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Abstract

Training a single model for multilingual, multi-task speech processing (MSP) is
severely hampered by conflicting objectives between tasks like speech recogni-
tion and translation. While multi-objective optimization (MOO) aims to align
gradient updates, its effectiveness diminishes as the number of tasks grows, mak-
ing it difficult to find a common descent direction. This raises a fundamental
question: should highly conflicting objectives be optimized jointly or separated
into a hierarchical structure? To address this question, this paper investigates
three multi-objective MSP formulations, which we refer to as objective soup
recipes. These formulations apply multi-objective optimization at different op-
timization levels to mitigate potential conflicts among all objectives. To ensure
efficiency, we introduce a lightweight layer-selection mechanism that computes
the conflict-avoiding gradient using only the most problematic layers, minimiz-
ing computational and memory overhead. Extensive experiments on CoVoST
v2, LibriSpeech, and AISHELL-1 reveal that a bi-level recipe separating recog-
nition and translation tasks consistently outperforms standard flat optimization.
Our work demonstrates that hierarchical MOO is a more effective and scalable
approach for building state-of-the-art MSP models. Our code has been released at
https://github.com/afmsaif/Objective_Soups.

1 Introduction
Multilingual speech processing is the backbone of voice-driven applications, from virtual assistants to
voice search [25, 28]. Modern deployments increasingly demand a single model that can (1) transcribe
speech in many languages, and (2) perform an auxiliary speech-to-text translation task [55, 8].
Unifying these capabilities simplifies maintenance and reduces inference costs, yet joint training
remains difficult due to language diversity, task heterogeneity, and model complexity [30, 21, 46].

A common approach is to introduce one loss term for each task or requirement, for example, a
self-supervised learning loss to learn robust representations across languages [41, 48, 3, 4, 29],
language-specific Connectionist Temporal Classification (CTC) loss for transcription [34], cross-
entropy for translation [60], and fairness constraints for underrepresented languages [10, 11], and
then optimize them simultaneously. We refer to this methodology as objective soups, where the idea is
to leverage multiple objectives to learn a single model that satisfies the above requirements. A related
line of work is rewarded soups [44], where the goal is to achieve multi-reward alignment for a model
by interpolating weights fine-tuned on diverse reward objectives. Although simple and efficient, such
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soups could suffer from gradient conflicts: improving one objective can actively harm the others,
stalling overall training. Multi-objective optimization provides a principled approach for handling
conflicting training objectives [20, 37, 36, 9, 19]. We propose a hybrid multi-level and multi-objective
optimization algorithm tailored to MSP: in our formulation, the self-supervised loss serves as a lower-
level constraint that drives the model toward language-agnostic acoustic representations. We first
optimize this lower level, then feed its solution into the upper-level supervised objective—combining
CTC for transcription and cross-entropy for translation—by adding a penalty term. Allowing the
representation-oriented self-supervised objective to converge first yields a more stable optimization
path than a flat objective soup, and this bilevel structure naturally extends to additional hierarchies
(e.g., grouping objectives by tasks or languages) [49].

Our findings and contributions. We propose three optimization recipes: i) VS-MSP: a single-level
vector-optimization approach; ii) VC-MSP: a bilevel approach that places self-supervised learning
in the lower level and supervised fine-tuning in the upper level; and, iii) VM-MSP: a multilevel
approach that organizes objectives hierarchically by tasks or by languages, so that the most conflicting
objectives are separated across levels. Experiments on CoVoST v2, LibriSpeech, and AISHELL
datasets, covering model sizes from 58M to 150M parameters, reveal the following patterns:

F1: Multi-objective optimization reduces gradient conflicts and boosts performance. VC-
MSP outperforms the classic pre-training and fine-tuning baseline by 9.8% in terms of WER
and 8.6% in terms of BLEU.

F2: Introducing hierarchies across objectives further improves accuracy. The multi-level
approach VM-MSP outperforms VC-MSP, delivering 4.2% WER and 2.8% BLEU gains.

F3: Task-based hierarchies outperform language-based ones. Separating speech recognition
and translation at different levels yields larger gains than separating by language, yielding
up to 7.4% in terms of WER and 8.5% in terms of BLEU improvements over baselines.

F4: Layer-wise conflict pruning reduces overhead without losing accuracy. We select layers
whose gradients have negative cosine similarity, and compute the conflict-avoidant dynamic
update direction2 only on this subset of gradients. By pruning layers with aligned gradients,
we reduce up to 17% in time and 18% in memory, without degrading WER or BLEU.

From these findings, we conclude that multiobjective optimization, with a carefully defined optimiza-
tion hierarchy and a lightweight layer-selection mechanism, offers an effective and practical recipe
for multilingual multi-task speech recognition and translation.

2 Related Work
In this section, we briefly review related work on multi-objective optimization, multilingual speech
recognition, and translation; see also Appendix A for additional related work.

Multi-objective optimization. Classical multi-objective optimization methods focus on optimizing
multiple conflicting objectives, with approaches like scalarization and lexicographic ordering [39,
38, 51, 36, 9, 19]. In speech processing, multi-objective optimization has been applied at the system
level to balance accuracy and model size [40]. In contrast, our work addresses objective conflict at
the training level, optimizing multiple loss functions jointly within a shared multilingual model.

Multilingual speech recognition and translation. Earlier approaches in multilingual speech
recognition relied on deep neural networks, hidden Markov models, and LSTM models, gradually
progressing to Seq2Seq and transformer-based architectures [27, 24, 58, 6]. While significant
advancements have been made, challenges remain in enabling multi-tasking and reducing conflicts
across objectives-a gap that this paper addresses.

Multi-task learning for speech. Multi-task learning for speech recognition and translation tasks has
seen limited exploration but includes methods such as dual encoder-decoder architectures [33] and
large-scale multitask models like Whisper [43]. Recent work, such as Mu2SLAM [13], incorporates
cross-modality learning, while others use joint pre-training and fine-tuning [5, 47]. However, most
methods rely on static weighting strategies, which do not adequately address conflicting objectives.

This paper investigates conflicting objectives in MSP and proposes three algorithms to mitigate these
conflicts. Our approach demonstrates a significant improvement over baseline methods, highlighting
the effectiveness of multi-objective optimization in multilingual MSP tasks.

2Definition of the conflict-avoidant dynamic update direction is provided in Section 3

2



3 Unifying Multi-Objective Optimization Training Methods

In this section, we introduce multi-objective optimization, its optimality condition, discuss three
problem formulations, and present the corresponding algorithms to solve these problems.

3.1 Multi-objective optimization: a primer

Multi-objective optimization aims to learn a model that simultaneously optimizes multiple conflicting
objectives, which can represent different tasks or learning metrics [36, 9]. Let Θ ∈ Rq denote
the model parameter. Given M objectives with each denoted as ℓm(Θ), for m ∈ [M ], the general
multi-objective optimization problem is to solve

min
Θ∈Rq

L(Θ) := [ℓ1(Θ), . . . , ℓM (Θ)] . (1)

Since optimizing multiple objectives simultaneously is often challenging, understanding the notion
of conflict is crucial, which is defined below.
Definition 3.1 (Gradient conflict). For any pair i, j ∈ [M ], let ℓi(Θ) and ℓj(Θ) be the loss functions
for two different languages or MSP tasks, parameterized by Θ. We say a gradient conflict exists if
cos(∇Θℓi,∇Θℓj) < 0, where cos(·) is the cosine similarity function.

The definition of gradient conflict indicates that improving one objective along its gradient degrades
the other, necessitating trade-offs for balanced optimization. Next we introduce the necessary
optimality condition for multi-objective optimization.
Definition 3.2 (Pareto stationary). A model Θ is Pareto stationary if there exists λ ∈ ∆M := {λ ∈
RM | 1⊤λ = 1, λ ≥ 0} such that ∇L(Θ)λ = 0, which is equivalent to minλ∈∆M ∥∇L(Θ)λ∥ = 0.

Figure 1: An overview of the objective soup and the three recipes.

We denote the model parameters by
Θ := {θ, ϕ}, where θ is the pa-
rameter of the backbone and ϕ is
for a language/task-dependent layer;
see an illustration in Figure 2. Be-
fore formulating the multi-objective
problems, we specify the objectives.

Objectives of self-supervised and su-
pervised training. For pre-training
shared backbone parameters θ, we em-
ploy the Contrastive Predictive Cod-
ing (CPC) loss ℓu(θ) [41] for self-
supervised training to learn good
language-agnostic acoustic features. For language and task specific parameters ϕt,n, we use su-
pervised loss, ℓs(θ, ϕt,n), where t ∈ [T ] and n ∈ [N ] represent different languages and tasks,
respectively. This can be either the CTC loss ℓctc(θ, ϕ) [23] for transcription and the cross-entropy
loss ℓce(θ, ϕ) for translation.

Figure 2: Multi-head conformer model.

