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ABSTRACT

Prior attacks on graph neural networks have mostly focused on graph poisoning
and evasion, neglecting the network’s weights and biases. Traditional weight-
based fault injection attacks, such as bit flip attacks used for convolutional neural
networks, do not consider the unique properties of graph neural networks. We pro-
pose the Injectivity Bit Flip Attack, the first bit flip attack designed specifically for
graph neural networks. Our attack targets the learnable neighborhood aggregation
functions in quantized message passing neural networks, degrading their ability to
distinguish graph structures and losing the expressivity of the Weisfeiler-Lehman
test. Our findings suggest that exploiting mathematical properties specific to cer-
tain graph neural network architectures can significantly increase their vulnerabil-
ity to bit flip attacks. Injectivity Bit Flip Attacks can degrade the maximal expres-
sive Graph Isomorphism Networks trained on various graph property prediction
datasets to random output by flipping only a small fraction of the network’s bits,
demonstrating its higher destructive power compared to a bit flip attack transferred
from convolutional neural networks. Our attack is transparent and motivated by
theoretical insights which are confirmed by extensive empirical results.

1 INTRODUCTION

Graph neural networks (GNNs) are a powerful machine learning technique for handling structured
data represented as graphs with nodes and edges. These methods are highly versatile, extending the
applicability of deep learning to new domains such as financial and social network analysis, medical
data analysis, and chem- and bioinformatics (Lu & Uddin, 2021; Cheung & Moura, 2020; Sun et al.,
2021; Gao et al., 2022b; Wu et al., 2018; Xiong et al., 2021). With the increasing adoption of GNNs,
there is a pressing need to investigate their potential security vulnerabilities. Traditional adversarial
attacks on GNNs have focused on manipulating input graph data (Wu et al., 2022) through poisoning
attacks, which result in the learning of a faulty model (Ma et al., 2020; Wu et al., 2022), or evasion
attacks, which use adversarial examples to degrade inference. These attacks can be targeted (Zügner
et al., 2018) or untargeted (Zügner & Günnemann, 2019; Ma et al., 2020) and involve modifications
to node features, edges, or the injection of new nodes (Sun et al., 2020; Wu et al., 2022). Targeted
attacks degrade the model’s performance on a subset of instances, while untargeted attacks degrade
the model’s overall performance (Zhang et al., 2022a). A classification of existing graph poisoning
and evasion attacks and defense mechanisms as well as a repository with representative algorithms
can be found in the comprehensive reviews by Jin et al. (2021) and Dai et al. (2022).

Prior research on the security of GNNs has not yet considered the potential of Bit Flip Attacks
(BFAs) (Jin et al., 2021; Xu et al., 2020; Wu et al., 2022; Ma et al., 2020), which directly manipulate
a target model at inference time, and previous works on BFA have not yet explored attacks on
GNNs (Qian et al., 2023). While the general methods can be transferred to GNNs, they do not
consider their unique mathematical properties, although it has been observed that adapting BFAs to
the specific properties of a target network can increase harm (Venceslai et al., 2020) and that BFAs
can be far from optimal on non-convolutional models (Hector et al., 2022). We address this research
gap by exploring the effects of malicious perturbations on a GNN’s trainable parameters and their
impact on prediction quality. Specifically, we target the expressivity of GNNs, i.e., their ability
to distinguish non-isomorphic graphs or node neighborhoods. The most expressive GNNs based
on message passing, including the widely-used Graph Isomorphism Networks (GINs) (Xu et al.,
2019), have the same discriminative power as the 1-Weisfeiler-Lehman test (1-WL) for suitably
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parameterized neighborhood aggregation functions (Morris et al., 2019; Xu et al., 2019; Morris
et al., 2021c). Our attack targets these parameters to degrade the network’s ability to differentiate
between non-isomorphic structures.

Previous research has shown that convolutional neural networks (CNNs) prominent in the com-
puter vision domain are highly susceptible to BFAs (Hong et al., 2019). These works typically
focus on CNNs to which techniques like pruning or quantization are applied to improve efficiency,
e.g., (Rakin et al., 2019; Lee & Chandrakasan, 2022). Efficient implementation is likewise cru-
cial for practical applications of GNNs, making it necessary to investigate the interaction between
robustness and efficiency. Recently, efforts have been made to develop quantization methods for
GNNs (Bahri et al., 2021; Feng et al., 2020) and technical realizations for their deployment (Shyam
et al., 2021; Zhu et al., 2023) as well as as potential applications exist, e.g., (Dong et al., 2023;
Derrow-Pinion et al., 2021; Bertalanič & Fortuna, 2023). However, the relationship between these
techniques and robustness has not yet been studied. The only work on GNNs resilience to bit flips
studies random bit faults in floating-point hardware (Jiao et al., 2022).

