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Abstract

The availability of performant pre-trained models has led to a proliferation of fine-tuned
expert models that are specialized to a particular domain or task. Model MoErging meth-
ods aim to recycle expert models to create an aggregate system with improved performance
or generalization. A key component of MoErging methods is the creation of a router that
decides which expert model(s) to use for a particular input or application. The promise,
effectiveness, and large design space of MoErging has spurred the development of many new
methods over the past few years. This rapid pace of development has made it challenging
to compare different MoErging methods, which are rarely compared to one another and
are often validated in different experimental setups. To remedy such gaps, we present a
comprehensive survey of MoErging methods that includes a novel taxonomy for cataloging
key design choices and clarifying suitable applications for each method. Apart from sur-
veying MoErging research, we inventory software tools and applications that make use of
MoErging. We additionally discuss related fields of study such as model merging, multitask
learning, and mixture-of-experts models. Taken as a whole, our survey provides a unified
overview of existing MoErging methods and creates a solid foundation for future work in
this burgeoning field.

1 Introduction

The development of large-scale pre-trained models increasingly aims to create general-purpose AI systems
that can perform any task without requiring task-specific training. Improvements in these models are often
driven by scale, i.e. training a larger model on a larger dataset (Hestness et al., 2017; Kaplan et al., 2020).
However, even with increased scale these models are not yet truly “general purpose” and often struggle with
certain tasks and/or domains (McCoy et al., 2023; Ling et al., 2023; Kandpal et al., 2023a). Unfortunately,
pre-training a new model in hopes of improving capabilities can be incredibly compute-intensive (Li et al.,
2023; Workshop et al., 2022) and is therefore impossible for most of the research and practitioner community.
In addition to high computational costs, it can be difficult to localize which parameters of the model might
be more useful for a specific use case and adaptively improve performance or reduce computation based on
that information (Pfeiffer et al., 2023).

Fortunately, it is often possible to make targeted improvements to a pre-trained model via fine-tuning (i.e. fur-
ther training on a specialized dataset). In addition, parameter-efficient fine-tuning (PEFT) techniques (Ding
et al., 2022; He et al., 2021; Mangrulkar et al., 2022) further increase fine-tuning efficiency and decrease the
cost of serving such specialized models. PEFT introduces small components like Low-Rank Adapters (Hu
et al., 2022) or (IA)3 vectors (Liu et al., 2022) that surgically modify the original model while adding a
negligible amount of parameters. Due to their compact size, these specialized PEFT modules can be cheaply
shared, facilitating the dissemination of an ever-growing number of adapters across various platforms. The
effectiveness of fine-tuning, combined with the recent release of performant open-weight pre-trained models
like Llama (Touvron et al., 2023) or Stable Diffusion (Podell et al., 2023), has fostered the creation and
release of a multitude of fine-tuned expert models.
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This proliferation of expert models has led to the development of methods for re-using such experts to
improve performance or generalization. Central to these approaches are routing mechanisms that adaptively
select relevant experts for a particular task or query. These methods have been referred to as “MoErging”1

since they frequently share methodology and ideas with mixture-of-experts (MoE) models (Shazeer et al.,
2017; Fedus et al., 2022; Du et al., 2022) and model merging (Matena & Raffel, 2022; Ilharco et al., 2022;
Yadav et al., 2024). However, MoErging methods are distinct from MoE approaches that jointly train all the
experts from scratch (Gupta et al., 2022). Instead, experts are provided by a distributed and decentralized
community of contributors and are not trained by a centralized body. In addition, unlike merging methods
that typically produce a static combination of models, MoErging methods adaptively combine models to
improve performance on a per-query or per-task basis.

Model MoErging has several attractive properties compared to typical paradigms for monolothic model
development. First, reusing and routing among independently-trained expert models can enable decentralized
model development, alleviating the need for extensive centralized data and compute resources, while still
ingesting a large amount of data and computation from different collaborators. Second, the modular use
of expert models facilitates expansion of capabilities by adding experts or making localized updates by
changing individual experts. Such changes are more “transparent” than standard model training by virtue
of the fact that experts are often specialized specific functionalities. Finally, these systems can ideally
generalize compositionally by identifying and “remixing” fine-grained skills from expert models in various
ways, thereby extending their abilities beyond the experts’ initially intended scope (Pfeiffer et al., 2023).

The promise of decentralized development of modular AI systems by recycling experts has led to an explo-
sion of recent work on MoErging. The rapid pace of development in this budding subfield has often led to
papers being unaware of and/or omitting comparison to one another. In addition, differences in assumptions,
experimental setups, and problem settings across papers can further conflate comparison. Hence, the goal
of this survey is to review the many recent publications and projects that can be considered a form of Mo-
Erging. To facilitate comparison and clarify assumptions, we categorize existing works in a novel taxonomy
encompassing possible design choices at three distinct levels: i) the experts that are independently trained
and shared by contributors in a decentralized fashion; ii) the routing strategy that determines how to select
and aggregate experts; and iii) the downstream application targeted by end users. In addition, we discuss
related lines of inquiry, tools that support this approach to model development, and areas for future work.

2 A Taxonomy for MoErging Methods

Broadly, our survey focuses on “MoErging”, a new paradigm for decentralized model development that aims
to recycle expert models trained asynchronously by distributed contributors. We can organize the stages
and components of MoErging methods into three categories: (1) experts, (2) routing, and (3) application.
The experts are the specialized models that are trained and shared by individual contributors. Importantly,
experts are trained independently, i.e. the expert contributors do not have access to one another’s compute
or data. Once expert models have been shared, MoErging methods perform routing, which aims to select
and aggregate the contributor-provided expert models in order to improve performance or generalization.
To process a given query or adapt to a target dataset, routing can operate in various ways, for example: (1)
adaptively select a single expert model, (2) route different examples or processing steps to different experts,
(3) learn a layer to extract relevant information from all experts, and/or (4) combine the expert models in
an adaptive way. Some MoErging methods assume that the expert contributors share not only their expert
models but also their training datasets so that they can be used to design or create the routing strategy.
Finally, the aggregate system is applied to some particular use case, e.g. processing a query or solving a
target task. Different MoErging methods are designed for different use-cases, including zero- or few-shot
adaptation to in-distribution or out-of-distribution task (i.e. a task for which there is or is not a trained
expert model in the system).