A set of self-supervised losses and
multiple supervised losses form the
objectives for multilingual MSP. The
use of self-supervised loss during the
supervised training restricts the search
region to a neighborhood of models
with good representation capability
that continues to intersect the Pareto
set [47, 16]. This neighborhood refers
to the sublevel set Rδ := {θ :
ℓu(θ) ≤ ℓ⋆u+δ} of the self-supervised
loss around its minimum ℓ⋆u := minθ ℓu(θ), which keeps the encoder’s invariances intact. Opera-
tionally, we do not project onto Rδ . Instead, our update uses a penalty term η

(
ℓu(θ)− ℓ⋆u

)
to enforce

the constraint and bias the iterates to remain near Rδ . This corresponds to the ε-constraint viewpoint
in multi-objective optimization [39, §3.2], where increasing η approximates restricting the feasible
set to Rδ . We then jointly optimize the self-supervised and supervised multi-lingual multi-task losses
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using the proposed objective soup approach. Specifically, we propose three different recipes that use a
different hierarchical modeling of the objectives, placing different objectives at different optimization
levels. See Figure 1 and a detailed discussion thereafter.

Note that for MSP, we can represent all the objectives as a vector L(Θ) containing both self-supervised
loss and supervised losses from different languages and tasks such as multilingual speech recognition
and translation, where Θ := {θ, ϕ1,1, · · · , ϕT,N}; that is, L(Θ) := [ℓs(θ, ϕ1,1), . . . , ℓs(θ, ϕT,N )].

To encourage Pareto stationarity for objectives of different MSP variants, we can employ either static
or dynamic weighting multi-objective optimization methods.

Limitation of static weighting. In static weighting, we optimize the (weighted) average of the
multiple objectives [32, 59]. This method is simple but may suffer from conflicting objectives where
gradients have conflicting directions. For instance, considering ℓt,n(Θ) = ℓs(θ, ϕt,n) + ηℓu(θ) and
ℓt′,n′(Θ) = ℓs(θ, ϕt′,n′) + ηℓu(θ) two objectives having conflicting directions, (t, t′) ∈ [T ] and
(n, n′) ∈ [N ], then ⟨∇Θℓt,n(Θ),∇Θℓt′,n′(Θ)⟩ < 0.

Proposed dynamic weighting. To avoid conflicting directions, we can employ a dynamic weighting
method that uses dynamically weighted gradients from individual objectives to avoid conflict and
enables optimization in a conflict-avoiding (CA) direction [9]. Specifically, a CA direction d is the
steepest common descent direction that maximizes the worst descent, given by

d(Θ) = argmax
d

min
λ∈∆NT

−⟨∇L(Θ)λ, d⟩ − 1

2
||d||2. (2)

By reformulation, such a direction is equal to dynamically weighted gradients of different objec-
tives [9], given by d(Θ) = −∇L(Θ)λ∗(Θ) with weight λ∗(Θ) computed by

λ∗(Θ) = argmin
λ∈∆NT

∥∇L(Θ)λ∥2. (3)

However, finding the true gradients of ∇L(Θ) is computationally expensive. Hence, we employ a
stochastic variant of MGDA, the MoDo algorithm [9], which obtains an unbiased stochastic gradient
estimate for (3) via a double sampling technique.

At each iteration k, denote ξk1 and ξk2 as two independent samples from the labeled dataset D, and
∇ℓ(ξk1 ; Θ

k) and ∇ℓ(ξk2 ; Θ
k) as the stochastic gradients. We leverage the MoDo update in [9] by

λk+1 = Π∆NT

(
λk − γk

(
∇L(ξk1 ; Θk)⊤∇L(ξk2 ; Θk)

)
λk
)

(4)

where γk is the step size, Π∆NT (·) denotes the projection to ∆NT ; see a summary in Table 1.

Having introduced the basics of multi-objective optimization, we formulate the three multi-objective
MSP problems and define their corresponding parameter update rules. For brevity, we consider only
the three objectives mentioned above; the generalized formulation is provided in the Appendix B.

3.2 Vectorized single-level MSP (VS-MSP)

In this formulation, we treat all objectives as a single-level vectorized objective without any lower-
level constraints. Hence, the problem formulation is:

min
Θ∈Rq

L(Θ) :=
[
ℓctc(θ, ϕ1,1), ℓce(θ, ϕ1,2)︸ ︷︷ ︸

1-st language with 2 tasks

, . . . , ℓctc(θ, ϕT,1), ℓce(θ, ϕT,2)︸ ︷︷ ︸
T -th language with 2 tasks

, ℓu(θ)
]
. (5)

For single vectorized objective training, we can optimize the vectorized objectives using Algorithm 1
in Appendix B where the shared backbone parameters are updated using

θk+1=θk − α

T∑
t=1

λk
t,ctc∇θℓctc(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,ce∇θℓce(θ

k, ϕk
t,2)− αλk

u∇θℓu(θ
k) (6)

where α>0 is the learning rate for the backbone parameters, and λk
t,ctc and λk

t,ce, which represent
the dynamic weights for speech recognition and translation objectives, are computed using the MoDo
algorithm [9]. Here, λk

u is the dynamic update direction for the self-supervised objective, ℓu, with∑T
t=1 λ

k
t,ctc +

∑T
t=1 λ

k
t,ce + λk

u = 1. Similarly, by taking the gradients of each supervised objective
with respect to task-specific output heads, the task-specific parameters are updated via

ϕk+1
t,1 = ϕk

t,1 − β∇ϕℓctc(ϕ
k
t,1, θ

k) and ϕk+1
t,2 = ϕk

t,2 − β∇ϕℓce(ϕ
k
t,2, θ

k) (7)
where β>0 is the learning rate of the task-specific parameter.
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3.3 Vectorized objectives with lower-level constraint for MSP (VC-MSP)

To mitigate the challenge of conflicting objectives and reduce the search space for an optimal
Pareto stationary point, incorporating a suitable lower-level constraint, ℓu(θ), can be beneficial [39].
However, ℓu(θ) must satisfy an essential property: its gradient update direction should exhibit
minimal conflict with the upper-level objectives. When such alignment holds, the constraint restricts
the feasible region to a representation-preserving neighborhood that still intersects the Pareto set
and admits a common descent direction for gradient-based solvers. If the lower-level objectives are
strongly conflicting, the constraint does not aid optimization. In this context, we incorporate the
self-supervised loss as a lower-level constraint, as it exhibits this desirable property (see Appendix
E). This approach helps align the gradient directions and maintain a feasible optimization region,
ultimately enhancing overall performance. By constraining the self-supervised loss to be smaller than
a threshold ε, our VC-MSP method can be formulated as

min
Θ∈Rq

L(Θ) :=
[
ℓctc(θ, ϕ1,1), ℓce(θ, ϕ1,2)︸ ︷︷ ︸

1-st language with 2 tasks

, . . . , ℓctc(θ, ϕT,1), ℓce(θ, ϕT,2)︸ ︷︷ ︸
T -th language with 2 tasks

]
(8a)

s.t. ℓu(θ)−min
θ′

ℓu(θ
′) ≤ ε. (8b)

This formulation minimizes the vector of supervised losses L(Θ) subject to the constraint ℓu(θ)−ℓ⋆u ≤
ε, where ℓ⋆u := minθ ℓu(θ). The ε–constraint defines the feasible region for the supervised objectives.
We optimize this constrained problem via its penalized first–order realization (see Eq. (15)), which
targets Pareto–stationary solutions for the constrained setting—i.e., limit points at which no feasible
common descent direction exists that decreases all supervised objectives simultaneously [39]. Em-
pirically, placing the self–supervised objective at the lower level and ASR/translation at the upper
level yields the best validation performance in our setting. This observation motivates the VC–MSP
algorithm: we separate the self–supervised objective from the supervised ones and optimize them at
the lower and upper levels, respectively, using a single training loop with a penalty schedule.

To train a model using the VC-MSP algorithm, the backbone θ is updated via

θk+1 = θk − α

T∑
t=1

λk
t,ctc∇θℓctc(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,ce∇θℓce(θ

k, ϕk
t,2)− αη∇θℓu(θ

k) (9)

where
∑T

t=1 λ
k
t,ctc +

∑T
t=1 λ

k
t,ce = 1. To update task-specific heads, we use (7); see Algorithm 2.

3.4 Vectorized multilevel MSP (VM-MSP)

Method Backbone update rule

VS-MSP θk+1 = θk − α

 ∑
t,n

λ
(k)
t,n∇θℓn + λ

(k)
u ∇θℓu


VC-MSP θk+1 = θk − α

 ∑
t,n

λ
(k)
t,n∇θℓn + η∇θℓu


VM-MSP θk+1 = θk − α

 ∑
t,n∈T1

λ
(k)
t,n∇θℓn + η1

∑
t,n∈T2

λ
(k)
t,n∇θℓn + η∇θℓu


Table 1: The red boxes represent updates for the objectives with gradient
conflict mitigation, the blue box represents the update for the supervised
objective as the penalty terms, the teal boxes represent updates for the self-
supervised objective as a penalty term.