Related work The security issue of BFAs is recognized for quantized CNNs, which are used in
critical applications like medical image segmentation (Zhang & Chung, 2021; Askari-Hemmat et al.,
2019) and diagnoses (Ribeiro et al., 2022; Garifulla et al., 2021). In contrast, GNNs used in safety-
critical domains like medical diagnoses (Li et al., 2020b; Gao et al., 2022b; Lu & Uddin, 2021),
electronic health record modeling (Liu et al., 2020c; Sun et al., 2021), and drug development (Lin
et al., 2020; Xiong et al., 2021; Cheung & Moura, 2020) have not been sufficiently studied for their
robustness against BFAs. Qian et al. (2023) and Khare et al. (2022) distinguish between targeted
and untargeted BFAs similar to the distinction made between targeted and untargeted poisoning and
evasion techniques. The high volume of related work on BFAs for quantized CNNs (Rakin et al.,
2022; Roohi & Angizi, 2022; Khare et al., 2022; Qian et al., 2023; Rakin et al., 2020; Chen et al.,
2021; Ghavami et al., 2022a;b; Park et al., 2021; Breier et al., 2022; Venceslai et al., 2020) based
on the seminal work by Rakin et al. (2019) and associated BFA defense mechanisms (He et al.,
2020; Li et al., 2020a; Javaheripi & Koushanfar, 2021; Li et al., 2021; Guo et al., 2021; Javaheripi
et al., 2022; Liu et al., 2020b; 2023; Zhang et al., 2022b; Khoshavi et al., 2021; Hector et al., 2022;
Özdenizci & Legenstein, 2022; Poduval et al., 2022) published recently underscores the need for
research in the direction of both BFA and defense mechanisms for quantized GNNs. We represent
these traditional BFA methods by Progressive Bitflip Attack (Rakin et al., 2019) as most other BFA
variants are based on it. We will subsequently refer to this specific BFA as PBFA and use the term
BFA for the broader class of bit flip attacks only.

Contribution We investigate the susceptibility of GNNs to PBFA in a motivating case study,
which reveals that PBFA fails to significantly outperform random bit flips on tasks requiring the
structural discrimination of graphs. To overcome the problem, we introduce the Injectivity Bit Flip
Attack (IBFA), a novel attack targeting the discriminative power of neighborhood aggregation func-
tions used by GNNs. Specifically, we investigate the maximal expressive architecture GIN, where
this function is injective for suitable parameters (Xu et al., 2019), and which is integrated in popular
frameworks (Fey & Lenssen, 2019) and widely used in practice, e.g., (Gao et al., 2022c; Wang
et al., 2023b; Yang et al., 2022; Peng et al., 2020; Bertalanič & Fortuna, 2023; Liu & Wang, 2021).
IBFA differs from existing BFA variants for CNNs by its bit-search algorithm’s optimization goal
as well as input data selection strategy and is distinct from graph poisoning and evasion attacks as
input data is left modified. We provide a strong theoretical fundament for IBFA which is confirmed
by extensive experimental evidence of its effectiveness on real-world datasets under the assumptions
common in established BFA research, which we discuss in sec. 4. Our results indicate that IBFA
dominates its baselines in terms of both degradation of prediction quality and the number of bit flips
required to degrade GIN’s output to random, effectively rendering it indifferent to graph structures.

2 PRELIMINARIES

IBFA targets quantized neighborhood aggregation based GNNs by exploiting their expressivity,
which can be theoretically linked to the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test.
Hence, we initiate our discourse by providing a concise overview of such GNNs, the 1-WL al-
gorithm, quantization, PBFA and introduce our notation and terminology along the way.
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Graph theory A graph G is a pair (V,E) of a finite set of nodes V and a finite set of edges
E ⊆ {{u, v} ⊆ V }. The set of nodes and edges of G is denoted by V (G) and E(G), respectively.
The neighborhood of v in V (G) is N(v) = {u ∈ V (G) | {v, u} ∈ E(G)}. If there exists a bijection
φ:V (G) → V (H) with {u, v} in E(G) if and only if {φ(u), φ(v)} in E(H) for all u, v in V (G),
we call the two graphs G and H isomorphic and write G ≃ H . For two graphs with roots r ∈ V (G)
and r′ ∈ V (H), the bijection must additionally satisfy φ(r) = r′. The equivalence classes induced
by ≃ are referred to as isomorphism types.

A function V (G) → Σ with arbitrary codomain Σ is called a node coloring. Then, a node colored
or labeled graph (G, l) is a graph G endowed with a node coloring l. We call l(v) a label or color
of v ∈ V (G). A node coloring c refines a node coloring d, denoted c ⊑ d if ∀v, w ∈ V (G): c(v) =
c(w) ⇒ d(v) = d(w). If c ⊑ d and d ⊑ c, then two colorings are equivalent, which is denoted by
c ≡ d. The maximal subset Q ⊆ V (G) with c(v) = c(w) for all v, w ∈ Q is called a color class of a
node coloring c. Further, let Π be a partition of G. We refer to Π as equitable if ∀P,Q ∈ Π it holds
that ∀u, v ∈ P : |N(u)∩Q|= |N(v)∩Q| (Kiefer, 2020, p. 19). Every graph has a unique coarsest
equitable partition (Lerner, 2004, p. 239) which is precisely the partition 1-WL’s colors (see sec. 2)
induce on the node set after termination (Kiefer, 2020, p. 30). We denote a multiset by {{. . .}}.

