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Abstract
Treatment effect estimation involves assessing the impact of different treatments
on individual outcomes. Current methods rely on observational datasets where
covariates are gathered before treatments and outcomes are observed afterward.
However, real-world scenarios often deviate from this protocol, leading to both
covariate and outcome observed post-treatment. We first establish that this deviation
renders treatment effects unidentifiable, necessitating additional assumptions
for estimation. We propose SimPONet, which unlike prior methods that assume
counterfactual supervision in the training datasets, leverages a simulator that
generates related synthetic counterfactual data. This allows extraction of causal
representations from post-treatment covariates that aid in identifying treatment
effects. The accuracy of such estimates hinges on the quality of the simulator, and
we conduct theoretical analyses to establish generalization bounds that assess the
CATE error based on the distributional discrepancies between real and synthetic
data. In a linear setting, we analytically derive the CATE error, demonstrating the
limitations of several baseline methods. Our empirical validation on synthetic and
semi-synthetic real world datasets further reinforces SimPONet’s effectiveness in
precise treatment effect estimation from post-treatment data.

1 Introduction
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Figure 1: The Data Generating process
for Real and Simulator.

Many applications require estimating the difference in outcome
as a result of a change in treatment. The gold standard to estimat-
ing such effects is Randomized Control Trials, which are often
expensive, and with the easy availability of observational data,
there is extensive interest in harnessing them for deriving these
estimates. The first step in estimating treatment effects from
observational datasets is to determine the set of covariates that,
when conditioned upon, make these effects identifiable. Prior
works [31, 40, 12, 53, 39, 52, 7, 11, 63, 54, 55], assume that
such covariates are observed, and gathered prior to treatment,
with outcomes being observed afterward. However, collecting
such datasets is challenging as it requires tracking the same
individuals over two distinct time points. In contrast, readily
available observational datasets often consist of both covari-
ates and outcomes recorded post-treatment. For instance, in
economics [2, 1], the effectiveness of policies is frequently eval-
uated using post-policy data for both outcomes and covariates.
Similarly, in voluntary healthcare surveys, only post-treatment data about patients might be accessible.
In medical imaging, an image taken under a specific instrument setting (treatment) may be evaluated to
determine whether switching to a different setting would improve a subsequent diagnosis (outcome).
We model our scenario using a Data Generating Process (DGP) as illustrated in the top panel of Figure 1,
marked Real DGP. The figure shows latent variablesZ that influence the observed variables—treatment
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T , outcome Y , and covariates X . We begin this paper by showing that the latent nature of Z impedes
the identifiability of treatment effects.

Lemma 1. The causal effect of T on Y cannot be identified given i.i.d. samples from the real DGP.

proof. Since X is a collider, conditioning on it opens the backdoor path T →X←Z→ Y . Since
Z is not observed, the treatment effects cannot be identified from X,T , and Y alone. Thus, our only
hope lies in extracting causal representations from X that affect Y . Such representations enable
identification of treatment effects, and Z is one such representation.

The key takeaway from Lemma 1 is that certain additional assumptions are unavoidable for learning
causal representations and thereby achieving identifiability. While previous works [36, 3] have assumed
access to counterfactuals in observational data – an assumption that rarely holds in practice – we take a
different approach by using simulators that generate synthetic counterfactuals from a related distribution.
Our objective is to harness the full potential of these simulators and rigorously assess the estimation
error caused by the mismatch between real-world and simulated distributions. This analysis drives
the development of our algorithm, SimPONet, that imposes explicit regularization using the simulator
supervision to enhance the accuracy of treatment effect estimates, surpassing what can be achieved
using only the observational dataset. Through carefully designed experiments, we systematically
vary the distributional gap between real and synthetic data across various DGPs, demonstrating that
SimPONet consistently outperforms multiple baselines in estimating CATE.

Contributions: (1) We address Treatment Effect Estimation with post-treatment covariates, a problem
known to be non-identifiable by leveraging a simulator that provides synthetic counterfactuals to learn
causal representations suitable for this task. (2) We propose SimPONet, a novel training algorithm
that maximizes simulator utility for both learning causal representations and effect estimation. (3)
To our knowledge, this is the first work to systematically analyze the role of simulators in estimating
CATE from post-treatment covariates. (4) We establish generalization bounds for CATE error, guiding
SimPONet’s learning objective and highlighting the impact of simulator-real distribution mismatch. (5)
Our experiments with diverse DGPs demonstrate the effectiveness of SimPONet.

We provide the related work in Appendix B and examples of real-world simulators in Appendix B.3.

2 Problem Formulation
We use random variables X,T,Y to denote covariates, binary treatments, and outcomes respectively.
The observational dataset has n samples: Dtrn ={(xi,ti,yi)}ni=1 where ti∈T ={0,1} denotes treat-
ment, xi∈X ⊂Rnx denotes covariates observed after ti is applied, and yi the resulting outcome. We
use the Neyman-Rubin potential outcomes framework to denote Yi(t),Xi(t) as the potential outcome
and covariate for unit i under any treatment t. The main challenge is the absence of counterfactuals in
Dtrn, i.e., for each unit i, we observe covariates and outcomes under only one treatment ti.

We use the random variable Z ∈Z ⊂Rnz to denote the causal representations of covariates X . Z
generates X via covariate generating functions gt : Z 7→ X for t ∈ {0,1}. We assume that gt is
diffeomorphic [33, 34, 57]; i.e., it is smooth, invertible, and has a smooth inverse. Diffeomorphism
ensures that all factors involved in generating X are preserved within it so that there exists inverse
functions ft :X 7→Z,∀t∈{0,1} that could recover the causal representations Z back. Each training
sample is obtained from the real DGP as follows: (1) zi∼PZ , (2) ti∼P (T |zi), (3) xi∼P (X|zi,ti)=
δ(X−gti(zi)), where δ denotes the dirac-delta distribution, (4) yi∼P (Y |zi,ti)=N (µti(zi),σ

2
y) is

sampled from a Gaussian with mean µti(zi) and constant variance σ2
y . Here, µt :Z 7→Y ∀t generates

responses for individual i under treatment ti. We express the factual observed outcome for i as Yi(ti)=
µti(fti(xi)), and the missing counterfactual (CF) outcome under 1−ti as Yi(1−ti)=µ1−ti(fti(xi)).