Building upon the VC-MSP
formulation, we introduce
VM-MSP, a multilevel MSP
algorithm. With VM-MSP,
we aim to explore whether
extending our VC-MSP algo-
rithm into a multi-level opti-
mization based on tasks and
languages offers advantages
and mitigates the risk of being
trapped in sub-optimal Pareto
stationary points. In multi-
level optimization, it follows
a hierarchical structure, with
decisions made at different levels within the hierarchy. The problem formulation for multilevel MSP
optimization can be expressed as follows:

min
Φ1∈RT ,Φ∗

2 ,θ
Lctc(Φ1,Φ

∗
2, θ)

s.t. Φ∗
2 = argmin

Φ2∈RT ,θ

Lce(Φ1,Φ2, θ)

s.t. ℓu(θ)−min
θ′

ℓu(θ
′) ≤ ε

(10)
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where Φ1 := {ϕ1,1, . . . , ϕT,1} and Φ2 := {ϕ1,2, . . . , ϕT,2}.

In VM-MSP, training is performed at multiple levels with feedback across different levels. Specifically,
we update the backbone parameters θ via

θk+1 = θk − α

(
T∑

t=1

λk
t,ctc∇θℓctc(θ

k, ϕk
t,ctc) + η1

T∑
t=1

λk
t,ce∇θℓce(θ

k, ϕk
t,ce) + η∇θℓu(θ

k)

)
(11)

where η1 and η are penalty parameters, with η1 controlling the relative influence of the translation
loss with respect to the ASR loss, and η controlling the influence of the self-supervised loss as a
lower-level constraint in the multilevel optimization. Here,

∑T
t=1 λt,ctc = 1 and

∑T
t=1 λt,ce = 1. We

update task-specific classification parameters using (7); see a summary in Algorithm 3 of Appendix
F. Note that in this formulation, the unsupervised loss is optimized first, followed by the translation
objective, and then the ASR objective. We can also change the optimization order; the unsupervised
objective is optimized first, followed by the ASR objective, and then translation.
Remark 3.3. For multilevel optimization, objectives are prioritized based on their importance. In VM-
MSP, this includes task-based and language-based multilevel optimization. Task-based multilevel
optimization experiments with speech recognition and translation, alternating their primary and
secondary levels. Language-based multilevel optimization involves English (LibriSpeech) and
Chinese (AISHELL), alternating their primary and secondary levels.

To update the backbone parameters, θ, and task-specific parameters, ϕ, in the three algorithms, we
use first-order gradient-based updates. A summary is provided in Table 1 with detailed descriptions
and derivations deferred to Appendix B.

4 Experimental Results and Findings

In this section, we compare our three proposed MSP algorithms with several baselines: two-stage
training (pre-training then fine-tuning), static weighting (fine-tuning with tuned loss weights), and
joint (bilevel) training. Our goal is to identify the most effective method for resolving conflicting
objectives, thereby avoiding the risk of the model getting stuck in a suboptimal Pareto stationary
point. We analyze speech recognition and translation performance in a multilingual setup using
the CoVoST 2 dataset, selecting five languages for speech recognition (English (En), French (Fr),
German (De), Spanish (Es), Catalan (Ca)) and four for translation (Fr, De, Es, Ca). Additionally,
we conduct experiments with a combination of the LibriSpeech and AISHELL datasets. Our results
consistently demonstrate that our approaches outperform the baselines, confirming their effectiveness
in achieving superior speech recognition and translation performance.

Models and hyper-parameters: In our experiments, we evaluate three encoder–decoder architec-
tures: Conformer + Transformer decoder. Conformer [26] A uses 12 Conformer blocks with a model
dimension of d = 612 and H = 12 attention heads (head size 51); Conformer B uses 8 Conformer
blocks with d = 512 and H = 8 heads (head size 64). Both employ a convolutional kernel of size
31. Each model includes a speech recognition classification head consisting of a dropout layer (rate
δ = 0.1) followed by a linear projection to the speech recognition vocabulary size VASR, producing
logits that are trained with the CTC loss. The translation component is a standard Transformer
decoder with Le = 3 encoder layers and Ld = 3 decoder layers, model dimension d matching the
Conformer encoder (612 for A, 512 for B), H = 12 or 8 attention heads, feed-forward dimension
dff = 2048, dropout rate δ = 0.1, and learned token embeddings of size d. The output logits over the
translation vocabulary VST are trained with cross-entropy loss.

Whisper-medium. We adopt the medium-sized Whisper model [43] (24 encoder layers, 12 decoder
layers, d = 1024, H = 16, and a feed-forward dimension of 4096). Its encoder processes input audio
into hidden representations, while its decoder performs autoregressive decoding for both speech
recognition and translation tasks, trained with cross-entropy loss over the output vocabulary.

All models are trained with the AdamW optimizer, using a backbone learning rate of α = 5× 10−5

and a head/decoder learning rate of β = 5× 10−4. For VC-MSP, the bilevel penalty is initialized
to η = 0 and increased by 0.02 each epoch. For VM-MSP, we set η1 = 0.1 and η2 = 0, with each
being incremented by 0.02 per epoch.

Training time and memory complexity: Table 5 reports the GPU memory footprint and per-
epoch training time for the baseline two-stage pipeline and our MSP variants. Introducing dynamic
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Table 2: Speech recognition and translation on CoVoST-2 using Conformer models comparing two-stage,
two-stage static, joint training, VS-MSP, VC-MSP, and VM-MSP.

Task
Param Lang Two-stage

training
Two-stage

static
Joint

training
VS-
MSP

VC-
MSP

VM-MSP
UAS

VM-MSP
USA

VM-MSP
(Efficient)

Speech recognition (WER ↓)
(150 M)

En 22.2% 22.2% 21.3% 21.1% 20.6% 19.7% 19.9% 19.6%
Fr 23.8% 23.6% 22.9% 23.1% 22.6% 21.8% 22.1% 21.7%
De 16.7% 16.6% 16.1% 16.0% 15.3% 14.6% 14.9% 14.7%
Es 18.8% 18.9% 18.2% 18.4% 17.7% 17.0% 17.2% 16.9%
Ca 21.2% 21.0% 20.5% 20.3% 19.8% 19.1% 19.3% 19.3%

Ave. 20.5% 20.4% 19.8% 19.7% 19.2% 18.4% 18.7% 18.4 %

Speech recognition (WER ↓)
(83 M)

En 28.6% 28.4% 27.8% 27.9% 27.3% 26.9% 27.2% 26.8%
Fr 26.1% 26.0% 25.3% 25.1% 24.5% 24.1% 24.3% 24.3%
De 22.5% 22.6% 22.0% 22.2% 21.6% 21.2% 21.5% 20.9%
Es 23.9% 23.8% 23.1% 23.3% 22.6% 22.1% 22.3% 22.2%
Ca 25.2% 25.0% 24.6% 24.8% 24.2% 23.8% 24.1% 23.9%

Ave. 25.3% 25.1% 24.5% 24.6% 24.0% 23.6% 23.9% 23.6 %

Translation (BLEU ↑)
(150 M)

Fr→En 27.2 27.4 28.1 28.3 28.9 29.5 29.6 29.4
De→En 26.9 27.1 27.9 27.7 28.2 28.5 28.7 28.5
Es→En 29.1 29.3 30.2 30.0 30.9 31.3 31.6 31.5
Ca→En 22.7 22.6 23.8 23.6 24.5 25.4 25.8 25.6

Ave. 26.5 26.6 27.5 27.4 28.1 28.7 28.9 28.8

Translation (BLEU ↑)
(83 M)

Fr→En 24.2 23.5 24.1 23.9 25.8 26.5 26.6 26.4
De→En 22.4 22.6 23.3 23.0 23.9 24.5 24.7 24.4
Es→En 24.6 24.5 25.1 24.8 25.6 26.1 26.5 26.8
Ca→En 19.7 19.5 20.2 20.5 20.8 21.3 21.6 21.4

Ave. 22.7 22.5 23.2 23.1 24.0 24.6 24.9 24.8

Table 3: Speech recognition and translation on CoVoST-2 and Whisper-medium model comparing two-stage,
two-stage static, joint training, VS-MSP, VC-MSP, and VM-MSP.

Task Lang /
Lang→Eng

Two-stage
training

Two-stage
static

Joint
training

VS-
MSP

VC-
MSP

VM-MSP
UAS

VM-MSP
USA

VM-MSP
(Efficient)

Speech recognition
(WER↓)

En 15.9% 15.8% 15.2% 15.6% 14.9% 14.3% 14.6% 14.3%
Fr 21.7% 21.7% 21.1% 21.5% 20.6% 20.1% 20.4% 20.2%
De 10.4% 10.2% 9.3% 10.1% 8.9% 8.2% 8.5% 8.0%
Es 14.1% 14.2% 13.5% 13.9% 12.8% 12.3% 12.4% 12.2%
Ca 17.5% 17.3% 16.7% 16.9% 16.6% 15.9% 16.2% 16.0%

Ave. 15.9% 15.8% 15.1% 15.6% 14.7% 14.1% 14.4% 14.1%

Translation
(BLEU ↑)

Fr→ En 33.3 33.3 34.1 33.9 34.5 34.8 35.0 35.1
De→ En 33.2 33.4 34.2 34.0 34.7 35.1 35.4 35.2
Es→ En 37.3 37.4 37.9 38.2 38.6 39.0 39.1 39.0
Ca→ En 28.8 28.9 29.5 29.8 30.3 30.8 31.1 30.9

Ave. 33.1 33.3 33.9 34.0 34.5 34.9 35.2 35.1

weighting increases memory usage from 12.5 GB to 14.7 GB (∼18%) and extends each epoch by 0.6
hours, from 3.5 h to 4.1 h (∼17%), due to additional gradient computations. In contrast, the efficient
MSP variant—which restricts dynamic weight calculations to only the layers exhibiting gradient
conflicts—limits overhead to just 0.3 GB and 0.2 h per epoch while preserving performance (see
Appendix D). Moreover, our MSP framework scales gracefully with more tasks, reducing deployment
resource demands by consolidating all objectives into a single model (see Appendix I).

