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ABSTRACT

In cooperative multi-agent reinforcement learning, centralized training with decen-
tralized execution (CTDE) shows great promise for a trade-off between independent
Q-learning and joint action learning. However, vanilla CTDE methods assumed a
fixed number of agents could hardly adapt to real-world scenarios where dynamic
team compositions typically suffer from the dilemma of dramatic partial observabil-
ity variance. Specifically, agents with extensive sight ranges are prone to be affected
by trivial environmental substrates, dubbed the “attention distraction” issue; ones
with limited observability can hardly sense their teammates, hindering the quality
of cooperation. In this paper, we propose a Concentrated Attention for Multi-Agent
reinforcement learning (CAMA) approach, which roots in a divide-and-conquer
strategy to facilitate stable and sustainable teamwork. Concretely, CAMA targets
dividing the input entities with controlled observability masks by an Entity Divid-
ing Module (EDM) according to their contributions for attention weights. To tackle
the attention distraction issue, the highly contributed entities are fed to an Attention
Enhancement Module (AEM) for execution-related representation extraction via
action prediction with an inverse model. For better out-of-sight-range cooperation,
the lowly contributed ones are compressed to brief messages by a Attention Re-
plenishment Module (ARM) with a conditional mutual information estimator. Our
CAMA outperforms the SOTA methods significantly on the challenging StarCraftII,
MPE, and Traffic Junction benchmarks.

1 INTRODUCTION

Cooperative multi-agent deep reinforce- )

ment learning (MARL) has gained in- @8@:Agents  <)<):SightRange g : Global Coach
creasing attention in many areas such as . by @
games (Berner et al. 2019; Samvelyan
et all 2019; [Kurach et al.l 2019), so-
cial science (Jaques et al [2019), sensor
networks (Zhang & Lesser, [2013), and
autonomous vehicle control (Xu et al.,
2018)). With practical agent cooperation Figure 1: The dynamic sight range dilemma. (a) Agents
and scalable deployment capability, cen- can hardly cooperate beyond their sight ranges. (b)
tralized training with decentralized execu- Agents with large sight ranges may perform worse due
tion (CTDE) (Rashid et al.l 2018} [Gupta] to “attention distraction”. (c) A sketch of our CAMA.
et al.| 2017) has been widely adopted for

MARL. Current CTDE methods usually assume a fixed number of agents such as QMIX (Rashid et al.}
2018), MADDPG (Lowe et al.,2017), QPLEX (Wang et al., 2020a)), etc. To adapt to complicated and
dynamic real-world scenarios with dynamic team compositions (i.e., the team size varies), researchers
extend these methods by introducing the attention mechanism (Vaswani et al.,|2017), which usually
requires splitting the state of the environment into a series of entities (Yang et al.| [2020; |/Agarwal
et al.| 2019; Igbal et al.,[2021).

However, attention-based methods can hardly handle the varying partial observability (e.g., the
varying sight range of each agent) in multi-agent systems, Fig.[T] With severe partial observability,
agents usually lose the sight of teammates, leading to the poor coordination quality. We use a demo
in Sec. to verify the phenomenon. With slight partial observability (large sight ranges with
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near perfect information), these methods exhibit apparent performance degradation that more trivial
entities may distract the agents’ attention and interfere with their decision making. See Sec.[4.T|for a
detailed analysis. Therefore, maintaining agents’ attention on potential cooperators and execution-
related entities to adapt to the partial observability variation is crucial for MARL in challenging
environments.

In this paper, we propose a Concentrated Attention for Multi-Agent reinforcement learning (CAMA)
approach, which roots in a divide-and-conquer strategy to facilitate stable and sustainable teamwork
via attention learning. Specifically, we first use an Entity Dividing Module (EDM) to divide the raw
entities into two parts for each agent according to its attention weights. For the attention distraction
issue in settings with large sight ranges, an Attention Enhancement Module (AEM) is applied on
the entities with high attention weights for execution-related representation extraction via action
prediction with an inverse model. For out-of-sight-range coordination in low sight ranges, an Attention
Replenishment Module (ARM) with a novel conditional mutual information estimator is applied
to compress the information in entities with low attention weights. With the above three modules,
agents’ attention can be properly concentrated on execution of local actions and potential teamwork
to deal with dynamic partial observability.

We evaluate our method on three commonly used benchmarks: StarCraftIl (SC2) (Samvelyan et al.,
2019)), Multi-agent Particle Environment (MPE) (Lowe et al.|[2017)), and Traffic Junction (Sukhbaatar
et al.,[2016)). The proposed CAMA outperforms SOTA methods significantly on all conducted experi-
ments and exhibits remarkable robustness to sight range variation and dynamic team composition.

2 RELATED WORK

As a popular paradigm for single reward MARL, CTDE is a trade-off between independent Q-
learning (Tan} 1993)) and joint action learning (Claus & Boutilier} [1998)). Centralized training makes
agents cooperate better while decentralized execution benefits the flexible deployment capability.
A series of works concentrate on distributing the team reward to all agents by value function
factorization (Sunehag et al.,2018}; Rashid et al.,|2018)), deriving and extending the Individual-Global-
Max (IGM) principle for policy optimality analysis (Son et al.,|2019; Wang et al.| 2020a; Rashid
et al., [2020; [Wan et al., |2021)). To avoid constraints of IGM, some works then delve into applying
centralized critics on local policies using the actor-critic paradigm (Lowe et al.,|2017; [Foerster et al.,
2018} [Zhou et al.| [2020). Although CTDEs have achieved great progresses in recent years, with fixed
sizes of agents, they are typically impeded by the dynamic team composition issue (Schroeder de
Witt et al., [2019; [Liu et al.,[2021)) in real-world applications.

