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Abstract. Nailfold capillaroscopy is a non-invasive technique for as-
sessing microvascular health by visualizing capillaries in the nailfold,
playing a key role in diagnosing vascular and autoimmune diseases. We
propose a novel machine learning approach for nailfold analysis, intro-
ducing an advanced multi-task learning model that jointly performs
capillary segmentation, classification, and keypoint detection within a
unified architecture. Using a large public dataset with reorganized key-
point annotations, our approach improves precision and efficiency in fea-
ture detection while simplifying the conventional multi-stage pipeline.
By leveraging multi-task optimization, the model achieves state-of-the-
art performance comparable to existing methods. This work advances
nailfold imaging by providing an accurate, streamlined solution for au-
tomated, non-invasive microvascular diagnostics. Code is available at
https://github.com/thuhci/NFCMTL.

Keywords: Nailfold Capillaroscopy · Multitask Learning · Vision Trans-
former.

1 Introduction

NailFold Capillaroscopy (NFC) is a non-invasive imaging modality used clini-
cally to assess the health of the microcirculatory system by visualizing capillary
structures near the surface of the skin, particularly at the human finger nail-
fold area [8,4,2]. This imaging technique provides critical insights into capillary
morphology, making it indispensable in diagnosing and monitoring a range of
autoimmune and vascular conditions, including Systemic Sclerosis (SSc) [13,23]
and Raynaud’s phenomenon [22,18]. Moreover, emerging research indicates that
NFC abnormalities might correlate closely with metabolic disorders such as di-
abetes [17,24], thus further extending its diagnostic relevance.
⋆ The corresponding authors.
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Fig. 1. Traditional method for NFC (A) requires significant clinician intervention.
While existing deep learning approaches (B) allow clinicians to process images through
multiple separate models, our proposed multi-task learning model (C) integrates key
tasks into a unified model that produces comprehensive capillary image analysis in a
single operation. Note: the A 1○ image is obtained from [10].

In traditional clinics, NFC examinations involve capturing microscopic im-
ages at approximately ×200 magnification, followed by detailed manual analysis.
Specialists visually inspect these images for morphological abnormalities, delin-
eate capillary boundaries, classify capillary morphology, and measure parame-
ters such as apical, arterial, and venous diameters. They then compare these
morphological and quantitative findings to reference criteria or rely on clinical
experience to identify abnormalities indicative of disease (Figure 1 (A)). While
effective, this manual assessment is inherently subjective, labor-intensive, time-
consuming, and highly dependent on clinician expertise, potentially leading to
diagnostic variability, inconsistent image interpretation, and delayed or inaccu-
rate clinical decisions [1]. Additionally, the manual approach significantly strains
clinical resources, restricting NFC’s broader accessibility and clinical adoption.

The application of machine learning in nailfold capillaroscopy is advancing
accurate automated diagnosis. A common starting point in this process is seg-
mentation, which outlines targeted capillaries in input images. While not strictly
necessary for morphological estimation or parameter calculation, segmentation
enhances deep learning pipelines by improving capillary localization [3]. Neural
networks like U-Net [21], Mask-RCNN [9] and their variants [16,19] are widely
used in NFC segmentation.

Beyond segmentation, capillary classification also plays a crucial role in iden-
tifying different capillary types, such as normal, abnormal, or those with con-
junctions or anastomoses [7,29]. CNN-based approaches have proven effective
for this task. Meanwhile, the quantification of capillary parameters, including
density, loop width, and arterial/venous length, is essential for diagnosing dis-
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eases like systemic sclerosis, lupus, and rheumatoid arthritis. Some studies favor
traditional computer vision or mathematical methods for this analysis [12,7].

Recent viral NFC studies also favor keypoint-based quantitative analysis.
For example, Tello et al. [7] employed stacked DenseNet for two-stage capillary
parameter estimation, achieving 88% accuracy at a confidence threshold of 0.50.
Zhao et al. [29] combined Mask-RCNN with a matching algorithm, reporting
an apical diameter MAE of 1.674 pixels and RMSE of 2.023 pixels. Integrating
keypoint estimation into NFC analysis enhances accuracy and efficiency.