Our Goal is Conditional Average Treatment Effect (CATE) estimation which quantifies the difference
in outcomes due to a change in treatment. Given a test unit (xj ,tj), its CATE is given by τj=E[Yj(T =
1)−Yj(T =0)|xj ,tj ]. As argued earlier, this introduces the sub goal of learning causal representations
of observed covariates X using ft :X 7→Z. We use τ :Z 7→Y to express the treatment effect using
the latent zj as τ(zj) = µ1(zj)−µ0(zj). Since ft inverts X to give Z, the same effect can also be
expressed for (xj ,tj) using τX as τX(xj ,tj) = µ1(ftj (xj))−µ0(ftj (xj)) where τX :X ×T 7→ Y .
Notice that τX(•,t)=τ ◦ft(•). When estimating τX , the factual outcome is easy, all we need to do is
fit a regression model on the observation data. The main challenge lies in estimating the counterfactual
outcome under treatment 1−tj .
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We begin by discussing Theorem 1 in [33] which presents an impossibility result stating that ft which
maps covariates to their latent factors is not identifiable solely using Dtrn. The main hurdle is that
multiple DGPs can yield the same marginal distribution P (X,T ), making it impossible to isolate the
true DGP. However, prior work has shown how to learn ft with counterfactuals, requiring that Dtrn
includes both covariates Xi(ti) and Xi(1−ti). Theorem 4.4 of [57] shows that such counterfactual
supervision allows for recovery of Z up to a diffeomorphic transformation using contrastive learning.
Proposition 2 in [65] further shows that the diffeomorphic transformation h is, in particular, a rotation
in an nz dimensional unit-normalized hypersphere.

Simulator DGP Since counterfactuals are not available in real data, we seek to leverage a simulator that
generates paired instances giving rise to a counterfactual dataset Dsyn={xS

i (0),x
S
i (1),y

S
i (0),y

S
i (1)}

generated using the DGP as shown in the lower panel in Figure 1. The simulated instances are obtained
as follows: (1) zi ∼ PZ ; i.e., Z is sampled from the same distribution as real, (2) post-treatment
covariates xS

i (t) ∼ P (XS |Z = zi, T = t) = δ(XS − gSt (zi)) under both treatments t = {0,1}.
gSt :Z 7→X ∀t are diffeomorphic functions, and (3) corresponding outcomes ySi (0), y

S
i (1) are sampled

from P (Y S |Z = zi,T = t) =N (µS
t (zi),σ

2
yS ), where µS

t :Z 7→Y, ∀t. Note that zi remains hidden
even in Dsyn. We use “S” in the superscript to indicate a simulator component. Intuitively, if the
structural equations of the simulator are close to those of real data, we can leverage them to improve the
counterfactual estimates in the real distribution beyond what is possible solely using the observational
data Dtrn. Now we describe some metrics that assess the distance between real and simulator DGP.

Definition 1 [dx|t(ft,fS
t )] We assess the distance between the functions ft and fS

t using the following
expected distance: dx|t(ft,fS

t )=Ex∼P (X|t)
[
||ft(x)−fS

t (x)||22
]
.

Definition 2 [dz(τ,τS)] We assess the distance between the real and simulator CATE functions on the
PZ distribution as: dz(τ,τS)=Ez∼PZ

[
(τ(z)−τS(z))2

]
. Under composition with a diffeomorphic

function h, we write dh(z)(τ,τS)=Ez∼PZ

[
(τ(h(z))−τS(h(z)))2

]
.

Assumptions for Identifying CATE τX . We summarise the assumptions that are needed on the real
datasetDtrn and simulated counterfactual datasetDsyn to identify the CATE function τX : (A1) Positivity:
P (T = t|Z= z)> 0, ∀t∈T ,z ∈Z . (A2) Diffeomorphic Covariate Generation: Covariates in both
real and synthetic distributions are obtained through diffeomorphic transformations of Z under any
treatment T . (A3) Identifiability of τ given Z: The causal factors Z that generate X form a sufficient
adjustment set, blocking backdoor paths between T and Y , thus making τ identifiable from Z. Note
that A2 and A3 together ensure that X contains information about all the relevant latent factors that
affect the outcome Y and is a weaker notion of the commonly used unconfoundedness assumption.

CATE Error (ECATE): Given a test dataset Dtst ={(xj ,tj ,yj(0),yj(1))}mj=1, with each xj rendered
under tj , we assess the error in estimating CATE as: ECATE=

1
m

∑
j [τj−τ̂j ]2 where τj=yj(1)−yj(0)

is the ground truth effect and τ̂j is the predicted effect for the instance (xj(tj), tj). The CATE
error can be decomposed across treatment T as ECATE =

∑
t∈T P (T = t)EtCATE where EtCATE =∫

x∈X [τX(x,t)−τ̂X(x,t)]2P (x|t)dx

Definition 3. Let us define factual error EtF and counterfactual error EtCF on samples with observed
treatment t and missing treatment 1−t as follows:

EtF =

∫
x∈X

[µt(ft(x))−µ̂t(f̂t(x))]
2P (x|t)dx and EtCF =

∫
x∈X

[µ1−t(ft(x))−µ̂1−t(f̂t(x))]
2P (x|t)dx

Lemma 2. The CATE error is related to the factual and counterfactual error as: EtCATE≤2EtF +2EtCF
[Proof in Appendix B.5.1]

3 Learning Causal Representations for CATE

Our task involves learning two functions: f̂t that extracts the causal representation Z from X and µ̂t

that estimates the outcomes Y (t). With access to counterfactual simulated dataDsyn and observational
real data Dtrn, one can come up with the following approaches for estimating CATE: (1) SimOnly,
which only uses Dsyn, and (2) RealµSimf , which uses Dsyn to estimate ft and subsequently, Dtrn to
estimate µt. We now discuss the training approach for each of these methods.
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3.1 SimOnly Estimator
SimOnly solely uses counterfactual supervision in Dsyn and identifies the simulator’s DGP as follows:
(Step 1) Estimating the inverse map fS from covariate pairs {xS

i (0),x
S
i (1)} using contrastive learning

[57]:

{f̃S
0 ,f̃

S
1 }=argmin

{f̂S
0 ,f̂S

1 }
E

[
−log exp(sim(ẑi(1),ẑi(0))∑

j ̸=i

∑
t,t′exp(sim(ẑi(t),ẑj(t′)))

]
where ẑi(t)= f̂S

t (x
S
i (t)) (1)

where sim(•,•) is cosine similarity, (xS
i (t),x

S
i (1− t)) denotes a positive pair with the same under-

lying latent zi. A negative pair (xS
i (t),x

S
j (t

′)) has different (zi,zj). Contrastive learning increases
similarity of representations of positive pairs (ẑi(0), ẑi(1)) while pushing apart the negative pairs
(ẑi(t),ẑj ̸=i(t

′)). (Step 2) Estimating τ̃S(z) = µ̃S
1 (z)− µ̃S

0 (z) with supervision on difference of out-

comes τS(fS
t (x

S
i (t)))=ySi (1)−ySi (0) as τ̃S =argminτSExS

[
τS(f̃S

t (x
S(t)))−τS(fS

t (x
S(t)))

]2
.