Dynamic Team Composition. When the agent number varies in each episode, the attention mecha-
nism (Vaswani et al.}[2017)) is commonly adopted to handle the issue (Jiang et al., 2018;|Agarwal et al.|
2019;|Yang et al., [2020; [Hu et al.| [2020; Igbal et al.,[2021)). Some works develop a set of curricula
to adapt to the increasing team sizes (Baker et al., |2019; [Long et al., [2020; [Wang et al., 2020c)
with non-negligible computational costs for training on different team sizes. [Igbal et al.|(2021)) add
auxiliary Q-learning tasks to increase the multi-agent system’s robustness by randomly masking out
part of agents’ observability, which increases the types of situations encountered by agents. Although
these methods adapt to different team sizes well, they still suffer obvious attention distraction when
the sight ranges of agents is large, and are prone to fail in some situations where agents with limited
observability must cooperate beyond their sight ranges (Liu et al., [2021).

Communication Mechanism is a feasible solution to enhance agents’ cooperation. Recently some
works regard the relationship between agents as a proximity-based or fully-connected graph and
assume the information can propagate among the graph edges (Foerster et al., 2016} Suttle et al.,
2020; |Agarwal et al.| 2019} Zhang et al.| |2018}; |Sukhbaatar et al.| 2016} [Liu et al.| 2020; Mao et al.,
2020a). These methods usually let agents communicate with all neighbors or the whole team, which
brings high communication costs. Moreover, the communication mode is sensitive to team sizes.
Some works assume the existence of a centralized coach to integrate information and send messages
to all agents (Liu et al., 2021; [Mao et al., |2020bj |[Niu et al., [2021), which requires centralized
execution, with relatively low communication costs. The communication messages are usually trained
by backpropagation of RL loss, sometimes with constraint from mutual information objective to
reduce the communication bandwidth (Wang et al., 2020b), help action decision (Yuan et al.,|2022])
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or predict future trajectories (Liu et al.;|[2021)). Unlike these methods, we use communication from a
centralized coach to apply attention replenishment for agents’ better coordination.

3 BACKGROUND

MARL Symbols. We model a fully collaborative multi-agent task with n agents as a decen-
tralised partially observable Markov decision process (Dec-POMDP) (Oliehoek et al., [2016)
G = (S,AI,Pr,Z 0,n,v), where s € S is the environment’s state. At time step ¢, each agent
i € I, = {1,...,n,} chooses an action a’ € A, which makes up the joint action a € A = A",
P(s¢t1]st,ar) : Sx A xS — [0, 1] is the environment’s state transition distribution. All agents share
the same reward function r(s,a) : S x A — R. The discount factor is denoted by + € [0,1). Each
agent 7 has its local observations o’ € O drawn from the observation function Z(s,4) : S x I — O
and chooses an action by its stochastic policy 7(a’|p’,x?) : T' x X — A([0,1]/4!), where
p' € T = (O x A)! denotes the action-observation history of agent 7, and [ is the number of state-
action pairs in p’. p is the action-observation histories of all agents. Y € X denotes the additional
communication message and 7* has no dependence on x* in CTDE. The agents’ joint policy 7 induces
a joint action-value function: Q™ (sy,a) = Eq,, .. ars1.00 [Re|se, @), where Ry = Y07 ¥y is
the discounted accumulated team reward. The goal of MARL is to find the optimal joint policy 7*
such that Q™ (s,a) > Q7 (s,a), for all w and (s,a) € S x A.

Value Function Factorization. During execution in CTDE, each agent chooses actions by its local
Q@ function Q*(p’) induced by local observation o’. During training, since all agents share a common
team reward, a global ) function Q*? is calculated from all local * conditioned on the global state
s by a Mizer module as: Q'*(p,a) = g(Q'(p',al),...,Q"(p",a"), s). To guarantee the global
optimality from the local optimality, a Mixer should satisfy the IGM principle (Son et al., [2019):
arg max, Q' (p,a) = (argmax,1 Q1 (p!,al), ..., arg max,» Q" (p", a™)).

Multi-Head Attention (MHA) in MARL. Under the condition of dynamic teams, the observation
vector for each agent may have varying sizes during one episode, and therefore we can hardly apply
traditional methods which only accept fixed-size input. In contrast, we use the “entity-wise input”
to represent the observation and the multi-head attention (MHA) module to embed the entities with
dynamic number into a fixed length vector for each agent. To feed MHA, the raw state s of the
environment is commonly expressed as a series of entities €', i.e., s° := {e'},i € [1,n.] with the
same vector length, where n. is the maximum number of entities. The entities include agents we
can or can not control, and other substrates in the multi-agent scenario (e.g. obstacles). We consider
a proximity-based observation function Z(s¢, ) for agent i, i.e., each agent has a sight range SR,
and Z(s%,i) = {e’/|d(i,j) <= SR},j € [1,n.], where d(i,j) is the Buclidean (or Manhattan)
distance between entity 7 and j. Let X € R™*? be the entity input, in which each row is an entity.
Let I, C I:={1,...,n.} be the set of indices that selects which entities of the input X are used to
compute queries such that X7, € R"« xd (usually 7 € I, means entity ¢ is an controllable agent, and
I, :={1,...,ns}). The attention head is as follows:

AH (I, X, M WE WK, WV) = softmax (mask (Q;{ET,M)) V e RIIxh,

Q=X W K=XWEV=XWVY Mec{0,1}"x" W WK WV ¢ Rix"
(1)
The mask()), M) operation takes two matrices with the same size as input, and fills the entries of )
with —oo where M equals 0. If we set the values in the positions of unseen entities to 0, this operation
blocks the information from certain entities after softmax, to uphold the partial observability for local
agents. WX, WX and WV are learnable parameters. Then we can define the mulit-head attention
module by concatenating n"* attention heads together:

MHA(I, X, M) = concat (AH (I,X,M;WJ.Q,WJ-K,WJ-V) je (1...nh)), ?)

where information not blocked can be integrated across all entities.
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Figure 2: Network structure of our proposed CAMA. Entities and the observation mask are first
fed into the Entity Dividing Module (EDM) to get the Attention Enhancement embedding f* and
Attention Replenishment embedding f ¢, which is trained by inverse model (IM) loss and mutual
information (MI) objective, respectively. For RL training, a local Q? is generated by f?, f~%, and its
observation-action history with a GRU, and further fed into the mixing network for Q*°t.

