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Abstract
Many machine learning applications (credit scor-
ing, fraud detection, etc.) use data in the tabular
domains. Adversarial examples can be especially
damaging for these applications. Yet, existing
works on adversarial robustness mainly focus on
machine-learning models in the image and text
domains. We argue that due to the differences
between tabular data and images or text, exist-
ing threat models are inappropriate for tabular
domains. These models do not capture that cost
can be more important than imperceptibility, nor
that the adversary could ascribe different value
to the utility obtained from deploying different
adversarial examples. We show that due to these
differences the attack and defence methods used
for images and text cannot be directly applied
to the tabular setup. We address these issues by
proposing new cost and utility-aware threat mod-
els tailored to capabilities and constraints of at-
tackers targeting tabular domains. We show that
our approach is effective on two tabular datasets
corresponding to applications for which adver-
sarial examples can have economic and social
implications.

1. Introduction
Adversarial examples are inputs deliberately crafted by an
adversary to cause a classification mistake. They pose a
threat in applications for which such mistakes can have
a negative impact in deployed models (e.g., a financial
loss (Ghamizi et al., 2020) or a security breach (Demontis
et al., 2017; Grosse et al., 2017; Kolosnjaji et al., 2018)).
The literature on adversarial examples largely focuses on
image (Szegedy et al., 2013; Goodfellow et al., 2014; Paper-
not et al., 2016; Moosavi-Dezfooli et al., 2016; Carlini and
Wagner, 2017; Madry et al., 2017) and text domains (Yang
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et al., 2020; Wang et al., 2020; Wang et al.; Lei et al., 2018;
Ebrahimi et al., 2018; Liang et al., 2018). Yet, many of
the applications where adversarial examples are most dam-
aging or helpful are not images or text. Fraud and abuse
detection systems (Carminati et al., 2020), risk-scoring sys-
tems (Ghamizi et al., 2020), operate on tabular data: A
cocktail of categorical, ordinal, and numeric features. As
opposed to images, each of these features has its own dif-
ferent semantics. The properties of the image domain have
shaped the way adversarial examples and adversarial ro-
bustness are approached in the literature (Moosavi-Dezfooli
et al., 2016), and have greatly influenced adversarial robust-
ness research in the text domain. In this paper, we argue that,
in tabular domains, adversarial examples are of a different
nature and adversarial robustness has a different meaning.

We argue that two high-level differences need to be ad-
dressed: (a) “imperceptibility”, the main constraint in ex-
isting image and text adversarial examples, is ill-defined
and can be irrelevant for tabular data; and (b) existing ad-
versarial examples assume all adversarial inputs have the
same value for the adversary, while in tabular domains dif-
ferent adversarial examples can bring different gain to the
adversary. Authors in the literature commonly formalize the
concept of “an example deliberately crafted to cause a mis-
classification” as a natural example, i.e., an example coming
from the data distribution, that is imperceptibly modified by
an adversary so that the classifier’s decision changes. Typi-
cally, they formalize imperceptibility as closeness according
to a mathematical distance such as Lp (Sharif et al., 2018;
Zhang et al.). In tabular data, however, imperceptibility
is not necessarily relevant. Let us consider the following
fraud detection toy example: An adversary aims to create a
fraudulent financial transaction (e.g., using stolen credit card
credentials) in an app such as PayPal. Assume a fraud de-
tector takes as input two features: (1) transaction amount,
and (2) device from which the transaction was sent.

In this example, imperceptibility is not well-defined. Is a
modification to the amount feature from $200 to $201 im-
perceptible? What increase or decrease would we consider
perceptible? The issue is even more apparent with cate-
gorical data, for which standard distances such as L2, L∞
cannot even capture imperceptibility: Is a change of the
device feature from Android to an iPhone imperceptible?
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Even if imperceptibility was well-defined, imperceptibility
might not be relevant. Should we only be concerned about
adversaries making “imperceptible” changes, e.g., modify-
ing amount from $200 to $201? What about attack vectors
in which the adversary evades detection while changing
the transaction by a “perceptible” amount –from $200 to
$2,000?

We argue that in tabular data the primary constraint should
be adversarial cost, rather than imperceptibility. Instead
of looking at how visually or semantically similar feature
vectors are, the focus should be on how costly it is for an
adversary to enact a modification. Costs capture the effort
of the adversary, e.g., financial or computational. “How
much money does the adversary have to spend to evade the
detector?” better captures the possibility that an adversary
deploys an attack than establishing a threshold on the Lp
distance the adversary would tolerate.

Different tabular adversarial examples are of different
value to the adversary. In the literature, except for Zhang
and Evans (2018), most formalizations of adversarial robust-
ness implicitly consider that all adversarial examples are
equal in their importance (Goodfellow et al., 2014; Madry
et al., 2017; Zhang et al., 2019; Wong et al., 2018; Shafahi
et al., 2019). In tabular data domains, however, different
adversarial examples can bring very different gain to the
adversary. In the fraud detection example, if a fraudulent
transaction with transaction amount of $2,000 successfully
evades the detector, it could be significantly more profitable
than a transaction with amount of $200.

Using cost as the primary constraint for adversarial exam-
ples provides a natural way to incorporate the variability in
adversarial gain. The adversary is expected to care about
the profit that they would obtain from the attack, i.e., the
difference between the cost associated with crafting an ad-
versarial example, and the gain from successfully using it.
We call this profit the utility of the attack. We show how util-
ity can be incorporated into the design of attacks to ensure
their economic profitability, and into the design of defences
to ensure protection against adversaries that focus on profit.

In this paper, we introduce a framework to build adversarial
examples tailored to tabular data. Our contributions are:

• We propose two adversarial objectives for tabular data
that address the limitations of traditional adversary
examples: a cost-bounded objective that substitutes
standard imperceptibility constraints with adversarial
costs; and a novel utility-bounded objective in which
the adversary adjusts their expenditure on different
adversarial examples proportionally to the potential
gains from deploying them.

• We perform an empirical evaluation of attacks and

defences with respect to proposed objectives in realistic
conditions demonstrating their applicability to real-
world security scenarios.

2. Adversarial Objectives in Tabular Data
Notations. The input domain’s feature space X is com-
posed of m features: X ⊆ X1 × X2 × · · · × Xn. For an
example x ∈ X, we denote the value of its i-th feature as
xi. Features xi can be categorical, ordinal, and numeric.
Each example is associated to a binary label y ∈ {0, 1}.
We assume the adversary’s target to be a binary classifier
F (x) ∈ {0, 1} that aims to predict the class y to which an
example x belongs. In terms of capabilities, we assume the
adversary can only perform modifications that are within
the domain constraints. E.g in the fraud-detection example,
the adversary can change the transaction amount, but the
value must be positive. For a given initial labelled example
(x, y), we denote the set of feasible adversarial examples
that can be reached within the capabilities of the adversary
as F(x, y) ⊆ X.

Cost-Bounded Objective. In the standard way to obtain
an adversarial example (Madry et al., 2017), the adver-
sary aims to construct an example that maximizes the loss
`(·, ·) incurred by the target classifier, while keeping the
Lp-distance from the initial example bounded:

max
x′∈F(x,y)

`(f(x′), y) s.t. ‖x′ − x‖p ≤ ε (1)

This objective implicitly assumes that the adversary wants to
keep the adversarial example as similar to the initial example
as possible in terms of the examples’ feature values.

Formally, we associate a cost to the modifications needed
to generate any adversarial example x′ ∈ F(x, y) (from the
original example (x, y)). We encode this cost as a function
c : X× X→ R+. We assume the generation cost is zero if
and only if no change is enacted: c(x, x) = 0.

We assume that the cost-bounded adversary has a budget
ε. The adversary aims to find any example that flips the
classifier’s decision and that is within the cost budget:

max
x′∈F(x)

1[F (x′) 6= y] s.t. c(x, x′) ≤ ε (2)

Alternatively, the adversary can optimize a standard surro-
gate objective which ensures that the optimization problem
can be solved in practice:

max
x∈F(x,y)

`(f(x), y) s.t. c(x, x′) ≤ ε, (3)

Utility-Bounded Objective. The cost-bounded adversar-
ial objective solves the issue of imperceptibility not being
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a suitable constraint for tabular data. It does not, how-
ever, tackle the problem of heterogeneity of examples: the
adversary cannot assign different importance to different
adversarial examples.

We propose to solve it by introducing the gain of an attack.
The gain, g(x∗) : X → R+, represents the reward (e.g.,
the revenue) that the adversary receives if their attack using
adversarial example x∗ is successful. For example, in fraud
detection gain would be a transaction amount, i.e. how
much money a fraudster can steal.