While MoErging methods share an overarching goal, the large design space and range of possible use cases
have led to a wide diversity of design choices across different methods. At the same time, seemingly disparate
methods sometimes only differ in a single assumption or target application. In addition, most MoErging

1See e.g. https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
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Routing
Design (2.2)

Expert
Design (2.1)

Application
Design (2.3)

Expert
Training
(2.1.1)

Standard 1, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 21, 23, 24, 25, 26, 27, 28, 29

Custom 2, 3, 4, 5, 6, 8, 11, 16, 19, 20, 22

Expert Data
Privacy
(2.1.2)

Private 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 27

Shared 12, 13, 17, 21, 25, 26, 28, 29

Routing
Dataset
(2.2.1)

None 2, 3, 6, 8, 11, 13, 16, 22, 24

Target 1, 4, 5, 7, 12, 13, 14, 15, 18, 19, 20, 23, 27, 28

Expert 12, 13, 17, 21, 25, 26, 29

General 9, 10, 14, 27

Routing Input
Granularity

(2.2.2)

Task 2, 3, 4, 7, 9, 12, 19

Example 5, 6, 8, 10, 13, 14, 15, 17, 22, 27, 28

Step 1, 11, 16, 18, 20, 21, 23, 24, 25, 29

Routing Depth
Granularity

(2.2.3)

Module 1, 5, 13, 15, 16, 18, 19, 21, 23, 24, 25, 26, 29

Model 2, 3, 4, 6, 7, 8, 9, 10, 11, 14, 17, 20, 22, 27, 28

Expert
Selection
(2.2.4)

Dense 1, 5, 6, 11, 15, 18, 19, 22, 23, 26, 28, 29

Sparse 2, 3, 4, 7, 8, 9, 10, 13, 14, 16, 17, 20, 21, 24, 25, 27

Expert
Aggregation

(2.2.5)

Output 1, 5, 12, 13, 16, 17, 18, 19, 21, 23, 25

Parameter 3, 4, 6, 7, 11, 13, 15, 17, 22, 24, 26, 28, 29

Generalization
(2.3.1)

ID 1, 5, 8, 11, 12, 15, 17, 20, 21, 22, 23, 25, 26, 27, 28, 29

OOD 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 27, 28, 29

User Dataset
(2.3.2)

Zero-Shot 2, 4, 6, 8, 9, 10, 11, 13, 15, 16, 22, 24, 27, 29

Few-Shot 3, 4, 7, 14, 18, 19, 21, 23

Full 1, 5, 12, 17, 19, 20, 21, 25, 26, 28

Figure 1: Taxonomy of model MoErging design choices. References in the leaf nodes link to sections for
specific papers that make some particular design choice. We omit references to methods for which a given
choice is not applicable.
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methods were developed over the past year or so. This contemporaneousness has resulted in studies rarely
discussing or citing one another, further conflating comparison. To address this state of affairs, we introduce
a taxonomy of MoErging methods that precisely enumerates the various design choices and use cases of
MoErging. Our goal in designing this taxonomy is not only to elucidate the previously undocumented
connections and commonalities among methods, but also to provide a framework to situate future work on
MoErging. Our taxonomy is shown in Figure 1, with descriptions of each design consideration below.

2.1 Expert model design choices

MoErging involves recycling specialized expert models. Contributors of the expert models do their training
independently, i.e. without access to one another’s data or compute, and subsequently share their models.
Design choices for the expert models include:

2.1.1 Expert Training

While contributors must train and share a model for it to be used as part of a MoErging system, a given
MoErging method may further stipulate that the expert models are trained in a specific way. For example,
PHATGOOSE (Muqeeth et al., 2024) requires that expert model training includes an additional stage where
gates are trained that are later used for routing. If a MoErging method stipulates a specific expert training
procedure, we label it as Custom; otherwise, we label it as Standard. We note that many MoErging
methods require access to statistics of each expert training dataset (e.g. each expert training set’s average
activation at some particular layer). We consider this a modification because it would not otherwise be done
as part of standard expert training.

2.1.2 Expert Data

A major motivation of the field of MoErging is to recycle the huge number of fine-tuned models being
shared on model hubs. Such models are typically shared without their associated training data. However,
certain MoErging methods assume access to expert training data, e.g. for learning the routing procedure.
When expert data is shared, it is no longer a requirement that the experts must be trained independently.
Furthermore, it would be possible to e.g. perform multitask training on all expert datasets simultaneously
or carry out a modified expert training procedure. In the scenario where expert data needs to be shared,
the sole benefit of MoErging methods is therefore the recycling of the compute required to train the expert
models. In addition, apart from the reality that training data is often not shared alongside fine-tuned expert
models, contributors may prefer to keep their training data private. We therefore categorize whether each
method requires that expert training data is Shared or can remain Private.

2.2 Routing design choices

In MoErging, expert models are collected to create an aggregate system to improve performance or general-
ization. A key step in this process is to create a “router” that can adaptively choose which model(s) should
be used for a particular query or dataset. The creation of the aggregate MoErging system involves a large
range of design choices, including:

2.2.1 Routing Dataset

To learn to route or select among expert models, MoErging methods often require a training dataset that we
refer to as the “routing” dataset. Some MoErging methods make use of the Expert’s training datasets for
the routing dataset, while others assume access to a Target-task dataset or a General dataset that covers
a wide range of tasks. In addition, some MoErging methods do not explicitly train a router and therefore
use None.

2.2.2 Routing Input Granularity

Different MoErging methods make routing decisions at different levels of granularity. At the finest level,
routing can be done per-Step (e.g. choosing a different expert model for each of a language model’s generated
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tokens). In addition, routing can be performed once for each Example or query, or a single expert model
can be chosen for all examples from some particular Task.

2.2.3 Routing Depth Granularity

Parameter-efficient fine-tuning methods like LoRA (Hu et al., 2022) or (IA)3 (Liu et al., 2022) insert trainable
modules at different layers throughout a model. Some MoErging methods therefore make per-Module
routing decisions (i.e. with different routing decision at each layer where modules have been inserted, as in
mixture-of-experts models (Shazeer et al., 2017)), while others make a single routing decision for the entire
Model.

2.2.4 Expert Selection

When routing among experts, some MoErging methods make a Sparse selection (i.e. choosing only a subset
of the experts) while others perform Dense routing (i.e. making use of all experts at once).

2.2.5 Expert Aggregation

If a MoErging method selects more than one expert, it must aggregate the experts or their outputs in some
way. Aggregation methods include mixing the Output of experts, combining the expert’s Parameter values
before processing inputs, or None for methods that perform no aggregation (e.g. because they select a single
expert).

2.3 Application design choices

Once the expert models have been recycled into an aggregate system, users can then apply the system to
their tasks or queries of interest. Different MoErging methods produce systems that support different usage
patterns and incur different requirements on applications. Relevant design choices include:

2.3.1 Generalization

MoErging can aim to produce systems that improve performance on In-Distribution tasks (i.e. the tasks
that the experts were trained on) or enable generalization to Out-of-Distribution tasks (i.e. those tasks
for which there is no corresponding expert). However, many systems are applicable to both settings.

2.3.2 User Dataset

MoErging methods may require a training dataset in order to be applied to a target task, which may be a
Few-Shot dataset with a small number of labeled examples or a Full dataset with many labeled examples.
Other methods require no target-task training dataset (i.e. they can be applied Zero-Shot). We make
a slight misnomer and also refer to MoErging methods where an unlabeled target-task training dataset is
required as “zero-shot”.

3 A Survey of MoErging Methods

Having established our taxonomy, we now provide a detailed survey of a few dozen recent papers that propose
and study MoErging methods. Precisely delineating what is and is not a MoErging method is challenging
because many past methods share the same basic motivation but differ in their application and framing.
However, we believe that the papers we cover in this section provide a reasonably comprehensive overview
of MoErging and MoErging-adjacent methods. Notably, most of the papers we discuss here only cite a small
fraction of the other papers, suggesting that there is a general lack of awareness about relevant papers. Our
survey aims to address this gap in knowledge.

