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Abstract

We study a stochastic principal-agent model. A principal and an agent interact in a
stochastic environment, each privy to observations about the state not available to
the other. The principal has the power of commitment, both to elicit information
from the agent and to signal her own information. The players communicate with
each other and then select actions independently. Both players are far-sighted,
aiming to maximize their total payoffs over the entire time horizon. We consider
both the computation and learning of the principal’s optimal policy. The key chal-
lenge lies in enabling history-dependent policies, which are essential for achieving
optimality in this model but difficult to cope with because of the exponential growth
of possible histories as the size of the model increases; explicit representation of
history-dependent policies is infeasible as a result. To address this challenge, we
develop algorithmic techniques based on the concept of inducible value set. The
techniques yield an efficient algorithm that computes an ϵ-approximate optimal
policy in time polynomial in 1/ϵ. We also present an efficient learning algorithm for
an episodic reinforcement learning setting with unknown transition probabilities.
The algorithm achieves sublinear regret Õ(T 2/3) for both players over T episodes.

1 Introduction

Many problems in economic theory involve sequential reasoning between multiple parties with asym-
metric access to information [37, 20, 4, 27]. For example, in contract theory, one party (the principal)
delegates authority and decision-making power to another (the agent), and the goal is to design
mechanisms to ensure that the agent’s actions align with the principal’s utilities. This broad class
of principal-agent problems lead to many research questions about information design and optimal
strategic behaviors, with broad-ranging applications from governance and public administration to
e-commerce and financial services. In particular, algorithmic techniques for optimal decision-making
and learning are crucial for obtaining effective solutions to real-world problems in this domain.

In this paper, we consider a general framework for stochastic principal-agent problems. We study
the algorithmic problems related to the computation and learning of optimal solutions under this
framework. In this framework, the interaction between the principal and the agent takes place in a
stochastic environment over multiple time steps. In each step, both players are privy to information
not available to the other and make partial observations about the environment. The players can
communicate their private information to influence each other and, based on this communication,
play actions that jointly influence the state of the environment. Each player has their own payoff, and
we study the general-sum case with far-sighted players: each player aims to maximize the (expected)
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sum of their rewards over the entire horizon of the game. Technically, the setting is a stochastic game
with partial information on both sides [1, 31].

In line with the principal-agent framework, we assume that the principal has the power of commitment,
both to elicit information from the agent and to signal the agent about her own private information. A
commitment is a binding agreement for the principal to act according to the committed policy. The
agent acts optimally in response to the commitment, deciding what information to share and what
actions to perform at their own discretion. At a high level, we have a Stackelberg game and we aim
to find a Stackelberg equilibrium [40]. The possibility of information exchange further results in a
model that incorporates both sequential Bayesian persuasion (or information design [22]) [16, 41]
and sequential mechanism design [45]. We adopt stochastic games (or Markov games) [39] as our
modeling basis, whose transition models are graph-structured. Hence, our model is more expressive
than tree-structured principal-agent problems such as those based on extensive-form games (EFGs), in
the sense that exponentially many possible history trajectories can be unrolled from our graph-based
model as the length of the time horizon increases, whereas in tree-structured ones, the number is
bounded by the size of the tree.

Indeed, history-dependence is a key consideration in our policy design. Unlike in single-player
Markov decision processes (MDPs) or zero-sum stochastic games, stationary (or history-independent)
policies are no longer without loss of generality in our setting. For example, strategies like tit-for-
tat—which are essential for achieving optimal outcomes in certain scenarios (such as the repeated
prisoner’s dilemma)—depend on remembering past actions and thus cannot be implemented by
stationary policies. Enabling history-dependent policies in our graph-based model, however, begets
a major challenge caused by the exponential growth of possible histories. Explicitly representing
a history-dependent policy requires specifying a strategy for every possible history, which quickly
becomes infeasible as the number of histories increases exponentially with the length of the time
horizon. To further optimize such a policy is even more challenging as the output of this computational
task would be a function over an exponentially large domain. In contrast, the size of a stationary
policy is linear in the number of states.

1.1 Our Contributions

Surprisingly though, as we discover in this work, history-dependent policies can be represented as
value vectors and can be efficiently unrolled provided polytopes consisting of all inducible value
vectors. Building on this insight, we develop algorithmic techniques that work by constructing the
inducible value sets. These techniques make it possible to implement and optimize history-dependent
strategies in dynamic principal-agent settings. More surprisingly, they are computationally efficient,
so not only do they significantly expand the policy space—from stationary policies to the far more
expressive class of history-dependent ones—but they also address a key computational barrier posed
by stationary policies, to optimize which, even approximately, is known to be NP-hard [15].

In summary, we make the following contributions in this paper.

• We introduce a generalized framework for principal-agent problems in stochastic environments,
which incorporates the stochastic extensions of various subcases of principal-agent problems such
as information design [22] and automated mechanism design [38].

• We develop algorithmic techniques that enable the implementation and optimization of history-
dependent strategies in the stochastic principal-agency framework. The techniques are based on
a compact representation of fully history-dependent polices and a novel approach that works by
constructing the inducible value sets. Together, they yield an efficient near-optimal algorithm that
computes an ϵ-approximate optimal policy in time polynomial in 1/ϵ, while the policy it produces
ensures exact incentive compatibility (IC).

• We also consider an episodic RL setting where the transition dynamics are unknown and must
be learned through interaction. We present a learning algorithm that guarantees sublinear regret
Õ(poly(M,H) · T 2/3) for both players, where M is the model size, H is the episode length, and
T is the number of episodes. The algorithm builds on recent advances in reward-free exploration
from the RL literature and it leverages efficient computation of approximately IC policies, using a
variant of our algorithm for the full-information setting.
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1.2 Related Work

The principal-agent problem is a well-known concept in economics studies [see, e.g., 37, 33, 32, 29].
Models featuring sequential interactions have also been proposed and studied [34, 12]. Our work
follows the same modeling approach as these early works and extends the one-shot versions of the
respective models—such as information design [22], automated mechanism design [38], as well as
mixtures of the two [33, 7, 14]—into the sequential setting. There has been a growing interest in
the algorithmic aspects of these sequential models, focusing on their computation and learning (e.g.,
information design [8, 15, 16, 41, 2], automated mechanism design [45, 6], other types of sequential
Stackelberg games [25, 26, 5, 18, 10], and even more recently, contract design [42, 19]).

More specifically, Gan et al. [15] first introduced an infinite-horizon information design model based
on an MDP. They showed that optimal stationary strategies are inapproximable, unless the receiver is
myopic. This work left open the tractability of optimal history-dependent strategies, especially in
finite-horizon models, which we consider in this paper. Wu et al. [41] later studied the reinforcement
learning problem against a myopic agent in the same sequential information design model. Bernasconi
et al. [2] also studied the same problem in a model based on an EFG; efficient computation and
learning algorithms were presented. Similar EFG-based models have also been explored in the recent
literature [43, 44]. EFGs are tree-structured and hence easier than MDP-based models in the sense
that all history sequences are modeled explicitly in the model. The number of possible histories is
bounded by the size of the problem as a result, where as this can be exponential in an MDP. Hence,
efficient algorithms for EFG-based models do not directly translate to efficient algorithms for our
MDP-based model. In the domain of automated mechanism design, Zhang and Conitzer [45] studied
a finite-horizon model that is a POMDP for the principal and MDP for the agent. They presented a
linear program for computing optimal mechanisms, whose size is exponential in the problem size.