SR=3, WR=71%

SR=9, WR=53%

SR=wx, WR=51%

- e—
A8 A7 A6 AS A4 A3 A2 Al

A8 A7 A6 A5 Ad A3 A2 AL
A8 A7 A6 A5 Ad A3 A2 AL

Al A2 A3 A4

E2 E3 E4 E5

A4 A5 A6 A7 A8 E1

Figure 3: The attention distraction issue illustration with the agents’ average attention heatmap
of REFIL on StartCraftIl map “3-8sz_symmetric” (the hardest scenario “8sz_vs_8sz”) during one
episode on all entities. The y axis denotes 8 agents (A1-A8), while the x axis with additional 8
enemies (E1-E8) records 16 entities. The sum of each row is normalized to 1. “SR” is each agent’s
sight range, and “WR” is the winning rate against preset Al.

4 METHOD

4.1 INTUITION AND OVERVIEW

Intuition. The performance of traditional MARL methods is highly affected by the partial observ-
ability of the environment. We use the agents in a game (e.g., StarCraftIl) for example. When the
sight range is small, the agents can hardly find the teammates and support them, leading to poor team
coordination (a demo in Sec. [5.1] verifies this hypothesis). However, it is counterintuitive that with
increasing sight ranges, the agents’ performance typically degrades (this phenomenon is detailed
in Sec.[5.1). We argue that the agents’ attention is easily distracted by unrelated scenarios, causing
the attention distraction issue. To reveal the importance of agents’ attention on their performance,
we train the SOTA algorithm REFIL (Igbal et al.|[2021) on different sight ranges (3,9, and co) and
visualize the agents’ attention weights on all entities (i.e., the value of the matrix QK | in MHA
module) in Fig. [3] It can be seen that when more entities are visible, the agents attentions get more
dispersed so that more difficulties need to be overcome to win the preset Al. Existing dynamic team
MARL methods commonly face such problem (see Appendix [E).

To deal with the dilemma of the dynamic partial observability in MARL, we resort to a divide-
and-conquer learning strategy, dubbed CAMA, for stable performance and sustainable teamwork.
Concretely, in low sight ranges we need to improve agents’ attention on realizing the potential coop-
erators by out-of-sight-range information, while in large sight ranges, agents’ attention concentration
on execution-related entities should be kept.

Framework and RL Training. CAMA mainly consists of three components, including an Entity-
Dividing Module (EDM) for dynamic partial observability control, an Attention Enhancement Module
(AEM) for attention concentration on execution-related entities, and an Attention Replenishment
Module (ARM) for agents’ out of sight range coordination, Fig. 2} Specifically, for each agent i, EDM
divides and embeds the raw entities as f? and f ¢ to feed AEM and ARM respectively. For AEM,
an inverse model is applied to resolve the attention distraction issue. For ARM, a coach with global
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sights is introduced to generate a communication message (* for agents’ coordination. Following
Yuan et al[(2022), we generate a Q*(/>°) from f* and agent i’s observation-action history p* (which
is the output of a gated recurrent unit (GRU) cell), and a Q*(9'°%%)) from ¢*. Q is computed by their
summation, i.e., Q' = Q(tocal) 4 Qilglobal) " Afl ocal Q's are fed into a mixing network (Yang et al.,
2020) to calculate a Qt°t. The RL loss can be formulated as follows:

2
EQL = E(at,r’t,pt,pt+1)~D [(Tt + VHLE}X Qtat(Pt-H; a’) - th(pu at)) } s 3

where Q" is the target network, and D is the replay buffer.

4.2 ENTITY DIVIDING MODULE

An EDM divides raw entities into an attention enhancement part and an attention replenishment part
by their ranking of attention weights. For the former one, we wish to constrain the maximum of
observed entities to avoid the attention distraction. And the latter one should contain enough out-
of-sight-range information for team coordination. We first deal with the attention enhancement part.
Recall that in MHA module, M € {0, 1}"=*"< is a binary mask applied on the entity embeddings
which is generated by the environment. To uphold each agent’s partial observability, a more sparse
mask M is introduced to replace M which satisfies the following constraints:

||M3H0c < aneaﬁMs ©-M= ﬁM? (4)

where 7, is the maximum number of entities, « € (0, 1] is a hyper-parameter, and © means the
element-wise multiplication operation. The negation of M is defined as - M := 1 — M, where 1
is an all 1 matrix with the same shape as M. The left side of Eq. (@) ensures that the percent of
observable entities is less than «, while the right side makes the agent observe the entities available
in the original mask M only. We can assign a low value for « (e.g., 0.4) to limit each agent’s visible
entities in complicated environments. To get M, we define a B;(W) operation to get the indices of
the top ¢ values in each row of W. M can be calculated as follows:

Ms =MO0 MfaMf[I} = 17Mf[0thers] = Oa I= Bl_(xnej (QKT)v (5)

where |-| means to round down the value, and @, K are matrices of queries and keys in MHA
module, respectively. Under Eq. , each agent only remains the sight on at most |an, | entities
with the highest attention weight, and improves its attention concentration. We prove in Appendix [A]
that M obtained by Eq. (5] is adequate for Eq. . After getting M, we can compute f* for the
attention enhancement part, which is the output of MHA (I, X', M).

Since the attention replenishment part should contain all the information not involved in the former
one for better out-of-sight-range coordination, we transmit it with f—*, which is the embedding of
the complement entities of M on s with the same MHA module as MHA (I, X', - M).