SimOnly uses these estimates as-is on real data, i.e. τ̂= τ̃S and f̂t= f̃S
t , ∀t∈T .

3.2 RealµSimf Estimator
Unlike SimOnly, which uses Dsyn to learn both f̂ and µ̂, this approach leverages Dsyn solely to
learn the representation extractor f̂ . Specifically, it assumes that f̂t = f̃S

t , as obtained from Eq.
1. Thereafter, it learns the µ̂ parameters by applying a factual loss on Dtrn to estimate µ̂0, µ̂1 =

argmin{µ̂0,µ̂1}
∑

Dtrn
(yi−µ̂ti(f̃

S
ti (xi)))

2. We call this method RealµSimf since it borrows the causal
representation extractor from the simulator DGP.

We will now perform a theoretical analysis to assess the above methods within a linear DGP framework,
with the goal of identifying the conditions under which each model can accurately recover the CATE
τX . We start by outlining the setup for the linear DGP.

Linear DGP. In this setup, all functions in both the real and simulator DGPs, as shown in Figure 1, are
linear, allowing us to derive closed-form solutions for the three methods. Training datasets Dtrn and
Dsyn are sampled as follows: (1) Latent variables z∈Rnz are drawn from distribution PZ . (2) Real and
simulator covariates for a treatment t are computed as gt(z)=zRt and gSt (z)=zSt, with Rt and St

being invertible matrices. (3) Outcomes are generated as µt(z)=z⊤wt and µS
t (z)=z⊤wS

t , where wt

and wS
t are vectors in Rnz . The closed-form CATE error expressions for each model are summarized

in Table 1, with detailed derivations in Appendix B.6. The last column of Table 1 specifies conditions
for zero CATE error, which we argue are challenging to meet in real-world scenarios.

Method Estimate for CATE τ̂X(x⋆,1) CATE Error [τ̂X(x⋆,1)−τ(x⋆,1)]2 Favorable Condition

SimOnly x⋆(S−1
1 wS

1 −S−1
1 wS

0 )
[
x⋆

(
R−1

1 wτ−S−1
1 wS

τ

)]2
τ=τS ,ft=fS

t

RealµSimf x⋆S−1
1 S1R

−1
1 w1−x⋆S−1

1 S0R
−1
0 w0

[
x⋆(R−1

1 −S
−1
1 S0R

−1
0 )w0

]2
fS
t =ft

Table 1: RQ1: This table presents the predicted CATE and the corresponding CATE errors obtained from the
baseline models computed analytically for a test instance x⋆ observed under treatment 1. The final column
indicates the conditions under which each model yields accurate CATE estimates.

1. SimOnly relies on the simulator perfectly matching the real world, but building such accurate
simulators is highly difficult, making this method unsuitable for CATE estimation.

2. RealµSimf , as expected, requires alignment between simulator and real-world covariates, i.e.,
xt=gt(z)=gSt (z)=xS

t . This limitation arises because it simply learns the representation extractor
from Dsyn without adjusting for real covariates. Moreover, performing such an adjustment is not
clear because Dtrn lacks counterfactuals, which prevents the use of contrastive loss needed for
training f̂ .

Since none of these favorable conditions are likely to hold in real life, all three methods are prone to
large CATE error. To improve upon this, we first derive generalization bounds on the CATE error that
apply to arbitrary DGP settings, aiming to uncover better learning objectives from the bound.

Lemma 3. Assume τ is Kτ -Lipschitz, and f̃S and τ̃S are estimates from the simulator DGP. Then, the
CATE error on the estimates f̂t and τ̂ admits the following bound:

EtCATE(f̂t,τ̂)≤ [12dh(z)(τ̂ ,τ̃
S)+12K2

τdx|t(f̂t,f̃
S
t )+8EtF ]+[12dz(τ,τ

S)+12K2
τdx|t(ft,f

S
t )]
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where dx|t,dz,dh(z) are distance functions defined in section 2. [Proof in Appendix B.5.2.]

The expression in blue corresponds to discrepancy between real and simulator functions, and cannot be
minimised. Whereas, the remaining terms can be minimised by training on Dtrn,Dsyn.

3.3 SimPONet Estimator

We now introduce SimPONet, which adopts the first three terms from lemma 3 into its objective. This
leads to a joint learning framework, leveraging supervision from bothDtrn andDsyn. SimPONet relaxes
the strict equality f̂t= f̃S

t used by RealµSimf , and instead uses f̃S
t as a regularizer, while ensuring

that µ̂t accurately predicts the factual outcomes for instances in Dtrn. Additionally, it imposes the τS
loss on simulated instances to leverage any potential closeness between the true treatment effect, τ ,
and the simulated treatment effect, τS . Moreover, τS loss is necessary to avoid degenerate solutions.
Note that τX =τ ◦ft has two degrees of freedom in τ and ft. Applying regularisation only on f̂t can
drive the regulariser ||f̂t(x)−f̃S

t (x)||22 to zero by making f̂t= f̃S
t and still minimise factual error EtF

by updating µ̂t. Thus SimPONet collapses to the RealµSimf estimator. The τS loss helps avoid such
degeneracies. SimPONet’s overall loss is:

min
{µ̂t,f̂t}

∑
Dtrn

(
yi−µ̂ti(f̂ti(xi))

)2

︸ ︷︷ ︸
Factual Loss on Dtrn

+λf

∑
Dtrn

∥f̃S
ti (xi)−f̂ti(xi)∥22︸ ︷︷ ︸
d(f̃S

t ,f̂t)

+λτ

∑
Dsyn

∑
t∈{0,1}

(
τSi −τ̂(f̃S

t (x
S
i (t)))

)2

︸ ︷︷ ︸
τS loss on Dsyn

(2)
where τSi =ySi (1)−ySi (0) and λτ ,λf >0 are loss weights. We present the SimPONet’s pseudocode in
Appendix B.4.

4 Experiments

We conduct experiments across several DGP settings, by systematically varying the gap between the
real and simulator components to assess how SimPONet performs compared to the baselines.

4.1 Linear DGP: Linear f , Linear µ

In this experiment, we generate samples according to the Linear DGP outlined in Section 3. We test two
configurations for Z: (a) when Z is sampled from a multivariate Gaussian distribution, and (b) when
Z is directly taken from the real-world IHDP dataset. We control the gap between real and simulator
distributions using the constants γR, γRS , and γτ >0 as follows: (1) Initialize R−1

0 ,w0∼N (0,1). (2)
To inject a distance γR ∈ (0,0.5) between R−1

0 and R−1
1 , set R−1

1 =(1−γR)R−1
0 +γRN (0,1). (3)

Set w1 ∼ γw0+(1−γ)N (0,1). We use γ =0.4 in all experiments. (4) Similarly, inject a γRS gap
between R−1

t and S−1
t . (5) For treatment effect parameters wτ =w1−w0 in the real DGP, we sample

its simulator counterpart with a gap γτ as wS
τ =(1−γτ )wτ+γτN (0,1) and set wS

t accordingly.