As mentioned earlier, our algorithm leverages compact representation of history-dependent polices
and construction of inducible value sets. Similar techniques have been proposed in earlier works
by Dermed and Isbell [11] and MacDermed et al. [28] to compute optimal correlated equilibria
of stochastic games. Our algorithm extends these techniques into the principal-agent setting, with
adaptions that ensure exact incentive compatibility (IC) in the full-information setting. Concurrently
with our work [17], Bernasconi et al. [3] also used a similar approximation approach to solve an
information design problem (as a special case of our model). Compared to their results, our algorithm
guarantees exact IC, with a more straightforward approach. Moreover, we also study the learning
problem where the transition model needs to be learned, in addition to the computation problem
where this is given. While all the above works (including ours) only guarantee near-optimality, exact
solutions are possible in some special cases. In a recent work of Zhang et al. [46], they presented a
sophisticated exact algorithm for computing optimal correlated equilibria in two-player turn-based
stochastic games. In infinite-horizon games, however, such exact solutions appear computationally
infeasible because of irrational numbers involved in optimal polices; we refer the reader to a more
recent work by Gan and Majumdar [13].

2 Preliminaries

A principal (P) and an agent (A) interact in a finite-horizon POMDPM = ⟨S,A,Ω, p, r⟩, where:
S is a finite state space; A = AP × AA is a finite joint action space; Ω = ΩP × ΩA is a finite joint
observation space; p = (ph)

H−1
h=0 and r = (rh)

H
h=1 are two tuples, each consisting of an element for

every time step h. Specifically, p0 ∈ ∆(S × Ω) is a distribution of the initial state-observation pairs,
and each ph, h ≥ 1, is a transition function ph : S×A→ ∆(S×Ω). Each rh = (rPh , r

A
h) is a pair of

reward functions rPh : S ×A→ R and rAh : S ×A→ R, for the principal and the agent, respectively.
W.l.o.g., we assume that all rewards are in [0, 1], and all rewards in the last time step H are 0.

The interaction proceeds as follows. At the beginning, an initial state-observation pair (s1,ω1) ∼ p0
is drawn. Then, each time step h = 1, . . . ,H involves the following stages.

1. Observation: The principal and the agent observe, privately, ωP
h and ωA

h , respectively (but not sh).

2. Communication: The principal elicits the agent’s observation. The agent reports ω̃A
h ∈ ΩA

(possibly different from ωA
h ). Then, based on ωP

h and ω̃A the principal recommends an action aAh
for the agent to play. The recommendation is sent to the agent as a coordination signal.
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3. Action: Based on the information exchange above, the principal and the agent, simultaneously,
each perform an action, say aPh and ãAh , respectively. (The action ãAh the agent actually performs
may be different from the recommended one aAh .)

4. Rewards and next state: Rewards rPh(sh, a
P
h, ã

A
h) and rAh(sh, a

P
h, ã

A
h) are generated for the princi-

pal and agent, respectively. The next state is drawn: sh+1 ∼ ph(· | sh, aPh, ãAh).

Following the general paradigm of principal-agent problems, we consider the principal’s commitment
to a coordination policy. The agent best-responds to the principal’s commitment. Both players are
far-sighted and aim to maximize the sum of their rewards over the H time steps.1 We take the
principal’s perspective and the goal, as we will shortly formalize, is to compute the principal’s optimal
commitment. At a high level, this is a Stackelberg game between the principal and the agent and we
aim to compute a Stackelberg equilibrium.

2.1 Hindsight Observability

We assume hindsight observability, whereby both players observe the full interaction history (includ-
ing sh, ω, and a) at the end of each time step. This condition is essential for circumventing intrinsic
computational complexity barriers: without it, our model would directly subsume partially observable
MDPs (POMDPs), which is famously known to be PSPACE-hard [36], in which case any efficient
algorithms would be hopeless unless P = PSAPCE. (See a further discussion in Appendix C.) Similar
assumptions have been adopted in the POMDP literature [24]. Importantly, our model remains highly
expressive under hindsight observability, capturing a broad range of relevant subcases, including:
scenarios where the state is immediately observable, e.g., repeated games, stochastic games with
full state observability [10], as well as scenarios where observations can be interpreted as external
parameters generated based on an internal Markovian state observable to both players (e.g., [15, 41]).

Indeed, in many real-world scenarios, it is natural for players to observe each other’s actions after
they are taken (consider, e.g., repeated rock–paper–scissors). Beyond actions, players may also
receive regular updates about each other’s private observations. This occurs in particular when
each player observes a different part of the state and the full state is revealed at the end of the time
step—at which point all private observations effectively become public. For example, traders may
each observe local or regional market information that is later aggregated and released publicly;
in energy markets, regional grid operators obtain first-hand information about supply and demand
within their own regions and later receive system-wide reports covering the entire market; and in an
R&D consortium, each firm privately evaluates prototypes or test results and acts on that information
during the reporting cycle, after which all results are disclosed to members under agreed rules.

2.2 History-dependent Policy

We consider history-dependent policies, which are more general than stationary policies and hence
typically yield higher payoffs. For example, to punish the agent for performing a certain action
requires a history-dependent policy that remember the agent’s action in the previous time step.
History-dependent policies are also a natural choice for finite-horizon models, where the memory
required to track the history is bounded by the horizon length.

A history up to time step h is a sequence σ =
(
sℓ,ωℓ, ω̃

A
ℓ ,aℓ, ã

A
ℓ

)h
ℓ=1

, containing elements in the
four stages of each step described above (and we write ωℓ = (ωP

ℓ , ω
A
ℓ ) and aℓ = (aPℓ , a

A
ℓ )). We

let Σh denote the set of all sequences till time step h, and let Σ =
⋃H

h=0 Σh, where Σ0 = {∅}
contain only the empty sequence. Moreover, we denote by Σ̄ := S × Ω × ΩA × A × AA the
set of all possible interactions within one time step. We can now write the transition function as
ph(· |σ) = ph(· | sh,ah) for any given sequence σ ∈ Σh (specially, p0(· |∅) = p0(·)).

Principal’s Policy A history-dependent policy takes the form π : Σ× Ω→ ∆(A), whereby upon
seeing σ in the previous steps, observing ωP, and receiving the agent’s report ω̃A in the current step,
the principal draws a joint action a = (aP, aA) ∼ π(σ;ωP, ω̃A), sends aA to the agent as an action
recommendation, and performs aP herself. We denote by π(a |σ;ωP, ω̃A) the probability of each a
in π(σ;ωP, ω̃A).

1While we assume no discounting, all our results easily extend to discounted rewards.
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Agent’s Response The principal’s commitment results in a meta-POMDP for the agent. The agent
reacts by playing optimally in this meta-POMDP. When the principal’s policy is IC, this simply
means responding truthfully. Formally, the agent’s strategy can be described by a deviation plan
ρ : (σ, ωA) 7→ (ω̃A, f : AA → AA), such that given any history σ and observation ωA in the current
step, the agent reports ω̃A and then plays ãA = f(aA) if subsequently the principal recommends
playing aA. For simplicity, we write ω̃A = ρ(σ;ωA) and ãA = ρ(σ;ωA, aA). We denote by ⊥ the
special deviation plan where no deviation is made, i.e., ⊥ (σ;ωA) ≡ ωA and ⊥ (σ;ωA, aA) ≡ aA.

The agent’s value (i.e., total reward) induced by a policy π and a deviation strategy ρ can be defined
recursively via the value function as follows. For every h = 1, . . . ,H − 1 and σ ∈ Σh−1:

V A,π,ρ
h (σ) := E

[
rAh

(
s, aP, ãA

)
+ V A,π,ρ

h+1

(
σ; s,ω, ω̃A,a, ãA

) ]
, (1)

where the expectation is taken over (s,ω) ∼ ph−1(· |σ) and a ∼ π(· |σ, ωP, ω̃A); moreover, ω̃A =
ρ(σA, ωA) and ãA = ρ(σA, ωA, aA), and by assumption V A

H(σ) ≡ 0 for the last time step. The
principal’s value is defined the same way by changing the labels.