4.3 ATTENTION ENHANCEMENT FOR LOCAL AGENT

When knowing what will happen when a specific action is taken, the learned agents can hardly
be distracted. Thereby, we aim to concentrate agents’ attention on execution-related information
distilled from the high-dimensional state space. Specifically, we resort to the inverse model (Pathak
et al., 2017), a two-layer MLP, that uses the local observation o} and o}, to predict the agent ¢’s
action a’. In the prediction module, the local observation o} and o} ; are first fed into the same
EDM to get the features f; and f} 1. Then, the probability of each action can be predicted as
p(ai) = IM(f}, fi,1;0). The learning loss can be defined as:

Lin = CE(p(ar), ay), ©)

where C'E means the cross entropy. f* will contain the necessary information for predicting a’
by optimizing Eq. (6), which encourages EDMs to discard irrelevant distracting information for
the consciousness enhancement embedding f?. With the auxiliary representation learning task, the
learned embedding f can be used to calculate each agent’s local @ function Q*(!oc)
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4.4 ATTENTION REPLENISHMENT BY GLOBAL COACH

To equip agents with the ability of out-of-sight-range coordination, we use a centralized coach
equipped with global states to generate a message ¢* from f~% and compute a Q%(9°ba!) for each
agent 7 at each time step (Liu et al., 2021} Niu et al., [2021} [Mao et al., [ 2020b). The message plays
the role of attention replenishment when agents facing difficulty to cooperate through their local
observations. The learning objective for ¢? should contain the information unknown to agent , and
not distract the agent’s attention. Therefore, we maximize:

Z(¢; ") = BI(Ch s) = (1= B)Z(C"8) = Z(CH S1FT), @)
where s is the global state, and Z(+; -) means the mutual information. f ¢ indicates the replenishment
information for agent i. We leave the derivation of Eq. (7) to Appendix Maximizing Z(¢%; f~%)
let ¢* be the summary of f . By feeding ¢’ to agent 4, the agent can sense the information beyond
its sight range, and further alleviate the difficulties of cooperation caused by partial observability.
Minimizing Z({*; s) compresses the information ¢? has, which can be regarded as an information
bottleneck constraint on (¢ (Wang et al., 2020b). We use a hyper-parameter 3 € [0, 1] to control the
compression degree of ¢*. Combining the two terms, we (1) discard the information in f?, which is

already known to agent 4, and (2) compress the sophisticated f~% into a brief message, which can
hardly distract the agent while promotes coordination.

We then separately optimize the two mutual information term in the right side of Eq. (7). Directly
maximizing Z(¢; s) is difficult, but there exist some tools estimating its differentiable lower bound,
e.g. infoNCE (Oord et al.} 2018) and MINE (Belghazi et al., |2018)). We choose the CatGen formula-
tion (Fischer} 2020) of the former one and maximize the following lower bound of Z(¢ Z‘; s):

p(¢f)s)
= S p(Cilsk)

Ince(Clys) = —Eei 4[log 8

where K is the sample number of a mini-batch.

Then we move on to minimizing Z(¢%; f*|f~%). There are existing tools that minimize the upper
bound of the mutual information between two random variables, such as CLUB (Cheng et al., [2020)
and L10ut (Poole et al., 2019). But these methods can not be directly applied to the conditional
mutual information paradigm. Therefore, we extend the CLUB estimator to the conditional form and
present Conditional-CLUB (CC) estimator as a differentiable upper bound of Z(¢%; fi|f~%):

Zoo (S I = Bei i g log p(CLfY 7)) = BpiBei p-i [log p(CLf*, £ 7). ©)
Theorem 4.1. For three random variables (%, f* and f~,
Zoc(C I 2 T P, (10)

The equality holds if and only if f* is independent of the joint distribution of C*, f .

The proof of Thm. [4.T|can be referred in Appendix [C] Accordingly, we can minimize the conditional
mutual information via minimizing Z¢c. In practice, assuming we have the conditional distribution
p(CY|f%, £~1), we can sample pairs {(CF, fi, fr*)}E_, and get an unbiased estimation of Zoc:

K K K
5 1 il pi p—i 1 Q| pi p—i
ICC:?ZIng<Ck|fka % )*ﬁZZIOgP(Ck\fj,fk )- (11)
k=1 k=1j=1
Since the second part of Eq. requires O (K 2) computational complexity, we use the following
faster counterpart:

_ 1 & N et | pi ;
Toc = 32 > ogp(Glfi £ = 22 D108 (Gl fuy £ (12)
k=1 k=1

where .(+) is a mapping from k € {1, .., K} to its random permutation. Since Z¢¢ and Z¢ ¢ are both
unbiased estimators, E[Z¢¢] = E[Zcc] = Zoe. In practice, we assume p(C?|f%, %) as a Gaussian
distribution. We use a neural network with input concat( f?, f %) to calculate its mean and variance
and optimize it with the reparameterization trick (Kingma & Welling, [2013). Since concat(f?, f %)
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has involved all the information in the global state s, we can use the same distribution to represent
p(¢?s) in Zycop and therefore optimizing L7 = Zoc — (1 — B)Incrk. If we need a coach with
stronger capability by e.g., introducing the memory module, we will get the prior distribution p(¢*|p)
instead of p(C?|f*, f~%), therefore we can not estimate Z¢ ¢ directly. In Appendix [D|we introduce a
variational distribution to estimate p(¢¢|f?, f~%) when it is unknown.

5 EXPERIMENTS

5.1 DILEMMA IN SIGHT RANGES
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Figure 4: (a) A sketch of environment “Resource Collection”.(b) A sketch of the demo “Catch Apple”.
(c) Task sovling rate in “Catch Apple”. Qatten and REFIL are CTDE, and MAIC and CAMA have a
centralized coach. (d) Visualization of messages received (grouped by the next action agents take).