The Weisfeiler-Lehman algorithm We outline the methodology of the 1-WL algorithm for la-
belled graphs. Let (G, l) denote a labelled graph. In every iteration t > 0, a node coloring
c
(t)
l :V (G) → Σ is computed, which depends on the coloring c

(t−1)
l of the previous iteration. At

the beginning, the coloring is initialized as c(0)l = l. In subsequent iterations t > 0, the coloring is
updated according to

c
(t)
l (v) = HASH

(
c
(t−1)
l (v), {{c(t−1)

l (u)|u ∈ N(v)}}
)
, (1)

where HASH is an injective mapping of the above pair to a unique value in Σ, that has not been
used in previous iterations. The HASH function can, for example, be realized by assigning new
consecutive integer values to pairs when they occur for the first time (Shervashidze et al., 2011).
Let C(t)

l (G) = {{c(t)l (v) | v ∈ V (G)}} be the multiset of colors a graph exhibits in iteration t.
The iterative coloring terminates if |C(t−1)

l (G)|= |C(t)
l (G)|, i.e., the number of colors does not

change between two iterations. For testing whether two graphs G and H are isomorphic, the above
algorithm is run in parallel on both G and H . If C(t)

l (G) ̸= C
(t)
l (H) for any t ≥ 0, then G and

H are not isomorphic. Non-isomorphic graphs G and H with C
(t)
l (G) = C

(t)
l (H) for all t ∈ N

exist, but they are rare even for t = 2 (Babai & Kucera, 1979) and many real-world graph learning
benchmarks do not contain such graph pairs (Morris et al., 2021b; Zopf, 2022). The label assigned
to a node v in the tth iteration of the 1-WL test can be understood as a tree representation of the t-hop
neighborhood of v, in the sense that there is a bijection between labels in Σ and the isomorphism
types of such trees of height t, see def. 1 and (D’Inverno et al., 2021; Jegelka, 2022; Schulz et al.,
2022) for details.

In social network analysis, structural roles refer to groups of nodes that share similar local structural
characteristics. On the other hand, communities refer to sets of nodes that have a higher number of
connections within the group compared to those outside of it. While structural roles and communi-
ties are distinct concepts, they are both significant and complementary in nature (Lerner, 2004; Rossi
et al., 2020). Structural roles can be linked to 1-WL via the equitable partition given by 1-WL’s color
classes (Lerner, 2004, p.p. 239).

Graph neural networks GNNs utilize graph structure and node features to derive a representa-
tion vector for a specific node, denoted as hv , or for the entire graph, denoted as hG. Contemporary
GNNs employ a neighborhood aggregation or message passing approach, in which the representa-
tion of a node is iteratively updated through the aggregation of representations of its neighboring
nodes. Upon completion of k iterations of aggregation, the representation of a node encapsulates
the structural information within its k-hop neighborhood (Xu et al., 2019). The kth layer of a GNN
computes the node features h(k)

v formally defined by

a(k)v = AGGREGATE(k)
(
{{h(k−1)

u | u ∈ N(v)}}
)
, h(k)

v = COMBINE(k)
(
h(k−1)
v ,a(k)v

)
. (2)
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Initially, h
(0)
v are the node features of the given graph. The choice of AGGREGATE(k) and

COMBINE(k) in GNNs is critical, and several variants have been proposed (Xu et al., 2019).

Graph isomorphism network GIN is characterized by its simplicity and has been proven to pos-
sess the highest level of expressivity among GNNs based on neighborhood aggregation. It has
the same discriminative power as the 1-WL test in distinguishing non-isomorphic graphs (Xu et al.,
2019). A large body of work is devoted to GNNs exceeding this expressivity (Morris et al., 2021b;c).
However, neighborhood aggregation is widely used in practice and 1-WL is sufficient to distinguish
most graphs in common benchmark datasets (Morris et al., 2021b; Zopf, 2022). As established
by (Xu et al., 2019), a neighborhood aggregation GNN with a sufficient number of layers can reach
the same discriminative power as the 1-WL test if both the AGGREGATE and COMBINE functions
in each layer’s update rule as well as its graph level READOUT are injective. GIN achieves this with
the update rule

h(k)
v = MLP(k)

(1 + ϵ(k)) · h(k−1)
v +

∑
u∈N(v)

h(k−1)
u

 (3)

integrating a multi layer perceptron (MLP) into COMBINE(k), realizing a universal function approx-
imator on multisets (Hornik et al., 1989; Hornik, 1991; Zaheer et al., 2017). If input features are
one-hot encodings, an MLP is not needed before summation in the first layer, since summation is
injective in this case. For graph level readout, GIN employs concatenation of the sums of all node
features of the same layer according

hG =
∥∥∥n
k=0

READOUT
(
{{h(k)

v | v ∈ G}}
)
, (4)

where ∥ denotes the concatenation of vectors. The approach provably generalizes the WL test and
the WL subtree kernel (Xu et al., 2019).

Quantization Quantization involves either a reduction in the precision of the weights, biases, and
activations within a neural network or the use of a more efficient representation, resulting in a de-
crease in model size and memory utilization (Kummer et al., 2023). Our proposed work explores
how maliciously induced bit flips in quantized weights and biases degrade the model’s quality met-
rics. In accordance with the typical set-up chosen in the related work on BFA, see sec. 1, we apply
scale quantization to map FLOAT32 tensors to the INT8 range, and

Q(Wl) = Wq,l = clip(⌊Wl/s⌉, a, b), Q−1(Wq,l) = Ŵl = Wq,l × s (5)

specifies such a quantization function Q and its associated dequantization function Q−1. In eq. 5, s
is the scaling parameter, clip(x, a, b) = min(max(x, a), b) with a and b the maximum and minimum
thresholds (also known as the quantization range), ⌊. . . ⌉ denotes nearest integer rounding, Wl is the
weight of a layer l to be quantized, Wq,l its quantized counterpart and .̂ . . indicates a perturbation
(i.e., rounding errors in the case of eq. 5). Similar to other works on BFA that require quantized
target networks, e.g., (Rakin et al., 2019), we address the issue of non-differentiable rounding and
clipping functions in Q by employing Straight Through Estimation (STE) (Bengio et al., 2013).