Our goal is to find a policy π that maximizes the principal’s value under the agent’s best response:

max
π,ρ

V P,π,ρ
1 (∅) (2)

subject to ρ ∈ argmaxρ′ V
A,π,ρ′

1 (∅) (2-1)

In other words, we look for π and ρ that form a Stackelberg equilibrium. We say that π is ϵ-optimal
if V P,π,ρ

1 (∅) ≥ V ∗ − ϵ for some ρ satisfying (2-1), where V ∗ denotes the optimal value of (2).

As we will demonstrate, under hindsight observability, it is without loss of optimality to consider
policies that are IC (incentive compatible), which incentivize ⊥ as an optimal response of the agent.

Definition 1 (IC policy). A policy π is IC if V A,π,⊥
1 (∅) ≥ V A,π,ρ

1 (∅) for every possible deviation
plan ρ of the agent.

3 Computing an Optimal Policy

We compute a near-optimal policy by constructing the inducible value sets. The approach is similar
to value-based approaches to solving MDPs, which operate by reasoning about the values of the
states. However, it involves the following crucial differences:

1. Since we are in a two-player setting, both player’s values need to be incorporated. We use a
two-dimensional value vector instead of a scalar value.

2. Since we consider history-dependent policies, the game may proceed differently from the same
state based on different histories. In this case, a single value (vector) is no longer sufficient for
characterizing a state, unlike the case with stationary policies. We use the set consisting of all
values can be induced by some valid policy to characterize a state. We refer to these sets are
inducible value sets.

Moreover, since the actual state of the underlying MDP is not observable at the beginning of each
time step, we will instead characterize the inducible value sets of state-action pairs o ∈ O := S ×A.
Under hindsight observability, these pairs function as the states in a Markovian process, which the
players observe before they each decide an action to play.
Definition 2 (Inducible value set). The inducible value set Vh(o) ⊆ R2 of a state-action pair
o ∈ O := S × A at time step h consists of all vectors v = (vP, vA) such that vP = V P,π,ρ

h (σ)

and vA = V A,π,ρ
h (σ) for some policy π, deviation plan ρ ∈ argmaxρ′ V

A,π,ρ′

h (σ), and sequence
σ ∈ Σh−1 ending with o.

It is straightforward that once we obtain V1(∅), then the principal’s optimal value in (2) can be com-
puted by solving max(vP,vA)∈V1(∅) v

P. We present a dynamic programming approach to constructing
the inducible sets next. We will later also show that, once we obtain all the inducible sets, every
inducible value vector can be efficiently unrolled into a history-dependent policy that induces it,
and the policy can be executed efficiently on the fly. Hence, each value vector serves as a compact
representation of a fully specified history-dependent policy.
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3.1 Computing Inducible Value Sets

Instead of computing the exact value sets, we use convex polytopes to approximate them, so as
to avoid possible exponential growth of the representational complexity. Let V̂h(o) denote the
approximation of Vh(o) we aim to obtain. Recall that in the last time step all rewards are 0, so
trivially we use V̂H(o) = VH(s) = {(0, 0)} for all o ∈ O as the base case.

Dynamic Programming Now suppose that we have obtained the polytopes V̂h+1(o
′) for all o′ ∈ O.

We move to time step h and construct each V̂h(o) based on the V̂h+1(o
′)’s. Central to the approach is

the following characterization, which describes an IC condition at time step h: for every v ∈ R2, it
holds that v ∈ Vh(o) if and only if there exist a one-step policy π̄ : Ω→ ∆(A) and a set of onward
value vectors

{
v′(σ̄) ∈ R2 : σ̄ ∈ Σ̄

}
that satisfy the following constraints.

1. A value function constraint based on (1), which expresses v via the immediate rewards and
onward value vectors v′ to be induced next, assuming truthful response of the agent:

v =
∑
s,ω,a

ph−1(s,ω | o) · π̄(a |ω) ·
(
rh(s,a) + v′(s,ω, ωA,a, aA)

)
, (3)

The onward value vectors represent the subsequent part of the principal’s commitment, which is
contingent on the interaction (s,ω, ω̃A,a, ãA) in step h. Under the truthful response of the agent,
we have ω̃A = ωA and ãA = aA in (3).

2. IC constraints, which ensure that the agent’s truthful behavior assumed in (3) is indeed incen-
tivized, where we denote by ph−1(s, ω

P | o, ωA) ∝ ph−1(s,ω | o) the conditional probability
defined by ph−1. For all ωA, ω̃A ∈ ΩA,∑

s,ωP,a

ph−1(s, ω
P | o, ωA) · π̄(a |ω) ·

(
rAh(s,a) + v′

A
(s,ω, ωA,a, aA)

)
≥

∑
aA

max
ãA∈AA

∑
s,ωP,aP

ph−1(s, ω
P | o, ωA) · π̄(a |ωP, ω̃A) ·

(
rAh(s, a

P, ãA) + v′
A
(s,ω, ω̃A,a, ãA)

)
.

(4)

Namely, the constraint says, upon observing ωA, the agent’s expected payoff under their truthful
response is at least as much as what they could have obtained, had they: 1) reported a different
observation ω̃A, 2) performed a best action ãA in response to every possible recommendation aA

of the principal, and 3) responded optimally in the subsequent time steps (whereby the onward
values are given by v′).

3. Onward value constraints, which ensures that the onward values given by v′ are also inducible:

v′(s,ω, ω̃A,a, ãA) ∈ Vh+1(s, a
P, ãA) for all (s,ω, ω̃A,a, ãA) ∈ Σ̄. (5)

The following lemma indicates the correctness of the above characterization.

Lemma 3. v ∈ Vh(o) if and only if (3) to (5) hold for some π̄ : Ω→ ∆(A) and v′ : Σ̄→ R2.

Therefore, to decide whether v ∈ Vh(o) amounts to deciding whether the above constraints are
satisfied by some π̄ and v′ (highlighted in blue in the constraints). Note that since the inductive
hypothesis assumes an approximation V̂h+1(o

′) instead of the exact set Vh+1(o
′), we will in fact

impose the following approximate onward value constraint, instead of the exact version in (5):

v′(s,ω, ω̃A,a, ãA) ∈ V̂h+1(s, a
P, ãA) for all (s,ω, ω̃A,a, ãA) ∈ Σ̄. (6)

Linearizing (3) and (4) The constraint satisfiability problem defined above is non-linear due to the
quadratic terms and the maximization operator in (3) and (4). Nevertheless, it can be linearized as
long as every polytope V̂h+1(o

′), o′ ∈ O, is given by the half-space representation, i.e., by linear
constraints in the form H · x ≤ b for some matrix H and vector b. Due to the space limit, we leave
the details in Appendix B.
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vA

vP

Vh(o)

δ

v̌∗ v̂∗

v̌δ v̂δ

v̂4δv̌4δ

V̂h(o)

Figure 1: Constructing V̂h(o) as a δ-approximation of Vh(o). The black points constituteW .

For h = H − 1, . . . , 1, do the following for all o ∈ O:

1. Plug in (6) the half-space representation of V̂h+1(o
′), o′ ∈ O. Then linearize (3) and (4).

2. Discretize the space [0, H]2 into a finite point set (see Lemma 4 for more detail). Check the
inducibility of each point v in this set by solving the linear constraint satisfiability problem
defined by (the linearized version of) (3), (4) and (6).

3. Compute V̂h(o) as the convex hull of the inducible points obtained above, in half-space
representation.

Figure 2: Computing approximate value polytopes via dynamic programming.