Coordination in Low Sight Ranges. We first show the defect of CTDE methods with a demo. In a
11 x 11 grid-world, an apple is uniformly generated at one grid of the 3 x 3 grids in the map center,
with obstacles of length 4 at its right&left or up&down, Fig. [db). 2 controllable agents are initialized
at random places. They can move towards 4 directions, one grid at a time. The goal is that two agents
should arrive the apple simultaneously, rewarded 10. Any agent touching the apple or team reaching
the episode time limit will end the game. The reward of one agent touching apple is 1. The reward
for time penalty is —0.1. The agents can only see the entities in the 3 x 3 grids, each centered on
its position. Agents can not overlap, which means the only way to achieve the team goal is the two
agents moving towards the apple from the opposite sides of the obstacles, at which time they can
not see each other. We train two CTDE methods: Qatten (Yang et al.,|2020) and REFIL (Igbal et al.,
2021)), and two communication-based methods: our CAMA and MAIC (Yuan et al.,|2022) (with a
global coach, see Sec.[5.2]for details). The target achieving rate during training are shown in Fig. fc).
Only methods with communication can solve the task while CTDE methods fail completely.

To validate the effect of communication, we use t-SNE (Van der Maaten & Hintonl 2008)) to visualize
the messages ¢’ from 160 testing episodes of our method in 3D-space. We show the results of the
last time step of each episode in Fig.[4[d). Each point is a message and the color means the agent’s
action after it receives the message. The results show that agents’ actions have obvious correlation
with messages received, which shows the importance of communication in out-of-sight coordination.

— Qatten — REFIL EMP  — MAGIC Gated Qatten —— COPA —— CAMA

SR=0.5 SR=1.0 SR=1.5 ,C[M ﬁ]\/[[ SR =0.5 SR=1

260.47+37.45 339.88+21.44

v’ 343.734£52.26 393.14+23.01

v 280.36+27.96 393.93+32.1
v v 385.25+25.61 458.13+46.93

Table 1: Test returns on 2 sight
- et 00 o s 0 o o ranges (SR) on RC. “v"” means the

Figure 5: Test returns of 3 sight ranges (SR) on RC.  corresponding loss is added.

0

10 o

Attention Distraction in Large Sight Ranges. We use the Resource Collection (RC) task (Fig. [#a))
to show the attention concentration effect of CAMA. In this task, a group of 3-8 agents coordinate
to collection resources from various places and bring them home. It is slightly modified from |[Liu
et al.| (2021) to make it suitable for both CTDE and communication-based settings. Please refer to
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Appendix [G.2]for a detailed description. We test the performance of the following methods on three
sight ranges in Fig. @ (1) 2 CTDE methods: Qatten (Yang et al.l 2020), REFIL (Igbal et al.,|[2021).
(2) 1 graph communication method: EMP (Agarwal et al.,|2019). (3) 4 centralized communication
methods: MAGIC (Niu et al.| [2021)), Gated_Qatten (Mao et al., 2020b), COPA (Liu et al., [2021)),
and our CAMA. MAGIC and Gated_Qatten are modified to make them suitable for the entity-wise
input setting. The results show that CAMA outperforms all baselines in all sight range settings. And
only CAMA performs better in SR = 1.5 than SR = 1.0 and SR = 0.5, while others suffer from
attention distraction and perform worse in larger sight range.

5.2 COMPONENT ANALYSIS

Entity Dividing Module. In EDM, the parameter « plays the role of balancing the observability
between AEM and ARM. We explore how to choose « in different sight ranges in Fig.[6] To make the
error bars (std) more clear, points with the same « are slightly offset on the X axis. Note that o = 1.0
means no constraint on observability function, i.e., deleting EDM. We find that as the sight range
increases, the agents can see more entities, and therefore a lower « can help attention concentration.

gl 1-TJ 21-TJ RC-SR=1 RC-SR=0.5

0.1 | 30.89+2.54 95.54+5.73 389.47+41.88  366+15.35
0.3 ] 29.9+2.99 99.64+4.45 398.74+68.33 379.8+36.11
0.5 | 29.894£3.21 95.85+3.49 458.13+46.93 385.25+25.61
0.7 | 27.58+1.23 91.3240.74 373.19425.43  396+63.19
0.9 | 27.2940.74 91.28+4.23 354.06+20.24 369.4+52.52

Test Return

: Table 2: The effect of 3 on different tasks: 1-lane and 2-lane
Figure 6: The Effect of « on differ- Traffic Junction, Resource Collection with sight range (SR)

ent sight ranges (SR). 1 and 0.5. From left to right, the task gets harder.

Attention Enhancement. We analyze the contribution of each loss in Table [I} L7y, (AEM) is
important when SR is large, which is reasonable since large SR brings attention distraction issue and
requires agents to focus attention on execution-related entities.

W s Method ‘ MAIC&NDQ ‘ IMAC COPA CAMA
I~ Isight Range|HI| Map SR | 1Z(¢%;a LI( ( 0 TI(<Z§P§+T,5t) TI(Cl;f_’) »LZ(CI;S)
23355445 | 19.67:043 | 17.38+2.92 30.182.94
E%EEEEHEEEEEE% I-lane 1‘ 21.81£3.04 |20.75:0.37 |  20.3920.5 29.89+3.21
K 66.81£12.33 | 65.746.59 |  73.16+12.37 96.28+7.64
2-lane 1‘ 64.62+8.81 ‘ 58.542.27 ‘ 59.23+4.68 ‘ 95.85£3.49

Table 3: Results on Traffic Junction. SR = 0 or 1 means the agents can see
Figure 7: Traffic Junc- themselves only or can observe the 3 x 3 grids around them. “4”” means MI
tion teaser (SR=1). maximization and “}” means minimization.