For each method described in this section, we include an “infobox” cataloging the design choices made by
each method according to our taxonomy. These infoboxes provide a point of reference to quickly understand
each method and how it relates to others. However, there are cases where a given paper does not cleanly
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map onto our taxonomy. In such cases, we may denote that a paper considers Multiple options for a given
design choice or that some design choice is N/A (not applicable).

3.1 AdapterFusion

Expert Training: Standard Expert Data: Private Routing Dataset: Target
Input Granularity: Step Depth Granularity: Module Expert Selection: Dense
Expert Aggregation: Output Generalization: In-Distribution User Dataset: Full

Pfeiffer et al. (2021) propose a two-stage algorithm for sharing knowledge across task-specific adapters that
consists of an extraction stage and a subsequent combination stage. In the extraction stage, the adapters
(Houlsby et al., 2019) are trained independently on individual tasks. In the combination stage, a new fusion
module is added to the top of all single-task adapters. The fusion module is a form of attention module
(Vaswani et al., 2017), with its query from the input representation of adapters and the key and value from
the output representation of the adapters. Then, the model trains only the fusion module parameters on
a target task, therefore learning to combine all the individually trained adapters. Their experiment on 16
natural language understanding tasks shows in-distribution performance improvement on 12 tasks, compared
to standard full model fine-tuning on the target task.

3.2 Retrieval of Experts

Expert Training: Custom Expert Data: Private Routing Dataset: None
Input Granularity: Task Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: None Generalization: Out-of-Distribution User Dataset: Zero-Shot

Jang et al. (2023) argue that multitask training may underperform individually trained task experts equipped
with a retrieval mechanism. Their proposed retrieval step encodes unlabelled examples from the target task,
compares it to data encoded from each training task, and assigns each target datapoint to a specific trained
expert. The expert with the most datapoints assigned to it is retrieved. Experiments are conducted using
T0-3B and its associated training and evaluation sets (Sanh et al., 2022). This retrieval approach is shown
to outperform T0-3B. Moreover, for certain benchmarks there exists a single oracle expert that performs
significantly better than multitask training, showing the potential for better performance with a better
retriever.

3.3 AdapterSoup

Expert Training: Custom Expert Data: Private Routing Dataset: None
Input Granularity: Task Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: Parameter Generalization: Out-of-Distribution User Dataset: Few-Shot

Chronopoulou et al. (2023) combine different PEFT adapters trained independently over 21 website domains
to enable few-shot transfer to novel domains. In order to select which domain adapters are the most
relevant to the downstream task, the authors explore two approaches. The first uses a pretrained sentence-
BERT (Reimers & Gurevych, 2019) representation averaged over 100 samples for each training domain and
downstream task to compute a similarity metric. The second approach trains a gaussian mixture model
using the representation of 100 samples from each training domain and then maps few-shot samples from the
downstream task to their closest cluster. In either case, chosen adapters are retrieved and their parameter
are averaged to produce an aggregate adapter for the downstream task. The authors show that both these
approaches obtain better perplexity on 11 unseen domains than uniformly averaging all experts, and picking
a single expert according to the same metrics.

3.4 π-Tuning

Expert Training: Custom Expert Data: Private Routing Dataset: Target
Input Granularity: Task Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: Parameter Generalization: Out-of-Distribution User Dataset: Multiple
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To transfer knowledge from similar tasks to a target task, Wu et al. (2023) make use of the Fisher Information
Matrix (FIM)-based Task Vector method (Achille et al., 2019). Specifically, given a pool of adapters, they
construct a new expert for a target task by finding the adapters whose FIM is among the top-k most similar
and averaging weights (including a target task-specific adapter) according to FIM similarity. The experts
and their interpolation weights are jointly optimized to improve the target task loss. They also introduce a
zero-shot variant, where the single adapter with the highest FIM is picked. Their results show improvement
in multiple language and vision tasks.

3.5 MixDA

Expert Training: Custom Expert Data: Private Routing Dataset: Target
Input Granularity: Example Depth Granularity: Module Expert Selection: Dense
Expert Aggregation: Output Generalization: In-Distribution User Dataset: Full

Diao et al. (2023) propose a two-stage algorithm to transfer knowledge from self-supervised domain adapters
to target tasks. The first stage involves training domain-specific adapters with masked language modeling
objectives on unlabeled data. In addition, a mean-square-error auxiliary loss is added to maintain the
similarity between output representations of the domain adapter and the base model’s feedforward network.
In the second stage, domain adapters are all added to the model and always activated. A series of MLP-
sigmoid gates following the domain adapters control the weight to aggregate their outputs. This aggregated
output is fed through a newly-introduced task adapter. Training in the second stage freezes the base model
and domain adapters and updates the gates and task adapter.

3.6 Mo’LoRA

Expert Training: Custom Expert Data: Private Routing Dataset: None
Input Granularity: Example Depth Granularity: Model Expert Selection: Dense
Expert Aggregation: Parameter Generalization: Out-of-Distribution User Dataset: Zero-Shot

Mo’LoRA (Maxine, 2023) considers the case where a base LLM (specifically, Llama 2) is being fine-tuned
on a diverse general dataset (specifically, Wizard-EvolInstruct70k (Xu et al., 2023)). To train specialized
models, the generalist dataset is first clustered based on embeddings produced by a sentence transformer
(Reimers & Gurevych, 2019) and a LoRA is trained on each cluster. Then, the cosine distance between
the embedding of a given query and the cluster centroids is used to produce a routing distribution. The
parameters of the LoRAs are then averaged, weighted according to the routing distribution, and the query
is processed using the aggregate LoRA.

3.7 LoraHub

Expert Training: Standard Expert Data: Private Routing Dataset: Target
Input Granularity: Task Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: Parameter Generalization: Out-of-Distribution User Dataset: Few-Shot

Huang et al. (2024) train one LoRA expert per task on a collection of 200 tasks from the Flan collection
(Longpre et al., 2023), starting from the Flan-T5-Large as the base model (Chung et al., 2024). The
experts are used to test few-shot generalization on a suite of 27 tasks from BIG-Bench Hard (Suzgun et al.,
2022). LoraHub performs routing in two steps: first, 20 adapters are chosen at random from the full set
of 200 training adapters; then, for each new task, the authors learn a fixed routing distribution over the
randomly chosen adapters using a gradient-free method over a small task-specific training dataset. The
routing probabilities are used to compute a weighted average of the chosen adapters’ parameters to create a
single specialized adapter. LoraHub is therefore focused on few-shot out-of-distribution tasks, i.e. it evaluates
performance on a separate set of tasks but requires task-specific training data to learn routing weights.
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3.8 Airoboros and LlamaIndex

Expert Training: Multiple Expert Data: Private Routing Dataset: None
Input Granularity: Example Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: None Generalization: Multiple User Dataset: Zero-Shot

Airoboros (Durbin, 2024) is an open-source tool for generating and training on instruction tuning data. It
includes functionality for selecting among a pool of expert models. Adaptive routing is supported in two
ways: either by embedding 1,000 samples from each expert training dataset and retrieving the expert whose
embedding is nearest to the query (composed of the system prompt and instruction) embedding via a FAISS
index, or by asking an LLM which model to use for the query given a list of descriptions of each model.
LlamaIndex (Liu, 2024) is an open-source library for connecting LLMs with data sources and other tools.
Like airoboros, it includes functionality for building a model-level router by querying an LLM, with flexible
choicses of the routing model and selection prompt.