Based on our experiments, we summarize our observations in the following sections.

4.1 Conflicting speech recognition and translation objectives

Presence of multiple conflicting objectives degrades the model’s performance. In this section,
we investigate the effect of conflicting objectives on model performance using two algorithmic
settings—pre-training+fine-tuning and VS-MSP—across different model sizes. In Figure 3, we
present the cosine similarities between the supervised gradient vectors for five languages and the
self-supervised gradient used in speech recognition and translation. The accompanying heat map
visualizes these similarity scores, highlighting which objectives align strongly (high similarity) and
which diverge. As shown, objectives with lower similarity measures tend to conflict more intensely,
whereas the self-supervised gradients exhibit markedly higher alignment with the other objectives.
We further investigate the presence of conflicting objectives in MSP in Appendix E.
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Table 4: Speech recognition and translation on CoVoST-2 using a Conformer model with penalty increase rates
of 0.002 vs. 0.02 per epoch.

Task Lang /
Lang→Eng

Two-stage
training

VM-MSP
UAS (IR=.02)

VM-MSP
USA (IR=.02)

VM-MSP
UAS (IR=.002)

VM-MSP
USA (IR=.002)

Speech recognition (83 M)
(WER ↓)

En 28.6% 26.9% 27.2% 28.9% 26.3%
Fr 26.1% 24.1% 24.3% 26.4% 23.8%
De 22.5% 21.2% 21.5% 22.8% 20.5%
Es 23.9% 22.1% 22.3% 24.1% 21.7%
Ca 25.2% 23.8% 24.1% 25.5% 23.2%

Ave. 25.3% 23.6% 23.9% 25.5% 23.1%

Translation (83 M)
(BLEU ↑)

Fr→En 24.2 26.5 26.6 26.9 24.9
De→En 22.4 24.5 24.7 25.3 22.8
Es→En 24.6 26.1 26.5 26.7 25.3
Ca→En 19.7 21.3 21.6 22.1 20.1

Ave. 22.7 24.6 24.9 25.3 23.3

As shown in Table 2 and Table 3, the VS-MSP method consistently outperforms the two-stage method.
The key difference between these two approaches is the use of multi-objective optimization. This
result suggests the presence of conflicts among the speech recognition and translation objectives and
highlights the effectiveness of multi-objective optimization in addressing these conflicts.

4.2 Enhancing performance with multilevel optimization

Multilevel optimization significantly improves MSP performance by effectively balancing
learning objectives and narrowing the search for optimal Pareto stationary points. This section
examines the impact of multilevel optimization on MSP performance. We tested two optimization
sequences: UAS (self-supervised → speech recognition → translation) and USA (self-supervised →
translation → recognition). In the UAS sequence, the unsupervised loss is optimized first, followed
by the ASR objective, and then the translation objective. Conversely, for the USA sequence, the
unsupervised objective is optimized first, followed by the translation objective and then the ASR one.

Figure 3: Heat-map of Cosine similarities among ASR
and speech translation objectives.

SPEECH RECOGNITION: Tables 2 and 3 show
that VM-MSP consistently achieves the low-
est WER across all languages and model sizes.
On the 150 M-parameter Conformer, VM-MSP
(USA) reduces WER by 10.2% versus two-stage
training and by 4.2% versus VC-MSP. Likewise,
on Whisper, VM-MSP (UAS) outperforms two-
stage training by 11.3% and VC-MSP by 4.1%.
These gains confirm the effectiveness of VM-
MSP’s multilevel optimization.

TRANSLATION: Tables 2 and 3 show VM-MSP
has the highest BLEU scores. On the 150 M-
parameter Conformer, VM-MSP (USA) boosts
BLEU by 9.1% over two-stage training and 2.8%
over VC-MSP. On Whisper, it gains 6.4% over
two-stage and 2.0% over VC-MSP. These results
underscore VM-MSP’s robustness in translation
tasks. We observe similar performance gains
with the smaller Conformer model and other models3

4.3 Optimization order in multilevel optimization
The order of optimization impacts MSP accuracy in Multilevel optimization. In this section, we
investigate the significance of optimization order in multilevel optimization for MSP. By comparing
the performance of different MSP algorithms under varying optimization sequences (UAS and USA),
we aim to elucidate how the order of optimization affects MSP performance.

From the results in Table 2 and Table 3, we observe that the UAS optimization sequence consistently
yields superior recognition performance compared to USA. This finding indicates the importance of

3Additional results using BEST-RQ and Wav2Vec2 are presented in Appendix H (Tables 8, 9).
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(a) Epoch 10 (b) Epoch 20 (c) Epoch 30

Figure 4: During two-stage training (without multi-objective optimization), the Conformer model exhibits
persistent gradient conflicts in the same layers.

prioritizing certain objectives during the training process and highlights the crucial role of optimization
order when designing multilevel optimization algorithms for MSP.

4.4 Effect of penalty parameter

Table 5: Resource comparison per epoch

Model GPU
Memory (GB)

Time
(h/epoch)

Two-stage 12.5 3.5
MSP (dynamic weighting) 14.7 4.1
MSP (Efficient) 12.8 3.7

Penalty parameters play a crucial role
in multilevel MSP training. In penalty-
based multilevel problems, selecting the
appropriate penalty parameter is crucial.
These methods prioritize upper-level ob-
jectives while controlling lower-level ob-
jectives through a penalty term. Using a
smaller penalty parameter can weaken con-
straint enforcement, causing suboptimal
lower-level performance, slower convergence, and imbalanced optimization [49]. This is evident
in our MSP experiments. We further conducted experiments following the same training procedure
as other simulations, using a 83M parameter model with two different penalty parameter increase
rates. A lower increase rate of 0.002, capped at 1.5, resulted in worse WER for lower-level tasks,
as shown in Table 4. Given the equal importance of speech recognition and translation objectives
in our study, we applied a larger penalty parameter increase rate of 0.02 for the lower levels, with a
final value capped at 1.5. This adjustment improved lower-level performance but slightly degraded
upper-level performance. Therefore, selecting the penalty parameter requires careful consideration
of the trade-offs between upper- and lower-level priorities. A detailed explanation of this selection
process is provided in Appendix H.

4.5 Our observations across different model sizes
Our observations are consistent across different model sizes. We assess the consistency of our
observations across different model sizes. Results from Tables 2 and 3 confirm the reliability and
generalizability of our findings, offering insights for scalable ASR system design.

SPEECH RECOGNITION. From Tables 2 and 3, we observed that the two-stage approach achieved
competitive performance across all languages. The VS-MSP method consistently outperformed the
two-stage method, and the VC-MSP model demonstrated even better performance. The most notable
finding, however, is the performance of the VM-MSP, which exhibited significant improvements.
Specifically, the VM-MSP model optimized with the UAS objective sequence achieved the lowest
average WER, demonstrating its effectiveness in leveraging unlabeled data. These observations hold
true for both the Whisper and Wav2Vec2 models.

TRANSLATION. Tables 2 and 3 illustrate the translation comparison for different models. Similar to
speech recognition findings, the two-stage approach demonstrated competitive performance across
all language pairs. The VS-MSP model consistently outperformed other algorithms in the translation
task. Interestingly, the VM-MSP model optimized with the USA objective sequence achieved the
highest average BLEU, outperforming other algorithms.

4.6 Consistent observations in language-based multilevel optimization

To verify our findings, we conducted experiments in both task-based and language-based multilevel
settings using Conformer models (100 M and 58 M parameters) with comparable hyperparameters
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on the LibriSpeech and AISHELL datasets. For the language-based multilevel MSP evaluation,
we combined both datasets to focus exclusively on speech recognition. The results (Appendix
Table 7) exhibit the same pattern as our task-based optimization experiments, further confirming the
effectiveness of the proposed algorithms.

4.7 Efficient calculation of the dynamic update direction

Figure 5: Percentage of conflicting layers.

Focusing only on the gradients of conflicting lay-
ers when computing the update direction im-
proves efficiency without degrading performance.
Our layer-wise analysis (Figure 5) reveals a stable
pattern: only 20–30% of backbone layers—primarily
the early encoder blocks that encode low-level acous-
tic cues—consistently display large negative cosine
similarities, whereas deeper blocks, which model
higher-level and more language-agnostic abstractions,
exhibit no conflict. Leveraging this observation—and
in line with [50]—we apply a lightweight conflict-
based pruning strategy that, after detecting the con-
flicting layers in the first 20 epochs, limits the dy-
namic update-direction computation to their gradi-
ents. This selective scheme shrinks GPU memory
from 14.7 GB to 12.8 GB and shortens training time
from 4.1 h to 3.7 h per epoch (Table 5) while preserving final performance (see VM-MSP (Efficient)
in Tables 2 and 3). Full implementation details are provided in Appendix D.