Despite successes in individual NFC tasks, existing methods fail to simulta-
neously predict multiple tasks. Similar medical imaging studies, such as retinal
fundus [28] and skin lesions [25], have demonstrated strong connections between
related tasks like classification and segmentation. General imaging applications,
including human pose estimation, also indicate a strong link between keypoint
estimation and segmentation [6].

To bridge the gap in existing NFC research, we introduce a novel Multi-Task
Learning (NFCMTL) strategy, depicted in Figure 1(C), that integrates capillary
semantic segmentation, keypoint detection, and classification into a single uni-
fied model. Leveraging a Multiscale Vision Transformer (MViT) backbone with
a Feature Pyramid Network (FPN), our model uses a specialized loss function to
optimize task predictions simultaneously. Evaluations on the ANFC dataset [29]
demonstrate balanced performance improvements across tasks. Ablation studies
further confirm precision gains from task unification, achieving sub-pixel accu-
racy (< 1 pixel error) in downstream capillary parameter estimations.

Our contributions are summarized as follows: 1) We propose the first reliable
multi-task learning model for NFC image tasks, simultaneously performing pre-
cise segmentation, classification, and keypoint estimation. 2) We introduce the
MViT-FPN model, which outperforms existing approaches in NFC imaging
tasks. 3) Through extensive experiments, NFCMTL demonstrates superior per-
formance in capillary entity estimation and parameter computation, especially
when keypoint detection is jointly learned.

2 Method

2.1 Dataset, annotations, and keypoints definition

The dataset comprises N clinician-selected RGB capillaroscopy images of size
W × H × 3, collected from multiple participants. Each image Mj , where j ∈
1, 2, ..., N , contains several visible capillaries and optional hemorrhages. The cap-
illaries in Mj are represented as a list of entities {E(j)

1 , E(j)
2 , . . . , E(j)

w }, where w
is the number of annotated capillaries in Mj .

A capillary entity E(j)
i can now be written as a tuple of four components:

E(j)
i =

(
S(j)
i ,B(j)

i ,Q(j)
i ,P(j)

i

)
(1)

In Equation 1, S(j)
i denotes the segmentation polygon, B(j)

i refers to the
bounding box, Q(j)

i corresponds to the classification label and P(j)
i represents the
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Fig. 2. Different types of nailfold capillaries examined in this research. (1) Normal
capillary displaying the classic inverted-U shape. (2) Abnormal capillary where the
afferent limb (left portion) is shorter than the efferent limb (right portion). (3) Ab-
normal capillary characterized by a non-linear efferent limb. (4) Abnormal capillary
exhibiting a conjunction or anastomosis. (5) Abnormal capillary with both afferent and
efferent limbs shorter than typical length. (6) Abnormal capillary with both afferent
and efferent limbs longer than typical length.

set of keypoints. In this study, we define a fixed set of 9 keypoints, which include
the up (U), down (D), left-left (LL), left-right (LR), right-left (RL), right-
right (RR), left-bottom (LB), right-bottom (RB) and the optional conjunction
(X). The U and D points are chosen from the capillary apex, LL and LR are
selected from the arterial limb, while RL and RR are selected from the venous
limb. All keypoints in a capillary entity are represented as one-hot binary masks
of size m ×m, where each mask encodes a specific anatomical landmark and a
spatial softmax over the m2 grid is applied to predict the most probable keypoint
location during inference, as described in [9]. Note that all capillaries in this
study must contain the 8 essential keypoints, with the exception of the optional
conjunction point. Hemorrhages class do not contain any keypoints. To facilitate
better representation of this information, we adopt the MS COCO format [15]
for annotations, assigning a visibility flag to each keypoint. Figure 2 illustrates
various keypoint annotations in this research.

2.2 Model Architecture

Overview The architecture of the proposed model is illustrated in Figure 3.
While the final tasks share close relationships, they necessitate distinct predic-
tion strategies due to the intricate characteristics of nailfold capillaries — small
size, subtle visual features, occlusions, and irregular shapes. Consequently, the
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Fig. 3. Overview of the proposed architecture. The model integrates a Multiscale Vision
Transformer backbone with a Feature Pyramid Network to capture both fine-grained
details and high-level structural context of the capillaries. The multi-scale features are
fed into task-specific heads built on Mask R-CNN and Region Proposal Network to
perform segmentation masks, classification, and keypoint heatmap tasks.

model must effectively capture both low-level visual details and high-level struc-
tural relationships. We adopt the Multiscale Vision Transformer (MViT)[5,14] to
address these challenges — we encode each input into multi-scale square patches
through adaptive upsampling and downsampling operations. These multi-scale
patches align naturally with the four-stage Feature Pyramid Network (FPN),
subsequently feeding into dedicated task-specific heads — Mask-RCNN [9] and
Region Proposal Network (RPN) [20], where a custom total loss function is ap-
plied to optimize multi tasks, resulting in a comprehensive prediction of capillary
representations.