3.9 Routing with Benchmark Datasets

Expert Training: Standard Expert Data: Private Routing Dataset: General
Input Granularity: Task Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: None Generalization: Out-of-Distribution User Dataset: Zero-Shot

Shnitzer et al. (2023) reuse a collection of benchmark datasets (specifically HELM, Liang et al., 2022) to
determine routing among LLMs on an unseen dataset. Specifically, they hold out one dataset while using
the remaining datasets, called “benchmark data”, for learning the routing. The evaluation is performed on
all the LLMs in the pool on the benchmark data, and they define the correctness of each LLM for a given
query with a binary score indicating whether the LLM can provide an acceptable answer to the given query.
They embed the benchmark data using a sentence embedder, and for a query from the holdout dataset, the
averaged correctness score from the k nearest neighbors in the benchmark data is assigned as the score for
this query and LLM. The average of all scores for all queries in the dataset is then taken to estimate how
accurate an LLM is for the task. They propose three estimators: the first that takes the arg max of the
previously computed correctness scores over all the queries of the dataset. The second estimator applies a
threshold on the correctness score of samples when averaging over queries in the dataset and accounts only
for those that cross the threshold. To address out-of-distribution tasks, a third proposed estimator takes
into account unlabeled out-of-distribution test samples by estimating the probability that the per-test-sample
correctness score is accurate. The estimator defaults to the best LLM on the benchmark in cases of low
confidence.

3.10 Zooter

Expert Training: Standard Expert Data: Private Routing Dataset: General
Input Granularity: Example Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: None Generalization: Out-of-Distribution User Dataset: Zero-Shot

Lu et al. (2023a) propose Zooter, a learned router that aims to send each query to the best generalist
language model (LM) within a pool of possible models. To train the router, predictions over a set of
unlabelled instruction data are first collected for all LMs in the pool. The predictions are then scored by
a reward model and the normalized scores across models are used as a training signal for the router. The
router is kept relatively small (3 orders of magnitude smaller) compared to the LMs to keep routing cost
low. Given the inherent noise in the scoring of queries using a reward model, the authors use a form of label
smoothing: the reward for a given query is averaged with other queries with the same tags (e.g. “math”,
“creative writing”) obtained from a pretrained tagger (Lu et al., 2023b). When evaluated on generalist
benchmarks like MT-Bench (Zheng et al., 2023) or FLASK (Ye et al., 2023), Zooter performs similarly to
naively routing each query to every LM the pool and selecting the response with the highest reward.
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3.11 Token-Level Adaptation of LoRA Adapters

Expert Training: Custom Expert Data: Private Routing Dataset: None
Input Granularity: Step Depth Granularity: Model Expert Selection: Dense
Expert Aggregation: Parameter Generalization: In-Distribution User Dataset: Zero-Shot

Belofsky (2023) formulate a routing approach for independently-trained LoRA experts. After training experts
on a small set of specialized tasks, they form an expert representation by leveraging the experts’ training
data. Specifically, for each dataset, they compute the centroid of the embeddings of the dataset prompts. At
test time, they normalize the cosine similarities between the embedding of the prompt generated so far and
the experts’ embeddings and combine expert parameters based on the resulting weights. The granularity of
their routing approach is step-level but the routing decisions are shared across layers, i.e. every new token
is produced by a dense combination of the trained experts. The evaluation is performed on In-Distribution
tasks, i.e. they use the test set of the same tasks the experts have been trained on.

3.12 CALM

Expert Training: Standard Expert Data: Multiple Routing Dataset: Multiple
Input Granularity: Task Depth Granularity: N/A Expert Selection: None
Expert Aggregation: Output Generalization: Multiple User Dataset: Full

Bansal et al. (2024) focus on composing knowledge from two models that can potentially have different
architectures and sizes. Given an anchor model and an augmenting model, the goal is to have a final
model that is good at the anchor task, augmenting task, and a “composition” task that corresponds to the
composition of the anchor and augmenting tasks. To achieve this, CALM adds multiple cross-attention layers
between the augmenting and anchor model which takes in the input activation from both models. Then,
the output from this learned cross-attention layer is passed on to the anchor model. Both the anchor and
augmentation models are frozen and the cross-attention layers are learned in an end-to-end manner on a
mixture of anchor and augmenting task in order to improve performance on the composition task. They use
PaLM2-XXS as the augmenting model and use PaLM2-XS or PaLM2-S as the anchor model (Chowdhery
et al., 2023). CALM is shown to be effective in experiments including adding low-resource support to an
English model and improving the coding of the anchor model.

3.13 What the Weight?

Expert Training: Standard Expert Data: Multiple Routing Dataset: Multiple
Input Granularity: Example Depth Granularity: Module Expert Selection: Sparse
Expert Aggregation: Multiple Generalization: Out-of-Distribution User Dataset: Zero-Shot

Holtermann et al. (2024) do not propose a new method for MoErging but instead introduce a framework
under which they can perform experiments to better understand the various components and how they
impact zero-shot compositional generalization. They frame such generalization as having three steps; (1)
selecting a subset of experts, (2) deciding weights for each expert, (3) combining the different experts based
on their weight. They experiment with five different types of scoring functions to select and weigh experts:
uniform, sentence similarity, tf-idf, domain priors, and entropy. After selecting the scores and the experts
they perform two different types of aggregation, parameter-level and ensembling the outputs. Their large-
scale study produces various new insigts, including: ensembling generally yields better results than parameter
averaging, good performance can be attained even with simple routing strategies, and that the number of
chosen experts is more important than the precise weights assigned to them.

3.14 Routoo

Expert Training: Standard Expert Data: Private Routing Dataset: Multiple
Input Granularity: Example Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: None Generalization: Out-of-Distribution User Dataset: Few-Shot
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Mohammadshahi et al. (2024) describe a system that trains a router to perform model-level routing among
generalist LLMs of varying sizes and architectures. A fixed budget is provided and the final objective is to
maximize the overall performance across all queries while adhering to the budget constraints. Router training
is done using a dataset of (query, response, evaluation score) triplets collected over many possible models.
Mohammadshahi et al. (2024) use labeled target-task examples (specifically from MMLU) to synthetically
generate the router training dataset with self-play for iterative refinement. However, we note that the method
could in principle be used in zero-shot settings.

3.15 Weight-Ensembling MoE

Expert Training: Standard Expert Data: Private Routing Dataset: Target
Input Granularity: Example Depth Granularity: Module Expert Selection: Dense
Expert Aggregation: Parameter Generalization: Multiple User Dataset: Zero-Shot

Tang et al. (2024c) argue that the interference when merging models should be dynamically resolved and
hence design a MoErging method that averages all parameters except MLP layers which may contain more
task-specific knowledge. They upcycle MLP layers into an MoE where each MLP from each expert model
is converted to a task vector by subtracting the base model’s parameters from the MLP layer’s parameters.
Routing is then performed between the expert MLP task vectors by multiplying the routing weights with
the task vectors and then adding them back to the base MLP weight. Routing is done at the example level
by taking the mean of all the token-level routing weights. Expert training data access is not required, but
an unlabelled test dataset is used to learn the router by minimizing the routing distribution’s entropy.