We also introduce the concept of utility of a successful
attack as the net benefit of launching the attack. We define
the utility ux,y(x∗) of an attack mounted with adversarial
example x∗ as simply the gain minus the costs:

ux,y(x∗) , g(x∗)− c(x, x∗), (4)

where (x, y) is the initial example.

The adversary can learn whether an example x∗ evades the
classifier or not (i.e., whether F (x∗) 6= y). Then, they
can decide to deploy an attack with an adversarial example
x∗ only if the utility of the attack exceeds a given margin
τ ≥ 0. Otherwise, the adversary discards this adversarial
example. Formally, we can model this process by using a
utility constraint instead of a cost constraint:

max
x∈F(x,y)

1[F (x) 6= y] s.t. ux,y(x) ≥ τ (5)

Related work on adversarial costs. Our generic cost-
bounded objective is not the only possible approach to
model attacks in tabular domains. For example, works
on adversarial robustness in the context of decision tree-
based classifiers often use per-feature constraints as adver-
sarial constraints (Chen et al., 2021; Andriushchenko and
Hein, 2019; Chen et al., 2019). At the low level, these
constraints are formalized either as bounds on L∞ dis-
tance (Andriushchenko and Hein, 2019; Chen et al., 2019),
or using functions determining constraints for each spe-
cific feature value (Chen et al., 2021). In these approaches
feature constraints are independent. Such independence
simplifies the problem, e.g., the usage of L∞ independent
constraints enables to split a multidimensional optimiza-
tion problem into a combination of simple one-dimension
tasks (Andriushchenko and Hein, 2019); or to limit the set
of points affected by the split change (Chen et al., 2021).

Related work on utility-oriented adversaries. The literature
on strategic classification also considers utility-oriented ob-
jectives (Hardt et al., 2016; Dong et al., 2018; Milli et al.,
2019) for their agents. In this body of work, however, agents
are not considered adversaries, and the gain is typically lim-
ited to {+1,−1} reflecting the classifier decision. Our model
supports arbitrary gain, which enables us to model broader

interests of the adversary such as revenue. Only the work
by Sundaram et al. (2021) supports gains different from
+1 or −1, but they focus on PAC-learning guarantees in
the case of linear classifiers, whereas our goal is to provide
practical attack and defence algorithms for a wider family
of classifiers.

3. Algorithms and Evaluation
In the full version of this work, we introduce algorithms for
attacks and defences within the proposed adversarial models.
We briefly summarize them next, with details provided in
the Appendix.

Attack Strategies For the evaluation of our adversarial
models, we implement attacks within both adversarial ob-
jectives using a greedy search algorithm. We describe the
algorithm and its design choices in Appendix A. As a com-
parison baseline, we adapt the PGD algorithm (Madry et al.,
2017), a common algorithm for generating adversarial exam-
ples, to our cost model, similarly to Ballet et al. (2019). In
Appendix C.2 we show that the greedy algorithm is efficient
and outperforms a PGD-based baseline.

Defence With Adversarial Training To train adversar-
ially robust models, we relax the constraint sets of the
original problems, simplifying them to weighted L1 ball
constraints. With such relaxed constraints, a PGD-based
adversarial training (Madry et al., 2017) with projection
onto the weighted L1 ball becomes feasible. We detail this
method in Appendix B. For the evaluation of the method,
we use two datasets: HomeCredit (Kaggle, 2019a) and
IEEECIS (Kaggle, 2019b), for which we estimate realis-
tic cost and gain models (see Appendix E. In Fig. 1, we
show the results of the evaluation for models trained against
the utility-bounded adversary. These models show decent
performance against cost-bounded, close to “classical”, ad-
versaries. In Appendix C.3, we detail the experimental setup,
and show the comparisons of training against both adversar-
ial objectives, and a detailed study of accuracy-robustness
tradeoffs.

4. Conclusions
In this paper, we revisited the problem of adversarial ro-
bustness when the target machine-learning model operates
on tabular data.We introduced a new framework to design
attacks and defences that account for the constraints existing
in tabular adversarial scenarios: adversaries are limited by
a budget to modify features, and adversaries may assign
different utilities to different examples. Evaluating these
attacks and defences on three real datasets we showed that
our novel utility-based defence mechanism, not only gener-
ates models robust against utility-aware adversaries, but also
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Figure 1. Utility-Bounded adversarial training for different adversarial utility margins τ . Evaluation against cost-bounded (left) and
utility-bounded (right) adversaries. We show the adversary’s success and utility (y-axis) versus the adversary’s attack budget ε or desired
margin τ (x-axis). On HomeCredit, the UB training decreases the performance of both UB and CB attacks, being robustness better
against the former. Even when enabling a large profit margin (τ = 1M ) the attack success rate decreases by 40%, at the same time not
affecting the accuracy.

against adversaries with a limited budget. On the contrary,
performing adversarial training considering a cost-bounded
adversary—as traditionally done in the literature—is a poor
defence against adversaries focused on utility in some sce-
narios.
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A. Finding adversarial examples in tabular
domains

In this section, we propose practical algorithms for find-
ing adversarial examples suitable to achieve the adversarial
objectives we introduce in Section 2.

A.1. Graphical Framework

The optimization problems in Section 2 can seem daunt-
ing due to the large cardinality of F(x, y) when the feature
space is large. To make the problems tractable, we transform
them into graph-search problems, following the approach
by Kulynych et al. (2018). Consider a state-space graph
G(x) = (V,E). Each node corresponds to a feasible exam-
ple in the feature space, V = F(x, y)∪{x}. Edges between
two nodes x and x′ exist if and only if they differ in value
of one feature: there exists i ∈ [n] such that xi 6= x′i, and
xj = x′j for all j 6= i. In other words, the immediate descen-
dants of a node in the graph consist of all feasible feature
vectors that differ from the parent in exactly one feature
value.

Using this state-space graph abstraction, the objectives in
Section 2 can be modelled as graph search problems. Even
though the graph size is exponential in the number of feature
values, the search can be efficient, because the search does
not need the graph to be complete. Thus, we can construct
the graph on the fly.

Building the state-space graph is straightforward when fea-
tures take discrete values. To encode continuous features in
the graph we discretize them by only considering changes
to a continuous feature i that lie within a finite subset of its
domain Xi — in particular, on a discrete grid. The search
efficiency depends on the size of the grid. As the grid gets
coarser, finding adversarial examples becomes easier. This
efficiency comes at the cost of potentially missing adversar-
ial examples that are not represented on the grid but could
fulfil the adversarial constraints with less cost or higher
utility.

A.2. Attacks as Graph Search

In the remainder of the paper we make the following as-
sumptions about the adversarial model:
Assumption 1 (Modular costs). The adversary’s costs are
modular: they decompose by features. Formally, changing
the value of each feature i from xi to x′i has the associated
cost ci(xi, x′i) > 0, and the total cost of modifying x into x′

is a sum of individual feature-modification costs:

c(x, x′) =

n∑
i

ci(xi, x
′
i) (6)

The state-space graph can encode modular costs by assign-

https://www.experian.com/blogs/ask-experian/what-is-piggybacking-credit/
https://www.experian.com/blogs/ask-experian/what-is-piggybacking-credit/
https://www.experian.com/blogs/ask-experian/what-is-piggybacking-credit/
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ing weights to the graph edges. An edge between x and x′

has an associated weight of ci(xi, x′i), where i is the index
of the feature that differs between x and x′. For pairs of
examples x(0) and x(t) that differ in more than one feature,
the cost c(x(0), x(t)) is the sum of the edge costs along the
shortest path from x(0) to x(t).

Assumption 2 (Constant gain). For any initial example
(x, y), the adversary cannot change the gain:

∀x′ ∈ F(x, y) : g(x) = g(x′) (7)

This follows the approach in utility-oriented strategic clas-
sification (as detailed in Section 2). This assumption is not
formally required for our attack algorithms, described next
in this section, but we focus on this setting in our empirical
evaluations in Appendix C.

Strategies to find adversarial examples. Under the con-
stant per-instance gain, and modular-cost assumptions, the
cost-bounded and utility-bounded adversaries look for any
adversarial example that is within a (per-example) cost
bound. These adversarial goals can be seen as instances
of bounded-cost search (Stern et al., 2011).

We start with the best-first search (BFS) (Hart et al., 1968;
Kulynych et al., 2018), a flexible meta-algorithm that gener-
alizes many common graph search algorithms. In its generic
version (Algorithm 1) BFS keeps a bounded priority queue
of open nodes. It iteratively pops the node v with the highest
score value from the queue (best first), and adds its imme-
diate descendants to the queue. This is repeated until the
queue is empty. The algorithm returns the node with the
highest score out of all popped nodes.

