1

e− r + 1

∑︂
i∈x⊖x′

δi. (70)

Equation 68 is derived by applying Equation 57. After subtracting Equation 65 by Equation 70, we
have:

min
x′∈B(x,T ),H(x′)=ŷ′

max
u∈U∗

αŷ′

u (x′, h, k)− max
x′∈B(x,T ),H(x′)=ŷ′

min
v∈V ∗

αŷ′

v (x′, h, k) (71)

≥ 1

T − r + 1
(

d∑︂
i=d−T+r

αŷ′

wi
(x, h, k)− r − 1

d
) (72)

+
1

T − r + 1
max(

∑︂
i∈x⊖x′

δi,
1

2k
· (pŷ(x, h, k)− pŷ′(x, h, k))) (73)

− [
1

e− r + 1

e−r+1∑︂
i=1

αŷ′

wi
(x, h, k) +

k − 1

e− r + 1

∑︂
i∈x⊖x′

δi] (74)

≥[
1

T − r + 1

d∑︂
i=d−T+r

αŷ′

wi
(x, h, k)− 1

e− r + 1

e−r+1∑︂
i=1

αŷ′

wi
(x, h, k)− r − 1

d · (T − r + 1)
] (75)

+
1

2k
(

1

T − r + 1
− k − 1

e− r + 1
) · (pŷ(x, h, k)− pŷ′(x, h, k)) (76)

We have Equation 76 by assuming 1
T−r+1 > k−1

e−r+1 . We can make this assumption because otherwise
Equation 71 must be smaller than zero and the certification for any r must not hold. Therefore, by
jointly consider all v ∈ V ∗, and assuming H(x′) = ŷ′, we get:

D(x, T ) ≥ r, if: (77)

1

e− r + 1

e−r+1∑︂
i=1

αŷ′

wi
(x, h, k)− 1

T − r + 1

d∑︂
i=d−T+r

αŷ′

wi
(x, h, k) +

r − 1

d · (T − r + 1)
(78)

≤ 1

2k
(

1

T − r + 1
− k − 1

e− r + 1
) · (pŷ(x, h, k)− pŷ′(x, h, k)). (79)

In practice, we use Monte Carlo sampling to compute lower (or upper) bounds for the importance
scores and label probabilities. Please refer to Section C for the details. Putting together with previous
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results, we have:

D(x, T ) = argmax
r

r, s.t. ∀ŷ′ ̸= ŷ, (80)

αŷ′

we−r+1
(x, h, k) +

1

d
− 1

k

(︁
d−1−T
k−1

)︁(︁
d
k

)︁ (81)

≤ 1

T − r + 1
[
1

2k
· (p

ŷ
(x, h, k)− pŷ′(x, h, k))−

r − 1

d
+

d∑︂
i=d−T+r

αŷ′

qi
(x, h, k)] (82)

∨ (83)

1

e− r + 1

e−r+1∑︂
i=1

αŷ′

wi
(x, h, k)− 1

T − r + 1

d∑︂
i=d−T+r

αŷ′

qi
(x, h, k) +

r − 1

d · (T − r + 1)
(84)

≤ 1

2k
(

1

T − r + 1
− k − 1

e− r + 1
) · (p

ŷ
(x, h, k)− pŷ′(x, h, k)), (85)

where {w1, · · · , wd} denotes the set of all features in descending order of the important value upper
bound αŷ′

(x, h, k), i.e., αŷ′

w1
(x, h, k) ≥ αŷ′

w2
(x, h, k) ≥ · · · ≥ αŷ′

wd
(x, h, k), and {q1, · · · , qd}

denotes the set of all features in descending order of the important value lower bound αŷ′
(x, h, k),

i.e, αŷ′

q1
(x, h, k) ≥ αŷ′

q2
(x, h, k) ≥ · · · ≥ αŷ′

qd
(x, h, k).