Progressive bit flip attack PBFA, introduced in seminal work by Rakin et al. (2019), utilizes a
quantized trained CNN Φ and employs the progressive bit search (PBS) to identify which bit flips
will damage the CNN most. PBS begins with a single forward and backward pass, conducting
error backpropagation without weight updates on a randomly selected batch X of training data with
a target vector t. It then selects the weights linked to the top-k largest binary encoded gradients
as potential candidates for flipping the associated bits. These candidate bits are iteratively tested
(flipped) across all L layers to find the bit that maximizes the difference between the loss L of the
perturbed and the loss of the unperturbed CNN, whereby the same loss function is used that was
minimized during training, e.g., (binary) cross entropy (CE) for (binary) classification.

max
{Ŵq,l}

L
(
Φ(X; {Ŵq,l}Ll=1), t

)
− L

(
Φ(X; {Wq,l}Ll=1), t

)
(6)

The source of the perturbation .̂ . . in eq. 6 are adversarial bit flips. If a single bit flip does not improve
the optimization goal, PBS is executed again, considering combinations of 2 or more bit flips. This
process continues until the desired level of network degradation is achieved or a predefined number
of iterations is reached. Further details on PBFA/PBS can be found in the appendix.
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Figure 1: Example of two non-isomorphic unfolding trees T (2)(u) ̸≃ T (2)(v) of height 2 associated
with the nodes u and v. A function solving a WL-discriminitation task for k = 2 must be able to
discriminate u and v based on the structure of their unfolding trees.

3 THEORETICAL FRAMEWORK

In principle, PBFA as described above and potentially most other BFA variants based on it can be
directly ported to GNNs. However, Hector et al. (2022) have demonstrated that the high susceptibil-
ity of CNNs to BFA is closely tied to weight sharing in convolutional filters. The absence of such
filters in GNNs motivates the development of a specialized attack for GNNs.

In our preliminary case study, which in full is contained in the appendix, we examine PBFA’s effec-
tiveness on various GNN architectures. The case study’s results indicate that quantized GINs trained
on tasks requiring discrimination of graphs with weak/low homophily based on their structural prop-
erties and thus high structural expressivity as found in, e.g., drug development, display a remarkable
resilience to PBFA, which in some instances hardly outperformed random bit flips. Based on these
observations, IBFA focuses on degrading GIN trained on tasks requiring high structural expressivity.

The discriminative power of GIN is derived from its MLPs’ ability to represent injective functions
on sets, as described in sec. 2. Consequently, we design our attack based on the assumption that in
certain tasks where learning such a discriminative function is crucial, attacking injectivity will lead
to a higher degradation than performing PBFA.

Expressivity via injective set functions A GNN based on message passing computing a function
F (k) as output of the kth layer is maximal expressive if F (k)(u) = F (k)(v) ⇐⇒ c

(k)
l (u) = c

(k)
l (v).

This is achieved when each layers’ COMBINE and AGGREGATE functions are both injective, such
that their combination is injective as well.

We develop the theory behind a bit flip attack exploiting this property. We formally define the
concept of an unfolding tree also known as computational tree in the context of GNNs (D’Inverno
et al., 2021; Jegelka, 2022), see fig. 1 for an example.

Definition 1 (Unfolding Tree (D’Inverno et al., 2021)). The unfolding tree T (k)(v) of height k of a
vertex v is defined recursively as

T (k)(v) =

{
TREE(l(v)) if k = 0,

TREE(l(v), T (k−1)(N(v))) if k > 0,

where TREE(l(v)) is a tree containing a single node with label l(v) and TREE(l(v), T (k−1)(N(v)))
is a tree with a root node labeled l(v) having the roots of the trees T (k−1)(N(v)) = {T (k−1)(w) |
w ∈ N(v)} as children.

Unfolding trees are a convenient tool to study the expressivity of GNNs as they are closely related
to the 1-WL colors.
Lemma 1. Let k ≥ 0 and u, v nodes, then c

(k)
l (u) = c

(k)
l (v) ⇐⇒ T (k)(u) ≃ T (k)(v).

Xu et al. (2019) show that GIN can distinguish nodes with different WL colors. The result is obtained
by arguing that the MLP in eq. 3 is a universal function approximator (Hornik et al., 1989) allowing
to learn arbitrary permutation invariant functions (Zaheer et al., 2017). This includes, in particular,
injective functions. These arguments are highly theoretically and the complexity of GNNs in terms
of depth, width and numerical precision required to achieve this is not well understood and subject
of recent research (Aamand et al., 2022).