Backbone Firstly, all input nailfold capillary images are adopted paddings for
a square shape. We then segment the image into P × P patches. For ViT-based
encoding, the model extract features to encode each patch into a multi-scale
feature map F ∈ R

H
P ×W

P ×D. To create multiple feature maps at different scales
as used in FPN, we perform recursive down-sampling and up-sampling using
convolutional layers with stride s ∼ {4, 8, 16, 32}. Later in the FPN module, we
return the feature map to its original resolution by upsampling recursively.

Attention Module Just like other ViT systems, the attention scores between
each pair of patches are computed by taking the dot product between the query
Q, key K and value vectors V . Let X = [x1, x2, . . . , xN ] be the sequence of input
patch representations, the three vectors can be calculated with learnable weight
matrices Q = XWQ,K = XWK , V = XWV .
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The resulting scores are scaled by 1√
d
, d = H

P × W
P ×D to stabilize gradients

during training. These scores are passed through softmax for weights.

ROI Heads The downstream ROI heads refine FPN-generated proposals and
make final predictions for the capillary tasks with the structure of Mask-RCNN
and RPN. The model utilizes ROI Align adopted from the Mask R-CNN frame-
work to extract features from each proposal. Following this, the model performs
bounding box regression to adjust coordinates and classifies capillaries using a
softmax function. To predict the keypoint heatmap, we use a top-down method
that takes the predicted bounding boxes with FPN output features to generate
the heatmap. Capillary semantic segmentation is achieved by piping FPN’s out-
put features into Mask R-CNN, which then uses five 256× 256 Conv2d heads to
predict five distinct pixel-level classes.

2.3 Task-specific Loss and Multitask Loss

Classification Loss Let ŷ be the predicted probability distribution (from the
final softmax layer), and y be the true class label (a one-hot encoded vector). The
classification loss is hereby Lclass = −

∑C
c=1 yc log(ŷc), where C is the number

of classes, yc is the true label for class c, and ŷc is the predicted probability for
class c.

Segmentation Loss We use the Dice Loss for segmentation Lsegm = 1 −
2
∑

i
Sigi∑

i
Si+

∑
i
gi

. Here Si is the predicted segmentation mask at pixel i, and gi is

the ground truth segmentation mask at pixel i.

Bounding Box Loss For the bounding box regression task, we use the Smooth
L1 Loss. Let B(j)

i = [xmin, ymin, xmax, ymax] be the predicted bounding box for the
i-th capillary, and G(j)

i = [gmin, hmin, gmax, hmax] be the ground truth bounding

box. The bounding box loss is defined as Lbbox = 1
4

∑
i

(∣∣∣B(j)
i − G(j)

i

∣∣∣2).

Keypoint Loss For the keypoint detection task, we use the cross-entropy loss:
Lkp = 1

N

∑N
n=1

∑K
k=1

∑S
i=1

∑S
j=1 −gn,k,i,j log(ĝn,k,i,j). The predicted keypoints

are represented as a tensor of logits of shape (N,K, S, S), where N is the batch
size, K is the number of keypoints, and S is the size of the keypoint heatmap.
The ground truth keypoints are converted into heatmaps.

Total Loss Since all tasks here are jointly optimized, weighting strategies are
vital for the final optimization. Brought the idea from [11], we use uncertainty
weighting to balance these tasks: Ltotal = UW ⊗ {Lclass,Lsegm,Lbbox,Lkp}.