5 Conclusions and Limitations

In conclusion, our study highlights the substantial advantages of integrating self-supervised loss as
a constraining objective within a multilevel multi-objective optimization structure for multilingual
multi-task speech processing. Our findings indicate that segregating highly conflicting objectives
into different optimization levels yields significant benefits for speech recognition and translation
tasks. This approach not only enhances the effectiveness of multi-objective optimization but also
underscores its potential for optimizing complex tasks across diverse linguistic boundaries.

Our evaluation focused on architectures that exhibit a clear separation between shared and task-
specific parameters—for example, a shared encoder followed by distinct classification heads for
ASR and translation. This architectural pattern is common in speech processing, but how the
method generalizes to more tightly coupled architectures—such as models with a unified decoder
shared across tasks—remains an open question. In such cases, task-specific conflicts may propagate
more deeply through shared components, potentially requiring alternative optimization strategies or
additional regularization. Investigating these scenarios is a promising direction for future research.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Codes are included with the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We included WERs and BLEU scores.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper discusses the effect of conflicting objectives during the training of a
multilingual, multitask speech-processing model, which has no direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper has no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Codes are included with the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Related Work

In this section, we provide a comprehensive review of existing works on multi-objective optimization,
multilingual speech recognition, translation, and multi-task learning for speech processing.

Multi-objective optimization aims to optimize multiple, often conflicting, objectives simultaneously
and has been applied in various domains including engineering [12], finance [18], and decision
making [17]. Multi-objective optimization has also been used for solving lexicographic multi-
objective problems [38, 51] and speech processing. In previous work, multi-objective optimization
has been applied at the system development level, using evolutionary strategies to jointly optimize
recognition accuracy and model size by tuning meta-parameters such as model topology and training
configuration [40]. In contrast, our work focuses on loss-level conflicts during the training of
multilingual and multitask models, where multiple learning signals interact within a shared backbone.

Multilingual speech recognition and translation. Early studies in multilingual ASR employed
deep neural networks, hidden Markov models, and multilayer perceptrons [27, 54, 56, 22]. The
introduction of LSTM models brought significant improvements to multilingual speech recognition
[24, 62]. Subsequently, Seq2Seq models with hybrid attention/CTC algorithms and transformer-based
architectures emerged as state-of-the-art [58, 55, 61]. For multilingual translation, transformer-based
models with self-supervised pre-training have been widely adopted [35, 6, 45]. However, existing
approaches often lack the capability to effectively perform multi-tasking across diverse speech-related
tasks. These efforts remain orthogonal to our proposed multi-objective optimization algorithms and
can potentially benefit from their integration.

Multi-task Learning for Speech Recognition. Multi-task learning for joint speech recognition
and translation has been explored with limited success. Early attempts introduced algorithms for
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Notation Description
Θ ∈ Rq Model parameter including backbone and classification head parameter.
θ ∈ Rs Backbone parameter.
θk ∈ Rs Backbone parameter at k-th iteration.
θ∗ ∈ Rs Optimum backbone parameter.
ϕ ∈ Rr Parameter of the task-specific classification head.
ϕt,n ∈ Rr Classification head parameter of n-th task and t-th language.
ϕk
t,n ∈ Rr Classification head parameter of n-th task and t-th language at k-th

iteration.
ϕp ∈ Rr A group of all classification head parameters of level p.
ϕ∗ ∈ Rr Optimum parameter of the task-specific classification head.
L Vector of all objectives.
Lη Vector of all objectives with penalized lower-level constrained objective

used for VC-MSP method.
Lp Vector of all objectives in level p used for VM-MSP method.
ℓm,m ∈ [M ] m-th objective.
ℓs supervised loss with supervised data.
ℓu self-supervised loss.
t ∈ [T ] Represents a specific language (For example: English, German, etc.).
n ∈ [N ] Represents a specific task (For example: speech recognition or transla-

tion.).
k ∈ [K] Current iteration number.
p ∈ [P ] Optimization level.
ε Constraint defines the feasible region for the upper-level objectives
d Conflict-avoiding update direction.
γ Learning rate of λ update.
α Learning rate of backbone parameter.
β Learning rate of task-specific classification parameter.
λ Dynamic weight to combine the gradient.
λk Dynamic weight at k-th iteration.
λk
u Dynamic weight of self-supervised objective at k-th iteration.

λk
t,n Dynamic weight of n-th task and t-th language at k-th iteration.

λ∗ Optimum dynamic weight to combine the gradient.
ηp−1, p ≥ 2 Penalty parameter of p-th level of multilevel optimization (VM-MSP).
η = ηp × ηp−1 Combined penalty constant for the lowest level (VM-MSP).
ζk Stochastic unlabeled sample during training at iteration k.
ξk Stochastic labeled sample during training at iteration k.
D Labeled dataset.

Table 6: List of notations used in this paper

joint speech recognition and translation decoding [1] and intermediate word embeddings with two-
stage models [15, 52]. Transformer-based dual encoder-decoder architectures were also developed,
featuring separate decoders for speech recognition and translation tasks [33]. Whisper [43] demon-
strated the potential of large-scale multitask models, while Mu2SLAM [13] leveraged cross-modality
learning across multilingual and supervised subtasks. Joint pre-training and fine-tuning approaches
have also been proposed to simplify training [5, 47, 53]. Despite these advancements, most methods
rely on static weighting strategies or constrained optimization, which do not explicitly address the
challenges posed by conflicting objectives. This can lead to suboptimal performance when tasks
inherently conflict.

B Algorithm Development

After formalizing three training algorithms in Section 3, our subsequent objective is to devise a
gradient-based algorithm capable of addressing large-scale, high-dimensional multilingual multi-task
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challenges by providing an update rule that converges to Pareto-stationary solutions. We will focus
on the algorithm development of VC-MSP, as this can be easily extended to the other two methods
(VS-MSP, VM-MSP). To achieve a gradient-based algorithm for VC-MSP that can avoid conflicting
update directions, we leverage recent advances in unconstrained multi-objective optimization [9] and
employ a penalty-based approach to convert the constrained multi-objective optimization problem
in 8 into an unconstrained multi-objective optimization problem. This approach simultaneously
conducts self-supervised pre-training and supervised multi-objective learning, as in (8); that is,

min
θ∈Rs,ϕ∈Rr

Lη(Θ) :=[ℓs(θ, ϕ1,1) + ηℓu(θ), · · · , ℓs(θ, ϕ1,N ) + ηℓu(θ), . . . , (12)

ℓs(θ, ϕT,1) + ηℓu(θ), · · · , ℓs(θ, ϕT,N ) + ηℓu(θ)]

where η is a penalty parameter. This penalty parameter integrates the self-supervised constrained
objective with the supervised objectives and ensures that the feasible region of the supervised objective
remains within certain bounds.

Parameters update. Using the dynamic weighting and penalization method, we update the backbone
parameters, θ, of the MSP model. Next, we describe the backbone parameters and task-specific
classification parameters update rules for VS-MSP, VC-MSP, and VM-MSP.

VS-MSP. For single vectorized objective training, we only need to consider if the objectives have
conflicting update directions. As in multilingual multi-task training, we are using separate language
datasets; we can assume that the objectives have conflicting update directions. We can also prove this
assumption by calculating ⟨∇Θℓt,n(Θ),∇Θℓt′,n′(Θ)⟩ < 0. We optimize these vectorized objectives
using the algorithm: 1 where the shared backbone parameters are updated via

θk+1 = θk − α

T∑
t=1

N∑
n=1

λk
t,n∇θℓs(θ

k, ϕk
t,n)− αλu∇θℓu(θ

k). (13)

In this context, α> 0 denotes the learning rate specifically assigned to the backbone parameters.
Moreover, λk

t,n and λu represent the dynamic update directions for supervised and self-supervised
objectives, respectively, which are computed using the MoDo algorithm. Similarly, taking the
gradients of each of the supervised objective functions with respect to the parameters of task-specific
output heads, task-specific output layers are updated via,

ϕk+1
t,n = ϕk

t,n − β∇ϕℓs(ϕ
k
t,n, θ

k) (14)

where β>0 is the learning rate for the task-specific parameter.

VC-MSP. To train a model using the VC-MSP algorithm, the backbone parameters θ are updated via

θk+1 = θk − α

T∑
t=1

N∑
n=1

λk
t,n∇θℓs(θ

k, ϕk
t,n)− αη∇θℓu(θ

k). (15)

To update task-specific classification heads, we employ (14); see a summary in Algorithm 2.

VM-MSP. In VM-MSP, we separate highly conflicting objectives into distinct optimization levels.
Here, we assume that all objectives at level p function as lower-level objectives for those at level
p− 1. Consequently, we can update the backbone parameters using the penalize method, that is

θk+1 = θk − α

T1∑
t1=1

N1∑
n1=1

λk
t1,n1

∇θℓs(θ
k, ϕk

t1,n1
)− αη2

(
T2∑

t2=1

N2∑
n2=1

λk
t2,n2

∇θℓs(θ
k, ϕk

t2,n2
) + · · · (16)

αηp−1

( Tp∑
tp=1

Np∑
np=1

λk
tp,np

∇θℓs(θ
k, ϕk

tp,np
) + · · ·αηP−1

(
TP∑

tP=1

NP∑
nP=1

λk
tP ,nP

∇θℓs(θ
k, ϕk

tP ,nP
) + αη∇θlu(θ

k)

)))
.