3.16 PHATGOOSE

Expert Training: Custom Expert Data: Private Routing Dataset: None
Input Granularity: Step Depth Granularity: Module Expert Selection: Sparse
Expert Aggregation: Output Generalization: Out-of-Distribution User Dataset: Zero-Shot

Muqeeth et al. (2024) focus on zero-shot generalization to unseen tasks by reusing existing adapters that are
trained using a slightly modified training procedure. For each training task, they first train a LoRA module
and then they add a sigmoid gate before each module which learns the importance of each token for this
task. To compute this importance score they compute the sigmoid of the similarity between the gate and
the per-token representations. Finally, they optimize the task loss for a given expert to learn these gates.
Once LoRA and gates for all tasks are trained independently, then they create an MoE-style model from
these experts for performing zero-shot generalization to unseen tasks. Specifically, for each Lora module,
they create a router by stacking and normalizing all the gates from different experts. Then they normalize
the token representation and route the token to the experts corresponding to the top-2 most similar gates.
Results on improving the zero-shot generalization of T5.1.1 demonstrate that this approach outperforms
other methods for learning post-hoc routing and can sometimes match the performance of explicit multitask
routing.

3.17 LoraRetriever

Expert Training: Standard Expert Data: Shared Routing Dataset: Expert
Input Granularity: Example Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: Multiple Generalization: Multiple User Dataset: Full

Zhao et al. (2024b) train a sentence embedding model to map from an input query into an embedding space
that is then used to select an expert model to route the query to. The embedding space is constructed by
sampling a subset of each of the expert model’s training task and computing their average embedding. The
embedding model is trained on a wide range of tasks in hopes of enabling generalization to unseen tasks and
domains. Expert models are created as LoRA adapters to a base model, and are aggregated via merging or
top-k output ensembling after routing is performed.
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3.18 LoRA-Flow

Expert Training: Standard Expert Data: Private Routing Dataset: Target
Input Granularity: Step Depth Granularity: Module Expert Selection: Dense
Expert Aggregation: Output Generalization: Out-of-Distribution User Dataset: Few-Shot

Wang et al. (2024) propose LoRA-Flow, which introduces a fusion gate at each layer of the transformer that
processes the input at that layer and generates weights to perform a weighted average of the outputs from a
set of pretrained LoRAs in the model. Some of these LoRAs are trained on multilingual language modeling,
while others are task-specific and trained in English. These weights are generated for every token, making
the routing token-level and layer-wise, with dense aggregation at the output level. Few-shot data from the
downstream task of interest is used to learn this fusion gate, which comprises linear matrix and a bias vector.
Experiments were conducted on math and coding abilities in a multilingual setting, specifically MGSM (Shi
et al., 2022) for math and HumanEval translated into different languages for code. Their method outperforms
LoraHub (section 3.7), which learns weights per task and averages LoRA parameters rather than outputs.

3.19 PEMT

Expert Training: Custom Expert Data: Private Routing Dataset: Target
Input Granularity: Task Depth Granularity: Module Expert Selection: Dense
Expert Aggregation: Output Generalization: Out-of-Distribution User Dataset: Multiple

Lin et al. (2024) propose a method to train a parameter efficient adaptation for a new task by utilizing
adapters from other tasks. First, for each source task, they train both a learnable soft prompt (Lester et al.,
2021) (initialized with a task description as in Raffel et al. (2020)) and an adapter. Then, for a target task,
they initialize a soft prompt via an attention-style mechanism using the embedded target task description as
a key and the source task prompts as keys and values. A task correlation matrix is constructed via a similar
process, and a separate gating network is trained at each layer taking the correlation matrix as input. The
gating network learns a weighting for computing an average of the source task adapters’ outputs. Finally,
a new target-task adapter is trained on downstream task data along with the gating network, soft prompt,
and normalization parameters. This pipeline is shown to outperform other methods for recycling adapters
such as SPoT (Vu et al., 2021) and ATTEMPT (Asai et al., 2022).

3.20 Co-LLM

Expert Training: Custom Expert Data: Private Routing Dataset: Target
Input Granularity: Step Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: None Generalization: In-Distribution User Dataset: Full

Shen et al. (2024) trains a binary classifier on the top of a base model’s last hidden state to determine when a
base model should defer token generation to a frozen large model, facilitating collaboration between models.
Given training data for a task, pseudo-labels are generated by evaluating both models and labeling instances
where the large model predicts the correct next token while the base model does not. This data is used to
train the classifier’s parameters and is further used as initialization in the later stage when the classifier and
base model are fine-tuned on the task. During inference, a threshold is set on the classifier using validation
data that decides when to defer to the large expert model. This collaborative approach yields better results
compared to fine-tuning the base model alone or using the frozen large model independently in instruction
following, math, reasoning, and biomedical tasks.

3.21 Branch-Train-Mix

Expert Training: Standard Expert Data: Shared Routing Dataset: Expert
Input Granularity: Step Depth Granularity: Module Expert Selection: Sparse
Expert Aggregation: Output Generalization: In-Distribution User Dataset: Multiple

Sukhbaatar et al. (2024) fine-tune each LLM on four different domains starting from a seed LLM (Llama 7B
(Touvron et al., 2023)) to create expert LMs for each domain. They propose combining the FFNs of each
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expert LM to form an MoE, as in Lepikhin et al. (2020); Du et al. (2022), and averaging other parameters from
each expert LM. The resultant model is fine-tuned on a training mixture corresponding to all the domains.
During inference, top-2 routing is used at each MoE layer. They evaluate on downstream tasks in zero-shot
and few-shot settings corresponding to each domain and find that their method performs comparably to
the best domain expert LM for that task. Their method also performs comparably to a compute-matched
counterpart, where the seed model is scaled to be similar size to the final model by upcycling (Komatsuzaki
et al., 2022) and trained using multitask data.

3.22 Dynamic Adapter Merging

Expert Training: Custom Expert Data: Private Routing Dataset: None
Input Granularity: Example Depth Granularity: Model Expert Selection: Dense
Expert Aggregation: Parameter Generalization: In-Distribution User Dataset: Zero-Shot

Dynamic Adapter Merging (DAM, Cheng et al., 2024) leverages domain-specific adapters of a base model
to perform domain-incremental learning in the context of video question answering (VidQA). DAM first
computes each domain-specific training set’s average embedding from the penultimate layer of the base
model. The distances between a given query input’s embedding and the dataset average embeddings are
then normalized to create a routing distribution. Finally, the query is processed by merging the domain-
specific adapters using per-adapter weights set according to the routing distribution. On standard VidQA
benchmarks, DAM significantly outperforms continual learning on the domain-specific datasets and nearly
matches the performance of multitask training. However, the use of the base model to embed the input
roughly doubles the computational cost.

3.23 Mixture of LoRA Experts (MoLE)

Expert Training: Standard Expert Data: Private Routing Dataset: Target
Input Granularity: Step Depth Granularity: Module Expert Selection: Dense
Expert Aggregation: Output Generalization: Multiple User Dataset: Few-Shot

Wu et al. (2024) note that directly merging LoRA modules can degrade capabilities. They therefore aim to
train routers to aggregate and reweight outputs from LoRAs at each layer where they have been introduced.
Router training is performed on downstream data with the rest of the model (base model and LoRA param-
eters) fixed. In addition to a standard domain-specific loss, MoLE include a load balancing loss that aims
to encourage the router to assign weight to all LoRAs. During inference, MoLE considers the cases where
all LoRA outputs are used and where some LoRAs are manually removed. Experimental results include
an analysis of performing model, layer, or module-level routing that demonstrates that module-level gating
networks result in the best performance.