Table 2: Linear DGP experiment across various levels of gaps between the real
and simulated data. “low” refers to a γ value of 0.1; “high” denotes 0.4.

Synthetic-Gaussian Real World-IHDP
d(f0,f1) d(ft,f

S
t ) d(τ,τS) SimOnly RealµSimf SimPONet SimOnly RealµSimf SimPONet

0.00 high high 2.82 (0.27) 15.75 (0.01) 2.58 (0.00) 3.57 (0.11) 48.76 (0.05) 3.20 (0.00)
low low low 0.63 (0.00) 1.19 (0.01) 0.54 (0.00) 1.00 (0.44) 2.73 (0.00) 0.97 (0.00)
low low high 1.57 (0.16) 1.19 (0.83) 1.39 (0.00) 1.62 (0.26) 2.73 (0.02) 1.49 (0.00)
low high low 2.14 (0.22) 15.75 (0.01) 1.85 (0.00) 3.67 (0.31) 48.76 (0.05) 3.37 (0.00)
low high high 2.47 (0.56) 15.75 (0.01) 2.57 (0.00) 3.57 (0.11) 48.76 (0.05) 3.19 (0.00)
high low low 0.63 (0.00) 1.19 (0.01) 0.54 (0.00) 1.00 (0.47) 2.73 (0.00) 0.98 (0.00)
high low high 1.57 (0.16) 1.19 (0.83) 1.39 (0.00) 1.62 (0.27) 2.73 (0.02) 1.50 (0.00)
high high low 2.14 (0.21) 15.75 (0.01) 1.85 (0.00) 3.67 (0.31) 48.76 (0.05) 3.38 (0.00)
high high high 2.82 (0.26) 15.75 (0.01) 2.57 (0.00) 3.57 (0.11) 48.76 (0.05) 3.19 (0.00)

We compare SimPONet
with SimOnly, and
RealµSimfmethods.
While the baselines offer
closed-form solutions,
SimPONet’s loss function
is more complex; so, we
optimize it to a local
minimum via alternating
minimization. See B.6 for
details. As shown in Table
2, SimPONet performs either best or second-best in both synthetic and real-world settings. Its CATE
error remains controlled largely due to its capability to bound errors in the counterfactual distribution.
In contrast, the RealµSimf model perform well only in specific DGP settings but significantly
underperform in other settings due to high counterfactual error, resulting in poor CATE estimates.

4.2 Non-Linear DGP: Linear f , Non-Linear µ

In the interest of space, we defer the details of this experient to Appendix B.6.

5



4.3 Arbitrary DGPs: Real-world Semi-Synthetic Datasets
We perform experiments using semi-synthetic observational datasets commonly used for evaluating
treatment effect estimation methods: the Infant Health Development Program (IHDP) and the Atlantic
Causal Inference Conference (ACIC) datasets. These datasets provide real-world pre-treatment
covariates (Z). For details, see Appendix B.7. To align these datasets with our study, we apply
diffeomorphic and non-linear RealNVP Normalizing Flows [16] to transform Z into post-treatment
covariates X . We use randomly initialized flows with two coupling layers: g0 and g1 for real data,
and gS0 and gS1 for synthetic data. Real outcomes are taken directly from the dataset, while simulator
outcomes are synthesized with a gap γτ as follows: (1) sample wS

τ ∈Rnz ∼N (0,1), (2) set τS(z)=
τ(z)+(σ(τ)·γτ ·z⊤wS

τ ), where σ(τ) is the standard deviation of ITE labels. When γτ =0, τ = τS ;
when γτ =1, τ is challenging to recover from τS .

We compared SimPONet against baselines from the CATENets [13], a well-known ITE benchmarking
library. We pass the representations extracted using f̃S

t (x) as input to the baselines. We present the
results in Table 3 for γτ =0.1, and make the following key observations:

Table 3: RQ3: Comparison of SimPONet with baselines in
CATENets library. We show p-values in brackets. SimPONet
outperforms others overall, while SimOnly performs best on
ACIC-2 since τ=τS there.

Method IHDP ACIC-2 ACIC-7 ACIC-26
RNet [40] 1.54 (0.00) 3.30 (0.00) 5.91 (0.04) 6.06 (0.18)
XNet [31] 1.0 (0.00) 0.43 (0.15) 5.49 (0.17) 5.1 (0.38)
DRNet [51] 0.96 (0.00) 0.24 (0.59) 5.53 (0.15) 5.08 (0.39)
CFRNet [53] 0.96 (0.00) 0.36 (0.26) 5.55 (0.15) 5.09 (0.38)
FlexTENet [11] 0.96 (0.00) 0.32 (0.32) 5.46 (0.19) 5.04 (0.40)
DragonNet [54] 0.96 (0.00) 0.29 (0.41) 5.57 (0.14) 5.09 (0.38)
IPW [47] 0.96 (0.00) 0.36 (0.24) 5.56 (0.15) 5.09 (0.38)
k-NN [55] 0.96 (0.00) 0.33 (0.33) 5.48 (0.18) 5.13 (0.37)
PerfectMatch [50] 0.98 (0.00) 0.56 (0.11) 5.75 (0.08) 5.13 (0.37)
StableCFR [60] 1.01 (0.00) 1.09 (0.03) 5.56 (0.15) 5.08 (0.43)
ESCFR [59] 0.96 (0.00) 0.27 (0.47) 5.55 (0.15) 5.79 (0.21)
SimOnly 0.94 (0.00) 0.00 (0.98) 6.65 (0.00) 6.60 (0.12)
RealµSimf 0.96 (0.00) 0.17 (0.76) 5.57 (0.14) 5.09 (0.38)
SimPONet 0.79 (0.00) 0.26 (0.00) 5.04 (0.00) 4.67 (0.00)

(a) ACIC-2 is an unusual dataset where
the potential outcomes µt exhibit a com-
plex non-linear pattern, yet their differ-
ence, τ , remains constant. Our sampling
scheme for τS , as outlined earlier, gives
τS =τ for any γτ in this dataset. Conse-
quently, SimOnly outperforms all base-
lines. SimPONet’s performance is af-
fected due its loss on factual potential
outcomes in Dtrn. This could have been
avoided by setting a large weight on τS

regularizer in the objective. However,
in general, tuning this weight without
explicit τ supervision is not straightfor-
ward, and so we opt not to adjust it. (b)
IHDP, ACIC-7,26 Across these datasets,
the CATENets baselines significantly underperform SimPONet. SimPONet achieves the best perfor-
mance by leveraging inductive biases from the closeness between τ and τS in the synthetic dataset.
One notable approach that stands out is FlexTENet [11], which explicitly shares parameters across the
µ̂0 and µ̂1 networks, and offers the second best performance in ACIC-7, 26.