The BFS algorithm is parameterized by the scoring function
s : V × V = X × X and the size of the priority queue B.
Different choices of the scoring function yield search algo-
rithms suited for solving different graph-search problems,
such as Potential Search for bounded-cost search (Stern
et al., 2011; 2014), and A∗ (Korf, 1985; Dechter and Pearl,
1985) for finding the minimal-cost paths. When B = ∞,
the algorithm might traverse the full graph and is capable of
returning the optimal solution. As the size of B decreases,
the optimality guarantees are lost. When B = 1 BFS be-
comes a greedy algorithm that myopically optimizes the
scoring function. When 1 < B <∞ we get a beam search
algorithm that keeps B best candidates at each iteration.

To achieve the adversarial objectives in Section 2, we pro-
pose to use a concrete instantiation of BFS, what we call
the Universal Greedy (UG) algorithm. Inspired by heuris-
tics for cost-bounded optimization of submodular func-
tions (Khuller et al., 1999; Wolsey, 1982), we set the scoring
function to balance the increase in the classifier’s score and

Algorithm 1 Best-First Search (BFS)

1: function BFSB,s,ε(x)
2: open← MINPRIORITYQUEUEB(x, 0)
3: closed← {}
4: while open is not empty do
5: v ← open.POP()
6: if v /∈ closed then
7: CLOSED ← CLOSED ∪ {v}
8: if η(v) ≥ δ then return v
9: S ← EXPAND(v)

10: for t ∈ S do
11: if t /∈ closed and c(x, t) ≤ ε then
12: open.ADD(t, s(v, t))

the cost of the change:

s(v, t) = −f(t)− f(v)

c(v, t)
(8)

The minus sign appears because BFS expands the lowest
scores first, and we need to maximize the score. We set
the beam size to B = 1 (greedy), which enables us to
find high-quality solutions to both cost-bounded and utility-
bounded problems at reasonable computational costs (see
Appendix C).

A.3. Related Work on Attack Strategies

Tabular domains. Several works have proposed attacks on
tabular data. Ballet et al. (2019) propose to apply existing
continuous attacks to tabular datasets. The authors focus on
crafting imperceptible adversarial examples using standard
methods from the image domain. They adapt these methods
such that less “important” features (low correlation with the
target variable) can be perturbed to a higher degree than
other features. This corresponds to a special case within our
framework, in which the feature-modification costs depend
on the feature importance with the difference that Ballet
et al. cannot guarantee that the proposed example will be
feasible.

Levy et al. (2020) suggest constructing a surrogate model
capable of mimicking the target classifier. Part of this sur-
rogate model is a feature embedding function transforming
tabular data to a homogeneous continuous domain which
aims to keep adversarial perturbations in the feasible set.
Then, they apply projected gradient descent to produce ad-
versarial examples in the embedding space and map the
resulting examples to the tabular domains. As opposed to
our methods, Levy et al. cannot provide any guarantee that
the produced adversarial example will lay in the feasible
set.

Finally, Kantchelian et al. (2016) propose a MILP-based and
a coordinate-descent attack within different Lp cost models
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against random-forest models.

Our attack differs from these three methods since they use
Lp or similar bounds that do not capture adversarial capabil-
ities, whereas we use a cost bound that can capture realistic
constraints.

In a concurrent work, Cartella et al. (2021) propose to use
a “custom” norm also based on feature importance, simi-
larly to Ballet et al. (2019). Cartella et al., however, use an
adapted zero-order optimization algorithm to find adversar-
ial examples. Although their motivation is similar to ours,
our cost model is more general as we do not tie the costs to
feature importance.

Text domains. Our universal greedy attack algorithm is
similar to the methods for attacking classifiers that oper-
ate on text (Zhang et al.; Yang et al., 2020; Wang et al.,
2020; Wang et al.; Lei et al., 2018; Ebrahimi et al., 2018;
Liang et al., 2018). All these works, however, make use of
adversarial constraints such as restrictions on the number
of modified words or sentences. These constraints do not
apply to tabular domains, as simply considering “number
of changes” does not address the heterogeneity of features.
Our algorithms also differ from these approaches in that we
incorporate complex adversarial costs in the design of the
algorithms. For example, the Greedy attack by Yang et al.
(2020), like us, uses the target classifier’s confidence for
choosing the best modifications to create adversarial exam-
ples and allow to account for the number of modifications.
Our framework not only considers the volume of modifi-
cations but also their cost, better reflecting the adversary’s
constraints.

B. Defending from Adversarial Examples in
Tabular Domains

The conventional approach to mitigate the risks of adversar-
ial examples is adversarial training (Goodfellow et al., 2014;
Madry et al., 2017). In adversarial training, the training
procedure includes adversarial examples along with natural
ones. In a standard approach by Madry et al. (2017), for
instance, these adversarial examples are constructed by mod-
ifying natural examples x with perturbations constrained in
a Lp-ball d(x, x′) < ε, where d is an Lp distance function.

The distance function and ε encode the threat model that
adversarial training aims to defend against. The choice of
the distance function depends on the characteristics of the
input domain. In most previous works, the distance func-
tion aims at capturing imperceptibility within the given the
bound ε. It is commonly assumed that if d(x, x∗) < ε, x∗ is
not substantially different from x, and the adversary would
use x∗ to attack. Otherwise, turning x to x∗ results in a
perceptible adversarial example that would be detected as
malicious, and those examples are assumed to be outside of

the threat model. As explained in Section 2, this approach
does not apply to the tabular domains. In tabular domains,
imperceptibility is not necessarily a relevant constraint. In-
stead, the adversary’s actions are constrained by feasibility
and the cost of the transformation. Moreover, the tabular
input domain is often a mix of discrete and continuous fea-
tures, as opposed to continuous or quantized in, e.g., image
domains, where adversarial examples are mostly studied.

Another difference between the image and tabular domains
is the efficiency of generating adversarial examples. In
images, adversarial examples used for training are gener-
ated using efficient methods such as Projected Gradient
Descent (PGD) (Madry et al., 2017) or the Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2014; Wong et al.,
2020). These approaches produce adversarial examples fast,
and enable the efficient implementation of adversarial train-
ing. Fast generation, however, is not possible for tabular
domains. The algorithms to produce tabular adversarial
introduced in Appendix A require thousands of inference
operations over the target model. Under this condition, gen-
erating one example, which is all the adversary needs to
perform an attack, may not be fast, but it is clearly feasi-
ble. Generating multiple adversarial examples per natural
sample, however, in the dataset that the defender needs
for adversarial training quickly becomes computationally
infeasible, especially if the defender is computationally con-
strained. This computational cost constrains our capability
of evaluation (Appendix C), for which we need to repeat-
edly run the defences. To make the generation of adversarial
examples feasible during adversarial training, we introduce
approximate versions of the attacks that rely on a relaxation
of initial attack constraints.

B.1. Relaxing the Constraints

Following the setting of the standard Projected Gradient
Descent (PGD) method (Madry et al., 2017), adversarial
training for the cost-bounded adversary could be defined as
follows:

min
θ

max
x′∈F(x,y)

`(fθ(x
′), y) s.t. c(x, x′) ≤ ε, (9)

where fθ is a parametric classifier and θ are its parameters.

To keep the computational requirements low, we relax the
problem to optimize over a convex set, which enables us to
adapt the PGD method. Let us defineBε to be the constraint
region of Eq. (9):

Bε(x, y) , {(x′, y) ∈ F(x, y) | c(x, x′) ≤ ε}

We construct a relaxation of Bε in two steps:

Bε −−→
(1)

B̄ε −−→
(2)

B̃ε
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(1) Continuous relaxation. We map Bε into a continuous
space using an encoding function φ : Xn → Rm, and a
relaxed cost function c̄ : Rm×Rm → R+. Continuous
relaxation is defined as:

B̄ε , {(φ(x′), y) | c̄(φ(x), φ(x′)) ≤ ε}, (10)

where (x′, y) ∈ F(x, y). The pair (φ, c̄) is designed to
satisfy the following condition:

∀(x′, y) ∈ Bε(x, y) : c̄(φ(x), φ(x′)) ≤ c(x, x′),
(11)

ensuring that every example (x′, y) ∈ Bε(x, y) is
mapped to an element in the relaxed set, φ(x′) ∈
Bε(φ(x), y). We denote the encoded value φ(x) as
x for convenience.

(2) Convex cover. To enable adversarial training using
PGD, we need that elements of the relaxed set can
be projected onto the constraint region. For this pur-
pose, we cover B̄ε with a convex superset B̃ε, e.g.,
a convex hull of B̄ε. The convex superset B̃ε needs
to be constructed such that there exists an efficient
algorithm for projection. For a given (x, y), and a
point t ∈ Rm, we want to be able to efficiently solve
mint′∈B̃ε(x,y) ‖t− t′‖2.