Attention Replenishment. Table[I|shows that £,;; (ARM) can bring obvious improvement under
both SR conditions. To check whether the improvement comes from the communication mechanism
or mutual information objective, we turn to a grid-world based traffic junction environment (TJ).
We use the map from [Sukhbaatar et al.| (2016), which is a crossroads where cars are continuously
generated from a Poisson distribution at one of the four entrances, and aiming for one of the other three
exits (Fig.[7). Unlike the original simplified setting that the routes are fixed so that agents only choose
to accelerate or brake, we use a more difficult setting that agents can move towards four directions
freely, which is harder and more realistic. Please refer to Appendix [G.2|for environment details. We
compare four MI-based message generators under our entity-wise setting: MAIC&NDQ (Yuan et al.}
2022} |Wang et al., 2019), IMAC (Wang et al.|[2020b)), COPA (Liu et al.,[2021) and our CAMA. To
make a fair comparison on MI objective, we only implement the mutual information part of each
method and keep the others same to ours, e.g., the structure of neural networks and communication
mechanism. Since MAIC and NDQ use similar MI objectives under the centralized coach setting, we
regard them as one method. The test return results are shown in Table 3] which exhibit the superior
performance of our MI objective in limited sight range.
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We check the effect of information compression degree 5 in Ljy;; with different environment
difficulties in Table [2 and find that in simple tasks such as 1-lane TJ, the coach can handle f~*
without obvious information compression. While in hard tasks, e.g., RC with SR = 0.5, a large 3 can
simplify communication messages, so that not to distract the agents and bring higher performance.

5.3 HARD TASK SMAC

We test CAMA’s performance on the hard SMAC (Samvelyan et al.} 2019) tasks with dynamic teams
in this section. We use the setting from [Liu et al.| (2021)) and [Igbal et al.| (2021)) that at the start of each
episode a total of 3-8 agents are randomly divided into 2-4 groups and initialized at different places
on the edge of a circle with the radius 9, and enemies are divided into 1-2 groups, Fig.[8|a). Agents
have the sight range 9. Agents must learn to find teammates first before fighting against enemies with
more quantities. We show the results of test win rate (TWR) on 3 maps in Fig. Ekb). Our method
remarkably exceeds the current SOTA methods on all maps.

— Qatten —— REFL —— EMP —— COPA —— CAMA(ours)
3-852_symmetric 3-8csz_symmetric 3-8MMM_symmetric

05

(b)
Figure 8: (a) An initialization teaser on SC2. (b) TWR comparisons on the 3 SC2 maps.

Sight Range Testing. In Fig. Eka), with the varying SR comparisons in {3, 6,9, o0}, our CAMA
reports superior TWR over SOTA methods on all SR settings and exhibits impressive robustness.

Test win rate
log(w/w)

Dynamic Team Composi- .. ; ; ¥ Gaten o+ NP m REL - COPA & CAMAlows) == Average
tion. In Flg Ekb)’ we test — e 3-852_symmetric N 3-8csz_symmetric
the same model on differ- _* al TN 1A
ent team sizes and plot =, - e Nt ‘ N
the logarithm of the rel- &. \
ative winning rate of the =~
corresponding agent num- N |-
ber against the total agents, o getims S T petam Y agentnim
where CAMA shows out- .. @ . S ® .

. Figure 9: TWR comparisons with different SRs (a) and dynamic team
standing robustness to agent L - . .
variation with a nearly sta composition (b). The x axis is the agent number which varies from 3-8.
tionary performance Czrve The y axis is .log(w /@), where w is the winning rate and @ is agents’
" average winning rate. The black dotted line denotes .

6 CONCLUSION

In this paper, we explore the dilemma of the partial observability in MARL. With severe partial
observability, agents usually can not sense the teammates and show poor team coordination. While
with large sight range, agents are troubled by the attention distraction issue and exhibit apparent
performance degradation. To tackle such sight range dilemma, we propose a Concentrated Attention
for Multi-Agent reinforcement learning (CAMA) approach. First an Entity Dividing Module is used
to divide raw entities for the local agents and the global coach separately. The suitable division percent
varies due to the agents partial observability. For local agents, an Attention Enhancement Module
improves their attention on execution-related entities under the condition of large sight ranges. For
the global coach, the messages generated by novel conditional mutual information estimator replenish
the information required for team coordination in all sight ranges. We evaluate our method on three
commonly used MARL benchmarks: StarCraftll, MPE, and Traffic Junction. With raised agents’
consciousness, the proposed CAMA reports significantly superior performance compared with SOTA
methods and exhibits remarkable robustness to sight range variation and dynamic team composition.
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A PROOF OF THE MASK GENERATOR

We now prove that M got by Eq. (3) is sufficient for Eq. ().

We first show that M in Eq. (5) satisfies |[M|[c < ane. Recall the definition of My, it is a
indicator matrix, that at each row, only the positions of top |an. | values of the corresponding row
in the attention weight matrix are 1, and others are 0. Therefore, at each row of M ¢, there are at
most |an. | 1s, which means the sum of the absolute value in each row is no larger than |an. |. So
[[M¢lloo < [ane] < ane. Then we show || M;||oo < ane. Since the observability mask M is also
a 0,1 mask,||[M;l|loo = [|M O M{|loo < [IMf]loo < ane.

Then we show that =M ® =M = -~ M, which equals to (M © M) ® M = =M. Recall that
M and M are both 0,1 matrices with the same shape. For any position in the matrices, we can use
Table M to conclude all the situations:

M My - MpoM)o-M M
1

—_——0 O
— o = O
OO = =

1
0
0

Table 4: Logical table of the mask.

We can find that at any situation (M © M) © =M = =M, therefore ~M; © ~M =-M.In
summary, M got by Eq. (3) is sufficient for Eq. ).