3.24 Arrow ↗

Expert Training: Standard Expert Data: Private Routing Dataset: None
Input Granularity: Step Depth Granularity: Module Expert Selection: Sparse
Expert Aggregation: Parameter Generalization: Out-of-Distribution User Dataset: Zero-Shot

Ostapenko et al. (2024) explore methods to build and reuse a library of expert LoRAs for zero-shot task
generalization. The proposed solution builds a MoE-like architecture, where the different experts are dy-
namically selected according to the input. To build a router in a zero-shot manner, the authors add a linear
router at each layer, where expert prototypes are initialized to the top singular vector of a given LoRA
expert. This then enables per-layer, per-step routing, using the top-4 experts at every selection step. The
authors train experts on a 256-task subset of the FLAN dataset (Longpre et al., 2023), using Phi-2 (Microsoft
Research, 2023) and Mistral-7B (Jiang et al., 2023) as backbones. They show performance gains both on
in-distribution tasks, as well as on a collection of 10 held-out tasks, ranging from common sense reasoning
to python programming.
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3.25 MeteoRA

Expert Training: Standard Expert Data: Shared Routing Dataset: Expert
Input Granularity: Step Depth Granularity: Module Expert Selection: Sparse
Expert Aggregation: Output Generalization: In-Distribution User Dataset: Full

Xu et al. (2024) propose an efficient method to dynamically select between multiple LoRA adapters. In each
layer, a learned gating mechanism chooses a predetermined number of LoRAs to be activated for each token.
The gating is learned by freezing the network and learning next token prediction over the same datasets
used to train the experts. In addition to the architectural change, various engineering choices are made
to ensure efficient parallelization of the gating choices, ultimately leading to substantial speedups. While
MeteoRA is initially validated on in-distribution tasks with a labeled dataset, it could in principle be applied
to out-of-distribution tasks.

3.26 PWE MoE

Expert Training: Standard Expert Data: Shared Routing Dataset: Expert
Input Granularity: N/A Depth Granularity: Module Expert Selection: Dense
Expert Aggregation: Parameter Generalization: In-Distribution User Dataset: Full

Tang et al. (2024b) extend WE MoE (covered in section 3.15) to settings where Pareto-optimal performance
is desired on a set of tasks. Task importance is set according to a user-specified “preference vector” (whose
entries are nonnegative and sum to 1) that designates which tasks are more or less important. As in WE
MoE, specialized models are upcycled (Komatsuzaki et al., 2022) into an MoE-style model by merging
non-feed-forward network parameters via task vector arithmetic (Ilharco et al., 2022). Routers among the
feed-forward networks are trained by sampling random preference vectors and optimizing standard losses
that capture Pareto optimality over the expert tasks. Routing based on preference vector-specified task
weighting is shown to outperform merging methods that use the preference vector to set model weights.

3.27 RouteLLM

Expert Training: Standard Expert Data: Private Routing Dataset: Multiple
Input Granularity: Example Depth Granularity: Model Expert Selection: Sparse
Expert Aggregation: None Generalization: Multiple User Dataset: Zero-Shot

Ong et al. (2024) aim to reduce inference costs while maintaining performance by dynamically routing each
input to either a strong or a weak LLM. RouteLLM learns a router that estimates the probability that the
stronger model will outperform the weaker one on a specific metric for a given input and select the weaker
model if the probability is below a given threshold. The router is learned using a combination of preference
data from Chatbot Arena (Chiang et al., 2024), instruction-tuning data such as Nectar (Zhu et al., 2023)
and data with gold labels, such as MMLU (Hendrycks et al., 2020). RouteLLM is then evaluated on MMLU,
MT-Bench (Zheng et al., 2023) and GSM8K Cobbe et al. (2021). Given that MMLU is both used for learning
the routing and for evaluation, we described the Routing Dataset as Multiple, to denote that it comprises
some examples from the target evaluation tasks and other generic tasks. The paper shows that RouteLLM
can learn to choose between GPT-4 and Mixtral effectively, lowering inference costs. In some settings, it was
observed that the inclusion of some target-task examples in the calibration data for the router was important
to learn an effective router.

3.28 Twin-Merging

Expert Training: Standard Expert Data: Shared Routing Dataset: Target
Input Granularity: Example Depth Granularity: Model Expert Selection: Dense
Expert Aggregation: Parameter Generalization: Multiple User Dataset: Full

Twin-Merging (Lu et al., 2024) aims to address the gap in performance between a merged model and the
original constituent models being merged. Specifically, Twin-Merging first constructs a “shared” model
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by performing task arithmetic (Ilharco et al., 2022) to merge all of the expert models. Then, “exclusive
knowledge” experts are obtained by computing the rank-r reconstruction from the SVD of the difference
between the shared model and each expert model. Finally, a router is trained on a small task-specific training
set to generate a weighting over the exclusive knowledge experts. The exclusive knowledge experts are then
merged using the router’s weights for a particular example. By performing adaptive merging, Twin-Merging
is shown to create a single model that matches the individual models’ performance.

3.29 RAMoLE

Expert Training: Standard Expert Data: Shared Routing Dataset: Expert
Input Granularity: Step Depth Granularity: Module Expert Selection: Dense
Expert Aggregation: Parameter Generalization: Multiple User Dataset: Zero-Shot

Zhao et al. (2024a) extend LoraRetriever (see section 3.17) by including a router that outputs a distribution
over the retrieved LoRA modules. The router is architected as a LoRA module that is trained on a subset
of the expert tasks (in the same way as the LoraRetriever-based retrieval module). To ensure the router can
handle out-of-distribution tasks, LoRA modules are randomly dropped out during router training. Routers
are introduced at each location in the model where LoRA modules are introduced, producing per-token and
per-module routing. Ultimately, performing a router-weighted average of module parameters is shown to
outperform top-1 routing or unweighted module merging.

3.30 Summary and Takeaways

Having covered a few dozen MoErging methods, we now provide some high-level discussion about their
commonalities and differences. First, we note that many MoErging methods are remarkably similar, and
that we can broadly group most of them into four categories based on how routing is learned: The first
are methods that compute embeddings of expert training sets and compare them to a query embedding to
perform routing, including AdapterSoup (Chronopoulou et al., 2023), Retrieval of Experts (Jang et al., 2023),
Token-Level Adaptation (Belofsky, 2023), LoraRetriever (Zhao et al., 2024b), Mo’LoRA (Maxine, 2023), the
embedding-based approach of Airoboros (Durbin, 2024), and Dynamic Adapter Merging (Cheng et al., 2024).
The second are those that train the router as a classifier using the expert datasets or unseen data, including
Zooter (Lu et al., 2023a), Branch-Train-Mix (Sukhbaatar et al., 2024), Routing with Benchmark Datasets
(Shnitzer et al., 2023), Routoo (Mohammadshahi et al., 2024), and RouteLLM (Ong et al., 2024). Roughly
speaking, the primary difference between the first two categories is the architecture (and consequently the
training) of the router, i.e. whether it resembles a nearest neighbor or logistic regression classifier. The third
category are those methods that aim to improve performance on a specific target task and therefore learn
a task-specific routing distribution over the target dataset, including LoraHub (Huang et al., 2023), LoRA-
Flow (Wang et al., 2024), AdapterFusion (Pfeiffer et al., 2021), π-Tuning (Wu et al., 2023), Co-LLM (Shen
et al., 2024), Weight-Ensembling MoE (Tang et al., 2024c), MoLE (Wu et al., 2024), MeteoRA (Xu et al.,
2024), PEMT (Lin et al., 2024), MixDA (Diao et al., 2023), and Twin-Merging (Lu et al., 2024). Finally,
the fourth category comprises methods that do not explicitly train a router, including Arrow ↗ (Ostapenko
et al., 2024), PHATGOOSE (Muqeeth et al., 2024), the “ask an LLM” routing of Airoboros (Durbin, 2024)
and LlamaIndex (Liu, 2024).