We investigate the functions involved in a GIN layer and how they contribute to the expressivity
of the final output providing insights for the design of effective attacks. For this, it is necessary to
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(a) Graph with final node coloring/embedding

a b c d e f g h i j

F (0)
0 0 0 0 0 0 0 0 0 0

F (1)
1 1 2 2 2 2 2 2 3 4

F̂ (1)
2 2 2 2 2 2 2 2 2 3

F (2) = F̂ (2)
4 4 5 5 5 5 6 7 8 9

(b) Node colorings/embeddings at different layers

Figure 2: Example showing possible results of the 2-layer GNNs F (2) and F̂ (2) using f (i) and f̂ (i),
respectively, for i ∈ {1, 2}. Nodes having the same embedding are shown in the same color and are
labeled with the same integer. Although f̂ (1) is non-injective and F̂ (1) is coarser than F (1), we have
F (2) = F̂ (2). The final output corresponds to the WL coloring.

define whether we are interested in the expressivity of the general function on nodes or graphs, as in
the inductive learning case, or merely the ability to distinguish the elements of a predefined subset,
as in the transductive setting. First, we consider the general case, where a finite-depth GNN operates
on the set of all possible finite graphs and then discuss its implication for a single concrete graph
datasets. For the sake of simplicity, we limit the discussion to unlabeled graphs.

Let f (i):M(Rdi−1) → Rdi be the learnable function of the ith layer of a GNN, where M(U) are
all possible pairs (A,A) with A ∈ U and A a countable multisets of elements from U . We assume
that f (i) is invariant regarding the order of elements in the multiset. Then the output of the network
for node v is obtained by the recursive function

F (k)(v) = f (k)
(
F (k−1)(v), {{F (k−1)(w) | w ∈ N(v)}}

)
with F (0) uniform initial node features. Clearly, if all f (i) are injective, WL expressivity is reached
as argued by Xu et al. (2019). The following proposition (proof in appendix) makes explicit that it
suffices that all f (i) are injective with respect to the elements of their domain that represent (combi-
nations of) unfolding trees of height i− 1.
Proposition 1. Consider two arbitrary nodes u and v in an unlabeled graph. Let J0 be a uniform
node feature and Ji = {f (i)(x) | x ∈ M(Ji−1)} the image under f (i) for i > 0. Then

∀i ≤ k: ∀x, y ∈ M(Ji−1): f
(i)(x) = f (i)(y) =⇒ x = y (7)

implies
c
(k)
l (u) = c

(k)
l (v) ⇐⇒ F (k)(u) = F (k)(v). (8)

This result easily extends to graphs with discrete labels and continuous attributes. The set of in-
puts, for which a GIN layer has to compute different outputs to achieve WL expressivity, indicates
weakpoints for potential attacks. These inputs are in 1-to-1 correspondence with the unfolding trees.
First, we observe that the number of unfolding trees grows quickly with increasing i and increas-
ingly discriminative functions need to be represented by the MLPs in GIN. However, Proposition 1
provides only a sufficient condition for WL expressivity. In particular, in a transductive setting when
restricting to a concrete dataset, the number of different unfolding trees of each height is naturally
bounded by the number of nodes. Moreover, even for a concrete dataset it is possible that the func-
tion f (i) applied at layer i is non-injective and F (i+1) is still maximal expressive. Fig. 2b shows
an example illustrating the situation. This motivates the need for a targeted attack on injectivity to
effectively degrade expressivity, which we develop below. Further, these considerations lead to the
following exemplary classification task.
Definition 2 (WL-discriminitation task). Let G be a graph with labels l. The WL-discriminitation
task for k in N is to learn a function F (k) such that F (k)(u) = F (k)(v) ⇐⇒ c

(k)
l (u) = c

(k)
l (v) for

all u, v ∈ V (G).

The definition, which in its above form is concerned solely with node classification based on specific
structural features, can easily be extended to classifying graphs based on their structure (which we
will investigate experimentally later) or structural roles (Rossi et al., 2020) refining the equitable
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partition given by 1-WL’s color classes. While a GNN trained on a task requiring finer partitioning
than 1-WL might perform poorly, an attack targeting the GNN’s ability to discriminate by a more
coarse partition will at least equally damage any refinement of it. In practice, however, the number of
GNN layers is kept small (e.g., ≤ 5) to avoid overfitting (Morris et al., 2021a) or oversmoothing (Liu
et al., 2020a) and full WL expressivity is not achieved. Although these shallow GNNs are limited to
discriminating local structures, they still solve WL-discriminitation tasks (with low k) and can thus
be degraded by an attack on their expressivity.

4 TARGETING INJECTIVITY

As revealed by our theoretical analysis in sec. 3 and illustrated by fig. 2b, it would not suffice to just
consider the injectivity of a single layer’s COMBINE and AGGREGATE functions for a successful
attack, since maximal expressivity could be restored at deeper layers. Therefore, an attack consider-
ing the whole network is necessary. Thus, to target the injectivity required for successfully learning
WL-discriminitation tasks as per def. 2 and related tasks while considering the entire model, we re-
formulate the target of the original PBFA from a maximization as in eq. 6 to a minimization problem

min
{Ŵq,l}

L
(
Φ(Xa; {Ŵq,l}Ll=1), Φ(Xb; {Ŵq,l}Ll=1)

)
. (9)

That is, instead of increasing, e.g., the original classification loss of the model Φ via PBS, we use
PBS to minimize the difference between the outputs of the network computed on two different inputs
Xa, and Xb w.r.t. the function L that measures the difference between the network’s outputs. This
approach further allows us to perform IBFA on unlabeled data.