C COMPUTE BOUNDS FOR IMPORTANCE SCORES AND LABEL PROBABILITIES

We use Monte Carlo sampling to compute a lower (or upper) bound for the importance scores. The
important score of feature i for label c can be rewritten as:

αc
i (x, h, k) (86)

=
1

k
Ez∼U(x,k)[I(i ∈ z) · I(h(z) = c)] (87)

=
1

k
Pr(i ∈ z) · Pr(h(z) = c|i ∈ z) (88)

=
1

d
Pr(h(z) = c|i ∈ z). (89)

In practice, it is estimated using Monte Carlo sampling as 1
d

∑︁
zj∈G I(i∈zj)·I(h(zj)=c)∑︁

zj∈G I(i∈zj)
, where G =

{z1, . . . ,zN} is the collection of sampled feature groups. The objective is to establish a lower (or
upper) probability bound for Pr(h(z) = c|i ∈ z). The lower bound is denoted as Pr(h(z) = c|i ∈ z)
and the upper bound is denoted as Pr(h(z) = c|i ∈ z). For each feature i, we consider a bernoulli
process where Ni =

∑︁
zj∈G I(i ∈ zj) represents the number of Bernoulli trials (‘coin tosses’),

while n̂c
i =

∑︁
zj∈G,i∈zj

I(h(zj) = c) corresponds to the ‘heads’ count, or the number of successful
outcomes. Therefore, we can compute the probability bounds for each feature i ∈ x using Clopper-
Pearson based method Clopper & Pearson (1934):

Pr(h(z) = c|i ∈ z) = Beta(
β

d
; n̂c

i , Ni − n̂c
i + 1), and (90)

Pr(h(z) = c|i ∈ z) = Beta(1− β

d
; n̂c

i , Ni − n̂c
i + 1)), (91)

where 1−β is the overall confidence level and Beta(ρ; ς, ϑ) is the ρ-th quantile of the Beta distribution
with shape parameters ς and ϑ. We divide β by d because we need to divide the confidence level
among the d features. Then we have αc

i (x, h, k) = 1
dPr(h(z) = c|i ∈ z), and αc

i (x, h, k) =
1
dPr(h(z) = c|i ∈ z).
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Likewise, we can compute the label probability bounds as follows:

∀c ∈ {1, 2, · · · , C}, (92)

p
c
(x, h, k) = Beta(

β

C
;nc, N − nc + 1), and (93)

pc(x, h, k) = Beta(1− β

C
;nc, N − nc + 1)), (94)

where nc is the number of sampled feature groups that predicts for label c, 1 − β is the overall
confidence level and Beta(ρ; ς, ϑ) is the ρ-th quantile of the Beta distribution with shape parameters
ς and ϑ. We divide β by C because we simultaneously compute bounds for all labels.

D EFFECTIVENESS OF APPEARANCE FREQUENCY NORMALIZATION

We conduct an empirical comparison between two approaches to estimate the importance score in
Eq. (4): (1) directly applying Monte Carlo sampling, and (2) Monte Carlo sampling with normalization
based on appearance frequency. Our experiment focus on certified defense adversarial attacks under
default settings, with the sampling size N set to 200. We use faithfulness as the metric, with
the deletion ratio set to 20%. The results demonstrate that normalizing the importance scores by
appearance frequency improves the faithfulness.

Table 5: Compare faithfulness with and without normalization.

Dataset SST-2 IMDB AG-news
Without Normalization 0.82 0.95 0.92

With Normalization (Eq. (6)) 0.87 0.99 0.96

E DISCUSSION ON CERTIFIED DETECTION OF ADVERSARIAL FEATURES

From the theoretical result in Section 4.4, we observe that the following factors can lead to a larger
certified detection size D(x, T ):

1) High prediction confidence (represented by ∆). A high confidence ensemble model (before
attack) increases the label probability gap between the predicted label ŷ and any other label ŷ′. This
means that the modified features must influence a greater number of subsampled feature groups to
alter the prediction, making them more detectable.

2) Even distribution of importance values for the target Label (represented by αŷ′
). In the

worst-case scenario, an attacker could modify features with the smallest importance values, disguising
the attack while increasing the probability of the target label. An even distribution of the importance
values makes this strategy more difficult.

3) Smaller subsampling ratio (represented by k
d ). Consider the extreme case where k = 1. In

this scenario, each adversarial feature is part of only one feature group. Altering the prediction of
that feature group would increase the importance value of the adversarial feature from 0 to 1/d (the
maximum importance a feature can attain). This makes these adversarial features easy to identify.