B DERIVATION OF MUTUAL INFORMATION OBJECTIVE

We now give the derivation of Eq[7}
I(¢H f7) = BZ(Ch: 9)
=H(C") — H(C'|f™") = (BH(C") = BH(C'[s))
=(1-PH() — 1= PH(('|s) + H(('[s) = HC|f7) (13)
=(1=B)H(C) — H(C'|)] = [H(Cf) = HCIf, 7)) Msplitsinto f*and £~
=1 = B)Z(C"ss) = Z(¢H F1f )
C PROOF OF THEOREM [4.]]

For three random variables ¢?, f* and f ¢,

Zeo(C FIIF7) 2 Z(C F11F ) o (14)
The equality holds if and only if f* is independent of the joint distribution of *, f~*.

Proof. Let A be the gap between Zoc (CF, f1]£~7) and Z(CF, £ £~7):
A=Teo(C 117 =T 1)
Z(Eci,fi,fi[logp(éifia TN = EpEq - llogp(C'If, f_i)])
- <]E<ufi,f—i[1ogp(5|fi, - E<z7f—i[10gp(6i|fi)]> (15)
=Ei,p-i[log p(C'|f )] — Eei p—iE% [log p(C'[ £, )
i« (0BlE (1] - By llogp(c'Lf 0.

Since log(+) is a concave function, A > 0 due to Jensen’s Inequality. [

13
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D GENERATE MESSAGES WITH MEMORY

In Sec. we use concat(f, f~%) to generate the message ('. It means we have the true prior
distribution p(¢t|f*, f~*), which can be expediently applied to estimate Zcc. However, if we wish
to enhance the coach’s ability, e.g., introducing a memory structure (similar to the GRU cell in local
agents) into the message generator, the prior distribution turns into p(C?|p) and therefore we can not
obtain p(C?|f?, f~%) directly to estimate Z¢c. Similar to the idea in [Cheng et al.| (2020), we propose
a variational term ¢(C?|f?, f~%)to estimate p(C?|f%, f~%):

Tooc (S £ = Bei gip-i0g q(C 75 £ )] = EpiBei p-i[log g(¢'| £, )] (16)
Theorem [I] gives a sufficient condition to ensure Z,cc(¢%, fi|f~) be an upper bound of
Z(C, 110
Theorem 1. Denote q(C*, f*, f~*) = q(C*|f*, f)p(f)p(f~*). I

KLp(f (¢ F9Ma(C 1 F79) = KL £ Fa(Sh £ F70), (17)

then Z,cc (€, f4f %) > Z(CY, £ f~%). The equality holds when f? and the join distribution ¢?, f
are independent.

Proof. Let A be the gap between Z,cc(C?, f1|f~%) and Z(C?, f7|f~%). We have:
A =T,cc(C L1 =T 1)
= (E(jff log q(¢*|f*, f )] — EypiEei y—i[log q(C'| 7, f_i)]>

- (Eo’fi’fi[logp“ifi’ 7= Eci,fi[logp(cilf_i)])
:(E""’f""[logp(CiIf_i)] —EpEi g log ('] f*, f‘i)o

- (Ea,fi,fi log p(Ci17 F)] — B po s og a(CFl f")]) (18)

e B e P e (ST
e los i )~ B g g )

o PG o PES ()P
=B B los pp ) e MO8 (e
PP T e *i>]
(@ FLr (T _i)‘ -
:KL(p(f) ( 7 )Hq(ClafZafil))*K (p(czafla Z)”Q(Cl,fl,fil))

)

—E} i i 2

O

Theoremlreveals that Z,cc is an MI upper bound if the variational joint distribution ¢(¢", L )
is more “closer” to p(¢?, f, f~%) than to p(f*)p(¢, f~%). Let gy be the parameterization of g.
In addition to the Eq. Ethat optimizes Z,c¢, we should minimize the KL divergence between

p(C f7, F77) and (¢ T, £0):
mq}nKL(p(d,f”,f*")l\q¢<<”,f”,f”>>

P15 fp(f)p(f70) l
ag(C*Lf* f=)p(f)p(f ) (19)
=minEe. po g logp(C'If", £ )~ log ao(¢'If*, 7]

= mq?XECi,fi,f*i log gy (C*If* F71)],

= In(gn Egi fi p-i[log
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Therefore, with sample pairs {(¢f, i, f; ") }5_,, we can maximize the log-likelihood of g:

K
1 i pi —1
mdz}x? kg_llog‘M(Ckav fit)-

(20)

With enough optimization times of Eq.[20] Z,c¢ is guaranteed to be an MI upper bound.

We test the effect of coach with memory in the Resource Collection environment with SR = 0.5 and
SR = 1.0, Table[5] We find that although equip the coach with the memory module improves the
average performance, it brings large variance that the method becomes unstable. Therefore, to keep a
stable performance of our method, we still use the coach with MLP in the main paper.

Coach Style Known Prior SR=0.5 SR=1.0
MLP p(Ci|ff, f7%)  385.25+25.61  458.13+46.93
RNN p(Ctlp) 419.21£177.99  533.54£91.78

E HEAT MAPS OF ATTENTION WEIGHTS

E.1 AVERAGE HEAT MAPS OF MORE METHODS

Table 5: Comparison on the style of coach.

As mentioned in Sec. 1] we visualize the attention weights of four methods in Fig. [I0] Only our
CAMA pay more attention to the agents themselves when the sight range is large, and therefore keeps

a high performance.
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Figure 10: Attention Weights of Qatten, COPA, REFIL and our CAMA.
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E.2 HEAT MAPS AT SINGLE TIME STEPS

A,SR=3,WR=71%

I | r |
t

CAM CAMA,SR=>= W

R=66%

WR=71%

 REFIL,SR==,WR=51%

Figure 11: Attention Weights on single time steps of REFIL and our CAMA.

We also visualize the heat maps of our method and REFIL at single time steps. We choose the first
attention head of each saved model, and set the color bar’s range of attention weight to [0,0.35]. We
visualize in Fig. [TT|both methods’ attention weights on all agents from ¢ = 0 to ¢t = 24, at which time
all the agents are usually alive. We find that the large sight range distracts the attention of REFIL,
while our method CAMA keeps attention concentration.