5 Conclusion
In this paper, we addressed the problem of estimating treatment effects for individuals whose covariates
are influenced by the treatment, a setting not solvable using observational data alone. We proposed
to solve this task using off-the-shelf simulators that synthesize counterfactuals, unlike prior work
relying on real-world counterfactuals, which limits their practical applicability. Ours is the first work
to systematically analyse the role of simulators in handling the limitation of lack of counterfactual
supervision in real world observational data. We introduced SimPONet, which balances learning from
real and simulator distributions to bound the rather intractable counterfactual error. Our theoretical
analysis showed that SimPONet has better CATE generalization bounds under reasonable assumptions
in contrast to other proposals that need strong assumptions on the DGP. Extensive experiments with
synthetic and real-world datasets demonstrated that SimPONet is indeed a superior alternative.
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A Appendix / supplemental material

B Related Work

CATE with Pre-Treatment Covariates has been widely researched where the primary challenge is to
handle confounding that arises out of biased treatment assignment in observational datasets. The main
ideas explored include: estimating pseudo-outcomes for missing treatments in the training dataset and
then using these to train effect predictors [18, 11, 40, 29, 62, 63, 37]; adding targeted regularizers to
ensure consistent ITE [54, 39, 64]; learning balanced representation of covariates across treatment
groups [52, 53, 61, 7, 59, 60]; matching to near-by covariates [55, 48, 25, 50, 28, 38]; and weighing
losses to mitigate confounding [21, 22, 27, 41]. In our problem, if Z could be recovered perfectly, all
of these methods could be applied, and we will present a comparison with imperfectly extracted Z.

CATE with Post-Treatment Covariates is more challenging and falls into the third rung (counterfac-
tual) of Pearl’s causal ladder [44]; a formal proof is in [45]. In economics, post-treatment variables in
trials are known to exacerbate estimated causal effects [9, 23, 30]. Post-treatment variables have been
used to estimate selection bias P (T |Z) in observational data [4, 5, 10]. A very closely related work
is [24] that leverages post-treatment variables for estimating treatment effects but differs from us since
they assume: (1) covariates X causally affect Y , and (2) an entangled version of X,Z is observed; they
simply focus on disentangling Z through representation learning. Our setting is more challenging as Z
is latent.

Prior Work on Counterfactual Simulators In Appendix B.2, we discuss previous works that leverage
recent foundation models to generate pseudo-counterfactuals in the real distribution. Furthermore, we
describe two real-world applications where proprietary toolboxes were used to construct simulators
for estimating treatment effects. One such example uses the SimBiology toolbox to build a pharma-
cological simulator, which assesses the effect of SGLT2 inhibitors (T ) in managing type-2 diabetes
(Y ), considering post-treatment covariates such as glucose levels across various body parts. Another
example involves the Ansys Battery and Electrode Simulator, which analyzes how different materials
(T ) impact battery longevity (Y ), based on post-treatment variables (X) such as charge/discharge rates,
temperature, and other factors influenced by material properties in an electrochemical setting. Further
details are provided in Appendix B.3.

B.1 Code
We have released the code in the anonynous URL https://anonymous.4open.science/r/
catenets-simponet/README.md. We have also uploaded the code along with our submission.

B.2 Counterfactual Simulators
Here we discuss prior works that train generative models for generating counterfactuals. In general,
to obtain counterfactuals in the real distribution, we need to follow three steps [43]: (a) abduction,
inverting X to obtain Z, (b) action, changing the observed treatment, and (c) prediction generating a
new X under the new treatment. These steps require prior knowledge of the DGP specifications, which
are often difficult to define and cannot be learned from observational data alone [43]. Consequently,
many methods bypass the principled approach and use pre-trained models like Diffusion models
and Large Language models to generate pseudo counterfactuals from a related synthetic domain.
Such simulators are proposed across various modalities, including images [43, 20, 56, 42, 49, 26],
text [35, 6, 8, 17, 46], and healthcare [32, 58, 15]. However, the simulated data should be used with
caution. Prior research [19] shows that such counterfactual data is not directly usable for downstream
tasks but provides strong inductive biases that transfer well to the real distribution. Our method can
incorporate any such counterfactual generators as simulators, as long as they guide the learning of
the Z extractor and ensure that the treatment effects estimated from simulated data closely match the
effects in real data.

B.3 Real-World Applications of Simulators for Estimating CATE
We provide two examples for showcasing how simulators are used in medicine and electrochemistry
below:

Medicine. Simulators play a crucial role in pharmacology, particularly for assessing drug efficacies.
For instance, the SimBiology toolbox 2 in MATLAB is commonly used to predict the effects of SGLT2

2
https://in.mathworks.com/videos/series/simbiology-tutorials-for-qsp-pbpk-and-pk-pd-modeling-and-analysis.html
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inhibitors (T ) on type-2 diabetes (Y ) while considering post-treatment covariates (X) such as plasma
glucose levels, gut glucose levels, urinary glucose excretion, and liver insulin levels. SimBiology
enables modeling these effects using differential and algebraic equations that are often calibrated on
target populations to minimize the real-simulator mismatch. Despite not perfectly replicating reality,
such simulators are invaluable for early-stage clinical trial decisions and have demonstrated utility in
modeling short-term treatment effects [14].

Electrochemistry. Another application involves recommending optimal electrode materials to maxi-
mize battery capacity (Y ). By observing Y under various electrode materials (T ) and post-treatment
variables like charge/discharge rate, internal resistance, and temperature distribution (X), the Ansys
Battery Cell and Electrode Simulator 3 provides realistic electrochemical simulations. This tool has
been used by Volkswagen Motorsport for comprehensive multiphysics simulations to design and
validate battery models. Such simulators are highly relevant for practical decision-making in industries.

These examples illustrate the practical relevance of simulators across different fields. While simulators
cannot fully replace real data or randomized controlled trials (RCTs), they offer valuable insights
that can reduce the number of RCTs needed for optimal treatment identification. Our paper aims to
characterize the CATE error when using imperfect simulators in conjunction with real observational
data. Additionally, SimPONet maximizes the utility of simulators by leveraging the highly correlated
simulator’s treatment effects with real-world effects, without relying on the exact correlation of
individual potential outcomes.