4) Smaller number of modified features (represented by T ). With fewer adversarial features, each
must impact more subsampled feature groups to change the prediction, increasing detectability.

F COMPUTATION TIME

Our approach incurs minimal computational cost for feature attribution, as it reuses the computational
byproducts already generated during the prediction process of the random subspace method. In
contrast, many other feature attribution methods such as Shapley value and LIME require significant
computation time because they are not specifically tailored to the random subspace method. The
experiments are performed under default settings for certified defense adversarial attacks. We report
the computational time of a single testing sample, averaged over the test dataset. For certified
detection, the time is shown for a single e and T combination.
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Table 6: Computational time (in seconds) of our method for feature attribution and certified
detection evaluation.

Dataset SST-2 IMDB AG-news
Feature attribution
(Solving Eq. (6)) 0.02 0.03 0.02

Certified detection
(Solving Eq. (12)) 0.19 0.36 0.23

Table 7: Performance of Shapley variants vs. our method on certified defense against backdoor
attacks.

Method SST-2 IMDb AG-news
Prec. Rec. Faith. Prec. Rec. Faith. Prec. Rec. Faith.

Beta-Shapley 0.52 0.86 0.62 0.29 0.48 0.56 0.51 0.85 0.74
L-Shapley 0.48 0.79 0.60 0.34 0.56 0.80 0.50 0.83 0.78
C-Shapley 0.50 0.83 0.62 0.33 0.55 0.80 0.49 0.82 0.78
Ours 0.59 0.98 0.66 0.54 0.89 1.00 0.56 0.93 0.80

Table 8: Certified detection rate as a function of the maximum number of adversarial patches
(T ).

Dataset T=1 T=3 T=5

CIFAR-10 0.90 0.77 0.64
ImageNette 0.96 0.89 0.84
ImageNet-100 0.86 0.74 0.63

G COMPARE WITH VARIANTS OF SHAPLEY VALUES

We further compare our method with three Shapley variants—Beta-Shapley Kwon & Zou (2021), L-
Shapley Chen et al. (2018), and C-Shapley Chen et al. (2018)—for certified defense against backdoor
attacks. For Beta-Shapley, we follow the original paper and set α = 4 and β = 1; for L-Shapley
and C-Shapley we use a neighborhood size k = 5. We evaluate faithfulness (20 % word-removal),
precision, and recall. As shown in Table 7, our method consistently outperforms these baselines.

H APPLICATION OF OUR METHOD IN IMAGE DOMAIN

Here, we show that our method can be applied to the image domain to provide certified detection
guarantee against image patch attacks Brown et al. (2017); Levine & Feizi (2020a). We evaluate
on three image datasets: CIFAR-10, ImageNette, and ImageNet-100. We fine-tune a pre-trained
DINO Caron et al. (2021) backbone and treat each 14×14 image patch (in a 224×224 image) as a
feature. We draw 10,000 random samples with a dropping ratio of 0.95; the clean accuracies of the
resulting ensembles models are 72%, 94%, and 70%, respectively. Explanations report the top 5%
most important features, and we certify the detection rate when the attacker may modify at most T
patches.

The results in Table 8 demonstrate the robustness of our method across diverse image datasets
and attack budgets. For instance, on ImageNette, our method is guaranteed to detect 84% of the
manipulated patches when the adversary is allowed to alter five patches.

Regarding efficiency, certification takes only 0.35, 0.25, and 0.24 seconds per sample on CIFAR-10,
ImageNette, and ImageNet-100, respectively, even though these datasets involve far more features
(e.g., 1,024 on CIFAR-10) and samples (10,000) than the text benchmarks (21 features and 1,000
samples on SST-2) used elsewhere in this paper.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 9: Faithfulness of our method against advanced jailbreaks (20 % feature removal).