NFCMTL 7

Table 1. Summary of evaluation results

Task Subtask Metrics Ours ANFC [29] CAPI [7] Mask-RCNN [9]

Segm. Capillary Mask Sens.↑ 0.827 0.653 — 0.820
KP. Venous Diameter MAE↑ 1.813 0.989 1.274 1.794
KP. Arterial Diameter MAE↓ 0.825 0.849 0.856 1.351
KP. Apical Diameter MAE↓ 0.321 1.674 0.575 1.047

Class. Abnormal State Accuracy↑ 0.885 0.800 0.747 0.839

The test set includes 61 images from various distinct subjects, ensuring no overlap
between the subjects in the training and test datasets. Classification metric is calcu-
lated per image level and keypoint task’s metric is calculated at the pixel level. For
the ANFC [29] we report the original results from the paper. For the CAPI [7] and
Mask-RCNN [9] results, we implemented the method as described in the original
paper and evaluated it on the dataset used in this work.

3 Experiment and Discussion

Dataset We utilized a public dataset of nailfold videocapillaroscopy images
from [29]. This dataset contains 321 high-quality capillaroscopy recordings from
68 participants with a microscope of around ×200 magnification. By submitting
Biometrics Dataset Release Agreement, we obtain both the raw image data and
its Labelme [26] formatted annotation and converted them to COCO format as
described in the above section.

Implementation Model training was conducted on an NVIDIA GeForce RTX
4090 GPU (24GB) under Ubuntu 24.04, using Python 3.11.11, PyTorch 2.6.0,
and Torchvision 0.21.0. Input images were uniformly resized to 1024× 1024 and
augmented via flipping, cropping, resizing. In addition to those augmentations,
we applied photometric transformations like random brightness, contrast, and
hue shifts to mimic the highly variable lighting conditions found in outpatient
clinics. We select MViTv2-T as the initial checkpoint for its strong performance
and lightweight architecture. Optimization employed AdamW with an initial
learning rate of 1.6e-4, incorporating linear warm-up and scheduled decay at
52,500, 62,500, and 67,500 iterations. Due to GPU memory constraints, the
batch size was fixed at 4. An 80:20 train-test split was applied at the subject
level to prevent image overlap across sets. Although it has been suggested that
Detectron2 [27] may not be ideal for certain experiments [7], we successfully
engineered the core codebase using this platform.

Evaluation Metrics In this research, different metrics are picked for each task,
as shown in Table 1. For each task, we conduct experiments using a five-fold setup
and report the aggregated results across the folds.

Results For segmentation, we evaluate pixel-level sensitivity and obtain an
average result of 0.827, outperforming ANFC [29] by demonstrating improved
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Table 2. Different task combination and evaluation results

Tasks Segm (Sens.) Class (Acc.) MAEapex MAEvenous MAEarterial

Segm+Class 0.79 0.905 — — —
Segm+KP 0.82 — 1.823 2.235 0.942
Class+KP — 0.819 0.632 2.033 1.725
All tasks 0.83 0.885 0.321 1.813 0.825

segmentation performance. Regarding CAPI [7], since the original method does
not address the segmentation task, we do not include it in this comparison.

For the classification task, we assess results at the whole-image level. Our
assumption is that if an NFC image contains a single abnormal capillary, the
entire image is classified as abnormal. Similarly during evaluation, the inferred
classifications of individual capillaries are aggregated to determine the overall
image classification. Based on this assumption, we hit an 88.5% accuracy, 89.7%
precision, 86.8% recall and 88.2% F1 score.

For the keypoint detection task, we assess model performance through a
downstream task: capillary parameter estimation. Specifically, the venous diam-
eter is computed as the Euclidean distance between keypoints LL and LR, the
arterial diameter from RL and RR, and the apical diameter from U and D. The
mean absolute error (MAE) is calculated as the average difference between the
predicted and ground truth diameters for all capillaries at the image level. As
shown in Table 1, the model demonstrates strong performance, particularly in
estimating arterial and apical diameters.

Ablation Study Table 2 shows the impact of different task combinations on
segmentation, classification, and keypoint performance. The final combined task
performs well over major tasks, proving unified optimization works as expected.

4 Conclusion

In this paper we introduce a unified multi-task model for nailfold capillaroscopy
that merges segmentation, keypoint detection, and capillary classification. Using
a Multiscale vision transformer backbone with Mask R-CNN heads, the model
delivers more precise capillary geometry and measurements for capillary param-
eters. This streamlined approach enhances automated NFC analysis, promising
better clinical diagnostics and supporting future multi-task NFC research.
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