Encoding and cost functions As we assume that the cost of
modifications is modular (see Appendix A.2), we define the
encoding (φ) and cost (c) functions to be modular too:

φ(x) = [φ1(x1), ..., φn(xn)]

c(φ(x), φ(x′)) =

n∑
i=1

ci(φi(xi), φi(xi
′))

With this formulation, the problem of constructing suitable
φ and c functions is reduced to finding φi : Xi → Rmi and
ci for each feature. If for all i both φi and ci fulfill (11),
then the modular cost c(x, x′) fulfills (11) as well.

In the following we introduce φ and c functions for categor-
ical and numeric features.

Categorical features. As encoding function φ(xi) for cate-
gorical features we use standard one-hot encoding.

As the cost function for categorical features, we define ci:

ci(xi, x
′
i) = min

t∈F(x,y)
ci(xi, t) ·

1

2
‖x̄i − x̄′i‖1,

where Fi(x, y) is the set of feasible values of the feature i.
For example, let xi be a categorical feature with 4 possible
values Xi = {a, b, c, d}, and let the minimal cost of change
be 2. When xi = b and x′ = c (xi = (0, 1, 0, 0), x′i =
(0, 0, 1, 0) after one-hot encoding). Then, ci(xi, x′i) = 1

2 ·
2 · 2 = 2.

This cost function enables us to perform the two-step relax-
ation described before. First, it satisfies (11), and therefore
the constraint region B̄ε includes all mapped examples of
Bε. Second, we can obtain the convex superset B̃ε as a
continuous L1 ball around the mapped values x̄ ∈ B̄ε.
Numeric features. A numeric feature is a feature with values
belonging to an ordered subset of R (e.g. integer, real). In
most cases, the identity function (φ(xi) = xi) is sufficient
for numerical features. However, more complex encoding
functions could also be desirable. For example, when one
needs to reduce numerical errors, which can be achieved by
normalizing the feature values to [−1, 1], or when the cost
is non-linear.

In general, projecting onto arbitrary sets can be challenging.
Specifically, the bounded region Bε could be non-convex,
e.g., hypothetically, if the cost is a pathological function
such as the Dirichlet function. We therefore must limit the
scope of possible adversarial cost functions that we can
model during adversarial training to those that are com-
patible with efficient projection. For this, we introduce a
cost model that covers a broad class of functions for which
ci(xi, x

′
i) can be expressed as Ki · |ψ(xi)− ψ(x′i)|, where

Ki is a constant and ψ(x) is an invertible function.

For instance, this model covers the following exponential
cost model: c(x, x′) = K · |ex − ex′ |. In this case, we can
encode the features as φ(xi) = ψ−1(xi) , ln(xi). This
transformation enables us to account for certain non-linear
cost functions c with respect to the input space using linear
cost functions c in the relaxed space B̄ε.

We define the cost function for numerical features as a
piecewise-linear function, with different coefficients for
increasing or decreasing the feature value:

cj(xj , x
′
j) = cj−(x)·[x̄j−x̄′j ]++cj+(x)·[x̄′j−x̄j ]+ (12)

where [t]+ returns t if t > 0, and 0 otherwise, and cj−(x)
and cj+(x) encode the costs for decreasing and increasing
the value of the feature j, respectively, and can vary from
one initial example x to another.

Note that in this model the final cost of a modification could
depend on the way in which this modification is achieved.
A direct modification from x to x′′ could have different
cost than first modifying x to x′ and then x′ to x′′, i.e.,
ci(x̄, x̄

′′) 6= ci(x̄, x̄
′) + ci(x̄

′, x̄′′).

Total cost. Given the set of categorical feature indices, C,
and the set of numeric feature indices, I, the total cost
function is:

c(x, x′) =
∑
i∈C

min
t∈Fi(x,y)

ci(xi, t) ·
1

2
‖x̄i − x̄′i‖1

+
∑
j∈I

cj−(x) · [x̄j − x̄′j ]+ + cj+(x) · [x̄′j − x̄j ]+
(13)
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B.2. Adversarial Training with Projected Gradient
Descent

Using the cost model introduced before, we redefine the
training optimization problem in Eq. (9) to generate adver-
sarial examples over a specific instantiation of the convex
set B̃, as follows:

min
θ

max
x̃′∈B̃ε(x,y)

`(fθ(x̃
′), y), (14)

where we specify B̃ε as:

B̃ε(x, y) , {x̄+ δ | δ ∈ Rm ∧ c(x̄, x̄+ δ) ≤ ε}. (15)

Thus, we can rewrite Eq. (14):

min
θ

max
δ∈Rm

`(fθ(x+ δ), y)

s.t. c(x̄, x̄+ δ) ≤ ε
(16)

This objective can be optimized using standard PGD-based
adversarial training (Madry et al., 2017). Due to the con-
struction of our cost function in Eq. (13), we can use existing
algorithms for projecting onto a weighted L1-ball (Slavakis
et al., 2010; Perez et al., 2020) with an appropriate choice
of weights. As these approaches are standard, we omit them
in the main body, and provide the details in Appendix D.

B.3. Adversarial Training against a Utility-Bounded
Adversary

For the utility-bounded adversary we propose to use an
objective similar to (16), applying individual constraints to
different samples:

min
θ

max
δ∈Rm

`(fθ(x+ δ), y)

s.t. c(x, x+ δ) ≤ ε(x) , [g(x+ δ)]+
(17)

In this formulation, we use our assumption of invariant gain
(see Appendix A.2), as g(x+ δ) = g(x).

This objective aims to decrease the adversary’s utility by
focusing the protection on samples with high gain. The main
difference with respect to the cost-constrained objective in
(16) is that here we use a different cost bound for different
examples ε(x). This formulation enables us to directly use
the PGD-based adversarial training to defend against utility-
bounded adversaries as well.

B.4. Related Work on Adversarial Training

To the best of our knowledge, there are no works on ad-
versarial training for methods based on deep learning that
tackle the tabular domains. We discuss existing methods
and techniques with related goals.

Adversarial robustness of decision trees. Classifiers based
on decision trees are prominently used in tabular domains.

The adversarial robustness of such classifiers has been stud-
ied extensively (Chen et al., 2019; Andriushchenko and
Hein, 2019; Calzavara et al., 2020; Chen et al., 2021; Vos
and Verwer, 2021). These works assume independent per-
feature adversarial constraints, e.g., based on the L∞ metric.
Our adversarial models, and thus our attacks and defences,
are capable of capturing a broader class of adversarial cost
functions that depend on feature modifications and better
model the adversary’s constraints as we explain in Section 2.

C. Experimental Evaluation
In this section, we show that out graph-based attacks can be
used by adversaries to obtain profit, and that our proposed
defences are effective at mitigating these attack’s harms.

C.1. Experimental setup

C.1.1. DATASETS

We perform our experiments on three tabular datasets which
represent real-world applications for which adversarial ex-
amples can have social or economic implications:

• TwitterBot (Gilani et al., 2017). The dataset contains
information about more than 3,400 Twitter accounts
either belonging to humans or bots. The task is to de-
tect bot accounts. We assume that the adversary is able
to purchase bot accounts and interactions on darknet
markets, thus modifying the features that correspond
to the account age, number of likes, and retweets.

• IEEECIS (Kaggle, 2019b). The dataset contains in-
formation about around 600K financial transactions.
The task is to predict whether a transaction is fraudu-
lent or benign. We model an adversary that can modify
three features for which we can outline the hypothetical
method of possible modification, and estimate its cost:
payment-card type, email domain, and payment-device
type.

• HomeCredit (Kaggle, 2019a). The dataset contains fi-
nancial information about 300K home-loan applicants.
The main task is to predict whether an applicant will
repay the loan or default. We use 33 features, selected
based on the best solutions to the original Kaggle com-
petition (Kaggle, 2019a). Of these, we assume that
28 can be modified by the adversary, e.g., the loan ap-
pointment time. We also use a non-linear adversarial
cost model for manipulating credit scores, inspired by
the practice of credit piggybacking (Experian, 2019).

C.1.2. MODELS

We evaluate our attacks against three types of ML models
commonly applied to tabular data. First, an L2-regularized
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logistic regression (LR) with a regularization parameter cho-
sen using 5-fold cross-validation. Second, gradient-boosted
decision trees (XGBT). Third, TabNet architecture (Arik and
Pfister, 2021), a deep learning model. TabNet is an atten-
tive transformer neural network specifically designed for
tabular data. We optimize the number of steps as well as
the capacity of TabNet’s fully connected layers using grid
search.

