
Reproducibility and Ablation Study of “Augmented
Neural ODEs”

Anonymous Author(s)
Affiliation
Address
email

Abstract

“Augmented Neural ODEs” (ANODE) by Dupont et al. addresses a central aspect1

of treating a neural network as an ordinary differential equation (ODE): solution2

trajectories of such functions may not overlap. The authors address this issue by3

augmenting the feature space, simplying the computation of solution trajectories.4

Here, we report on the reproducibility of the results presented in Dupont et al.,5

and perform ablation and robustness experiments. Most results presented in the6

original study are reproducible given the author’s implementation. Small variations7

in hyper-parameters did not cause drastic changes to model the performance.8

We also provide additional theoretical support to their framework by measuring9

ANODE performance with fixed stepsize solvers. In a 2D toy dataset, the model10

performance improves with increased augmentation using fixed stepsize, supporting11

the conjecture that ANODEs simplify flows. On the MNIST dataset, ANODEs12

become unstable using fixed stepsize, underlining the need for adaptive stepsize13

methods when ANODEs are trained on large data-sets.14

1 Introduction15

In a 2015 survey, Nature reported that over 70% of researchers have been unable to reproduce16

published results and 50% failed to reproduce their own studies [1]. In a follow-up paper, Huston17

(2018) [3] postulated that the reproducibility crisis faced by the Machine Learning community is in18

part due to code being unavailable, lack of space to display hyper-parameter search and pressure to19

publish quickly, reducing the quality of the publication and the extent to which results are investigated.20

As such, reproducibility challenges such as the one hosted by NeurIPS 2019 provide an excellent21

opportunity to mitigate some of the concerns raised by Huston (2018).22

Dupont et al. 2019 [5] proposed an extension to Chen et al.’s (2018) Neural Ordinary Differential23

Equations (NODEs). NODEs can be seen as continuous approximations of Residual Networks24

(ResNets) and can be numerically approximated using traditional Ordinary Differential Equation25

(ODE) solvers. As noted by Dupont et al., NODEs have an important limitation due to their ODE-like26

nature: they cannot represent functions whose solution trajectories intersect. To overcome this27

limitation, the authors propose to augment the number of feature space dimensions in a method28

they called Augmented Neural Ordinary Differential Equations (ANODEs). With increased dimen-29

sionality, solution trajectories can be simplified and will not overlap, allowing for faster and more30

generalizable estimations. In their paper, Dupont et al. evaluate the performance and complexity of31

ResNets, NODEs and ANODEs on toy datasets and in several image datasets.32

As part of the 2019 NeurIPS Reproducibility Challenge, we conducted a reproducibility and ablation33

study of Dupont et al. (2019). The authors provided the code used on a GitHub repository1, which34

1https://github.com/EmilienDupont/augmented-neural-odes

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

https://github.com/EmilienDupont/augmented-neural-odes


we used to replicate the main results of the paper and to test their robustness. We first provide a brief35

background on the problem (Section 2), report our findings (Section 3), and conclude by discussing36

ANODE characteristics and robustness (Section 5). Our modifications to Dupont et al.’s ANODE37

implementation and associated documentation can be found on our GitHub repository2.38

2 Background39

ResNets comprise a family of deep neural networks which implement skip connections between40

network layers [2]. As such, ResNets send information of a hidden state at layer t to the hidden state41

output at layer t + ∆t where ∆t specifies the number of layers that were skipped. The resulting42

hidden state at layer t + ∆t can be described by:43

ht+∆t = ht + f(ht). (1)

Here the function f(h) is the neural network constructed by the layers that were skipped. As outlined44

in [5] this formalism can be viewed as the forward Euler solution of the ODE defined by45

dh(t)

dt
= f(h(t)). (2)

Numerical solutions of the equation above can be approximated using conventional ODE solvers.46

When the Euler method is applied to NODEs, they behave as ResNets: the stepsize used in this47

method approximates discrete jumps in the network.48

Common numerical solvers include the Euler method (finite difference method) and the Runge-Kutta49

method. Most solvers assume an initial value problem, where the initial condition (i.e. feature50

values) and the differential equation (i.e. neural network) are well defined. Solutions to initial value51

problems must be unique - their solution trajectories must not intersect. This restriction can cause52

differentials to become more variable, rendering them more difficult to approximate [4]. Numerical53

ODE solvers can be divided into fixed and adaptive stepsize algorithms. With adaptive stepsize54

methods, the error for given point’s solution is minimized by modifying number of points used in55

each approximation. Linear solutions are simpler to calculate and require less steps than non-linear56

solutions. As solutions become more complex, the number of function evaluations (NFEs) required57

increases and the computational cost becomes higher. To reduce the numerical constrictions on58

solution trajectories, Dupont et al. (2019) propose to augment the dimensionality of the model’s input59

space such that solution trajectories can follow simpler, more linear flows that require less NFEs [4].60

2https://github.com/BeeQC/ANODE-reproducibility

Figure 1: a. Evolution of the feature space (left) and learned flow (right) for Neural Ordinary
Differential Equations (NODEs, top) and Augmented NODEs (bottom). b. Number of function
evaluations (NFEs, top) per batch iteration and loss (bottom) for NODEs (bottom axis, orange) and
ANODEs (top axis, blue). Note that NODEs required twice as many iterations to acheive similar
performance to ANODEs.