Update task-specific classification parameters using

ϕk+1
tp,np

= ϕk
tp,np

− β∇ϕℓs(ϕ
k
tp,np

, θk) (17)

where Np and Tp represent the total number of tasks and languages at level p, respectively. We
represent the penalty parameter at level p as ηp, and that for the self-supervised objective as η.

24



C Task Specific Formulation and Update Rule

In this section, we will explore in detail the three multi-objective optimization setups in speech
recognition and translation tasks and establish the parameter update rules for each of them.

C.1 VS-MSP for single vectorized objectives

For single vectorized objective training, we only need to consider if the objectives have conflicting
update directions. As in the multilingual multi-task training, we use separate language datasets, so we
can assume that the objectives have conflicting update directions. We can also verify this assumption
by calculating ⟨∇Θℓt,1(Θ),∇Θℓt′,2(Θ)⟩ < 0. We can formulate this single vectorized objective for
ASR and translation tasks following (5) as

min
Θ∈Rq

[ℓs(θ, ϕ1,1), · · · , ℓs(θ, ϕ1,N ), . . . , ℓs(θ, ϕT,1), · · · , ℓs(θ, ϕT,N ), ℓu(θ)]. (18)

As there is no lower-level constraint, we optimize this vectorized objective using Algorithm 1, where
the shared backbone parameters are updated using the following equations

θk+1 = θk − α

T∑
t=1

λk
t,1∇θℓs(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,2∇θℓs(θ

k, ϕk
t,2)− αλk

u∇θℓu(θ
k) (19)

where λt,1 and λt,2 are dynamic update directions for ASR and translation tasks, respectively, and λu

is the dynamic update direction for the self-supervised objective calculated using the MoDo algorithm.
We update the classification heads using

ϕk+1
t,1 = ϕk

t,1 − β∇ϕℓs(ϕ
k
t,1, θ

k). (20a)

ϕk+1
t,2 = ϕk

t,2 − β∇ϕℓs(ϕ
k
t,2, θ

k). (20b)

C.2 VC-MSP for vectorized objectives with constraint lower level

In this setup, we use self-supervised CPC loss, ℓu(θ), as a lower-level constraint to guide optimization
toward a region with good representation and at the same time admits common descent directions for
supervised loss, ℓs(θ, ϕ). The problem formulation for VC-MSP in speech recognition and translation
tasks can be written as follows:

min
Θ∈Rq

[ℓs(θ, ϕ1,1), ℓs(θ, ϕ1,2), . . . , ℓs(θ, ϕT,1), ℓs(θ, ϕT,2)]

s.t. ℓu(θ)−min
θ

ℓu(θ) ≤ ε. (21)

The backbone parameters θ is updated using,

θk+1 = θk − α

T∑
t=1

λk
t,1∇θℓs(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,2∇θℓs(θ

k, ϕk
t,2)− αη∇θℓu(θ

k). (22)

The task specific classification parameters are updated using (20a) and (20b)

C.3 VM-MSP for multilevel ASR optimization

In a multilevel optimization problem, there is a hierarchy of objectives. We can reformulate the
multilingual multi-task ASR optimization task into different multilevel optimization problems based
on the tasks, languages, or language families to which they belong. We study these set-ups and solve
these optimization problems using a penalty-based gradient descent method.

Multilevel optimization based on tasks. We can extend the MSP optimization problem into three
levels based on the tasks: speech recognition, translation, and self-supervised task. We always place
the self-supervised objective at the lowest level and optimize it first, as the optimization of all other
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objectives directly depends on the optimization of the self-supervised objective.
argmin

ϕ1,1,··· ,ϕT,1∈Rr,ϕ∗
1,2,...,ϕ

∗
T,2,θ

∗
Ls(ϕ1,1, ϕ2,1, . . . , ϕ

∗
1,2, ϕ

∗
2,2, · · · , θ∗)

s.t. ϕ∗
1,2, · · · , ϕ∗

T,2 = argmin
ϕ1,2,··· ,ϕT,2∈Rr,θ∗

Ls(ϕ1,1, ϕ2,1, . . . , ϕ1,2, ϕ2,2, · · · , θ∗)

s.t. θ∗ = argmin
θ∈Rs

ℓu(θ).

(23)

We apply a penalty-based method to convert this multilevel multi-objective optimization problem
into a single-level optimization problem and apply dynamic multi-objective optimization to update
the parameters in a conflict-avoiding direction.

θk+1 = θk − α

T∑
t=1

λk
t,1∇θℓs(θ

k, ϕk
t,1)− αη1

(
T∑

t=1

λk
t,2∇θℓs(θ

k, ϕk
t,2) + αη2∇θℓu(θ

k)

)
. (24)

Here, η1 and η2 are penalty parameters. We can combine η1 and η2 and get η = η1 × η2 for
self-supervised loss.

θk+1 = θk − α

T∑
t=1

λk
t,1∇θℓs(θ

k, ϕk
t,1)− αη1

T∑
t=1

λk
t,2∇θℓs(θ

k, ϕk
t,2)− αη∇θℓu(θ

k). (25)

Next, we update the classification heads via

ϕk+1
t,1 = ϕk

t,1 − β∇ϕℓs(ϕ
k
t,1, θ

k). (26a)

ϕk+1
t,2 = ϕk

t,2 − β∇ϕℓs(ϕ
k
t,2, θ

k). (26b)

We provide a detailed algorithm of multilevel ASR optimization in 3. We also do experiments altering
the optimization order of ASR and translation tasks.

Multilevel optimization based on language. We can also extend the ASR optimization problem to
multiple levels based on languages.

argmin
ϕ1,1,ϕ1,2∈Rr,ϕ∗

2,1,ϕ
∗
2,2,...,θ

∗
Ls(ϕ1,1, ϕ1,2, ϕ

∗
2,1, ϕ

∗
2,2, · · · , θ∗)

. . .

s.t. ϕ∗
T,1, ϕ

∗
T,2 = argmin

ϕT,1,ϕT,2∈Rr,θ∗
Ls(ϕ1,1, ϕ1,2, . . . , ϕT,1, ϕT,2, θ

∗)

s.t. θ∗ = argmin
θ∈Rs

ℓu(θ).

(27)

In this setup, we optimize all the objectives of one language in one optimization level and optimize
other languages’ objectives in other optimization levels. For simplicity of implementation, we will
consider two languages. We can update the model parameters using the following penalty-based
update rules.

θk+1 = θk − α

N∑
n=1

λk
1,n∇θlctc(θ

k, ϕk
1,n)− αη1

N∑
n=1

λk
2,n∇θlctc(θ

k, ϕk
2,n)− αη∇θlu(θ

k). (28)

In this equation, η1 and η2 are penalty parameters. We can combine η1 and η2 to obtain η = η1 × η2,
which is used for the self-supervised loss. The parameter N = 2 represents the total number of tasks
(in this experiment, ASR and translation). The terms λk

1,n and λk
2,n represent the dynamic update

directions for languages 1 and 2, respectively, during the k-th iteration for task n.

Next, we update the classification heads via

ϕk+1
t,1 = ϕk

t,1 − β∇ϕℓs(ϕ
k
t,1, θ

k). (29a)

ϕk+1
t,2 = ϕk

t,2 − β∇ϕℓs(ϕ
k
t,2, θ

k). (29b)
In both task-based and language-based MLO, we alter the order of objectives at the optimization
level to examine the effects of their arrangement. By doing so, we can better understand how the
sequence of objectives influences the optimization process and outcomes.
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D Efficient Training

To reduce computational overhead during dynamic update-direction computation, we introduce a
lightweight method for identifying conflicting layers. For each shared encoder layer l, we compute
task-specific gradients G(l)

i and evaluate their pairwise cosine similarities. The cosine similarity
between gradients of tasks i and j at layer l is defined as:

cos θ
(l)
ij =

⟨G(l)
i ,G(l)

j ⟩

∥G(l)
i ∥ · ∥G(l)

j ∥
.

We denote the set of conflicting task pairs at layer l as P(l) := {(i, j) | cos θ(l)ij < 0}. A layer is
considered to be conflicting if the average cosine similarity across all such pairs is negative:

1

|P(l)|
∑

(i,j)∈P(l)

cos θ
(l)
ij < 0.

Only layers meeting this criterion are selected for computing the conflict-avoidance update direction
d. This targeted layer selection substantially reduces training time and memory usage (see Section 4.7
and Table 5), while maintaining the performance gains of multilevel optimization.