C.1.3. ADVERSARIAL FEATURES

We assume that the feasible set consists of all positive values
of numerical features and all possible values of categorical
features. For simplicity, we avoid features with mutual
dependencies and treat the adversarially modifiable features
as independent. We detail the choice of the modifiable
features and their costs in Appendix E.2.

C.1.4. METRICS

To evaluate the effectiveness of the attacks and defences, we
use three main metrics:

• Adversary’s success rate: The proportion of correctly
classified examples from a test set Xtest for which
adversarial examples successfully generated using the
attack algorithm A(x, y) evade the classifier:

Pr
(x,y)∼Xtest

[F (A(x, y)) 6= y ∧ f(x) = y] .

• Adversarial cost: Average cost of successful adversar-
ial examples:

E(x,y)∼Xtest
[c(x,A(x, y)) | F (A(x, y)) 6= y∧f(x) = y] .

• Adversarial utility: Average utility (see Eq. (4)) of
successful adversarial examples:

E(x,y)∼Xtest
[ux,y(A(x, y)) | F (A(x, y)) 6= y∧f(x) = y].

In all cases, we only consider correctly classified initial
examples which enables us to distinguish these security
metrics from the target model’s accuracy. We introduce
additional metrics in the experiments when needed.

C.2. Attacks Evaluation

We evaluate the attack strategy proposed in Appendix A
in terms of their effectiveness, and empirically justify its
design.

C.2.1. DESIGN CHOICES OF THE UNIVERSAL GREEDY
ALGORITHM

When designing attack algorithms in the BFS framework
(see Algorithm 1) there are two main design choices: the

scoring function and the beam size. We explore different
configurations and show that our parameter choices for the
Universal Greedy attack produce high-quality adversarial
examples.

Beam size. We define the beam size of the Universal Greedy
attack to be one. The other options that we evaluate are 10
and 100. We evaluate by running three types of attacks: cost-
bounded for three cost bounds ε, and utility-bounded at the
breakeven margin τ = 0. The margin τ = 0 is equivalent to
a cost-bounded attack with a variable cost bound equal to
the gain of each initial example (denoted as “Gain” in the
tables).

We compute two metrics: Attack success, and the success-
to-runtime ratio. This ratio represents how much time is
needed to achieve the same level of success rate using each
choice of the beam size. This metric is more informative for
our evaluation than runtime, as runtime is just proportional
to the beam size.

For feasibility reasons, we use two datasets: TwitterBot
and IEEECIS. We aggregate the metrics across the three
models (LR, XGBT, TabNet), and report the average. The
results on TwitterBot are equivalent to the results on
IEEECIS, thus for conciseness we only report IEEECIS
results.

We find that the success rates are equal up to the percentage
point for all choices of the beam size. We show the detailed
numeric results in Table 7 in the Appendix. As the smallest
beam size of one is the fastest to run, it demonstrates the
best success/time ratio, therefore, is the best choice.

Scoring function. Recall from Eq. (8) that the scoring func-
tion is the cost-weighted increase in the target classifier’s
confidence:

s(v, t) = −f(t)− f(s)

c(s, t)
,

which aims to maximize the increase in classifier confidence
at the lowest cost.

Suitable choices for the scoring function s(v, t) could be:

• A∗ algorithm (Korf, 1985; Dechter and Pearl, 1985;
Kulynych et al., 2018): s(v, t) = c(v, t) + λ · h(t),
where h(t) is a heuristic function, which estimates the
remaining cost to a solution, and λ > 0 is a greediness
parameter (Pohl, 1970). This scoring function balances
the current known cost of a candidate and the estimated
remaining cost. We choose the model’s confidence for
the positive class, h(x) = f(x), as heuristic function.
Intuitively, this works as a heuristic, because the lower
the confidence for the positive class, the more likely
we are close to a solution: an example classified as the
target class.

• Potential Search (PS) (Stern et al., 2011; 2014):
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s(v, t) = h(t)/ε−c(v,t) , which additionally takes into
account the cost bound ε, thus becoming more greedy
(i.e., optimizing s(v, t) = λ · h(t) with λ ≈ 1/ε) when
the cost of the current candidate leaves a lot of room
within the ε budget. We also choose h(x) = f(x) as
heuristic function.

• Basic Greedy: s(v, t) = −f(t)/c(s,t) , which aims to
maximize the classifier’s confidence, yet balance it
with the incurred cost. Unlike Eq. (8), this scoring
function does not care about the relative increase of the
confidence, only about its absolute value.

We evaluate the choice of the scoring function on the
TwitterBot and IEEECIS datasets, with the beam size
fixed to one. We run the cost-bounded and utility-bounded
attacks in the same configuration as before, and measure
two metrics averaged over the models: Attack success, and
attack success/time ratio.

Table 1 shows the results. On IEEECIS, the Universal
Greedy outperforms the other choices in terms of success
rate and the success/time ratio. On the TwitterBot dataset,
it outperforms the other choices in the utility-bounded and
unbounded attacks. For cost-bounded attacks, the Universal
Greedy offers very close performance to the best option, the
Basic Greedy.

C.2.2. GRAPH-BASED ATTACKS VS. BASELINES

We compare the Universal Greedy (UG) algorithm against
two baselines: previous work, and the minimal-cost adver-
sarial examples.

Previous Work: PGD. Since the introduced cost model dif-
fers from the existing approaches to attacks on tabular data,
we fundamentally cannot perform a fully apples-to-apples
comparison against existing attacks (see Appendix A). To
compare against the high-level ideas from prior work, we
follow the spirit of the attack by Ballet et al. (2019), which
modifies the standard optimization problem from Eq. (1) to
use correlation-based weights. We adapt the standard L1-
based PGD attack (Madry et al., 2017; Maini et al., 2020)
to (1) support categorical features through discretization,
and (2) use weighted L1 norm following our derivations in
Appendix B.1. We provide a detailed description of this
adaptation in Algorithm 4 in Appendix E.

We run attacks using PGD with 100 and 1,000 steps, and
compare it to UG (Appendix A) on the TwitterBot and
IEEECIS datasets. As PGD can only operate on differ-
entiable models, in this comparison we only evaluate the
performance of the attacks against TabNet.

We run the cost-bounded attacks using two bounds ε, that
are specific to each dataset (see Appendix E for the exact
attack parameters). As before, we also run a utility-bounded
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PGD (100 steps)
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Figure 2. Universal Greedy attack vs Baselines. Left: Attack
success rate (higher is better for the adversary). Right: Attack
cost (lower is better for the adversary). For all cost bounds, our
graph-based attack outperforms standard PGD and returns close to
optimal-cost adversarial examples (obtained with Uniform-Cost
Search, UCS).

attack at the breakeven margin τ = 0. We measure the
success rates of the attacks, as well as the average cost of
the obtained adversarial examples. For conciseness, we do
not report the results on TwitterBot, as they find they are
equivalent to those on IEEECIS.

Fig. 2 shows that the UG attack consistently outperforms
the PGD-based baseline both in terms of the success rate,
and the costs. Our attacks are superior even when the PGD-
based baseline produces feasible adversarial examples.

Minimal-Cost Adversarial Examples. As UG is a greedy
algorithm, we additionally evaluate how far are the obtained
adversarial examples from the optimal ones in terms of cost.
For this, we compare the results from UG to a standard
Uniform-Cost Search (UCS) (Kulynych et al., 2018). UCS
is an instantiation of the BFS framework (see Appendix A)
with unbounded beam size, and the scoring function equal to
the cost: s(v, t) = c(v, t). In our setting, UCS is guaranteed
to return optimal solutions to the following optimization
problem:

min
x′∈F(x,y)

c(x, x′) s.t. F (x′) 6= y

Fig. 2 shows that UG has almost no overhead over the
minimal-cost adversarial examples on TabNet (1.03× over-
head on average). In fact, the average and median cost over-
head is 1.80× and 1× over all models, respectively. There
exist some outlier examples, however, with over 100× cost
overhead. We provide more information on the distribution
of cost overhead in Appendix E.