B.4 SimPONet Pseudocode

Here, we present the SimPONet pseudocode. The steps involved in our algorithm are:

line 1 First we use the simulator dataset Dsyn to apply contrastive losses on the counterfactual
covariates using Eq. 1. This optimization gives us a Z extractor in the simulator distribution,
which we denote as f̃S

t .

line 2 We partition the training dataset into train, validation dataset using stratified split based on T .
We then initialize the loss weigts λf ,λτ to their defaults.

line 3 We can now apply gradient descent algorithm on the SimPONet’s objective in Eq. 2 to train
the µ̂t,f̂t parameters of the model.

Algorithm 1 SimPONet Algorithm

Require: Observational Data Dtrn: {(xi,ti,yi)}, Simulator Data Dsyn: {(xS
i (0),x

S
i (1),y

S
i (0),y

S
i (1))}

1: Let f̃S
t ← Eq. 1 (Minimize Contrastive loss on Dsyn)

2: Set Dtrn,Dval← SPLIT(Dtrn,pc=0.3, stratify=T ), and init default hyperparameters λf ,λτ←1,1

3: {f̂t,µ̂t}← Eq. 2 (perform gradient descent on SimPONet’s objective using Dtrn,Dsyn while early stopping
using Factual Error on Dval)

4: Return {f̂t,µ̂t} for t=0,1

We present the pseudocode for SimPONet in Alg. 1.

B.5 Theoretical Analysis

In this section, we present the proofs for our theoretical results.

B.5.1 Proof of Lemma 2

The CATE error is related to the factual and counterfactual error as: EtCATE≤2EtF +2EtCF

3
https://www.ansys.com/applications/battery/battery-cell-and-electrode
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Proof. We decompose the CATE error into factual and counterfactual estimation error as follows:

EtCATE=

∫
x∈X

[τX(x,t)−τ̂X(x,t)]2P (x|t)dx=
∫
x∈X

[τ(ft(x))−τ̂(f̂t(x))]2P (x|t)dx

=

∫
x∈X

[(µ1(ft(x))−µ0(ft(x)))−(µ̂1(f̂t(x))−µ̂0(f̂t(x)))]
2P (x|t)dx

=

∫
x∈X

[(µ1(ft(x))−µ̂1(f̂t(x)))−(µ0(ft(x))−µ̂0(f̂t(x)))]
2P (x|t)dx

Let t′=1−t denote the counterfactual treatment. We can then rewrite the above expression as:

EtCATE=

∫
x∈X

[(µt(ft(x))−µ̂t(f̂t(x)))−(µt′(ft(x))−µ̂t′(f̂t(x)))]
2P (x|t)dx

Now using the inequality (a−b)2≤2a2+2b2, we can separate the factual and counterfactual terms:

EtCATE≤2

∫
x∈X

[µt(ft(x))−µ̂t(f̂t(x))]
2P (x|t)dx+2

∫
x∈X

[µt′(ft(x))−µ̂t′(f̂t(x))]
2P (x|t)dx

=2EtF +2EtCF

B.5.2 Recovery of fS upto a diffeomorphic transformation

Lemma 4. As |Dsyn|→∞, contrastive training with paired covariates recovers f̃S
t =h◦fS

t while
paired outcome supervision recovers τ̃S = τS ◦ h−1 where h is a diffeomorphic transformation.
Moreover, when the latent spaceZ⊂S(nz−1) (unit-norm hypersphere inRnz ), h is a rotation transform
by Extended Mazur-Ulam Theorem as shown in [65] (Proposition 2).

Proof. Theorem 4.4 of [57] shows that contrastive training with covariate pairs {xS
i (0),x

S
i (1)} recovers

Z upto a diffeomorphic transformation h, i.e. for the simulator DGP our estimate ẑi= f̃S(xS
i (t),t)=

h(zi)=h(fS(xS
i (t),t),∀t∈T . Moreover for unit-norm latent representations,Z⊂Sdz−1, [65] show

that h is an isometric (norm-preserving) function and therefore, a rotation transform by an extension of
Mazur-Ulam Theorem. Mazur-Ulam Theorem states that any smooth, invertible and isometric function
is necessarily affine. Moreover, in our setting, the norm of z as well as ẑ is always one and thus, h is
necessarily a rotation. Therefore, we recover f̃S =h◦fS upto a rotation of the true inverse map fS

with sufficient paired samples from the simulator.

Next, we recover τ̃S from the following minimisation:

τ̃S=argmin
τ̂S

ExS

[
τ̂S(f̃S(xS(t),t))−τS(fS(xS(t),t))

]2
=argmin

τ̂S

Ez

[
τ̂S(h(z))−τS(z)

]2
The above optimization gives τ̃S = τS ◦h−1 and hence we recover the CATE function τS for the
simulator DGP composed with h−1.

Proof of Lemma 3.

Assume τ is Kτ -Lipschitz, and f̃S and τ̃S are estimates from the simulator DGP. Then, the CATE error
on the estimates f̂t and τ̂ admits the following bound:

EtCATE(f̂t,τ̂)≤ [12dh(z)(τ̂ ,τ̃
S)+12K2

τdx|t(f̂t,f̃
S
t )+8EtF ]+[12dz(τ,τ

S)+12K2
τdx|t(ft,f

S
t )]

where dx|t,dz,dh(z) are distance functions defined in section 2.

Proof. We now construct at upper bound on counterfactual error EtCF that relies on both observational
data and simulator estimates to motivate the SimPONet objective:
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EtCF =

∫
x∈X

[µt′(ft(x))−µ̂t′(f̂t(x))]
2P (x|t)dx

=

∫
x∈X

[(µt′(ft(x))−µt(ft(x)))−(µ̂t′(f̂t(x))−µ̂t(f̂t(x)))+µt(ft(x))−µ̂t(f̂t(x))]
2P (x|t)dx

=

∫
x∈X

[(21t=0−1)·(τ(ft(x))−τ̂(f̂t(x)))+µt(ft(x))−µ̂t(f̂t(x))]
2P (x|t)dx

Where 1t=0=1 when t=0 and zero otherwise, and thus, (21t=0−1)=±1 adjusting the sign of CATE
terms. Now we utilise the inequality (a+b+c)2≤3(a2+b2+c2) to obtain:

EtCF =

∫
x∈X

[(21t=0−1)·(τ(ft(x))−τ̂(h◦ft(x))+τ̂(h◦ft(x))−τ̂(f̂t(x)))+µt(ft(x))−µ̂t(f̂t(x))]
2P (x|t)dx