Constructing V̂h(o) As a result, we obtain a polytope P defined by a set of linear constraints
equivalent to (3), (4) and (6). The projection of P onto the dimensions of v is (approximately) Vh(o).
To ensure that the projection can be plugged back into (6) in the next induction step, we need the
half-space representation of the projection, too. In particular, we want to eliminate the additional
variables in the representation so that only v remains. (Otherwise, the number of variables may grow
exponentially as the induction step increases.) This can be done approximately in polynomial time
given that v is two-dimensional. Roughly speaking, we discretize the box [0, H]2 into a finite set of
points (recall that rewards in each time step are bounded in [0, 1], so [0, H]2 contains Vh(o)), check
the inducibility of each point, and compute the convex hull of the inducible points in half-space
representation. The specific way we discretize the space (see Fig. 1) ensures that IC is satisfied exactly
(which can otherwise not be achieved by using standard grid-based discretization). The details can be
found in the proof of Lemma 4.

Repeating the induction procedure till h = 1, we obtain V̂1(∅) as well as a near-optimal value of the
principal by solving the LP maxv∈V̂1(∅) v

P. Fig. 2 summarizes this dynamic programming approach.

Lemma 4. For any constant ϵ > 0, it can be computed in time poly(|S|·|A|·|Ω|, H, 1/ϵ) the half-
space representations of a set of polytopes V̂h(o) ⊆ Vh(o), o ∈ O ∪ {∅} and h = 1, . . . ,H , such
that (3), (4) and (6) are satisfiable for every v ∈ V̂h(o) and maxv∈V̂1(∅) v

P ≥ maxv∈V1(∅) v
P − ϵ.

Proof sketch. We construct the approximate sets V̂h(o) by backward induction. Assume for all o that
V̂h+1(o) is defined by polynomially many constraints and is an ε-approximation of Vh+1(o). Let
Vh(o) be the feasible set defined by (3), (4) and (6) using V̂h+1(o

′). We discretize the principal’s
value into slices of width δ (see Fig. 1). We include the following points into a collectionW use the
convex hull ofW as V̂h(o): 1) for every line w separating the slices, the two points v̌w and v̂w at
the intersection of w and the boundary of V̂h+1(o); and 2) the extreme points v̌∗ and v̂∗ of Vh(o)
minimizing and maximizing the agent’s value, respectively. Each of these points can be obtained
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Input: a sequence (σ;ωP, ω̃A), where σ = (sℓ,ωℓ, ω̃
A
ℓ ,aℓ, ã

A
ℓ )

h−1
ℓ=1 .

1. Initialize: v← argmaxv∈V̂1(∅) v
P and o← ∅.

2. For ℓ = 1, . . . , h− 1:

• Fix v and o, and solve (3), (4) and (6), where we use the polytopes V̂h(o) described in
Lemma 4. Let the solution be π̄ and v′.

• Update: v← v′(sℓ,ωℓ, ω̃
A
ℓ ,aℓ, ã

A
ℓ ) and o← (sℓ, a

P
ℓ , a

A
ℓ ).

3. Output π(· |σ;ωP, ω̃A) = π̄(· |ωP, ω̃A).

Figure 3: Computing a near-optimal policy based on approximations of the value polytopes.

efficiently by solving a polynomial-size LP. The inclusion of the extreme points ensures in particular
that we do not miss the agent’s extreme values, which is critical for achieving exact IC.

It can be verified that V̂h(o) ⊆ Vh(o) and that any v ∈ Vh(o) can be approximated by some
x ∈ V̂h(o) with xA = vA and xP ≥ vP − δ. So V̂h(o) is a δ-approximation of Vh(o) and
xA = vA ensures exact IC for the agent. Since Vh(o) itself is an ε-approximation of Vh(o), we
obtain an (ε + δ)-approximation overall. Choosing δ = ϵ/H and noting the trivial base case
V̂H(o) = {(0, 0)}, the construction yields V̂1(∅) as an ϵ-approximation of V1(∅), computable in
time poly(|S|·|A|·|Ω|, H, 1/ϵ).

3.2 Unrolling the Optimal Policy

The above procedure yields the maximum inducible value of the principal but not yet an optimal
policy that achieves this value. We next demonstrate how to compute an optimal policy based on
V̂1(∅). Rather than obtaining an explicit description of a history-dependent policy π—which would
be exponentially large as the policy specifies a distribution for each possible sequence—we present an
efficient procedure that computes the distribution π(· |σ;ωP, ω̃A) for any given sequence (σ;ωP, ω̃A).
This means that, when playing the game, the principal can compute an optimal policy on the fly based
on the realized history.

We use a forward computation procedure presented in Fig. 3. Starting from time step 1, the procedure
repeatedly computes a one-step policy π̄ and a set of onward vectors, to induce the target value vector
v. The onward vectors define the target values to be induced in the next time step, contingent on
the interaction in the current, which is given by σ. Hence, the target vector is updated to one of the
onward vectors according σ at the end of each iteration. In other words, in each time step, we expand
the target vector into a set of onward vectors, and then select one of them as the next target vector
according to the realized interaction given by σ. This leads to the following main result.

Theorem 5. There exists an ϵ-optimal IC policy π such that, for any given sequence (σ;ωP, ω̃A) ∈
Σ× Ω, the distribution π(· |σ;ωP, ω̃A) can be computed in time poly(|S|·|A|·|Ω|, H, 1/ϵ).

4 Learning to Commit

We now turn to an episodic online learning setting where the transition model p : S×A→ ∆(S×Ω)
is not known to the players beforehand. Let there be T episodes. At the beginning of each episode,
the principal commits to a new policy based on the outcomes of the previous episodes. Each episode
proceeds in H time steps the same way as the model defined in Section 2.

We present a learning algorithm that guarantees sublinear regrets for both players under hindsight
observability. The algorithm is centralized and relies on the agent behaving truthfully. It does not
guarantee exact IC during the course of learning but IC in the limit when the number of episodes
approaches infinity. Indeed, since the model is unknown to both players, IC in the limit is a more
relevant concept as the agent cannot decide how to optimally deviate from their truthful response,
either. In this case, the sublinear regret the algorithm guarantees for the agent should in many
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scenarios be sufficient for incentivizing for the agent to participate and follow the centralized learning
protocol.

The players’ regrets are defined as follows:

RegP =

T∑
t=1

(
V ∗ − V P,πt,⊥

1 (∅)
)

and RegA =

T∑
t=1

(
max

ρ
V A,πt,ρ
1 (∅)− V A,πt,⊥

1 (∅)

)
,

where V ∗ is the optimal value of (2) and πt denotes the policy the principal commits to in the t-th
episode. In words, the principal’s regret RegP is defined with respect to the optimal policy under the
true model. The agent’s regret RegA is defined with respect to his optimal response to each πt, which
is a dynamic regret as the benchmark changes across the episodes.