Choosing the loss function In a binary graph classification task, the network’s outputs ya =

Φ(Xa; {Ŵq,l}Ll=1) and yb = Φ(Xb; {Ŵq,l}Ll=1) both are n×1 vectors representing the probability
mass functions (PMF) of n Bernoulli distributed discrete random variables. For such distributed
output vectors, any differentiable p-norm-based loss function would suffice to converge predictions
in the sense of eq. 9 and we choose L1 for L for simplicity. In non-binary graph classification
(i.e., multiclass-classification) or multitask binary classification, however, outputs Ya and Yb are
not n× 1 vectors but instead n×m matrices where n is the number of samples and m the number
of classes/tasks. That is, for each of the n samples, each column in Ya and Yb represents a PMF
over m classes. Thus, simply using a p-norm-based loss function as L1 for L in eq. 9 would fail
to capture differences in individual class probabilities contained in Ya and Yb due to the reduction
operation required by L1 (e.g., mean or sum over m). We solve this by, instead of L1, employing
the discrete pointwise Kullback-Leibler-Divergence (Kullback & Leibler, 1951) (KL) as L, i.e., the
KL between the output’s n probability distributions of each pair of samples (data points) in Ya and
Yb, which, in the context of eq. 9, allows IBFA to find bits converging the PMF of Ya best on Yb.

Choosing input samples The proper selection of Xa and Xb is crucial as selecting inputs that
have identical outputs (e.g., two batches that contain different samples of the same classes in the
same order) before the attack will not yield any degradation as eq. 9 would already be optimal. To
this purpose, we chose inputs Xa and Xb to be as different as possible from one another w.r.t. to the
unperturbed network’s outputs before the attack by iteratively solving

argmax
{Xa,Xb}

L
(
Φ(Xa; {Wq,l}Ll=1), Φ(Xb; {Wq,l}Ll=1)

)
. (10)

This search mechanism can be executed before the attack itself and the found Xa, Xb be reused
for all iterations of the attack, a variant of IBFA to which we refer as IBFA1. However, after one
iteration of the bit flip attack, the solution of eq. 10 might change, making it promising to recompute
Xa, Xb on the perturbed model before every subsequent attack iteration. We refer to the IBFA
employing the latter data selection strategy as IBFA2. While IBFA2 may lead to slightly faster
and more consistent degradation for a set amount of bit flips, its time complexity is Θ(kn2) for k
attack runs and n samples in the dataset, making it less suitable for large datasets. A study on the
effectiveness our selection strategy when dealing with a limited subset of training data available for
selection can be found in the appendix.
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Assumptions, limitations and threat model In line with the general trend in literature on BFAs
for CNNs, we assume our target network is INT8 quantized as exemplified in various prior works,
e.g., (Yao et al., 2020; Rakin et al., 2019; 2022; Chen et al., 2021; Park et al., 2021; He et al., 2020; Li
et al., 2020a; 2021; Liu et al., 2023), as such configured networks are naturally noise resistant (Rakin
et al., 2022). Furthermore, we adopt the usual assumption in related work that the attacker has the
capability to exactly flip the bits chosen by the bit-search algorithm through mechanisms such as
RowHammer (Mutlu & Kim, 2019), NetHammer (Lipp et al., 2020) or others (Breier et al., 2018;
Hou et al., 2020). Most recently, the feasability of inducing such exact bit flips via a RowHammer
variant was shown by Wang et al. (2023a). We thus do not consider the detailed technical specialities
of realizing the flips of the identified vulnerable bits in hardware and assume that the attacker is not
subjected to budget considerations (Hector et al., 2022). Moreover, we assume some amount of
training data as well as information on the network structure is available, which is in accordance
with typical assumptions in related work on BFAs as found by Liu et al. (2023). This information
can be acquired through methods such as side-channel attacks (Yan et al., 2020; Batina et al., 2018).
Together, these typical assumptions amount to a white box threat model, whereby the attacker’s goal
is to crush a well-trained and deployed quantized GNN via BFA.

5 EXPERIMENTS

Motivated by the considerations discussed in sec. 3 and under the assumptions discussed in sec. 4, we
experimentally test the hypothesis whether IBFA outperforms other BFAs on tasks requiring high
structural expressivity. We assess the destructiveness of our method using real-world molecular
property prediction datasets, a task common in drug development (Xiong et al., 2021; Rossi et al.,
2020), as well as social network classifcation. We compare IBFA against PBFA which we consider
the most relevant baseline, as most other, more specialized (e.g., targeted) BFAs designed to degrade
CNNs have been derived from PBFA. We measured the degradation in the quality metrics proposed
by Open Graph Benchmark (Hu et al., 2020) (OGB) or Morris et al. (2020), respectively for each of
the datasets and followed the recommended variant of a 5-layers GIN with a virtual node. To ensure
reproducibility, we provide details on quantized models, measured metrics, attack configuration and
a code repository1. A detailed ablation study concerning loss function, selection strategies, layer
preferences and quality degradation progression can be found in the appendix as well as experiments
on GNNs less expressive than GIN and IBFA’s ability to circumvent certain BFA defenses.

Quantized models To evaluate our IBFA on GIN, we first obtained INT8 quantized models by
training on each dataset’s training split using STE, as described in sec. 2. We used the Adam opti-
mizer with a learning rate of 10−3 and trained the models for 30 epochs. Although more complex
models and quantization techniques might achieve higher prediction quality, our focus was not on
improving prediction quality beyond the state-of-the-art, but on demonstrating GIN’s vulnerability
to IBFA. Some of the datasets we used present highly challenging learning tasks, and our results for
quantized training of GIN are comparable to those by OGB (Hu et al., 2020) for FLOAT32 training.