C.2.3. PERFORMANCE AGAINST UNDEFENDED MODELS

Having shown that the attacks outperform the baseline, and
the design choices are sound, we demonstrate that the at-
tacks bring some utility to the adversary. In this section,
we evaluate the attacks in a non-strategic setting: the mod-
els are not deliberately defended against the attacks. For
conciseness, we only evaluate cost-bounded attacks, as the
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Adv. success, %
Cost bound→ 10 30 Gain ∞
Scoring func. ↓
UG 45.32 56.57 56.22 68.20
A* 42.37 55.62 55.34 53.47
PS 45.32 55.14 56.18 N/A
Basic Greedy 42.37 55.46 55.38 53.82

Success/time ratio
Cost bound→ 10 30 Gain ∞
Scoring func. ↓
UG 3.78 4.80 2.53 2.06
A* 3.29 3.83 1.89 1.15
PS 3.78 4.01 2.26 N/A
Basic Greedy 3.21 3.86 2.01 1.16

(a) IEEECIS

Adv. success, %
Cost bound→ 1,000 10,000 Gain ∞
Scoring func. ↓
UG 80.24 85.35 21.63 87.00
A* 77.56 84.45 20.29 86.25
PS 79.95 85.19 21.48 N/A
Basic Greedy 80.40 85.04 21.63 86.85

Success/time ratio
Cost bound→ 1,000 10,000 Gain ∞
Scoring func. ↓
UG 208.95 205.76 64.99 205.31
A* 206.33 201.93 62.25 201.31
PS 205.85 203.18 63.76 N/A
Basic Greedy 210.20 206.20 64.32 204.96

(b) Twitter bot

Table 1. Effect of the scoring-function choice for graph-based attacks on IEEECIS. In all settings, our Universal Greedy scoring function
offers the best success rate and performance.

next section provides an extensive demonstration of utility-
bounded attacks.

In all evaluated settings, the attacks have non-zero suc-
cess rates and achieve non-zero adversarial utility. Fig. 3
show the results of cost-bounded attacks for IEEECIS and
HomeCredit datasets. For utility-bounded attacks, we
present the results in Fig. 7 in the Appendix due to the space
constraints. We omit the results for LR on HomeCredit as
it does not perform better than the random baseline. An av-
erage adversarial example obtained using the cost-bounded
objective brings a profit of $125 to the adversary when at-
tacking the IEEECIS TabNet model, and close to 100% of
examples in the test data can be modified into successful
adversarial examples.

Although for all models we see non-zero success and utility,
some models are less vulnerable than others—even without
any protection. For example, the success rate of the adver-
sary against LR on IEEECIS is much lower than against
TabNet (at least 50p.p. lower). This model, however, is
also comparatively inaccurate, with only 62% classification
accuracy.

C.3. Evaluation of Our Defence Methods

We evaluate the defence mechanisms proposed in Ap-
pendix B in two scenarios. First, a scenario in which the
adversary’s objective used by the defender for adversar-
ial training—cost-bounded (CB) or utility-bounded (UB)—
matches the attack that will be deployed by the adversary.
Second, a scenario in which the defender assumes the adver-
sary’s objective incorrectly and uses a different attack than
the adversary when performing adversarial training.

Baselines. We set two comparison baselines which provide
boundaries for which a defence can be considered effective.

Table 2. Baseline performance
Accuracy TwitterBot IEEECIS HomeCredit

Clean baseline 0.775 0.755 0.680
Robust baseline 0.773 0.685 0.556
Random baseline 0.566 0.500 0.501

On the accuracy side, we consider the clean baseline: a
model trained without any defence. It provides the best
accuracy, but also the least robustness against attacks. Any
defence that does not achieve at least the clean baseline’s
robustness should not be considered, as the clean baseline
would always provide better or equal accuracy, and hence a
better robustness-accuracy trade-off.

On the robustness side, we consider the robust baseline: a
model for which all features that can be changed by the
adversary are masked with zeroes for training and testing.
As this removes any adversarial input, this model is invul-
nerable to attacks within the assumed adversarial models.
Any practical defence must outperform the robust baseline
in terms of accuracy. Otherwise, the robust baseline would
provide a better robustness-accuracy trade-off.

Table 2 shows the clean and robust baselines’ accuracy for
the three datasets. On TwitterBot the robust baseline
performs almost as well as the clean model. As there is
no space for a better defence for TwitterBot, we only
evaluate our defences for the IEEECIS and HomeCredit

models.

We train our attacks and defences using the parameters listed
in Table 3 in Appendix E.

C.3.1. DEFENDER MATCHES THE ADVERSARY

We first evaluate the case in which the adversarial training
used to generate the defence is perfectly tailored to the
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(b) HomeCredit. Model (test acc.): • XGBT (0.65) • TabNet (0.68)

Figure 3. Results of cost-bounded graph-based attacks against three types of models. Left pane: Adversarial utility (higher is better for the
adversary). Middle and right panes: See Fig. 2. On IEEECIS, the attack can achieve utility from approximately $10 to $125 per attack
depending on the target model. On HomeCredit, the average utility ranges between $400, 000 and $600, 000.

adversary’s objective.

Cost-bounded Defence vs. Cost-bounded Attack. We
show in Fig. 4 the results when defender and adversary use
CB objectives. For both IEEECIS and HomeCredit the CB
trained defence is effective when the adversary uses CB at-
tacks: the adversary only finds successful adversarial exam-
ples with positive utility if they invest more than the budget
assumed by the defender. If the defender greatly underesti-
mates the adversary’s budget of the adversary (e.g., training
with ε = 10 when the adversary’s budget is ε = 1000), the
adversary obtains a high profit (close to 200K$). Therefore,
an effective defence requires an adequate estimation of the
adversary’s capabilities.

Utility-bounded Defence vs. Utility-bounded Attack.
Fig. 1 shows the results of our evaluation when the defender
and the adversary use UB objectives. The defence is effec-
tive: it decreases both the success rate and the adversary’s
utility on both datasets. On IEEECIS, the adversary can
only succeed when their desired profit τ is smaller than the
τ used to train the defence. On HomeCredit, we observe
a similar behaviour, although when training for margins τ
less than 500K model does not completely mitigate adver-
saries that wish to have larger profits. When the defender
allows for large adversary’s profit margins (e.g., τ = 800K
or τ = 1M ), the models become significantly robust with
little accuracy loss.

C.3.2. DEFENDER DOES NOT MATCH THE ADVERSARY

In the previous section, we show that if the defender cor-
rectly models the attacker’s objective, our defences offer

good robustness. Next, we evaluate the performance when
the defender’s model does not match the adversary’s objec-
tive. This is likely in realistic deployments, as the defender
might not have any a priori knowledge of the adversary’s
objective.

Utility-bounded Defence vs. Cost-bounded Attack.
We show in Fig. 1 our evaluation results when a CB ad-
versary attacks a defence trained assuming UB objectives.
For both datasets, the robustness improves with respect to
the clean baseline, even though robustness against CB ad-
versaries is not the defence goal. The improvement is more
pronounced as the defender tightens the profit margin (de-
crease in τ , being this effect much stronger on HomeCredit

where even loose profit margins provide significant robust-
ness. The adversary can increase their success by increasing
their budget ε. Increasing the budget also increases the
utility in HomeCredit. These experiments show that UB
training improves robustness even when the adversary has
a different objective.

Cost-bounded Defence vs. Utility-bounded Attack.
When we confront a UB adversary against a CB defence, we
observe a different behaviour (see Fig. 4). On IEEECIS CB
adversarial training increases the robustness of the model
against utility-oriented adversaries—with greater effect as
the cost bound increases. However, when protecting against
high adversary’s budgets (ε = 30) the impact on accuracy
is too large and the robust baseline becomes preferable.

For HomeCredit the situation is worse. While performance
is always above the robust baseline, we observe little im-
provement with respect to the clean model. Even worse,



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Adversarial Robustness for Tabular Data

1 3 10 30 ∞
Attack cost bound ε

0

100

200

V
al

ue
Metric = Adv. utility

1 3 10 30 ∞
Attack cost bound ε

0.0

0.5

1.0
Metric = Adv. success

0 10 50 100 500 1K
Attack margin τ

0

100

200

V
al

ue

Metric = Adv. utility

0 10 50 100 500 1K
Attack margin τ

0.0

0.5

1.0
Metric = Adv. success

Model

Clean (Acc: 0.77)

CB ε = 1 (Acc: 0.73)

CB ε = 3 (Acc: 0.72)

CB ε = 10 (Acc: 0.69)

CB ε = 30 (Acc: 0.66)

(a) IEEECIS

1 10 100 1K 10K
Attack cost bound ε

0

250000

500000

V
al

ue

Metric = Adv. utility

1 10 100 1K 10K
Attack cost bound ε

0.0

0.5

1.0
Metric = Adv. success

3 4 5 6 8 10
Att. margin τ (105×)

200000

400000

V
al

ue

Metric = Adv. utility

3 4 5 6 8 10
Att. margin τ (105×)

0.25

0.50

0.75
Metric = Adv. success Model

Clean (Acc: 0.68)

CB ε = 10 (Acc: 0.68)

CB ε = 100 (Acc: 0.67)

CB ε = 300 (Acc: 0.67)

CB ε = 1K (Acc: 0.67)

CB ε = 4K (Acc: 0.63)

(b) HomeCredit

Figure 4. Cost-bounded adversarial training for different adversarial budgets ε. Evaluation against cost-bounded (left), and utility-bounded
(right) attacks. We represent the adversary’s success and utility (y-axis) versus the adversary’s attack budget ε or desired utility margin τ
(x-axis). CB attacks only have substantial success and profit when the adversary invests more than the budget assumed by the defender.
UB attacks are thwarted for IEEECIS, but CB training is not significantly effective on HomeCredit, and for some models even enables
higher adversary’s utility.

for certain parameters the utility of the adversary can even
increase after the adversarial training (see the model trained
with a bound of ε = 4000). We conclude that CB training
might offer no guarantees if the adversary has a different
objective.