4.1 Learning Algorithm

Reward-free Exploration Our learning algorithm is based on reward-free exploration, which is an
RL paradigm where learning happens before a reward function is provided [21]. It has been shown in
a series of works that efficient learning is possible under this paradigm [21, 23, 30]. In particular, we
will use the sample complexity bound in Lemma 6. At a high level, our algorithm proceeds by first
conducting reward-free exploration to learn a sufficiently accurate estimate of the true model. Based
on the estimate we then solve a relaxed version of the policy optimization problem (2) to obtain a
policy. Using this policy in the remaining episodes guarantees sublinear regret for both players.
Lemma 6 ([21, Lemma 3.6 restated]). Consider an (single-player) MDP (S,A, p) (without any
reward function specified) with horizon length H . There exists an algorithm which learns a model p̂
after Õ

(
H5|S|2·|A|

δ2

)
episodes of exploration, such that with probability at least 1− q, for any reward

function r and policy π, it holds that
∣∣∣V r,π

1 (s)− V̂ r,π
1 (s)

∣∣∣ ≤ δ/2 for all states s, where V r,π
1 and

V̂ r,π
1 denote the value functions under reward function r and models p and p̂, respectively.2

With the above result, we can learn a model p̂ for our purpose. In what follows, we let V̂ P,π,ρ
h and

V̂ A,π,ρ
h denote the players’ value functions in model p̂ (i.e., by replacing p in (1) with p̂). Lemma 7

then translates Lemma 6 to our setting. Note that under hindsight observability the process facing the
principal and the agent jointly during the learning process is effectively an MDP, where the effective
state space is O × Ω. An effective state, say θ = (s,a,ω), consists of the state-action pair (s,a)
in the previous step and the observations ω in the current. When a joint action a′ is performed, θ
transitions to θ′ = (s′,a′,ω′) with probability ph−1(s

′,ω′ | s,a).

Lemma 7. A model p̂ can be learned after Õ
(
H5 |S|2 |A|3 |Ω|2/δ2

)
episodes of exploration, such

that
∣∣∣V A,π,ρ

1 (∅)− V̂ A,π,ρ
1 (∅)

∣∣∣ ≤ δ/2 and
∣∣∣V P,π,ρ

1 (∅)− V̂ P,π,ρ
1 (∅)

∣∣∣ ≤ δ/2 with probability at least
1− q for any policy π and deviation plan ρ.

Therefore, the value functions change smoothly as the learned model p̂ approaches p. However, this
smoothness is insufficient for deriving a sublinear bound on the principal’s regret because of the
agent’s incentive constraints in our problem. Roughly speaking, the set of IC policies does not change
smoothly with p̂, even though the value functions do. Hence, even an infinitesimal difference between
p̂ and p may lead to a jump between the IC policy sets under these two models and, in turn, a gap
between the values of the optimal policies.

Approximate IC Relaxation To deal with this issue, we relax the incentive constraints, allowing
small violations to the constraints. Such violations are inevitable if we aim to achieve a near-optimal
value under the true model p but only know an estimate p̂ of the true model. On the positive side, given
the sublinear regret guarantee for the agent, the violation diminishes with the number of episodes.
We define δ-IC policies below.

2The notation Õ omits logarithmic factors. In the original statement of Jin et al. [21], π is non-stationary
(time-dependent) but independent of the history. However, the proof of the lemma also applies to history-
dependent policies. The dependence on H in the sample complexity can be further improved with better
reward-free exploration algorithms [23, 30], but this is not a focus of ours.
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Definition 8 (δ-IC policy). A policy π is δ-IC (w.r.t. model p̂) if V̂ A,π,⊥
1 (∅) ≥ V̂ A,π,ρ

1 (∅)− δ for
every possible deviation plan ρ of the agent. A δ-IC policy is said to be ϵ-optimal if V̂ P,π,⊥

1 (∅) ≥
V ∗ − ϵ, where V ∗ is the optimal value of (2) (under p).

That is, in response to a δ-IC policy, the agent can improve his overall expected payoff by no more
than δ if he deviates from the truthful response. We assume that the agent will not deviate for such
a small benefit, and we evaluate the value of a δ-IC policy based on the agent’s truthful response.
This is how the ϵ-optimality is defined above, where we compare against the optimal value V ∗ in
(2), which is obtained under a more stringent setting without any relaxation of the agent’s incentive.
In other words, we relax the feasible space and compare the solution obtained in this relaxed space
with the optimum over the smaller original feasible space. Such relaxations are common in the
optimization literature, and they are crucial for resolving the non-smooth issue.

Let Π̂δ and Πδ denote the set of δ-IC policies under p̂ and p, respectively. The relaxation immediately
results in Π̂δ ⊇ Π0 for the model p̂ stated in Lemma 7. As a result, optimizing over Π̂δ ensures
that the optimal value yielded is as much (up to a small error) as the optimal value V ∗ over Π0.
Meanwhile, the value loss introduced by this relaxation for the agent is also small (bounded by δ).

With the above results, our learning algorithm proceeds as follows.

1. Run reward-free exploration to obtain a model p̂ as stated in Lemma 7.

2. Compute a δ-optimal δ-IC policy in p̂ and use it in the remaining episodes.

The near-optimal policy in Step 2 can be computed efficiently according to Lemma 9, via an approach
similar to the one in Section 3.1. This gives an efficient algorithm with sublinear regrets for both
players. We present Theorem 10.
Lemma 9. There exists an ϵ-optimal δ-IC policy π such that, for any given sequence (σ;ωP, ω̃A) ∈
Σ×Ω, the distribution π(· |σ;ωP, ω̃A) can be computed in time poly(|S|·|A|·|Ω|, H, 1/ϵ, log(1/δ)).

Theorem 10. There exists an algorithm that guarantees regret Õ(ζ1/3T 2/3) for both players with
probability 1 − q, where ζ = H5 |S|2 |A|3 |Ω|2. The computation involved in implementing the
algorithm takes time poly(|S|·|A|·|Ω|, H, T ).

5 Conclusion

We studied a stochastic principal-agent framework and presented efficient computation and learning
algorithms. Our model can be further extended to the setting with n agents. The algorithms we
presented remain efficient for any constant n if approximate IC solutions are considered. Computing
optimal exact IC policies for n agents remain an interesting open question, as our discretization
method, which operates by slicing the space, does not generalize to n agents. When n is not a constant,
representing games in normal-form requires space exponential in n, so more succinct representations
are typically considered. However, it is known that in succinctly represented games even to compute
an optimal correlated equilibrium in one-shot games may be NP-hard [35].) Our results indicate how
a policy designer might interact with agents optimally. In particular implementations, the designer’s
incentives may not be aligned with societal benefits. In these cases, a careful analysis of the incentives
and their moral legitimacy must be considered. Besides this, since the paper is theory focused, we do
not feel any other potential impacts must be specifically highlighted here.
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paper’s contributions and scope?
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Justification: We outline the key claims and contributions of this work in the abstract and in
the introduction section. All claims are supported by rigorous proofs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: We mentioned in the main paper limitations of our results and assumptions
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tions in the conclusion section.
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the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [NA]
Justification: This paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed potential positive and negative societal impacts in the conclusion
section. In particular implementations, the designer’s incentives may not be aligned with
societal benefits. In these cases, a careful analysis of the incentives and their moral legitimacy
must be considered.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Omitted Proofs

A.1 Omitted Proofs in Section 3

For simplicity, we write V⃗ π,ρ
h (σ) =

(
V P,π,ρ
h (σ), V A,π,ρ

h (σ)
)

in the following proofs.

Lemma 3. v ∈ Vh(o) if and only if (3) to (5) hold for some π̄ : Ω→ ∆(A) and v′ : Σ̄→ R2.

Proof. First, consider the “only if” direction of the statement. Suppose that v ∈ Vh(o). By definition,
we have v = V⃗ π,ρ

h (o) for some π, ρ ∈ argmaxρ′ V⃗
A,π,ρ′

h (σ), and σ ∈ Σh−1 ending with o.
According to a standard revelation principle argument, we can assume w.l.o.g. that ρ is IC in step h.
Hence, by (1), we have

v =
∑
s,ω,a

ph−1(s,ω | o) · π(a |σ;ω) ·
(
rh(s,a) + V⃗ π,ρ

h+1(σ; s,ω, ωA,a, aA)
)
. (7)

Letting π̄(a |ω) = π(a |σ;ω) for every ω ∈ Ω, and v′(σ̄) = V⃗ π,ρ
h+1(σ; σ̄) for every σ̄ ∈ Σ̄, we

establish (3). (Recall that Σ̄ := S × Ω× ΩA × A× AA denotes the set of all possible interactions
within one time step.)