Datasets Six benchmark datasets are chosen (as in, e.g., (Gao et al., 2022a; Suresh et al., 2021))
from graph classification tasks from OGB based on MoleculeNet (Wu et al., 2018) for evaluation
as well as COLLAB and GITHUB_STARGAZERS from TUDataset (Morris et al., 2020). The goal
in each of the OGB datasets is to predict certain properties based on molecular graph structures,
such that the datasets are consistent with the underlying assumptions of IBFA described in sec. 4.
All OGB datasets are split using a scaffold-based strategy, which distinguishes the molecules ac-
cording to their core structure and seeks to separate structurally different molecules into different
subsets (Wu et al., 2018; Hu et al., 2020). COLLAB is derived from scientific collaboration networks,
whereby every graph represents the ego-network of a scientist, and the task is to predict their area
of research. GITHUB_STARGAZERS conatins graphs of social networks of GitHub users, and the
task is to predict whether they starred popular machine learning or web development repositories.
COLLAB and GITHUB_STARGAZERS are split randomly (80/10/10 for train/test/validation). More
detailed dataset descriptions can be found in the appendix.

Not all targets in the OGB datasets apply to each molecule (missing targets are indicated by NaNs)
and we consider only existing targets in our experiments. Area under the receiver operating charac-

1The link to our code is not included to preserve anonymity, but will be included in a final version.
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Figure 3: Pre- (clean) and post-attack test quality metrics AP, AUROC or ACC for different BFA
variants on a 5-layer GIN trained on 6 ogbg-mol and 2 TUDataset datasets, number of bit flips,
averages of 10 runs.

teristic curve (AUROC), average precision (AP) or accuracy (ACC) are used to measure the models’
performance as recommended by (Hu et al., 2020) and (Morris et al., 2020), respectively.

Attack configuration The attacks in each of the experiments on a GIN trained on a certain dataset
were executed with the number of attack runs (in the sense of attack iterations as described in sec. 2)
initially set to 5 and repeated with the number of attacks incremented until the first attack type
reached (nearly) random output. The other attacks in this experiment were then set to that same
number of attack runs to ensure fair comparison. Note though that the evaluated attack variants
PBFA, IBFA1 and IBFA2 can flip more than a single bit during one attack run (i.e. if a single bit flip
did not yield improvement in the target function, combinations of 2 or more bit flips are evaluated
by the algorithm), such that the final number of actual bit flips can vary across experiments even if
the number of attack runs is fixed. For the single task binary classifcation datasets, ogbg-molhiv,
ogbg-bace and GITHUB_STARGAZERS, IBFA1/2 were used with L1 loss, for multitask binary
classifcation ogbg-tox21, ogbg-toxcast, ogbg-molmuv, ogbg-pcba and multiclass clas-
sifcation (COLLAB), IBFA1/2 were used with KL loss. For PBFA, binary CE (BCE) loss was used
throughout the binary classification datasets and CE loss was used for COLLAB. Input samples for
all evaluated BFA variants were taken from the training splits.

Results As reported in fig. 3, IBFA in both variants clearly surpasses random bit flips (RBFA)
and PBFA in terms of test quality metric degradation for a given number of bit flips in most of the
examined cases. IBFA is capable of forcing the evaluated GINs to produce (almost) random out-
put (AUROC ≤ 0.5, AP ≤ 0.11 (ogbg-molpcba), AP ≤ 0.06 (ogbg-molmuv), ACC ≤ 0.33
(COLLAB) or ≤ 0.5 (GITHUB_STARGAZERS)) by flipping less than 33 bits on average. IBFA2
causes slightly more destruction on ogbg-molhiv, COLLAB and GITHUB_STARGAZERS in
terms of quality metric degradation than IBFA1 but is surpassed by or on par with IBFA1 in all
other cases. IBFA2 on ogbg-molbace and IBFA1 on COLLAB were slightly weaker than PBFA.
On GITHUB_STARGAZERS, PBFA and IBFA both degraded GIN equally. On the other hand,
GINs trained on ogbg-molmuv, ogbg-molhiv, and ogbg-moltox21 were barely affected by
PBFA for the examined number of bit flips and GIN trained on ogbg-moltoxcast appeared to
be entirely impervious to PBFA. In line with a study on FLOAT32 GNNs (Jiao et al., 2022), our
quantized GNNs also resist RBFA, ruling out the observations for PBFA and IBFA are stochastic.

6 CONCLUSION

The novel bitflip attack IBFA, for which we offer a sound theoretical fundament, targets specific
mathematical properties of GNNs which are related to graph learning tasks requiring high struc-
tural expressivity. We illustrate IBFA’s ability to exploit GIN’s expressivity to render it indifferent
to graph structures, compromising its predictive quality in tasks requiring structural discrimination.
Specifically, we show that IBFA is clearly more destructive than the most relevant BFA variant
ported from CNNs and random bit flips on eight molecular property prediction and social network
classification datasets, covering binary and multiclass classification tasks. In the future, we will fur-
ther investigate the robustness-efficiency relationship in GNNs as well as BFA defenses for GNNs.
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Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. pp. 2847–2856. Association for Computing Machinery, 2018.
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A PROOFS