F HYPERPARAMETERS

We summarize the hyperparameters in Table. [§]

G ENVIRONMENT DETAILS

G.1 RESOURCE COLLECTION
On a map of [-1,1], agents are initialized at random places with team size sampled from [3,8]. They

need to collect resources from 6 resource points and transport the goods home. The locations of
resource points and home are randomly sampled from the whole map at the start of each episode.
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Name Description Value

¥ Discounted factor 0.99
€ anneal time  Time-steps for ¢ to anneal from € to €. ¢ is the probability for 500000
agents choosing random actions.

€s Start € 1
€y Final ¢ 0.05
TNenw The number of parallel environments 8
|D| Replay buffer size 5000
Nhead Number of heads in multi-head attention 4
Natin Dimension of Attention embedding in local agent 128
Nima Dimension of Attention embedding in mixer 64
Nrnn Dimension of RNN cells 64
lr Learning rate 0.0005
« Default attention concentration rate 0.8
B Default communication message compression rate 0.5
QRMS « value in RMSprop 0.99
€ € value in RMSprop 0.00001
Nbatch Batch size 32
ttarget Time interval for updating the target network 200
A1 Weight for Lim 0.005
Ao Weight for Ly, 0.1
Gmaz Clipping value for all gradients 10

Table 6: Hyper-parameters.

The radius of the home and the resource location & agent is 0.1 and 0.05, respectively. There are 3
kinds of resources, and each agent ¢ has its own ability b§ uniformly sampled from {0.1, 0.5, 0.9} to
collect each kind of resource e. Each agent can accelerate towards 4 directions or apply no forces at
each time-step. Each agent has its maximal speed uniformly sampled from {0.3, 0.5, 0.7} and the
acceleration is fixed to 3.0. Every time the agent ¢ collects resource e, the team will get a reward
10 * b7. When an agent brings the resource home, the team will get a reward 1. An agent can only
carry one resource at a time, which means an agent needs to bring the collected resource home before
it starts to collect the next one. The episode limit is 145. The number of the agents for training is
uniformly sampled from {2,3,4,5}, while for testing it is sampled from {6,7,8}. Each agent has a
sight range S R. Entities including other agents and resource points that exceed agent i’s SR are
invisible to agent .

G.2 TRAFFIC JUNCTION

The simulated traffic junction environment from |[Sukhbaatar et al.|(2016)) has been a conventional
and useful testbed for testing the performance of multi-agent communication algorithms Singh et al.
(2018); Das et al.| (2019); [Liu et al.| (2020). Despite its great success, cars in the original traffic
junction environment can only move along pre-assigned routes on one or more road junctions and so
the action space for each car only consists of two actions, i.e. gas and brake, which restricts its ability
to simulate real-world environments and test communication algorithms. Moreover, the original
observation is not fit for the need of entity-wise input.

So, we modify the original traffic junction environment to a more flexible version. In stead of pre-
assigned routes, a random selected navigation target is assigned to each active car and the aim of
each active car is navigating to its own target and avoiding collision which occurs when two cars are
on same location. Along with the modified setting, the observation for each active car is altered to
entity-wise form which contains the position of cars in a limited visibility (e.g. 3 x 3 for sight_range
= 1) and the action space is more flexible with five actions i.e. forward, back, left, right and wait.
Besides, the rewards consists of a linear time penalty —0.017, where 7 is the number of active time
steps for the car since the last resurrection, a collision penalty 7..;;550n, = —10 and the difference
Manhattan distance from the target between the previous and the current step . We choose two
different difficulty levels following the settings in Singh et al.| (2018)), illustrated in Fig Moreover,
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Map Nz Max_steps  Parrive Start  Parrive €nd  entrances  targets

1-lane 5 20 0.1 0.3 4 4
2-lane 10 40 0.05 0.2 8 8

Table 7: Detailed environment parameters in two versions of Traffic Junction Environment.
maz_steps is the length of each episode. entrances or targets indicate the number of choices of
entrance or target and in the hard version the cars are restricted to keep to the right when entering or
exiting, so there are only 8 entrances or targets.

the total number of cars is fixed at /V,,,, and the cars will be turned inactive when reaching the target
or colliding with others and new cars get added to the environment with probability pg,,ive at every
time-step which varies during training consistent with the curriculum learning in|Singh et al.|(2018).
The detailed environment parameters settings are indicated in Table[7]

Iﬁiilgi

(a) 1-lane (b) 2-lane

Figure 12: Traffic Junction Environment. Cars are navigating to their own assigned target and avoiding
collision. There are two difficulty levels.

H HARDWARE

We ran experiments on 2 GPU servers, with each one having 8¥RTX3090TI GPUS and 2*AMD
EPYC 7H12 CPUs. Each experiment (one seed) takes 12-24 hours on one GPU.

I GENERALIZABILITY

We test the generalizability of our method in the environment Resource Collection. We train each
method for 107 time steps in the environment with 2-5 agents. Every 5 x 10* time steps, the model is
evaluated on the environment with 6-8 agents for 160 episodes, and we plot the test return curves in
Fig.|13| The results show that our method can generalize well to larger team sizes than training, which
is probably due to the ARM module with the message generator that passes the global information.

18



Under review as a conference paper at ICLR 2023

— Qatten —— REFIL — EMP —— COPA — CAMA
SR=0.5 SR=1.0
600
600
500
500
400
400
£ £
= 2 300
9 300 2
200 200
100 100
0 0
0 2 4 6 8 10 0 2 4 6 8 10
T (mil) T (mil)

Figure 13: Generalizability on the task Resource Collection. Each method is trained on the agent
number 2-5, and tested on agent number 6-8 every 50k time steps to plot the curve.
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