≤3

∫
x∈X

[τ(ft(x))−τ̂(h◦ft(x))]2P (x|t)dx+3

∫
x∈X

[τ̂(h◦ft(x))−τ̂(f̂t(x))]2P (x|t)dx

+3

∫
x∈X

[µt(ft(x))−µ̂t(f̂t(x))]
2P (x|t)dx

=3

∫
z∈Z

[τ(z)−τ̂(h(z))]2P (z|t)dz+3

∫
x∈X

[τ̂(h(ft(x)))−τ̂(f̂t(x))]2P (x|t)dx+3EtF

Here h denotes the unknown rotation transformation that relates the estimated simulator functions
(f̃S ,τ̃S) with the ground-truth simulator functions (fS ,τS) as shown in Lemma 4. Let Kτ be the
Lipschitz constant for τ̂ . We can bound the second term in the above expression as follows:

EtCF ≤3

∫
z∈Z

[τ(z)−τ̂(h(z))]2P (z|t)dz+3K2
τ

∫
x∈X
||h(ft(x))−f̂t(x)||2P (x|t)dx+3EtF

=3dz(τ,τ̂ ◦h)+3K2
τdx|t(h◦ft,f̂t)+3EtF

Now we can add and subtract simulator function estimates to bound the two distance terms as follows:

EtCF ≤3

∫
z∈Z

[τ(z)−τS(z)+τS(z)−τ̂(h(z))]2P (z|t)dz

+3K2
τ

∫
x∈X
||h(ft(x))−h(fS

t (x))+h(fS
t (x))−f̂t(x)||2P (x|t)dx+3EtF

≤6

∫
z∈Z

[τ(z)−τS(z)]2P (z|t)dz+6

∫
z∈Z

[τS(z)−τ̂(h(z))]2P (z|t)dz

+6K2
τ

∫
x∈X
||h(ft(x))−h(fS

t (x)||2P (x|t)dx+6K2
τ

∫
x∈X
||h(fS

t (x))−f̂t(x)||2P (x|t)dx+3EtF

=6dz(τ,τ
S)+6dz(τ̂ ◦h,τS)+6K2

τdx|t(h◦ft,h◦fS
t )+6K2

τdx|t(f̂t,h◦fS
t )+3EtF

Now, using Lemma 4, we can rewrite τS = τ̃S ◦ h in the second term. Thus, dz(τ̂ ◦ h, τS) =
dz(τ̂ ◦h,τ̃S ◦h). Now making use of Definition 2, we can rewrite this as dh(z)(τ̂ , τ̃S) which is a
distance function defined on the space of rotated latents h(z). We also rewrite h◦fS as f̃S in the fourth
term.

Moreover, dx|t(h◦ft,h◦fS
t )=dx|t(ft,f

S
t ) since h is a rotation transform and preserves the distance

between any two vectors. Thus, ||ft(x)−fS
t (x)||2 = ||h◦ft(x)−h◦fS

t (x)||2. Combining these
results, we can evaluate the above bound to the following:

15



EtCF ≤ [6dh(z)(τ̂ ,τ̃
S)+6K2

τdx|t(f̂t,f̃
S
t )+3EtF ]+[6dz(τ,τ

S)+6K2
τdx|t(ft,f

S
t )]

B.6 Linear DGP Derivation

We derive expressions for CATE estimates τ̂X(x,t) as well as EtCATE for each of our proposed estimators
in the linear setting below. Note that ground truth CATE τX(x,t)=xR−1

t (w1−w0). We consider
factual treatment t=1 to illustrate the errors.

B.6.1 SimOnly

For SimOnly, we use R̂−1
t =S−1

t and ŵt=wS
t which are obtained by training on simulator data. Thus,

the CATE estimate τ̂X(x∗,t)=x∗S−1
t (wS

1 −wS
0 ). The CATE error on a sample x∗, with treatment

t=1 is given by [τ̂X(x∗,1)−τX(x∗,1)]2=[(x∗(S−1
1 (wS

1 −wS
0 )−R−1

1 (w1−w0))]
2

B.6.2 RealOnly

For RealOnly, the factual objective EtF = ||xR̂−1
t ŵt−y||22= ||xR̂−1

t ŵt−xR−1
t wt||22. Thus, the closed

form solution of the estimator R̂−1
t ŵt=R−1

t wt,∀t∈T . Since we can’t decouple the terms R̂−1
t and

ŵt, the CATE estimate is given by τ̂X(x∗,t)=x∗R̂−1
1 ŵ1−x∗R̂−1

0 ŵ0=x∗R−1
1 w1−x∗R−1

0 w0.
CATE error on sample x∗ with treatment t=1 is given by [τ̂X(x∗,1)−τX(x∗,1)]2=[(x∗R−1

1 w1−
x∗R−1

0 w0)−xR−1
1 (w1−w0)]

2=[x(R−1
1 −R

−1
0 )w0]

2

B.6.3 RealµSimf

For RealµSimf , we first set R̂−1
t =S−1

t which is obtained by training on simulator data. Next, we
train ŵt on the factual objective: ||xR̂−1

t ŵt−xR−1
t wt||22 = ||xS−1

t ŵt−xR−1
t wt||22. This, gives

us a closed form solution for the minimising ŵt = StR
−1
t wt. The CATE estimate τ̂X(x∗, t) =

x∗S−1
t (ŵ1−ŵ0)=x∗S−1

t (S1R
−1
1 w1−S0R

−1
0 w0). Fixing treatment t=1, this simplifies further:

τ̂X(x∗,1)=x∗S−1
1 (S1R

−1
1 w1−S0R

−1
0 w0)=x∗(R−1

1 w1−S−1
1 S0R

−1
0 w0). CATE Error is given

by [τ̂X(x∗,1)−τX(x∗,1)]2 = [x∗(R−1
1 w1−S−1

1 S0R
−1
0 w0)−x∗R−1

1 (w1−w0)]
2 = [x∗R−1

1 w0−
x∗S−1

1 S0R
−1
0 w0]

2=[x∗(R−1
1 −S

−1
1 S0R

−1
0 )w0]

2

B.6.4 SimPONet

We train both R̂−1
t ,ŵt on the following objective jointly:

L({R̂−1
t ,ŵt}t=0,1)=

[ ∑
t=0,1

||xR̂−1
t ŵt−xR−1

t wt||22+λf

∑
t=0,1

||xR̂−1
t −xS−1

t ||2F +λτ ||z(ŵ1−ŵ0)−z(w1−w0)||22

]
Here, z=xS

t′S
−1
t′ are the latents for simulated covariates xS

t′ (which are identifiable from Dsyn). Due to
the joint nature of this optimisation, it is not possible to derive closed form solutions for the optimum.
However, one can compuet gradients of the objective with respect to R̂−1

t and ŵt separately. This,
gives us an alternating minimisation algorithm with closed form updates.