2

https://github.com/BeeQC/ANODE-reproducibility


Figure 2: Accuracy (left) and loss (right) on the concentric spheres dataset. Solid lines represent the
average over 100 repetitions and the shaded area represents the standard deviation.

3 Results61

Dupont et al. (2019) compare the performance of NODE and ANODE in a 1D and a 2D toy dataset.62

They also conducted experiments on MNIST, CIFAR10 and Tiny ImageNet datasets.63

3.1 Robustness and Replication - Toy datasets64

We focused our analysis on the 2D model. This toy dataset is similar to a bullseye: a circle surrounded65

by a ring such that points in the inner and outer regions map to different labels. The authors show66

that solutions approximated with NODEs generate intersecting trajectories, whereas ANODEs with67

one augmented dimension generate quasi-linear solutions.68

3.1.1 Bullseye Dataset: Reproducibility and Robustness69

The codes provided by Dupont et al. 2019 were simple to implement and generated results in a70

reasonable amount of time. Overall we found the results obtained by Dupont et al. to be robust to71

multiple parameter changes.72

Repetitions: According to the authors, each experiment was reproduced 20 times. To ensure these73

results were representative, we ran the toy example over 200 times. Representative results for 10074

iterations can be found in figure 2 and demonstrate the results are robust.75

Number of points per class: The authors conduct experiments with with 1000 points in the inner76

circle and 2000 points in the outer ring. We were able to reproduce results with balanced datasets77

(1500 points each) and various unbalanced datasets (data not shown).78

Class overlap: In the paper, the authors report results on non-overlapping classes (inner region: [0,79

0.5], outer region: [1, 1.5]). We conducted several experiments with overlapping regions and found80

that, even though ANODE seems to outperform NODE in all settings, they also struggle to perform81

when the overlap extends beyond 50%. An example for 33% overlap can be seen in figure 1.82

Hyper-parameters: We also tested different learning rates (0.001-0.0005) and epoch sizes83

(1,3,10,20) and found that ANODEs outperformed NODEs in all trials (data not shown).84

Others: We collected accuracy measures for all tasks; results were consistent with those observed85

for loss and are not included in the report. Finally, we attempted to test all three models in a new toy86

dataset, interleaving half-circles3, but were unable to finalize the experiment.87

3.1.2 Fixed Stepsize: RK488

ANODEs augment the space on which the neural ODE is solved. This allows numerical solvers89

to use these dimensions and compute simpler flows. Dupont et. al [5] demonstrate this idea by90

considering a toy example of two concentric spheres. While NODEs compute flows that visibly91

3https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.
html

3

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html


Figure 3: Performance comparison of different augmented dimensions when using a 4th order Runge-
Kutta method (RK4) to solve the ANODE. (Left) Using more dimensions causes the RK4 method to
achieve high accuracies with fewer epochs. (Center) RK4 uses a fixed number of function evaluations.
(Right) ANODEs solved with RK4 achieve lower losses with more augmented dimensions.

contain high curvature, an ANODE is capable of separating the point using quasi-linear flows. Due92

to complex curvature in the solution trajectories that NODEs need to estimate, adaptive stepsize93

methods are required. However, if these flows were quasi-linear, fixed-step methods should also be94

capable of achieving high accuracies. We tested this hypothesis by using the 4th order Runge-Kutta95

method (RK4), which is a fixed-step method and uses a constant number of function evaluations96

when computing solution trajectories. Using this method, we fit the model to the toy data-set, while97

adjusting the number of augmented dimensions. We find that fewer epochs are required to achieve98

high accuracies and low losses when more augmented dimensions are used (Figure 3). This finding99

supports the claim that dimension-augmentation decrease solution complexity.100

3.2 Robustness and Replication - Image datasets101

Due to computational limitations, our image experiments were performed on the MNIST dataset102

alone. As described by Dupont et. al [5], ANODEs perform better than NODEs when being trained,103

achieving higher accuracy and lower loss in a given number of epochs 4. Furthermore ANODEs104

require less function evaluations, implying that they are also faster at computing flows.105

3.2.1 MNIST dataset: number of dimensions106

In theory, increasing the number of augmented dimensions should make ANODEs easier to solve and107

require less NFEs. However, as discussed by Dupont et al [5], increasing the number of augmented108

Figure 4: Comparison of ANODEs and NODEs when training on the MNIST dataset. This ANODE
uses 5 augmented dimensions and three 2D convolutional layers, as described in [5]. (Left) ANODEs
achieve high training accuracies faster than NODEs. (Center) The ANODE uses less function
evaluations than the NODE to achieve high accuracies. (Right) ANODE achieves lower losses than
NODE in a given number of epochs.