E Gradient Conflict

In this setup, we aim to separate highly conflicting objectives into upper and lower optimization
levels. However, a sub-question arises within this setup: which objectives are highly conflicting? To
address this question, we need to establish a boundary or threshold that distinguishes objectives with
significant conflicts. We can create such a threshold by calculating the degree of conflict using the
cosine similarity of the gradients of the objectives. If the cosine similarity of two objectives is smaller
than a certain threshold, they are optimized at different levels. If ∇Θℓt,n(Θ) and ∇Θℓt′,n′(Θ) are
gradients of two objectives, then we can calculate the cosine similarity using

cosω =
⟨∇Θℓt,n(Θ),∇Θℓt′,n′(Θ)⟩
∥∇Θℓt,n(Θ)∥∥∇Θℓt′,n′(Θ)∥

(30)

Figure 6: Scatter plot of cosine similarities between MSP objectives.

where ω is the angle between the gra-
dients of two different objectives. To
calculate the similarity between up-
date directions, we use the same con-
former model and train it using two
different languages and objectives si-
multaneously. We train the model
for 20 epochs using both objectives
and then average the gradients of their
updates separately. We follow the
same process for all languages and
record their average gradients for 20
epochs. We can now calculate the
cosine similarity between the gradi-
ent update direction of two objectives
from these recorded gradients. We
also compare the cosine similarity be-
tween self-supervised and supervised
losses.

In Figure 3 and 6, we depict the cosine similarity of supervised objective gradients across five
languages, along with the self-supervised objective gradient for speech recognition and translation.
The heat map displays the similarity values, while the scatter plot, with points colored by their cluster
assignments, helps visualize which objectives are closely related (high similarity) and which are not.
The size and color of the points represent the similarity values and cluster assignments, respectively.
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Algorithm 1 VS-MSP for multilingual multi-task MSP.

Input: Labeled data (x, y), unlabeled data Xu := {x1
u, x

2
u, · · · , xE

u }, learning rates α and β;
for k = 1 to K do

sample ζk1 = xk
1,u, ζk2 = xk

2,u, ξk1 = (xk
1 , y

k
1 ) and ξk2 = (xk

2 , y
k
2 )

compute ∇ℓu(ζ
k
1 ; θ

k), ∇ℓu(ζ
k
2 ; θ

k), ∇ℓs(ξ
k
1 ; θ

k, ϕk), ∇ℓs(ξ
k
2 ; θ

k, ϕk)
update λk+1 by (4)
update θk+1 by (13)
update ϕk+1

t,n by (14) ∀t ∈ [T ],∀n ∈ [N ]
end for
Output: θK , {ϕK

t,n}

Algorithm 2 VC-MSP for multilingual multi-task MSP

Input: Labeled data (x, y), unlabeled data Xu := {x1
u, x

2
u, · · · , xE

u }, learning rates α, β, and
penalty parameter η;
for k = 1 to K do

sample ζk = xk
u, ξk1 = (xk

1 , y
k
1 ) and ξk2 = (xk

2 , y
k
2 )

compute ∇ℓu(ζ
k; θk), ∇ℓs(ξ

k
1 ; θ

k, ϕk), ∇ℓs(ξ
k
2 ; θ

k, ϕk)
update λk+1 by (4)
update θk+1 by (15)
update ϕk+1

t,n by (14) ∀t ∈ [T ],∀n ∈ [N ]
end for
Output: θK , {ϕK

t,n}

Our analysis of these figures reveals that tasks with lower cosine similarity exhibit higher conflicts.
Notably, the self-supervised gradients show significantly higher alignment with the other objectives.
We found that segregating the highly conflicting speech recognition and translation tasks into different
optimization levels reduced the overall conflict among the objective gradients, which consequently
improved the overall performance.

F Baseline Training Methods

In this section, we outline the baseline methods used to compare against our multi-objective opti-
mization algorithms.

F.1 Two-stage training (Pre-training + Fine-tuning)

This method involves two sequential steps:

1. Pre-training: The model is first pre-trained on a self-supervised learning objective, such as CPC,
Whisper or Wav2Vec2, to learn general-purpose representations from unlabeled speech data. During
this stage, the backbone parameters are updated using:

θk+1 = θk − α∇θℓu(θ
k), (31)

where ℓu represents the self-supervised loss, and α is the learning rate.

2. Fine-tuning: After pre-training, the model is fine-tuned on a supervised task (e.g., speech
recognition and translation) using the CTC or cross-entropy loss to adapt the learned representations
to task-specific objectives. During fine-tuning:

• The backbone parameters are updated using:

θk+1 = θk − β

NT

T∑
t=1

N∑
n=1

∇θℓs(θ
k, ϕk

t,n), (32)

where β is the learning rate, N and T denote the number of tasks and languages, respectively.
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Algorithm 3 VM-MSP for multilingual multi-task MSP.

Input: Labeled data (x, y), unlabeled data Xu := {x1
u, x

2
u, · · · , xE

u }, learning rates α, β, and
penalty η1, · · · , ηP ;
for k = 1 to K do

sample ζk = xk
u, ξk1 = (xk

1 , y
k
1 ) and ξk2 = (xk

2 , y
k
2 )

compute ∇ℓu(ζ
k; θk), ∇ℓs(ξ

k
1 ; θ

k, ϕk), ∇ℓs(ξ
k
2 ; θ

k, ϕk)
update λk+1 by (4)
update θk+1 by (16)
update ϕk+1

tp,np
by (17)∀tp ∈ [Tp],∀np ∈ [Np]

end for
Output: θK , {ϕK

t,n}

• The parameters of the individual classification heads are updated using:

ϕk+1
t,n = ϕk

t,n − β∇ϕℓs(ϕ
k
t,n, θ

k), (33)

where ϕt,n denotes the parameters for task n and language t.

F.2 Static Weighting

This method follows the same process as pre-training + fine-tuning but introduces static weighting
during fine-tuning. Instead of using equal weights for all supervised objectives, a grid search is
performed to assign suitable weights to each objective. The backbone parameters are updated using:

θk+1 = θk − β

T∑
t=1

N∑
n=1

µt,n∇θℓs(θ
k, ϕk

t,n), (34)

where µt,n represents the static weight assigned to the supervised objective for task n and language t.
For our experiments, the following language-specific weights were used:

[En, Fr, De, Es, Ca] = [0.18, 0.19, 0.27, 0.16, 0.20].

F.3 Joint two-stage training without multi-objective optimization

This method follows the same process as VC-MSP but does not incorporate multi-objective opti-
mization [47]. Instead, all supervised objectives are optimized jointly without dynamic weighting or
conflict-aware gradient alignment, resulting in a simpler optimization process.

G Experimental setup

In this section, we outline the dataset, models, hyperparameters, and data pre-processing techniques
employed in evaluating our VS-MSP, VC-MSP, and VM-MSP algorithms.

Dataset. We evaluate our training algorithms on a combined dataset of LibriSpeech [42], AISHELL
v1 [7], and CoVoST v2 [57]. LibriSpeech is an English speech dataset consisting of 960 hours of data
along with transcripts. AISHELL v1 is a 178-hour multi-channel Mandarin speech corpus designed
for various speech/speaker processing tasks. We have combined these two datasets to create a single
multilingual dataset. Our approach involved splitting the LibriSpeech dataset, allocating 860 hours
for self-supervised pre-training and using the 100-hour train-clean-100 subset for supervised training.
The trained models are tested on the AISHELL test dataset and the LibriSpeech test-clean dataset.
During training using CoVoST dataset, we use equal batch sizes across all languages and tasks to
ensure balanced training. For high-resource En, we use the ful data without up-sampling, while
applying up-sampling for low-resource languages—4x for Ca and Es and 2x for Fr and De.

In the first experiment, we use a combined LibriSpeech and AISHELL multilingual dataset and train
a multi-head conformer for multilingual MSP tasks. In the second experiment, we use the CoVoST
v2 training dataset for multilingual speech recognition and translation training. The CoVoST v2
test set is used to evaluate the trained models. CoVoST v2 is a widely used benchmark multilingual
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Table 7: ASR WERs (LibriSpeech) and CERs (AISHELL) for two-stage training, Joint training, VS-MSP,
VC-MSP, and VM-MSP, with VM-MSP using UEC (self-supervised → English → Chinese) and UCE (self-
supervised → Chinese → English) optimization sequences.

Param Lang Two-stage
training

Joint
training VS-MSP VC-MSP VM-MSP

UEC
VM-MSP

UCE

100M En (test-clean) 6.2% 5.9% 6.1% 5.7% 5.2% 5.4%
En (test-other) 17.0% 16.8% 17.1% 16.7% 16.3% 16.5%

Zh 6.0% 5.6% 5.8% 5.5% 5.3% 5.0%

Ave 9.7% 9.4% 9.6% 9.3% 8.9% 8.9%

58M En (test-clean) 7.8% 7.1% 7.3% 6.8% 6.5% 6.6%
En (test-other) 17.8% 17.5% 17.7% 17.3% 17.0% 17.1%

Zh 7.4% 6.8% 7.0% 6.5% 6.1% 5.8%

Ave 11.0% 10.4% 10.6% 10.2% 9.9% 9.8%

translation corpus covering translations from 21 languages into English and from English into 15
languages.

Models and hyper-parameters. For additional simulations, we employ the wav2vec2 model.

wav2vec2-large + Transformer decoder. We initialize from XLSR-53 (24 layers, d = 1024,
H = 16, FF dim 4096). ASR is handled by a linear CTC head over the transcription vocabulary. For
translation, we append a Transformer decoder with three encoder layers and three decoder layers
(dim 1024, H = 16, FF dim 4096), outputting via a linear projection to the translation vocabulary.