Jailbreak AIR JAM

Faithfulness 0.88 0.94

I MORE ADVANCED JAILBREAK ATTACKS

We evaluate our method on two advanced jailbreak attacks, AIR (Attack via Implicit Reference) Wu
et al. (2024), and JAM (Jailbreak Against Moderation) Jin et al. (2024), all targeting GPT-3.5-TURBO.
Because these jailbreak prompts are long (JAM averages 372 words), we treat each 10-word text
segment as a feature. To keep the computation tractable we use 200 random samples with a dropping
ratio of 0.8. After applying RA-LLM Cao et al. (2023), the attack–success rates (ASRs) drop to 0.10,
and 0.02, respectively. Table 9 reports the faithfulness score of our method (20 % feature removal) on
each attack.

As the results show that our method still reliably highlights the key segments that trigger the LLM’s
rejection, even for these sophisticated attacks.

J EXPERIMENTAL DETAILS

J.1 DATASETS

In our study on certified defense mechanisms, we use classification datasets such as SST-2 Socher
et al. (2013), IMDB Maas et al. (2011), and AGNews Zhang et al. (2015). For each dataset, we
fine-tune the base model using the original training dataset and assess our feature attribution method’s
effectiveness using a randomly selected subset of 200 test samples. In scenarios without attacks,
these test samples are used in their unaltered form. For backdoor attack scenarios, each test input
is modified by inserting trigger (‘cf’ in our experiments) three times. In the context of adversarial
attacks, we substitute a certain number of words in each test input with their synonyms.

For defense against jailbreaking attacks, we first craft jailbreaking prompts for harmful behaviors
dataset Zou et al. (2023) utilizing each jailbreaking attack method, namely GCG Zou et al. (2023),
AutoDAN Liu et al. (2023), and DAN Liu et al. (2023). For each jailbreaking attack, we randomly
select 100 jailbreaking prompts that successfully bypass the alignment of the LLM, which we then
use as our test dataset.

We provide more details about these datasets below.

• SST-2. SST-2 is a binary sentiment classification dataset derived from the Stanford Senti-
ment Treebank. It consists of 67,349 training samples and 1,821 testing samples.

• AG-news. AG-news dataset is created by compiling the titles and descriptions of news
articles from the four largest categories: "World", "Sports", "Business", and "Sci/Tech". The
dataset includes 120,000 training samples and 7,600 test samples in total.

• IMDb. IMDb is a movie reviews dataset for binary sentiment classification. It provides
25,000 movie reviews for training and 25,000 for testing.

• Harmful behaviors. This is a dataset from AdvBench Zou et al. (2023) that contains
500 potentially harmful behaviors presented as instructions. The adversary aims to find a
single input that causes the model to produce any response that tries to follow these harmful
instructions.

J.2 IMPLEMENTATION OF BASELINE METHODS

• Shapley value. We implement Baseline Shapley Sundararajan & Najmi (2020) on the base
model. This Shapley value models a feature’s absence using its baseline value. In particular,
for certified defense, we use the ‘[MASK]’ token as the baseline value, and for defense
against jailbreaking attacks, we use the ‘[SPACE]’ token as the baseline. To estimate Shapley
value, we randomly sample permutations over all features following previous works Enouen
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et al. (2023); Chen et al. (2023b), and use these permutations to simultaneously update the
importance values of all features. The total number of queries to the base model is limited
to default N values to ensure a fair comparison.

• LIME. We implement LIME on the base model. We follow the original paper Ribeiro et al.
(2016) and use an exponential kernel to re-weight training samples. The total number of
training samples is also set to default N values.

• ICL. We create in-context learning prompts in line with the methodology in Kroeger et al.
(2023). These prompts include an in-context learning dataset comprising the inputs and
outputs of the explained model. We let the input be a list of the indexes of the retained
features, and let the output be the predicted label from the model. Given the context length
limitations of LLMs, we trim the in-context learning dataset to fit within the maximum
allowable context length.

J.3 IMPLEMENTATION OF ADVERSARIAL AND BACKDOOR ATTACK

• Adversarial attack. We implement TextFooler Jin et al. (2020) as the adversarial attack
method, which is broadly applicable to black-box models. This technique repeatedly replaces
the most important words (determined by leave-one-out analysis) in a sentence until the
predicted label is changed. When applied to ensemble models, identifying these important
words is computationally challenging, so we find them using the base model and assume
they remain important for the ensemble model. Due to the robustness of the ensemble model,
we omit the sentence similarity check to enhance the attack success rate.