The differences between methods within a particular category frequently come down to the routing and
expert granularity, the way experts are selected and aggregated, and the evaluation performed. We consider
these differences to be relatively superficial compared to the way the router is built, which has significant
implications in terms of what data is required and what settings a given method is applicable to. We therefore
argue that methods within each category should, in most cases, compare to one another. However, such
comparisons are rare in past work; for example, within the first category of embedding-based routers, only
LoraRetriever compares to AdapterSoup. Comparison across groups would not make sense in some cases,
though could in principle be possible by swapping out the routing dataset of a given method (e.g. using a
general dataset or expert datasets to learn the router in the third “task-specific router” category to enable
comparison to methods in the other categories).
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Apart from comparison to other methods, we reemphasize that assumptions about data access can make
other often-omitted baselines important. For example, if all expert datasets are assumed to be simultaneously
available for the purpose of e.g. training the router, then multitask training of the base model on the
expert datasets should be considered as a baseline. More broadly, we consider data access to be a primary
consideration in terms of which methods are applicable and/or realistic in different settings. For example,
methods that require a labeled target-task dataset are, by definition, not applicable to improving zero-shot
generalization, and methods that require that the expert training datasets are shared alongside adapters are
not applicable to reusing the huge number of publicly shared adapters (which seldom have their training
dataset released alongside parameter values).

4 Related Methods and Problem Settings

Although recycling expert models for decentralized model development has only emerged in recent years,
many established research areas are closely tied to this problem. Insights and solutions from these directions
may help accelerate progress on MoErging. In this section, we therefore outline several directions related to
MoErging, discuss their commonalities and distinctions, and highlight promising connections.

4.1 Multitask Learning

Multitask learning (Caruana, 1997) aims to solve multiple tasks simultaneously, usually with a single model,
to exploit commonalities across tasks. MoErging shares this high-level goal, but differs in that multitasking
learning has mostly evolved in self-contained environments: one party decides on training data, trains the
model, and deploys it for that party’s own use. This condition leads to several key differences. First,
multitask learning usually leverages relatively few tasks – either those the model developer has access to or
those directly relevant to the developer’s intended use. MoErging methods, on the other hand, aim to receive
contributions from more tasks of greater variety and may target a wider range of use cases. Second, when
a single party controls the entire data and model training pipelines, it is easier to implement sophisticated
techniques. In contrast, for decentralized model development, innovations that deviate from the standard
practice of sharing independently trained expert models may come at the cost of adoption.

Still, many previous works on multitasking learning tackle common challenges and can shed light on decen-
tralized development. Multitask learning works often investigate the problem of task-relatedness (Standley
et al., 2020; Bingel & Søgaard, 2017; Achille et al., 2019; Vu et al., 2020; Zamir et al., 2018; Mou et al., 2016),
which is relevant to the routing mechanism. On the other hand, to better handle the commonalities and
differences of multiple tasks, MTL has designed architectures that flexibly integrate task-specific components
into the network (Misra et al., 2016; Ruder et al., 2017; Meyerson & Miikkulainen, 2017; Zaremoodi et al.,
2018; Sun et al., 2019), which could be adopted to combine experts.

4.2 Mixture-of-Experts models

Mixture-of-experts (MoE) approaches train a set of experts that are sparsely activated during pre-training
and inference (Jacobs et al., 1991; Jordan & Jacobs, 1994; Fedus et al., 2022; Shen et al., 2023; Shazeer et al.,
2017). One of the main motivation for this approach is to scale model capacity while maintaining a fixed
inference cost. In practice, experts are typically applied at the fully connected layers of the Transformer
architecture (Lepikhin et al., 2020; Fedus et al., 2022). A sparse number of experts are typically activated
per-token and per-layer by a learnable routing function. Switch Transformer (Fedus et al., 2022) only selects
one top scoring expert and has demonstrated better scaling properties than previous work. Recent work
applied mixture-of-experts also to attention layers (Shen et al., 2023). Given the discrete decision on which
experts to apply, gradient estimation becomes difficult which makes training more challenging. Techniques
such adding load balancing losses have been proposed to ensure all experts are used (Fedus et al., 2022).
Recent work formulated improvements to sparse back-propagation that show promise in training better sparse
MoE models (Liu et al., 2023). Overall, mixture-of-experts approaches generally focus on end-to-end “from
scratch” training of experts and the router instead of learning post-hoc routing from independently trained
experts as in MoErging. MoErging may also introduce challenges that are distinct to those encountered
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when training MoE models from scratch – for example, it might be suboptimal for routing in a MoErged
model to be balanced across experts, which could make it more challenging to distribute the model over
many accelerators.

The pool of experts in an MoE-style model can be trained jointly in multitask settings. Restricting the size
of the expert pool to be smaller than the number of tasks can enable similar tasks to share experts while
avoiding interference across tasks with negative transfer. Polytropon (Ponti et al., 2019) and MHR (Caccia
et al., 2023) learn a task-level router over experts, composing them into task-specific experts via a weighted
average in parameter space. Task-level routing has also been explored in standard MoEs for more efficient
inference (Kudugunta et al., 2021). Other routing strategies have also been explored in multitask MoE
models. SMEAR (Muqeeth et al., 2023) performs example-level routing by averaging expert parameters,
while Zadouri et al. (2023) learns a per-token routing strategy. While MoErging methods generally assume
expert models are trained independently, multitask MoE methods can be considered an important baseline
when expert data is shared (in which case multitask training is possible).

MoE models have also been employed in continual learning to prevent forgetting by preserving important
experts from previous tasks while updating or adding new experts for new tasks. For example, Chen
et al. (2023) continuously trains an MoE model by freezing old feed-forward network (FFN) experts and
incorporating new ones with KL regularization, outperforming dense continual pretraining. Aljundi et al.
(2017) trains task-specific experts and uses autoencoders to identify the closest expert for new task and either
fine-tunes it or adds a new expert initialized from the closest expert’s weights, demonstrating effectiveness
in image classification and video prediction problems. Yu et al. (2024) uses Low-Rank Adaptations (LoRAs)
as experts, employing a router per task to weight each expert and using autoencoders on pretrained input
features to select the appropriate model for a new task. This approach also freezes the top-k experts from
previous tasks to prevent forgetting. Li et al. (2024) offers theoretical analysis into the benefits of MoEs
in continual learning on a sequence of linear regression tasks. Doan et al. (2023) suggests using model
ensembles to reduce forgetting and adds loss terms to maintain linear mode connectivity between weights
across tasks. While most MoErging methods do not explicitly target a continual learning setting, techniques
for continual learning with MoEs could be applicable to MoErging methods (e.g. to continually update the
router to account for a growing set of experts from the contributors).