C.3.3. ROBUSTNESS-ACCURACY TRADE-OFFS

In the previous sections, we evaluated the effectiveness of
the defences depending on the adversary’s and defender’s
objectives. We now evaluate the trade-offs between defence
effectiveness in reducing the adversary’s success and the
utility of the attacks, and the accuracy of the model.

As adversarial training penalizes changes in the model’s out-
put caused by input feature perturbations, it results in certain
features having less influence on the output. These features
cannot be used for prediction to the same extent as features
in the clean baseline, which leads to the degradation of the
model’s accuracy. On the positive side, these features can
neither be used by the adversary—the robust baseline being
the extreme in which all features prone to manipulation are
zeroed—reducing the attack’s success and utility.

We show in Fig. 5 the trade-off between adversarial suc-
cess and utility on the one side, and model accuracy on
the other side for IEEECIS (top) and HomeCredit (bottom)
for all combinations of the defender and adversarial objec-
tives. For CB adversaries (top row for each dataset), it is
not clear which defence type is superior. Which defence
provides better robustness for a given accuracy depends on

the adversary’s budget. On the contrary, for utility-bounded
adversaries (bottom row for each datasets), we consistently
observe better robustness (less adversarial utility for the
same accuracy) for the utility-bounded defence compared to
the cost-bounded. We conclude that in the absence of knowl-
edge of the adversary’s objective, utility-bounded defences
are preferable. They outperform CB adversarial training
when the adversary is utility-oriented, and offer comparable
performance against CB attacks.

D. Details on the Projection Algorithm and
Adversarial Training

In this appendix, we describe our modifications to the tradi-
tional adversarial training pipeline.

D.1. Adversarial Training Procedure

Our training procedure is a version of the well-known adver-
sarial training algorithm based on the PGD method (Madry
et al., 2017).

For every sample in a batch (φ(x(i)), y(i))bi=1, we generate
adversarial examples (lines 2–7) by finding the perturbation
δ(i) (lines 4–7). The perturbations are normalized and multi-
plied by α = 2ε/n, to improve the stability of the algorithm
(line 6); and then projected to fulfill our relaxed problem in
Eq. (16) (line 7). We update the model weights (line 8), and
return θ′.
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Figure 5. Accuracy-robustness and utility-robustness trade-offs for Cost-bounded and Utility-bounded adversarially trained models. The
curves show accuracy (x-axis) and utility and success rate (x-axis) for the utility- and cost-bounded models presented in Fig. 4 and
Fig. 1. When one curve is strictly below the other curve, it provides a better trade-off since it has better robustness for the same accuracy.
Utility-bounded models consistently show better trade-offs for all utility-aware attacks. For CB attacks the situation is less consistent: for
small cost-bounds CB defence outperforms utility-bounded one, while for the largest budgets utility bounded shows better results.

D.2. Projection algorithm

We design an adapted projection algorithm to solve Eq. (14),
presented in Algorithm 3. This algorithm is an exten-
sion of an existing sort-based weighted L1 projection al-
gorithm (Slavakis et al., 2010; Perez et al., 2020). It takes
as input a sample x and a perturbed sample x′, and returns
a valid perturbation vector δ such that x + δ lies within
the cost budget. With respect to the algorithm by Perez
et al. (2020), we introduce the capability to assign different
weights based on a feature type and perturbation sign (line
2, in blue) to support our cost function in Eq. (13).

We now prove the correctness of this algorithm.

Statement 1. Algorithm 3 is a valid projection algorithm
onto the set B̃ε, as defined in Eq. (15). Concretely, for a

given x, x′, the algorithm returns δ∗ such that:

δ∗ = PB̃ε(x,y)(x
′) , arg min

δ∈Rm
‖x′ − (x+ δ)‖2

s.t. c(x, x+ δ) ≤ ε

Proof of Statement 1. First, if we keep either cj+(x) or
cj−(x), the constraint becomes a weighted L1 constraint,
for which the complete proof is given by Perez et al. (2020).
Then, we can recall the property that projection onto the
weightedL1 ball is equivalent to projection onto the simplex,
if c(x, x′) > ε, and prove the similar property here.

Lemma 1. For any x, x′, ε,

δ∗ = arg min
δ: c(x,x+δ)≤ε

‖x′ − x− δ‖2

∀i ∈ [1..n] =⇒ sign(δi) = sign(x′i − xi) or 0
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Algorithm 2 Cost-bounded Adversarial Training Algorithm
(single iteration)
Input: Model weights θ, batch of training examples
(φ(x(i)), y(i))bi=1, per-feature costs wi, cost bound ε.
Output: Updated weights θ′

1: α := 2 εn
2: for i in 1..b do
3: δ(i) := 0
4: for t in 1..n do
5: ∇(i) := ∇δi`(fθ(φ(x(i)) + δ(i)), yi)

6: δ(i) := δ(i) + α ∇(i)

‖∇(i)‖1
7: δ(i) := Pw,ε(φ(x(i)) + δ(i))

8: θ′ := θ − η∇θ 1
b

∑b
i=1 `(fθ(φ(x(i)) + δ(i)), y(i))

Return θnew

Proof. Proof by contradiction. Let us assume that the
lemma does not hold and ∃i : sign(δi) = −sign(x′i −
xi) and sign(δi) 6= 0. Then, we can construct δ∗ : ∀j 6=
i, δ∗j = δj and δ∗i = −δi.

‖x′−x−δ‖22 = ‖x′−x−δ∗‖22−(x′i−xi−δi)2+(x′i−xi−δ∗i )2

Since sign(δi) = −sign(x′i − xi) and sign(δi) 6= 0,

(x′i − xi − δi)2 > (x′i − xi − δ∗i )2

Therefore,

‖x′ − x− δ∗‖22 < ‖x′ − x− δ‖22
Which is a contradiction to the original statement.

Based on this lemma we can see that, to find the projection
of x′, we can replace c(x, x′) with the following experssion:

c∗(x, x′) =
∑
i∈C

1

2
‖x̄i − x̄′i‖1 min

t∈Fi(x,y)
ci(xi, x

′
i)

+
∑
j∈I

cj∗(x) · |x̄′j − x̄j |,

where cj∗ is defined as follows:

cj∗(x) =

{
cj+(x), if sign(x′j − xj) ≥ 0

cj−(x), if sign(x′j − xj) < 0

We can do so as both of these functions attain the same
minimum value.

E. Additional Experimental Details
In this appendix we provide the details of our evaluation
aiming to improve the reproducibility of our results.

Algorithm 3 Cost-Ball Projection Algorithm
Input x, x′, c, ε, C, I
Output δ∗ = PB̃ε(x,y)(x

′)

1: δ = x′ − x

2: wi :=


mint∈Fi(x,y) ci(xi, t), if i ∈ C
cj−(x), if i ∈ I and δi < 0

cj+(x), if i ∈ I and δi ≥ 0

3: zi := δi
wi

4: πz() := Permutation ↑ (z)
5: zi := zπz(i)

6: J := max

{
j :
−ε+

∑m
i=j+1 wπz(i)δπz(i)∑m
i=j+1 w

2
πz(i)

> zj

}
7: λ :=

−ε+
∑m
j=J+1 wπz(j)δπz(j)∑m
j=J+1 w

2
πz(j)

8: δ∗i := sign(δi) max (δi − wiλ, 0)

Return δ∗i

The highlighted parts indicate the differences with respect to
the sort-based weighted L1 projection algorithm (Perez et al.,
2020). The function πz(i) denotes an outcome of permutation.
Permutation ↑ (z) is a sort permutation in an ascending order.