Since ρ is IC in step h, (4) also follows immediately: the agent cannot benefit from any possible
deviation. By definition, we have v′(σ̄) = V⃗ π,ρ

h+1(σ; σ̄) ∈ Vh+1(o
′) for every σ̄ ∈ Σ̄ that contains o′,

so (5) holds.

Now consider the “if” direction. Suppose that (3) to (5) hold for some π̄ and v′. Pick arbitrary
σ ∈ Σh−1 that ends with o. Consider a policy π such that: π(a |σ;ω) = π̄(a |ω) for all ω ∈ Ω, and
π(a |σ; σ̄;ω) = π′(a |σ; σ̄;ω) for all σ̄ ∈ Σ̄ and ω ∈ Ω, where π′ is an arbitrary policy that induces
v′(σ̄) for every σ̄ (which exists given (5)). Namely, π is the same as π̄ in step h and switches to π′ in
the subsequent steps. Given (4), the agent cannot benefit from any deviation at step h, so (3) gives
the players’ values for π and an optimal deviation plan of the agent. Hence, v ∈ Vh(o).

Lemma 4. For any constant ϵ > 0, it can be computed in time poly(|S|·|A|·|Ω|, H, 1/ϵ) the half-
space representations of a set of polytopes V̂h(o) ⊆ Vh(o), o ∈ O ∪ {∅} and h = 1, . . . ,H , such
that (3), (4) and (6) are satisfiable for every v ∈ V̂h(o) and maxv∈V̂1(∅) v

P ≥ maxv∈V1(∅) v
P − ϵ.

Proof. Throughout the proof, we say that the polytope V̂h(o) is an ε-approximation of Vh(o) if and
only if:

• V̂h(o) ⊆ Vh(o), and

• for every v ∈ Vh(o), there exists v′ ∈ V̂h(o) such that v′P ≥ vP − ε and v′
A
= vA.

We will show that an ϵ-approximation V̂1(∅) of V1(∅) can be computed efficiently, so that
maxv∈V̂1(∅) v

P ≥ maxv∈V1(∅) v
P− ϵ follows readily.3 Meanwhile, we also show that the polytopes

we compute ensures that (3), (4) and (6) are satisfiable for every v ∈ V̂h(o).
We now prove by induction. The key is the following induction step. Suppose that the following
conditions hold for all o ∈ O:

1. V̂h+1(o) is defined by O(H/δ) many linear constraints.

2. V̂h+1(o) is an ε-approximation of Vh+1(o).

3In the definition of ϵ-approximation, we require additionally that the projections of V̂h(o) and Vh(o) onto
the dimension of vA are the same (i.e., v′A = vA), so that the approximation compromises only on the principal’s
value. This is crucial for ensuring exact IC and smooth changes of the approximation throughout the induction
process we present below.
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We show that, given the above conditions, for every o ∈ O we can compute in time polynomial in
1/δ a polytope V̂h(o) (in half-space representation) that satisfies the above conditions (for h), with
an approximation factor ε′ = ε+ δ in the second condition. Once this holds, picking δ = ϵ/H then
gives, by induction, that V̂1(∅) is an ϵ-approximation of V1(∅) (where ϵ is the target constant in the
statement of the lemma). Note that as a based case, {(0, 0)} is readily a 0-approximation of VH(o)
and can be defined by three linear constraints.

We proceed as follows. For every o ∈ O, let Vh(o) denote the set of vectors v satisfying (3), (4)
and (6).4 We follow the algorithm presented in Fig. 2 and discretize [0, H]2 to construct V̂h(o).
Specifically, we slice the space along the dimension of the principal’s value. We compute the inter-
section points of the slice lines and (the boundary of) Vh(o), and construct V̂h(o) as the convex hull
of the intersection points to approximate Vh(o). Specifically, let W = {0, δ, 2δ, . . . , H − δ, H}
contain the principal’s values on the slice lines we use, and letW be the set consisting of the following
points.

• First, for each w ∈W , the two intersection points of the slice line at w and Vh(o):

v̌w ∈ argminv∈Vh(o):vP=w vA and v̂w ∈ argmaxv∈Vh(o):vP=w vA.

• Moreover, two vertices of Vh(o) with the minimum and maximum values for the agent:

v̌∗ ∈ argminv∈Vh(o)
vA and v̂∗ ∈ argmaxv∈Vh(o)

vA.

If there are multiple maximum (or minimum) vertices, we pick an arbitrary one.

An illustration is given in Fig. 1.

It shall be clear that the choice of these points ensures that we can approximate any inducible value
vector with at most δ compromise on the principal’s value and no compromise on the agent’s. (In
particular, the inclusion of v̌∗ and v̂∗ ensures that we do not miss the agent’s extreme values that
may not be attained at any of the slice lines.) All the points can be computed efficiently by solving
LPs that minimizes (or maximizes) vA (where we also treat v as variables in addition to the other
variables), subject to the linearized version of (3), (4) and (6), and additionally vP = w when we
compute v̌w or v̂w. The hypothesis that V̂h+1(o) is defined by O(H/δ) linear constraints ensures
that all the LPs are polynomial sized and hence can be solved efficiently.

We then compute V̂h(o) by taking the convex hull ofW . Given that the space is two-dimensional, this
can be done efficiently via standard algorithms in computational geometry (e.g., Chan’s algorithm
[9]). This way, the first condition in the inductive hypothesis holds for V̂h(o) because V̂h(o) has at
mostO(H/δ) vertices while it is in R2. Meanwhile, V̂h(o) is an δ-approximation of Vh(o) according
to the following arguments.

Claim 1. V̂h(o) is an δ-approximation of Vh(o).

Proof of Claim 1. First, sinceW ⊆ Vh(o) by construction, V̂h(o) ⊆ Vh(o) ⊆ Vh(o) holds readily.
It remains to show that for any v ∈ Vh(o) there exists x ∈ V̂h(o) such that xA = vA and xP ≥ vP−δ.

Let B = {v′ ∈ R2 : iδ ≤ v′P ≤ (i + 1)δ} be the band between two slice lines that contains v.
Consider the relation between vA and the agent’s minimum and maximum values attained atW ∩B.
There can be the following possibilities.

• Case 1. vA lies in between the minimum and maximum values, i.e.,

min
v′∈W∩B

v′A ≤ vA ≤ max
v′∈W∩B

v′A.

This means that there must be a point x ∈ ConvexHull(W ∩ B) such that xA = vA. We
have x ∈ ConvexHull(W ∩ B) ⊆ B. So both v and x are inside B. According to the
definition of B, this means xP ≥ vP − δ, as desired.

4Note that Vh(o) is different from Vh(o): the latter, according to Lemma 3, is defined by (3) to (5), where
(5) uses the exact value sets Vh+1(o

′), unlike the approximate ones V̂h+1(o
′) in (6).
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• Case 2. vA < minv′∈W∩B v′A. In this case, it must be that v̌∗ /∈ B (otherwise,
minv′∈W∩B v′A = v̌A∗ ≤ vA). Now that v ∈ B, the line segment between v and v̌∗
must intersect with the boundary of B (i.e., one of the slice lines) at some point y. We have
yA ≤ vA (because v̌A∗ ≤ vA by definition) and y ∈ Vh(o) (because v, v̌∗ ∈ Vh(o)). Pick
v̌w where w = yP. By definition v̌Aw ≤ yA. It follows that

v̌Aw ≤ yA ≤ vA < min
v′∈W∩B

v′A.

This is a contradiction because we have v̌w ∈ W ∩ B as y is on the boundary of B.