Hyper-parameters. We use grid search to optimize hyperparameters, including learning rate, batch
size, step size of MoDo, and penalty parameter increasing rate. For both SSL pre-training and
supervised fine-tuning, the backbone learning rate is consistently set higher than the classification
parameter learning rate. The SSL pre-training phase starts with a learning rate of α = 5× 10−4 for
100 epochs, annealed by a factor of 0.1 every 20 epochs. Fine-tuning uses a maximum learning rate
of β = 5× 10−5, with a scheduler reducing the learning rate by a factor of 0.1 if the test loss does
not improve within 10 epochs. All multi-objective models (VS-MSP, VC-MSP, and VM-MSP) and
joint PT+FT models are trained for 200 epochs. For PT+FT, we pre-train the model for 200 epochs
and fine-tune it for an additional 100 epochs. A batch size of 256 and AdamW optimizer are used for
both self-supervised and supervised training. The same hyperparameter settings are applied across all
training methods to ensure consistency and comparability.

Penalty parameter for ASR and translation. For VC-MSP, the initial penalty parameter η is set to
0 and increases by 0.02 per epoch. The increase stops once the penalty reaches a maximum value
of 1.5. For VM-MSP, the second-level penalty parameter η1 is initially set to 0.1 and increases by
0.02 per epoch, while the lower-level penalty constant η2 starts at 0 and also increases by 0.02 per
epoch. The increase for both penalty constants stops once they reach 1.5. A higher increase rate for
the lower level ensures equal importance of both upper-level and lower-level objectives.

Data pre-processing. Our experiments cover both supervised and self-supervised regimes and
share a common log-Mel preprocessing pipeline. Raw audio is converted to 80-dimensional log-Mel
spectrograms and normalized to zero mean and unit variance. In the SELF-SUPERVISED setup, the
model receives a 2 s context window and is trained to predict the following 1 s segment without
any data augmentation. In the SUPERVISED setup, we apply SpecAugment to the normalized
features to improve robustness. For CONFORMER-BASED MODELS, transcripts are tokenized with
SentencePiece [31] using a 1,000-token word-level vocabulary for every language except Chinese,
where we employ a 4,930-token character-level model. For WAV2VEC 2.0, we use the character-level
CTC vocabulary bundled with the official checkpoints, and for WHISPER we adopt the byte-pair-
encoding tokenizer released with its original implementation.

Computational Resources. All simulations were run on two NVIDIA A5000 GPUs and two
NVIDIA A4500 GPUs, with an Intel i9-7920X CPU and 128 GB of DDR4 memory.

H Ablation Study

In this section, we study the impact of different pre-training methods and provide a detailed explana-
tion of the effect of the penalty parameter on the overall training process.
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Table 8: Speech recognition WERs and translation BLEU score comparison between CPC and BEST-RQ
pre-training methods. For translation we do Lang → En translation.

Param Lang
VM-MSP-UAS

(CPC-
WER)

VM-MSP-UAS
(CPC-
BLEU)

VM-MSP-UAS
(BEST-RQ-

WER)

VM-MSP-UAS
(BEST-RQ-

BLEU)

150M

En 19.7% – 19.1% –
Fr 21.8% 29.5 20.9% 30.1
De 14.6% 28.5 14.1% 29.2
Es 17.0% 31.3 16.5% 31.9
Ca 19.1% 25.4 18.6% 26.2

Ave. 18.4% 28.7 17.8% 29.4

Table 9: Speech recognition WERs and translation BLEU scores between Wav2Vec2 with and without VM-MSP
methods. For translation, we perform translation from Lang → En.

Joint training Joint training

Param Lang Wav2Vec2 (WER)
Without VM-MSP

Wav2Vec2 (BLEU)
Without VM-MSP

Wav2Vec2 (WER)
With VM-MSP

Wav2Vec2 (BLEU)
With VM-MSP

300M

En 18.1% – 16.3% –
Fr 19.3% 31.2 18.2% 32.4
De 14.0% 29.9 13.1% 30.8
Es 16.1% 34.3 15.2% 35.1
Ca 18.9% 26.2 18.0% 27.2

Ave. 17.2% 30.4 16.1% 31.4

H.1 Impact of Pre-training Method

In this ablation study, we assess the impact of two different pre-training techniques—CPC and
BEST-RQ [14]—on the performance of our VM-MSP method. The purpose of this ablation is to
isolate the contribution of the pre-training method to the overall performance of the MSP tasks. We
keep the settings consistent across both methods, with the model containing 150 million parameters
in all cases. The tasks evaluated include speech recognition in various languages and translation for
translating from different source languages into English.

The results in Table 8 compare CPC and BEST-RQ across five languages. The results indicate a
consistent improvement when using the BEST-RQ pre-training method. Specifically, BEST-RQ leads
to a 3.3% absolute improvement in the average WER compared to CPC across all languages.

On the translation task, BEST-RQ also outperforms CPC, resulting in a 2.4% absolute increase in the
average BLEU score across the evaluated languages. This indicates that BEST-RQ not only improves
the speech recognition task but also enhances the downstream translation quality, likely due to the
richer representations learned during pre-training.

Overall, these results suggest that the pre-training method plays a crucial role in enhancing both
speech recognition and translation performance. The BEST-RQ approach, with its enhanced capability
to model complex speech patterns, proves to be more effective than CPC, thus making it the more
suitable choice for the VM-MSP algorithm.

H.2 Impact of VM-MSP on fine-tuning speech foundation model

We evaluate our VM-MSP (UAS) method using the pre-trained Wav2Vec2-XLS-R4 model [2]. In this
approach, we use the pre-trained model as the backbone and add task- and language-specific linear
layers and decoder to predict the output vocabulary, training with the CTC and cross-entropy loss.
All hyperparameters remain consistent with our previous training protocols, except for the tokenizer.
Specifically, we use the same tokenizer as the pre-trained Wav2Vec2 model to maintain consistency
in subword segmentation and ensure compatibility with the model’s learned representations.

In the first experiment, we adopt joint pre-training+fine-tuning approach, training the Wav2Vec2
model across all languages for speech recognition and translation tasks while following the same
procedure as our earlier joint pre-training+fine-tuning training. In the second experiment, we extend
joint two-stage with multi-objective optimization, similar to the VM-MSP (USA) training approach.
For both experiments, the model is trained for 50 epochs. The results, summarized in Table 9, show

4https://huggingface.co/facebook/wav2vec2-xls-r-300m
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Table 10: Comparison of resource requirements between a single multi-objective model and multiple single-
objective models during deployment.

Model Encoder
Param

Classification
Heads

Total
Param

Storage
Size

Loading
Time (s) Inference time (ms)

MSP
Model ~58M ~25M ~83M ~158.4 MB ~0.10 ~11.4

Five Single-
Objective Models ~290M ~125M ~415.0M ~792 MB ~0.5 ~55.9

that, on average, the Wav2Vec2 model trained with VM-MSP outperforms the standard Wav2Vec2
model by 6.4% in the speech recognition task and by 3.3% in the translation task.

H.3 Impact of penalty parameter

In our multilingual multi-task ASR experiments, we investigated the effects of different penalty
parameter increase rates to balance the ASR and translation tasks. We tested two configurations:

• A lower increase rate of 0.002, which led to worse WER/BLEU score for lower-level tasks,
as shown in Tables 4.

• A higher increase rate of 0.02, which improved lower-level performance but slightly
degraded upper-level performance.

Choice of capped value for the penalty parameter: We capped the penalty parameter at 1.5 based
on our observed trade-off between upper- and lower-level tasks. A penalty higher than 1.5 could
have improved lower-level performance further, but it would have significantly degraded upper-level
metrics. Thus, 1.5 was chosen as an optimal balance point.

Post-Maximum Penalty Effects: The penalty parameter reached its maximum value of 1.5 after
75 epochs, but training continued for another 25 epochs. During this time, we observed further
improvements in lower-level WER/BLEU scores, while upper-level performance deteriorated. This
reinforces the critical role that penalty parameter selection plays in balancing competing objectives.

I Resource Efficiency of the multi-objective optimization Model

This section addresses the question: How does a single multi-objective optimization model reduce
resource demands during deployment, making it a more efficient solution overall?

• Reduced Storage Requirements: A single multi-objective model is highly memory-
efficient due to parameter sharing across tasks, see Table: 10. For example, the 83 M
multi-objective model used in our experiments has a size of 158.4 MB, comprising an
encoder (~58M parameters) shared across all objectives and classification heads (~25M
parameters). In contrast, deploying five separate models for these tasks would require
5× MORE BACKBONE PARAMETERS, resulting in significantly higher storage demands.
Assuming each single-objective model uses an encoder of similar size, the total storage
requirement for separate models would reach approximately 792 MB.

• Efficient Inference: The multi-objective model also minimizes latency and computational
overhead during inference. In our system, it takes only 0.10s to load the single multi-
objective model, whereas loading five separate models takes 0.5s. This reduction in loading
time directly translates to faster response times and improved computational efficiency.

By consolidating multiple objectives into a single model, the multi-objective optimization approach
not only achieves significant memory savings but also ensures faster deployment and reduced
computational demands, making it a scalable and efficient solution for real-world applications.
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