4



Figure 5: Evaluating the effect of increasing augmented dimensions on training performance. (Left)
ANODES achieve comparable accuracies when using different augmented dimensions, with a slight
increase in performance when using 100 augmented dimensions. (Center) The ANODE uses less
function evaluations than the NODE to achieve high accuracies. (Right) ANODE achieves lower
losses than NODE in a given number of epochs.

Figure 6: Comparison between stepsize adaptive methods and RK4 when training on MNIST dataset.
(Left) RK4 uses constant NFEs since it is a fixed step size method. (Right) RK4 is not able to achieve
low losses in a stable manner.

dimensions can cause ANODEs to become unstable. To test these hypotheses, we treated augmented109

dimensions as hyper-parameter when training ANODEs on the MNIST dataset, and evaluated training110

performance with different numbers of augmented dimensions. Generally we find that training111

accuracy and loss are comparable when using more augmented dimensions (Figure 5, left and right112

panels). At 100 augmented dimensions ANODEs used less NFEs than when using fewer augmented113

dimensions. However, using 75 augmented dimensions required many more NFEs compared to the114

NFEs required when training with 5 dimensions (Figure 5, center). It should be noted that due to our115

restrictions in computational resources, only one replicate of this data was collected.116

When computing flows for large data sets like MNIST, solution trajectories are expected to be117

complex and require several function evaluations to be approximated. Adaptive stepsize methods118

are suitable for these scenarios as stepsize would be reduced (leading to increments in NFEs) when119

solution trajectories become more complicated. Therefore we hypothesise that ablating the ability to120

adapt stepsize would lead to unstable loss. To test this hypothesis, we replace the adaptive step size121

method used in [5] by a 4th order Runge-Kutta method (RK4), which uses a fixed step size, i.e. fixed122

NFEs, when computing the next point in a solution trajectory. Figure 6 (left) displays that RK4 uses123

a fixed number of function evaluations while adaptive methods do not. While this would lead to high124

computational efficiency, using RK4 leads to unstable and high-magnitude losses when compared to125

adaptive stepsize methods for highly complex solution trajectories (Figure 6, right).126

5



3.3 Effect of Filter Size on ANODE/NODE Performance on Image Tasks127

The original authors carried out their image experiments with filter sizes of 64 and 92 for ANODE128

and NODE respectively, with the aim of maintaining an approximate number of parameters across129

both models (Dupont et al., F.2.2) [5]. As one of the few hyper-parameters for which no principled130

search is described, we explore here a small range of filter sizes (limited by computational time).131

ANODE and NODE models displayed similar convergence with filter sizes in the range of 32 to 92,132

with slightly more variation in the ANODE (Figure 7, Top Row). The total number of functions133

evaluated trended similarly for the NODE models across all filter sizes trained (Figure 7, Bottom134

Row). Filter sizes of 64 and 92 accumulated a similar number of operations over time, a filter size of135

32 consistently outperforms the other models tested, despite converging in a similar fashion. This136

is illustrated when comparing the total number of functions evaluated directory to the training loss137

(Figure 8). Furthermore, there is far less variability observed in the number of functions evaluated138

amongst NODE models tested, while much variability is observed in the ANODE models.139

0.0

0.5

1.0

1.5

2.0

Lo
ss

ANODE (p=5) NODE
Filter Size = 32
Filter Size = 64
Filter Size = 92

0 10 20 30 40
Steps

40

50

60

To
ta

l N
FE

s

0 10 20 30 40
Steps

Figure 7: Loss (y-axis) and total number of functions evaluated (x-axis) of ANODE (p = 5, Left
Column) and NODE (Right Column) experiments, trained on the MNIST task, with filter sizes
ranging from 32 to 92. Faint traces are replicates while bold ones are averages of the replicates.