• Backdoor attack. We employ BadNet Gu et al. (2017) as our backdoor attack method.
We poison 10% of the training samples by inserting 10 trigger words into these sentences,
ensuring that at least one of them appears in the masked versions of the poisoned training
samples. During testing, we activate the backdoor by inserting three trigger words into the
test input.

J.4 IMPLEMENTATION OF DEFENSE AGAINST JAILBREAKING ATTACK

Rather than simply relying on a majority vote among the labels of perturbed input prompts, RA-
LLM Cao et al. (2023) introduce a threshold parameter, denoted as τ , to control the rate of mistakenly
rejecting benign prompts. In particular, the ensemble model outputs ‘harmful’ if the proportion of
perturbed input prompts supporting this classification exceeds the threshold τ , otherwise labeling
it as ‘non-harmful’. In our experiments, we set τ to 0.1. A slight adjustment we have made is to
segment the sentences into words rather than tokens to keep consistency. This defense reduces the
attack success rates of GCG Zou et al. (2023), AutoDAN Liu et al. (2023), and DAN Liu et al. (2023)
to 0.01, 0.10 and 0.32, respectively.

J.5 METRICS FOR KEY WORD PREDICTION

In the context of a backdoor attack, L(x) comprises the triggers that are inserted. For adversarial
attacks, it includes the words that have been substituted. And in a jailbreaking attack, it consists
of the harmful query embedded within the jailbreaking prompt. Our analysis centers on D∗

test, a
specific subset of Dtest including test samples significantly impacted by L(x). Within a backdoor
attack scenario, this subset includes triggered sentences that are classified into the target class. In an
adversarial attack, it encompasses sentences altered by perturbations and then misclassified to a label
different from the true label. For jailbreaking attacks, it includes jailbreaking prompts identified as
‘harmful’ by the ensemble model.
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Table 10: Attack success rate and average perturbation size T for empirical attacks. T is the
number of word insertions (or modifications) for backdoor attack (or adversarial attack).

Dataset SST-2 IMDb AG-news

Clean Accuracy 0.790 0.855 0.910

ASR (backdoor) 1 0.920 0.960
ASR (adversarial) 0.920 0.560 0.875

Average T (backdoor) 3 3 3
Average T (adversarial) 2.47 14.31 10.98

Table 11: Compare the key word prediction performance of our method with baselines for
certified defense. Each feature attribution method reports the top-10 important words (e = 10).

Defense scenarios Dataset SST-2 IMDb AG-news

Metric Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

Backdoor attack

Shapley value 0.300 0.987 0.459 0.182 0.608 0.281 0.281 0.936 0.432
LIME 0.153 0.498 0.234 0.026 0.088 0.041 0.083 0.276 0.127
ICL 0.050 0.165 0.076 0.020 0.068 0.031 0.056 0.187 0.087
Ours 0.304 1.0 0.465 0.280 0.932 0.430 0.295 0.983 0.453

Adversarial attack

Shapley value 0.236 0.864 0.348 0.245 0.243 0.203 0.434 0.523 0.409
LIME 0.146 0.573 0.219 0.068 0.061 0.053 0.247 0.262 0.228
ICL 0.060 0.231 0.089 0.073 0.078 0.064 0.058 0.060 0.053
Ours 0.231 0.842 0.340 0.340 0.294 0.273 0.436 0.529 0.409

Table 12: Compare the key word prediction performance of our method with baselines for
defense against jailbreaking attacks. Each feature attribution method reports the top-20
important words (e = 20).

Attack method GCG AutoDAN DAN

Metric Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

Shapley value 0.502 0.867 0.630 0.297 0.498 0.367 0.153 0.264 0.192
LIME 0.516 0.889 0.647 0.260 0.451 0.327 0.292 0.493 0.362
ICL 0.465 0.776 0.568 0.233 0.387 0.287 0.086 0.147 0.107
Ours 0.510 0.881 0.640 0.312 0.532 0.388 0.299 0.518 0.375

(a) No Attack. Predicted label is 1.