• Case 3. vA > maxv′∈W∩B v′A. An argument similar to that for Case 2 implies that this case
is not possible, either.

Hence, only Case 1 is possible, where a desired point x exists. The claim then follows.

The fact that V̂h(o) ⊆ Vh(o) also implies that (3), (4) and (6) are satisfiable for every v ∈ V̂h(o), as
they are for every v ∈ Vh(o). We next confirm that V̂h(o) is eventually an (ε+ δ)-approximation
of Vh(o). Indeed, now Claim 1 indicates that V̂h(o) is an δ-approximation of Vh(o), so V̂h(o) is an
(ε+ δ)-approximation of Vh(o) as long as Vh(o) is an ε-approximation of Vh(o).

To see that Vh(o) is an ε-approximation, consider an arbitrary v ∈ Vh(o). By Lemma 3, v can be
induced by some π̄ and v′ satisfying (3) to (5). By assumption, every V̂h+1(o

′) is an ε-approximation
of Vh+1(o

′), so for every onward vector v′(σ̄) ∈ Vh+1(o
′), there exists a vector ṽ′(σ̄) ∈ V̂h+1(o

′)

such that ṽ′P(σ̄) ≥ v′
P
(σ̄) − ε and ṽ′A(σ̄) = v′

A
(σ̄). Using ṽ′ instead of v′, the same policy

π̄ then induces a vector ṽ ∈ V̂h(o) to approximate v. Indeed, the agent’s values are exactly the
same under ṽ′ and v′, so the same response of the agent can be incentivized. This is why we
require the approximation to not compromise on the agent’s value. Moreover, according to (3),
the overall difference between ṽP and vP is at most ε because it holds for the coefficients that∑

s,ω,a ph−1(s,ω | o) · π̄(a |ω) = 1. As a result, ṽP ≥ vP − ε and Vh(o) is an ε-approximation of
Vh(o).

Hence, the inductive hypothesis holds for h. By induction, V̂1(∅) is an δH-approximation of V1(∅).
Since δH = ϵ, we get that maxv∈V̂1(∅) v

P ≥ maxv∈V1(∅) v
P − ϵ.

Theorem 5. There exists an ϵ-optimal IC policy π such that, for any given sequence (σ;ωP, ω̃A) ∈
Σ× Ω, the distribution π(· |σ;ωP, ω̃A) can be computed in time poly(|S|·|A|·|Ω|, H, 1/ϵ).

Proof. Consider the algorithm presented in Fig. 3. The outputs of the algorithm over all possible
input sequences (σ;ωP, ω̃A) ∈ Σ × Ω specify a policy π. The polynomial running time of the
algorithm for computing each π(· |σ;ωP, ω̃A) follows by noting that it runs by solving at most H
linear constraint satisfiability problems.

It remains to argue that π is IC and ϵ-optimal. Indeed, by Lemma 4 and an inductive argument, π is
IC at each time step h and induces the corresponding values encoded in v′ as the expected onward
values. The ϵ-optimality of π follows given the condition maxv∈V̂1(∅) v

P ≥ maxv∈V1(∅) v
P − ϵ

stated in Lemma 4 (and the choice of the initial v in Fig. 3).

A.2 Omitted Proofs in Section 4

Lemma 9. There exists an ϵ-optimal δ-IC policy π such that, for any given sequence (σ;ωP, ω̃A) ∈
Σ×Ω, the distribution π(· |σ;ωP, ω̃A) can be computed in time poly(|S|·|A|·|Ω|, H, 1/ϵ, log(1/δ)).

Proof. The proof is similar to the approach in Section 3.1, which computes a near-optimal and 0-IC
policy. We describe the differences below.

Instead of maintaining two-dimensional sets of inducible values, we split the dimension of the agent’s
value into two dimensions vA and vA∗ , which represent the agent’s values under his truthful response
(i.e., ⊥) and his best deviation plan, respectively. Hence, each v ∈ V(o) is now a tuple (vP, vA, vA∗ ).
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(In Section 3.1, vA and vA∗ are eventually forced to be the same, so there is no need to keep an
additional dimension.)

The inducibility of a vector v = (vP, vA, vA∗ ) is characterized by the following constraints. First, we
impose the same constraint as (3) on the first two dimensions of v, so that they capture the players’
payoffs under the agent’s truthful response. In order for the third dimension vA∗ to capture the agent’s
maximum attainable value, we use a constraint similar to (4):

vA∗ ≥
∑
ωA

ph−1(ω
A | o) max

ω̃A

∑
aA

max
ãA

∑
s,ωP,aP

ph−1(s, ω
P | o, ωA) · π̄(a |ωP, ω̃A)·

(
rAh

(
s, aP, ãA

)
+ v′∗

A
(s,ω, ω̃A,a, ãA)

)
. (8)

The remaining constraint is the same as (6).

All the non-linear constraints can be linearized the same way as the approach described in Section 3.1.
Hence, we can efficiently approximate Vh(o) by examining the inducibility of points on a sufficiently
fine-grained grid in [0, H]3, which contains poly(H, 1/ϵ) many points, and constructing the convex
hull of these points. (Note that there is no need to ensure zero compromise on the agent’s value
as required in the proof of Lemma 4. This is because δ-IC is defined with respect to the agent’s
expected value at the beginning of the game instead of that at every time step. Hence, using points
on a grid suffices the purpose of the approximation in this proof.) The half-space representation of
the convex hull can be computed efficiently given that it is in R3 [9]. Eventually, an optimal π ∈ Π̂δ

corresponds to a solution to maxv∈V1(∅) v
P subject to vA ≥ vA∗ −δ, and we can use the same forward

construction procedure in Section 3.2 to compute πh(· |σ;ωP, ω̃A).

Note that (8) only enforces vA∗ as an upper bound of the maximum attainable value, instead of the
exact value. This suffices for our purpose because any (vP, vA, vA∗ ) in the feasible set V1(∅) ∩{
v : vA ≥ vA∗ − ϵ

}
also implies the inclusion of (vP, vA, v̄A∗ ) in the same feasible set, where v̄A∗ is

the actual maximum attainable value induced by the policy that induces (vP, vA, vA∗ ) according to our
formulation.

Theorem 10. There exists an algorithm that guarantees regret Õ(ζ1/3T 2/3) for both players with
probability 1 − q, where ζ = H5 |S|2 |A|3 |Ω|2. The computation involved in implementing the
algorithm takes time poly(|S|·|A|·|Ω|, H, T ).

Proof. We run reward-free exploration to obtain a model p̂ with error bound δ/2. This can be
achieved w.h.p. in Õ(ζ/δ2) episodes according to Lemma 7. Next, we compute an δ-optimal strategy
π ∈ Π̂δ and use it in the remaining rounds. According to Lemma 9, this can be done in polynomial
time.

By assumption, rewards are bounded in [0, 1] so the regrets are at most 1 for both players in each of
the exploration episodes. In each of the remaining episodes, the agent’s regret is as follows, where
we pick arbitrary ρ∗ ∈ argmaxρ V

A,π,ρ
1 (∅):

V A,π,ρ∗

1 (∅)− V A,π,⊥
1 (∅) ≤

∣∣∣V̂ A,π,ρ∗

1 (∅)− V̂ A,π,⊥
1 (∅)

∣∣∣︸ ︷︷ ︸
≤δ as π∈Π̂δ

+

∣∣∣V̂ A,π,ρ∗

1 (∅)− V A,π,ρ∗

1 (∅)
∣∣∣ +

∣∣∣V̂ A,π,⊥
1 (∅)− V A,π,⊥

1 (∅)
∣∣∣︸ ︷︷ ︸

≤δ by Lemma 7

≤ 2δ.