4.3 Model Merging

Model merging aims to combine independently trained models that share an architecture into a single model
that retains the individual models’ capabilities. Merging can be performed via simple parameter averaging
(McMahan et al., 2017; Stich, 2018) if the models fall into a linearly connected low-loss region in parameter
space (Frankle et al., 2020; Wortsman et al., 2021). In the context of multiple expert models trained on
different domains, (Ilharco et al., 2022) proposed task vectors, denoted as the parameter shift from the
base model to the task-specific model and show that these can be combined to obtain a single generalist
model. Several works go beyond uniformly averaging parameters, and explore various heuristics to estimate
parameter importance. (Matena & Raffel, 2022; Tam et al., 2023) leverage the Fisher Importance Matrix
to perform weighted merging. TIES-Merging (Yadav et al., 2024) resolve sign disagreemeent across experts
and trim redundant values before merging. Merging can be considered a non-adaptive way of aggregating
independently trained experts and is therefore a reasonable baseline for many MoErging methods.

Merging has also been applied to a continual learning setting where more expert models become available
over time. Some efforts used such approaches to pretraining, slicing their data for efficient training (Li et al.,
2022; Huh et al., 2024). Don-Yehiya et al. (2023) trained each expert on a different dataset to simulate
the contribution of actual experts. While this line of work is similar to MoErging in terms of its focus on
recycling a growing set of expert models, differences include that all models are being merged into one, and
also that the new experts are already based on the previous model and are hence not completely independent.

4.4 Federated Learning

Federating learning (FL) is a widespread framework for collaborative learning where locally updated models
trained on private user data are shared with a maintainer to improve a base model (McMahan et al.,
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2017). Some work has explored the intersection of MoE models and federated learning as a way to mitigate
the data heterogeneity issue, where non-IID datasets can considerably diminish the accuracy of the FL
model (Parsaeefard et al., 2021). FedMix (Reisser et al., 2021) and FedJETs (Dun et al., 2023) enable each
client to construct an MoE with a shared router and a homogeneous local model. The router selects specific
local models that are better adapted to a client’s local data for output ensembling. However, they suffer
from significant communication costs due to the model’s distribution shifts.

In the personalized FL setting, PEL-MoE (Guo et al., 2020) customizes a MoE model by adapting the global
model from the server and fine-tunes it to create a local expert model. These two models are then integrated
with a local router into an MoE. During MoE training on the local data, the global expert remains frozen,
while only the local expert and the router are updated to achieve personalization. More recently, PFedMoE (Yi
et al., 2024) has introduced a sophisticated non-linear router network to extract more knowledge from local
data. This router network weights the final representations from each expert model, rather than their output
labels like vanilla ensembling, in order to enhance the integration of global generalized and local personalized
features. Work at the intersection of FL and MoE models is likely most relevant in cases where a user-tailored
local model is desired and where user data must remain private.

5 Common Applications and Tools for MoErging

Development of an impactful machine learning model or a piece of software can happen in isolation. In con-
trast, MoErging methods provide a framework for decentralized development that relies on contributors for
success. Consequently, appropriate infrastructure, systems, and tools are critical to the success of MoErging
as a mode of decentralized model development. To facilitate this form of development, several open-source
tools and platforms have emerged. These resources empower researchers and practitioners to experiment
with different MoErging techniques, share their expert models, and collaborate on building more capable
and robust AI systems.

Hugging Face has become a central hub for sharing pre-trained models and PEFT adapters. Initiatives like
the Open LLM Leaderboard and AdapterHub (Beck et al., 2021) facilitate the discovery and comparison of
models across various tasks and domains. Git-theta (Kandpal et al., 2023b) offers a decentralized alternative
for tracking model weights, leveraging the Git version control software for collaborative development.

Several libraries have been developed to streamline the process of creating, combining and routing among
expert models. Libraries like Hugginface PEFT, Predibase’s Lorax, Axolotl, and Unsloth can be used to
efficiently create expert models either via full-finetuning or by parameter-efficient finetuning. These experts
can then be used in libraries like Arcee’s MergeKit (Goddard et al., 2024), Flow-Merge, Predibase’s Lorax,
Mergoo, and airoboros, each of which supports different forms of merging and MoErging. These libraries
provide convenient interfaces for loading, managing, and aggregating expert models with different routing
and aggregation strategies. Apart from these, ComfyUI offers a user-friendly graphical interface for designing
and experimenting with complex merging pipelines, enabling users to visually connect and configure different
expert modules to build performant aggregate systems.

The ongoing development of these tools and platforms highlights the increasing interest in MoErging and
Merging for decentralized model development and its potential to democratize AI research and development.
As the field matures, we can expect to see even more sophisticated tools and applications emerge, further
empowering the community to collaboratively build and share more powerful and adaptable AI systems.

6 Takeaways and Open Problems

While there have been many papers developing MoErging methods that demonstrate improved performance
or generalization, the field is still in its infancy. Notably, very few of the methods we surveyed are actually
used in practice. We speculate that this could be due to a few factors: First, while many software tools that
support MoErging exist (cataloged in section 5), many MoErging methods do not have user-friendly soft-
ware implementations available. As such, applying MoErging often requires technical expertise that many
users lack. Second, as we have highlighted in this survey, it is often unclear which MoErging methods are
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applicable and/or optimal for a given use case. More rigorous comparisons could be made through bench-
marks, competitions, and empirical surveys like those developed for model merging (Tam et al., 2024b;a;
Tang et al., 2024a). In addition, assumptions made by many MoErging methods (such as a custom expert
training procedure and/or sharing expert training data) make them inapplicable unless the standard practice
of solely sharing expert parameters changes. Finally, the promise of MoErging as a framework for collabo-
rative learning may be held back by the lack of platforms that facilitate the various stages of a MoErging
pipeline. For example, while the Hugging Face model hub provides an easy and widely used way to share
models and datasets, it does not include extensive features for coordinating continual and communal model
development.

If MoErging does ultimately become more widespread, there will be new challenges to tackle. For example,
how can we identify (and possibly remove) redundant expert models? Or decide whether or not to add a
new model to the pool? Or identify if a given model has been contributed by a malicious user who aims to
degrade the aggregate system? In addition, adoption of MoErging will motivate the development of platforms
that provide a “closed loop” for continual model development, where users can easily and cheaply fine-tune
expert models and then share them to continually improve the aggregate system. In such cases, there will be
multiple rounds of MoErging, raising additional research questions around whether MoErging can be used
for continual improvement (or even pre-training) of a base model rather than one-off improvements on a
single target task.

As the field of MoErging matures, it’s likely that our survey and taxonomy will become out-of-date. In addi-
tion, while we aimed to be comprehensive, it is possible that we have missed certain methods or overlooked
important design choices in our taxonomy. However, we hope that our survey provides a solid foundation
and launch-off point for rigorous and coordinated research on MoErging.
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