(b) Backdoor Attack. Predicted label is 0.

(c) Adversarial Attack. Predicted label is 0.

Figure 2: Visualization of Shapley value’s explanation on SST-2 dataset. The Shapley value is
applied on the base model. The ground-truth key words are highlighted in bold.
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(a) No Attack. Predicted label is 1.

(b) Backdoor Attack. Predicted label is 0.

(c) Adversarial Attack. Predicted label is 0.

Figure 3: Visualization of our explanation on SST-2 dataset. The ground-truth key words are
highlighted in bold.

(a) No Attack. Predicted label is 2 (Business).

(b) Backdoor Attack. Predicted label is 0 (World).

(c) Adversarial Attack. Predicted label is 3 (Sci/Tech).

Figure 4: Visualization of Shapley value’s explanation on AG-news dataset. The Shapley value
is applied on the base model. The ground-truth key words are highlighted in bold.

(a) No Attack. Predicted label is 2 (Business).

(b) Backdoor Attack. Predicted label is 0 (World).

(c) Adversarial Attack. Predicted label is 3 (sci/Tech).

Figure 5: Visualization of our explanation on AG-news dataset. The ground-truth key words
are highlighted in bold.
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(a) No Attack. Predicted label is 1.

(b) Backdoor Attack. Predicted label is 0.

(c) Adversarial Attack. Predicted label is 0.

Figure 6: Visualization of Shapley value’s explanation on IMDb dataset. The Shapley value is
applied on the base model. The ground-truth key words are highlighted in bold.
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(a) No Attack. Predicted label is 1.

(b) Backdoor Attack. Predicted label is 0.

(c) Adversarial Attack. Predicted label is 0.

Figure 7: Visualization of our explanation on IMDb dataset. The ground-truth key words are
highlighted in bold.

(a) GCG

(b) AutoDAN

(c) DAN

Figure 8: Visualization of Shapley value’s explanation for jailbreaking attacks on harmful
behaviors dataset. The Shapley value is applied on the base model. The harmful query
embedded in the jailbreaking prompt is highlighted in bold.
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(a) GCG

(b) AutoDAN

(c) DAN

Figure 9: Visualization of our explanation for jailbreaking attacks on harmful behaviors dataset.
The harmful query embedded in the jailbreaking prompt is highlighted in bold.
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(a) SST-2

200 400 600 800 1000
N

0.0
0.2
0.4
0.6
0.8
1.0

Fa
ith

fu
ln

es
s

Shapley value
Ours

(b) IMDb

200 400 600 800 1000
N

0.0
0.2
0.4
0.6
0.8
1.0

Fa
ith

fu
ln

es
s

Shapley value
Ours

(c) AG-news

Figure 10: Impact of N on faithfulness of the explanation for certified defense. The deletion
ratio is 20%. First row: no attack. Second row: backdoor attack. Third row: adversarial
attack.
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Figure 11: Impact of N on key word prediction F1-score of the explanation for certified defense.
e = 5. First row: backdoor attack. Second row: adversarial attack.
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Figure 12: Impact of ρ on faithfulness of the explanation for certified defense. The deletion ratio
is 20%. First row: no attack. Second row: backdoor attack. Third row: adversarial attack.
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Figure 13: Impact of ρ on key word prediction F1-score of the explanation for certified defense.
e = 5. First row: backdoor attack. Second row: adversarial attack.
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Figure 14: Impact of N and ρ on the performance of the explanation for jailbreaking attacks.
The jailbreaking attack type is GCG. First row: faithfulness (deletion ratio is 20%). Second
row: key word prediction F1-score (e = 10).
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Figure 15: Impact of β on certified detection rate for varying number of modified features
(denoted by T ). First row: T = 1. Second row: T = 2. Third row: T = 3.
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Figure 16: Impact of N on certified detection rate for varying number of modified features
(denoted by T ). First row: T = 1. Second row: T = 2. Third row: T = 3.
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Figure 17: Impact of ρ on certified detection rate for varying number of modified features
(denoted by T ). First row: T = 1. Second row: T = 2. Third row: T = 3.
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