∂L
∂R̂−1

t

=
∂

∂R̂−1
t

[
||xR̂−1

t ŵt−y||22+λf ||xR̂−1
t −xS−1

t ||2F
]

=2xTxR̂−1
t (ŵtŵt

T +λfI)−2xT yŵt+−2λfx
TxS−1

t

Setting the derivative to zero, we obtain the following update rule:

R̂−1
t ←(x†yŵt+λfS

−1
t )·(ŵtŵt

T +λfI)
−1

where x†=(xTx)−1xT is the pseudoinverse of x.

∂L
∂ŵt

=
∂

∂ŵt

[
||xR̂−1

t ŵt−y||22+λτ ||z(ŵt−ŵt′)−(yS1 −yS0 )||22
]

=2(ẑT ẑ)ŵt−2ẑT y+2λτ (z
T zŵt−zT (zŵt′+(yS1 −yS0 )))

=2[(ẑT ẑ)+λτ (z
T z)]ŵt−2(ẑT y+λτz

T (zŵt′+(yS1 −yS0 )))
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Where ẑ=xR̂−1
t . Setting the derivative to zero, we obtain the following update rule:

ŵt←((ẑT ẑ)+λτ (z
T z))−1 ·(ẑT y+λτz

T (zŵt′+(yS1 −yS0 )))

For SimPONet, we perform alternating updates of ŵt and R̂−1
t fixing the other estimate.

B.7 Summary of Datasets

IHDP. The Infant Health and Development Program (IHDP) is a randomized controlled trial designed
to assess the impact of physician home visits on the cognitive test performance of premature infants.
The dataset exhibits selection bias due to the deliberate removal of non-random subsets of treated
individuals from the training data. Since outcomes are observed for only one treatment, we generate
both observed and counterfactual outcomes using a synthetic outcome generation function based on
the original covariates for both treatments, making the dataset suitable for causal inference.

The IHDP dataset includes 747 subjects and 25 variables. While the original dataset discussed in [53]
had 1000 versions, our work uses a smaller version with 100 iterations, aligning with the CATENets
benchmark. Each version varies in the complexity of the assumed outcome generation function,
treatment effect heterogeneity, etc. As outlined in [13], reporting the standard deviation of performance
across the 100 different seeds is inappropriate. Therefore, we calculate p-values through paired t-tests
between our method (SimPONet) and other baseline methods, using SimPONet as the baseline for all
experiments. We follow setting D of the IHDP dataset as mentioned in [11] where response surfaces
are modified to suppress the extremely high variance of potential outcomes in certain versions of the
IHDP dataset.

ACIC. The Atlantic Causal Inference Conference (ACIC) competition dataset (2016)4 consists of 77
datasets, all containing the same 58 covariates derived from the Collaborative Perinatal Project. Each
dataset simulates binary treatment assignments and continuous outcome variables, with variations in
the complexity of the treatment assignment mechanism, treatment effect heterogeneity, the ratio of
treated to control observations, overlap between treatment and control groups, dimensionality of the
confounder space, and the magnitude of the treatment effect.

All datasets share common characteristics, such as independent and identically distributed observations
conditional on covariates, adherence to the ignorability assumption (selection on observables with
all confounders measured and no hidden bias), and the presence of non-true confounding covariates.
Of the 77 datasets, we selected a subset of three: versions 2, 7, and 26, aligning with the CATENets
benchmark. These versions present non-linear covariate-to-outcome relationships and maximum
variability in treatment effect heterogeneity. Version 2, notably, exhibits no heterogeneity, meaning the
treatment effect is constant across all individuals. However, accurately estimating outcome differences
even for this version is challenging due to the inherent noise in potential outcome realizations in the
dataset.

4https://jenniferhill7.wixsite.com/acic-2016/competition
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B.8 Table of Symbols

Symbol Definition
X Real post-treatment covariates: Random Variable
Y Real outcomes: Random Variable

XS Simulator post-treatment covariates: Random Variable
Y S Simulator outcomes: Random Variable
T Treatment: Random Variable
Z Latent (unobserved) pre-treatment representations: Random Variable

Dtrn Observational training dataset from Real DGP
Dsyn Counterfactual dataset from Simulator DGP
Dtst Test dataset from Real DGP

x,xS ,z,t,y,yS Realisations of random variables X,XS ,Z,T,Y,Y S respectively
X Space of post-treatment covariate values: Set
T Space of treatment values: Set ={0,1}
Z Space of latents: Set
Y Space of outcomes: Set

nz,nx Dimensions of vector spaces in whichZ,X lie
Yi(t) Potential outcome for ith unit under treatment t
Xi(t) Potential post-treatment covariate for ith unit under treatment t

gt Mapping fromZ 7→X , transforms latents to real post-treatment covariates under t
gSt Mapping fromZ 7→X , transforms latents to simulated post-treatment covariates under t
ft Mapping fromX 7→Z , transforms real post-treatment covariates under t to latents
fS
t MappingX 7→Z , transforms simulated post-treatment covariates under t to latents

PZ Probability distribution of latents Z
µt Outcome function for real data under t
µS
t Outcome function for simulated data under t
τ Conditional Average Treatment Effect for real data, µ1−µ0, MappingZ 7→Y

τS Conditional Average Treatment Effect for simulated data, µS
1 −µS

0 , MappingZ 7→Y
◦ Composition of functions

τX(x,t) Conditional Average Treatment Effect for real data, τ ◦ft(x), MappingX×T 7→Y
τSX(xS ,t) Conditional Average Treatment Effect for simulated data, τS◦fS

t (x
S), MappingX×T 7→Y

h Diffeomorphic transformation, arises due to contrastive learning
Sd Unit-norm hypersphere of dimension d, Subset of R(d+1)

dx|t Expected squared-distance between two functions on P (X|T ), see Section 2 for definition
dz Expected squared-distance between two functions on PZ , see Section 2 for definition

dh(z) dz under transformation h on z, see Section 2 for definition
sim(•,•) Cosine similarity

f̂t Estimate for ft
f̂S
t Estimate for fS

t
µ̂t Estimate for µt

µ̂S
t Estimate for µS

t

f̃S
t Estimate for fS

t recovered from contrastive learning
µ̃S
t Estimate for µS

t on recovering Simulator DGP
ECATE CATE estimation error
EtCATE CATE estimation error on covariates x under treatment t
EtF Factual error on treatment t samples
EtCF Counterfactual error on treatment t samples
Kµ Lipschitz constant for µt,µ̂t

Kτ Lipschitz constant for τ,τ̂
KµS Lipschitz constant for µS

t ,µ̂
S
t ,µ̃

S
t

KτS Lipschitz constant for τS ,τ̂S ,τ̃S
Rt gt for linear DGP: Matrix
St gSt for linear DGP: Matrix
wt µt for linear DGP: Vector
wS

t µS
t for linear DGP: Vector

wτ τ for linear DGP: Vector
wS

τ τS for linear DGP: Vector
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