Algorithm 4 PGD-Based Attack
Input: P , initial example x, label y, costs w, cost bound ε.
Output: Adversarial example x∗

1: α := 2 εn
2: δ := 0
3: for j in 1..n do
4: ∇ := ∇δ`(fθ(φ(x) + δ), y)
5: δ := δ + α ∇

‖∇‖1
6: δ := PBw,ε(δ)
x∗ = PF (δ)

Return x∗

E.1. Hyperparameter selection

We list our defence and attack parameters in Table 3. TabNet
parameters are denoted according to the original paper (Arik
and Pfister, 2021). We set the virtual batch size to 512. As
training the clean baseline for HomeCredit was prone to
overfitting, we reduced the training number of epochs to 100.
Other hyperparameters were selected with a grid search.

E.2. Dataset Processing and Cost Models

E.2.1. TwitterBot

We use 19 numeric features from this dataset. We dropped
3 features, for which we cannot compute the effect of a
transformation as we do not have access to the original
tweets. We use the number of followers as the adversary’s
gain. We assign costs of features based on estimated costs
to purchase Twitter accounts of different characteristics on
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Figure 6. The distribution of cost overhead of adversarial examples
obtained with UG over minimal-cost adversarial examples obtained
with UCS on IEEECIS. Most UG adversarial examples have cost
close to the minimal, although there exist outliers.

Table 3. IEEECIS and HomeCredit attack and defence parameters

Parameter Value range

Adversarial Training (IEEECIS)

Batch size 2048
Number of epochs 400
PGD iteration number 20
TabNet hyperparameters ND = 16, NA = 16, Nsteps = 4
ε (for CB models) [1, 3, 10, 30]
τ (for UB models) [0, 10, 20, 50, 100, 200, 500]

Attacks (IEEECIS)

Max. iterations 100K
ε (for CB attacks) [1, 3, 10, 30]
τ (for UB attacks) [0, 10, 50, 500, 1000]

Adversarial Training (HomeCredit)

Batch size 2048
Num. of epochs 100
TabNet hyperparameters ND = 16, NA = 16, Nsteps = 4
Num. of PGD iterations 20
ε (for CB models) [1, 10, 100, 1000, 10000]
τ (for UB models) [300K, 400K, 500K, 600K, 800K]

Attacks (HomeCredit)

Num. of iterations 100
ε (for CB attacks) [1, 10, 100, 1K, 10K]
τ (for UB attacks) [10K, 300K, 400K, 500K, 600K, 800K]

darknet markets.

E.2.2. IEEECIS

We ascribe cost of changes, assuming that the adversary
can change the device type and email address with a small
cost. The device type can be changed with low effort using
specific software on a mobile phone. Email domain can be
changed with a registration of a new email address which
typically cannot be automated. Although also low cost, it
takes more time and effort than changing the device time.
We reflect these assumptions ascribing the costs $0.1 and
$0.2 to these changes. Changing the type of card requires
obtaining a new card, which costs approximately $20 in
US-based darknet marketplaces in 2022, according to our
research. We consider the transaction amount as a gain
obtained by an adversary.

E.2.3. HomeCredit

The main goal of the adversary in this task is receiving a
credit approval, therefore, illustrative purposes, we set credit
amount to be a gain of one sample. All features which can
be used by an adversary are listed in Table 6 with the costs
we ascribe to them. We assumed six groups of features and
estimated the cost as follows:

• Group 1: features that an adversary can change with
negligible effort such as email address, weekday or
hour of the application. We ascribe $0.1 cost to these
transformations.

• Group 2: features associated to income. We use these
as a numerical features to illustrate the flexibility of
our method. We assume that to increase income by 1$,
the adversary needs to pay 1$.

• Group 3: features associated to changing a phone num-
ber. Based on the US darknet marketplace prices we
estimate that buying a phone number costs $10.

• Group 4: features related documents which can be tem-
porally changed in favor of an adversary. For example,
a car can be transferred from one person to another
for the application period and returned to the original
owner after it. We ascribe a cost of $100 to obtain
these documents.

• Group 5: features that requires either document forg-
ing or permanent changes to a person’s status. For
instance, buying a university diploma. These are ex-
pensive changes, and we estimate their cost in $1 000.

• Group 6: features related to credit scores provided
by unspecified external credit-scoring agencies. We
estimate the cost of changes in this group with a ma-
nipulation model presented below.

Credit-score manipulation. In our feature set we include
the features that contain credit scores from unspecified ex-
ternal credit-scoring agencies. One reported way of manipu-
lating such credit scores is using credit piggybacking (Ex-
perian, 2019). During piggybacking, a rating buyer finds a
“donor” willing to share a credit for a certain fee. We intro-
duce a model that captures costs of manipulating a credit
score through piggybacking.

We assume that after one piggybacking manipulation the
rating is averaged between “donor” and recipient, and that
“donors” have the maximum rating (1.0). Then, the cost
associated to increasing the rating from 0.5 to 0.75 is the
same as that of increasing from 0.9 to 0.95. This cost cannot
be represented by a linear function. Let the initial score
value be x. The updated credit score after piggybacking is
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Table 4. Costs of changing a feature in TwitterBot dataset
Feature Estimated cost, $

likes_per_tweet 0.025
retweets_per_tweet 0.025
user_tweeted 2
user_replied 2

x′ = (x+1)/2. If we repeat the operation n times, the score
becomes:

x′ =
x+ 2n − 1

2n

Thus, the number of required piggybacking operations
can be computed from the desired final score x′ as n =
log2

1−x
1−x′ , and the total cost is c(x, x′) = nC, where C is

the cost of one operation. We estimate to be $10,000.

c(x, x′) = C log2

1− x
1− x′ = C(log2(1−x)− log2(1−x′))

To represent this cost function for adversarial training, we
can use the encoding described in Appendix B.1, setting
φ(x) = log2(1 − x). Then, the cost function becomes
c(x, x′) = C|φ(x) − φ(x′)|, which is suitable for our de-
fence algorithm. It is worth mentioning that this cost is a
lower bound of the real cost, as the adversary can only do
an integer number of operations. Nonetheless, it perfectly
fits our framework as Eq. (11) encompasses this cost model.
This is not a fully realistic model, as we cannot know how
exactly credit score agencies compute the rating. However,
it is reasonable, and enables us to demonstrate how our
framework’s support of non-linear costs.

Table 5. Costs of changing a feature in IEEECIS dataset
Feature Estimated cost, $

DeviceType 0.1
P_emaildomain 0.2
card_type 20

Table 6. Costs of changing a feature in HomeCredit
Feature Estimated cost, $

NAME_CONTRACT_TYPE 0.1
NAME_TYPE_SUITE 0.1
FLAG_EMAIL 0.1
WEEKDAY_APPR_PROCESS_START 0.1
HOUR_APPR_PROCESS_START 0.1
AMT_INCOME_TOTAL 1
FLAG_EMP_PHONE 10
FLAG_WORK_PHONE 10
FLAG_CONT_MOBILE 10
FLAG_MOBIL 10
FLAG_OWN_CAR 100
FLAG_OWN_REALTY 100
REG_REGION_NOT_LIVE_REGION 100
REG_REGION_NOT_WORK_REGION 100
LIVE_REGION_NOT_WORK_REGION 100
REG_CITY_NOT_LIVE_CITY 100
REG_CITY_NOT_WORK_CITY 100
LIVE_CITY_NOT_WORK_CITY 100
NAME_INCOME_TYPE 100
CLUSTER_DAYS_EMPLOYED 100
NAME_HOUSING_TYPE 100
OCCUPATION_TYPE 100
ORGANIZATION_TYPE 100
NAME_EDUCATION_TYPE 1000
NAME_FAMILY_STATUS 1000
HAS_CHILDREN 1000

Adv. success, %
Cost bound→ 10 30 Gain ∞

Beam size ↓
1 45.32 56.57 56.22 68.20

10 45.32 56.01 55.65 56.01
100 45.32 56.53 56.18 56.53

Success/time ratio
Cost bound→ 10 30 Gain ∞

Beam size ↓
1 3.78 4.80 2.53 2.06

10 2.14 2.25 1.31 1.15
100 0.66 0.65 0.65 0.66

Table 7. Effect of beam size B in the Universal Greedy algorithm
on the IEEECIS dataset. The success rates are close for all choices
of the beam size, thus the beam size of one offers the best perfor-
mance in terms of runtime.
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(a) IEEECIS. Model (test acc.):
• LR (0.62) • XGBT (0.83) • TabNet (0.77)
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Figure 7. Results of utility-bounded graph-based attacks against three types of models. Left pane: Adversarial utility (higher is better for
the adversary). Right pane: See Fig. 2. On IEEECIS, the attack can achieve utility from approximately up to approximately $200 per
attack against TabNet and XGBT. On HomeCredit, the average utility ranges between $400, 000 and $200, 000.