4 Discussion140

We were able to reproduce most major results presented in the original study using the authors141

implementation of ANODEs. We established model robustness by repeating experiments multiple142

times and changing hyperparameters (Figure 2). We used ANODE to train a binary classifier with143

concentric spheres with various degrees of overlap. ANODEs outperformed NODEs in this task144

while using less function evaluations, demonstrating how flow trajectories are simplified compared to145

the non-augmented NODE (Figure 1, panel b). When NODEs were trained with double the number146

of epochs, however, both algorithms performed equally well showing the robustness of the algorithm147

(Figure 1, panel b). To further demonstrate how augmentation simplifies solution trajectories, we148

used fixed stepsize ODE solvers while increasing the number of augmentation dimensions (Figure 3).149

We found that performance increased with more augmented dimensions, implying that solutions have150

become easier to compute.151

6



40 45 50 55 60 65
Total NFEs

0.0

0.5

1.0

1.5

2.0
Lo

ss

ANODE (p=5)

40 45 50 55 60 65
Total NFEs

NODE
Filter Size = 32
Filter Size = 64
Filter Size = 92

Figure 8: Loss (y-axis) and total number of functions evaluated (x-axis) of ANODE (p = 5, Left
Column) and NODE (Right Column) experiments, trained on the MNIST task, with filter sizes
ranging from 32 to 92. Points represent averages over three replicates.

Generally, we found that ANODEs require less function evaluations when trained on the MNIST data152

set (Figure 4), achieving lower loss compared to NODEs given a fixed number of epochs. One primary153

concern discussed in [5] is that ANODEs performed worse when excessively many dimensions were154

used to augment the NODE. We used augmentations ranging from 5 to 100 dimensions when training155

on the MNIST dataset. Generally we found that ANODEs still perform with high training accuracies156

and stable loss dynamics. However the NFEs for such augmentations seemed to fluctuate, with over157

100 NFEs when using 75 dimensions for augmentation (Figure 5). It should be noted that these158

results stem from only one replicate of results. Given more time and computational resources, more159

replicates should be collected.160

Hyperparameters were chosen by the original authors in a principled manner, but the number of filters161

chosen for the MNIST image model was not commented on when considering the number of model162

parameters. We explored a small range of filter sizes and observed small change in performance.163

However, some of our results indicate that this could be an interesting topic for further investigation.164

5 Conclusion165

Augmented Neural ODEs by Dupont et. al [5] identifies and targets a central limitation of Neural166

Ordinary Differential Equations: solution trajectories cannot intersect. This restriction may lead167

solution trajectories to become very complex, and computationally expensive to estimate. Dupont et.168

al further note that certain classes of problems cannot be solved by NODEs due to this restriction. By169

augmenting the feature space in which NODEs are solved, Dupont et. al [5] describe a new class of170

NODEs that is more efficient and generalizable. Using the implementation provided by Dupont et.171

al[5], we reproduced some of the major results presented in the article and showed that the method is172

robust to changes in hyperparameters and initial conditions. We also provide additional evidence that173

augmentation simplifies flow by considering fixed-step solving methods. Since these methods do174

not adapt to data complexity their performance will decrease with increased complexity. Our results175

demonstrate that fixed-step size algorithms perform better with increasing augmented dimensions,176

supporting Dupont et. al’s claim that ANODEs reduce flow complexity.177

Acknowledgements178

We thank Dupont et. al for providing commented code and reproducible examples of their ANODE179

implementation. This work was supported by NSERC Create - Complex Dynamics in Brain and180

Behaviour, NSERC Canada Graduate Scholarship - Master’s and FRQNT - Bourse de maîtrise en181

recherche.182

7



References183

[1] Monya Baker. “1,500 scientists lift the lid on reproducibility”. In: Nature News 533.7604 (2016),184

p. 452.185

[2] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016, pp. 770–778. URL:186

http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_187

Learning_CVPR_2016_paper.html.188

[3] Matthew Hutson. “Artificial intelligence faces reproducibility crisis”. In: (2018).189

[4] Steven H Strogatz. “Nonlinear dynamics and chaos: with applications to physics, biology,190

chemistry, and engineering”. In: (2018).191

[5] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. “Augmented Neural ODEs”. In:192

arXiv:1904.01681 [cs, stat] (Oct. 2019). arXiv: 1904.01681. URL: http://arxiv.org/193

abs/1904.01681.194

8

http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://arxiv.org/abs/1904.01681
http://arxiv.org/abs/1904.01681
http://arxiv.org/abs/1904.01681

	Introduction
	Background
	Results
	Robustness and Replication - Toy datasets
	Bullseye Dataset: Reproducibility and Robustness
	Fixed Stepsize: RK4

	Robustness and Replication - Image datasets
	MNIST dataset: number of dimensions

	Effect of Filter Size on ANODE/NODE Performance on Image Tasks

	Discussion
	Conclusion