The principal’s regret is:

V ∗ − V P,π,⊥
1 (∅) = max

π′∈Π0

V P,π′,⊥
1 (∅)− V P,π,⊥

1 (∅)

≤ max
π′∈Π̂δ

V P,π′,⊥
1 (∅)︸ ︷︷ ︸

as Π0⊆Π̂δ

−V P,π,⊥
1 (∅) ≤ max

π′∈Π̂δ

V̂ P,π′,⊥
1 (∅)− V̂ P,π,⊥

1 (∅)︸ ︷︷ ︸
≤δ as π is δ-optimal

+ δ ≤ 2δ.

24



The reason that Π0 ⊆ Π̂δ is the following: Since p̂ ensures error bound δ/2, we have∣∣∣V̂ A,π′,ρ
1 (∅)− V A,π′,ρ

1 (∅)
∣∣∣ ≤ δ/2 for all ρ. By definition, π′ ∈ Π0 means that V A,π′,⊥

1 (∅) ≥

V A,π′,ρ
1 (∅). So, V̂ A,π′,⊥

1 (∅) ≥ V̂ A,π′,ρ
1 (∅)− δ for all ρ; hence, π′ ∈ Π̂δ .

The above bounds then lead to a total regret of at most Õ(ζ/δ2) +O(Tδ) for each player. Taking
δ = (ζ/T )1/3 gives the upper bound Õ(ζ1/3T 2/3).

B Linearizing (3) and (4)

Specifically, to remove the maximization operator in (4), we introduce a set of auxiliary variables
y(aA, ωA, ω̃A) to capture the maximum values on the right hand side of (4). We replace the right
hand side of (4) with

∑
aA∈AA y(aA, ωA, ω̃A), and by adding the following constraint we force each

y(aA, ωA, ω̃A) to be an upper bound of the corresponding maximum value: for all ãA ∈ AA,

y(aA, ωA, ω̃A) ≥
∑

s,ωP,aP

ph−1(s, ω
P | o, ωA) · π̄(a |ωP, ω̃A) ·

(
rAh(s, a

P, ãA) + v′
A
(s,ω, ω̃A,a, ãA)

)
(9)

To remove the quadratic terms in (3) and (9), we use an auxiliary variable z(s,ω, ω̃A,a, ãA) to replace
each term π̄(a |ω) · v′(s,ω, ω̃A,a, ãA) and impose the following constraint on z:

H · z(s,ω, ω̃A,a, ãA) ≤ π̄(a |ω) · b, (10)

where H and b are taken from the half-space representation of the polytope V̂h+1, i.e.,
V̂h+1(s, a

P, ãA) = {x : H·x ≤ b}. It is straightforward that, when V̂h+1(s, a
P, ãA) is nonempty and

bounded, (10) holds if and only if z(s,ω, ω̃A,a, ãA) = π̄(a |ω) · x for some x ∈ V̂h+1(s, a
P, ãA).5

Hence, (10) is the only constraint needed (for each tuple (s,ω, ω̃A,a, ãA)) after we replace the terms
with z.

The Complete Formulation In summary, the above approach yields the following linearized
version of the constraint satisfiability problem in Section 3.1, where π̄, z = (zA, zP), and y are the
variables (highlighted in blue).

1. The value function constraint:

v =
∑
s,ω,a

ph−1(s,ω | o) ·
(
rh(s,a) · π̄(a |ω) + z(s,ω, ωA,a, aA)

)
.

2. An IC constraint for each ωA ∈ ΩA:∑
s,ωP,a

ph−1(s, ω
P | o, ωA) ·

(
rAh(s,a) · π̄(a |ω) + zA

(
s,ω, ωA,a, aA

))
≥

∑
aA∈AA

y
(
aA, ωA, ω̃A

)
.

Moreover, for each tuple (aA, ωA, ω̃A) ∈ AA × ΩA × ΩA:

y
(
aA, ωA, ω̃A

)
≥

∑
s,ωP,aP

ph−1(s, ω
P | o, ωA)

(
rAh

(
s, aP, ãA

)
· π̄(a |ωP, ω̃A) + zA

(
s,ω, ω̃A,a, ãA

))
.

3. An onward value constraint for each tuple (s,ω, ω̃A,a, ãA) ∈ Σ̄:

H
(
s, aP, ãA

)
· z(s,ω, ω̃A,a, ãA) ≤ π̄(a |ω) · b

(
s, aP, ãA

)
,

where for every o ∈ O, the matrix H(o) and vector b(o) are given by the half-space representation
of V̂h+1(o), i.e., V̂h+1(o) = {v′ ∈ R : H(o) · v′ ≤ b(o)}.

4. Additionally, we impose
π̄(· |ω) ∈ ∆(A)

for each ω ∈ Ω to ensure that π̄(· |ω) is a valid distribution over A.
5Note that if π̄(a |ω) = 0, then (10) imply that z(s,ω, ω̃A,a, ãA) = 0: otherwise, the fact that x′ =

c · z(s,ω, ω̃A,a, ãA) + x satisfies H · x′ ≤ b for any c ≥ 0 and x ∈ V̂h+1(s, a
P, ãA) would prevent

V̂h+1(s, a
P, ãA) from being bounded.
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C Additional Discussion about Intractability without Hindsight Observability

The PSPACE-hardness can be seen by thinking of a POMDP as an instance of our problem where only
the principal can make observations and perform actions to influence the environment (essentially,
the agent can neither influence the principal nor the environment in this instance).

The PSPACE-hardness remains in the case of information design, where the principal observes the
state directly but does not act, while the agent makes no observation but acts; as well as the case of
mechanism design, where the agent observes the state directly but does not act, while the principal
does not observe but acts. This can be seen by considering zero-sum instances, where the principal’s
and the agent’s rewards sum to zero.

More specifically, consider for example the case of information design. If the goal is to compute the
principal’s maximum attainable payoff, the PSPACE-hardness of the problem is immediate: Since the
game is zero-sum, it is optimal for the principal to not send no signal (if signaling were to improve
the principal’s payoff, the agent would be better-off just ignoring the signals). Hence, computing the
maximum attainable payoff of the principal in this case is equivalent to computing (the negative of)
the agent’s maximum attainable payoff, which amounts to solving a POMDP.

One may argue that while the above example demonstrates the hardness of determining the principal’s
maximum attainable payoff, computing the principal’s optimal policy is actually trivial in the example
(i.e., sending no signal is optimal). So it does not rule out the possibility of an efficient algorithm
which, given any sequence, computes the signal distribution of an optimal policy, without computing
the principal’s payoff the policy yields. It turns out that this is not possible, either.

Consider a game where the agent can choose between two actions a and b in the first time step. Action
a leads to a process where the principal’s rewards are zero for all state-action pairs. Action b leads to
another process with payoffs 1− x for the principal and x for the agent, where x ∈ [0, 1] depends on
the principal’s signaling strategy in this sub-process. For example, we can design this sub-process as
a matching pennies game, where: nature flips a fair coin, the principal observes the outcome, and the
agent must choose the same side of the coin to get a reward 1 and otherwise he gets −1. If the agent
plays this matching pennies game on his own, his expected payoff is 0. The principal can reveal her
observation to help the agent to improve the payoff. And the principal can do so probabilistically, so
that she can fine tune the agent’s expected payoff x to any desired value in [0, 1]. To maximize the
principal’s payoff in the entire process requires finding an x that is sufficiently high, so that the agent
is incentivized to choose b (otherwise, the principal only gets 0); at the same time, we would like x to
be as low as possible to maximize the principal’s payoff 1− x. This essentially requires knowing the
agent’s maximum attainable payoff in the sub-process following a, which is PSPACE-hard as we
discussed above.
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