Proposition 1

Proof. We first prove by induction that the statement eq. 7 implies that there is a 1-to-1 corre-
spondence between Ji and the isomorphism types of unfolding trees of height i, denoted by Ti,
for all i ∈ {0, . . . , k}. In the base case i = 0, there is a single unfolding tree in T0 consist-
ing of a single node. The uniform initialization J0 satisfies the requirement. Assume that φ is
a bijection between Ji and Ti, then the statement eq. 7 together with the permutation-invariance
guarantees that f (i+1)(A,A) = f (i+1)(B,B) if and only if A = B and A = B. Hence,
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Table 1: Preliminary case study illustrating the general vulnerability of GNNs to PBFA – pre- and
post-attack mean of 10 runs of top-1 test accuracy (community) or AUROC (structure) of INT8
quantized representative GNN architecture (GCN (Wu et al., 2022) with 3 layers, GAT (Wu et al.,
2022) with 2 layers, GIN Xu et al. (2019) with 5 layers) and dataset combinations (GCN on Cora,
GAT on CiteSeer, GIN on ogbg-mol) baseline without BFAs; after PBFA (Rakin et al., 2019)
adapted to GNNs; after random bit flips (RBFA); total bit count of all model parameters (attack
surface) in millions.

COMMUNITY STRUCTURAL

Attack Dataset Pre Post Flips Bits Dataset Pre Post Flips Bits
RBFA Cora-GCN 0.77 0.74 63 1.6M ogbg-molhiv-GIN 0.71 0.53 953 15.1M
PBFA Cora-GCN 0.77 0.12 9 1.6M ogbg-molhiv-GIN 0.71 0.50 953 15.1M
RBFA CiteSeer-GAT 0.58 0.48 63 3.8M ogbg-moltoxcast-GIN 0.58 0.58 2662 16.6M
PBFA CiteSeer-GAT 0.58 0.14 10 3.8M ogbg-moltoxcast-GIN 0.58 0.57 2662 16.6M

{{φ(a) | a ∈ A}} = {{φ(b) | b ∈ B}}, which uniquely determines an unfolding tree in Ti+1 accord-
ing to def. 1. Vice versa, unfolding trees with different subtrees lead to distinguishable multisets.
The result follows by Lemma 1 and the 1-to-1 correspondence shown above at layer k.

B A MOTIVATING CASE STUDY

Our preliminary case study summarized in tab. 1 indicates a significant vulnerability of GNNs used
in community-based tasks on graphs with strong homophily (Rossi et al., 2020) to malicious BFAs
such as PBFA, since it suggests a quantized GNN can be degraded so severely by an extremely small
number of bit flips—relative to the network’s attack surface—that it produces basically random out-
put. In our case study, a GNN’s output on the community-based tasks is random if its test accuracy
drops below 14.3% (= 1/7) on Cora’s 7-class node classification task or below 16.7% (= 1/6) on
CiteSeer’s 6-class node classification task. Our case study shows that this is consistently the case
due to the PBFA adapted from (Rakin et al., 2019) for all community-based architecture-dataset
combinations examined. The number of bit flips required for completely degrading a GNN in a
community-based task is remarkably small: tab. 1 shows that on average, the adapted PBFA flipped
only 0.0004%of the total number of bits of the quantized GNNs’ parameters. Regarding random
bit flips (RBFA), the results of our case study are consistent with results obtained for full-precision
GNNs (Jiao et al., 2022) in that they demonstrate a relatively strong resilience of GNNs against such
random perturbations.

On structural tasks requiring high structural expressivity on graphs with weak/low homophily as is
typical in molecular, chemical, and protein networks (Rossi et al., 2020) which are common in, e.g.,
drug development, PBFA is much less effective and degrades the network comparable to random
bit flips. On the tasks requiring high structural expressivity in tab. 1, a GNN’s output is random if
its test AUROC drops to 0.5. We found that on the ogbg-moltoxcast dataset, PBFA could not
significantly degrade the network even after 2662 flips and that on ogbg-molhiv, 0,0063% of the
total number of bits of the quantized GNNs’ parameters had to be flipped by PBFA before the GNN’s
output was degraded to random output, which constitutes a 15.75 times increase compared to the
community-based tasks. This increased resilience of GNNs trained on tasks requiring high structural
expressivity compared to community-based tasks cannot be explained entirely by the higher number
of GNN parameters found in the evaluated tasks requiring high structural expressivity, which mostly
stems from the MLPs employed in GIN: The increase in required flips for PBFA to entirely degrade
the network on the task requiring high structural expressivity is up to 2 orders of magnitudes larger
compared to the community-based task, while the increase in the attack surface is at most 1 order
of magnitude larger. Based on these observations, our work focuses on such tasks requiring high
structural expressivity, which are typically solved by GIN.

C PROGRESSIVE BIT FLIP ATTACK

The PBFA on CNN weights is an attack methodology that can crush a CNN by maliciously flipping
minimal numbers of bits within its weight storage memory (i.e., DRAM). It was first introduced as
an untargeted attack (Rakin et al., 2019). PBFA operates on integer quantized CNNs (as described
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above) and seeks to optimize eq. 11.

max
{Ŵq,l}

L
(
Φ(X; {Ŵq,l}Ll=1), t

)
− L

(
Φ(X; {Wq,l}Ll=1), t

)
s.t.

L∑
l=1

D(Ŵq,l, Wq,l) ∈ {0, 1, . . . , Nb}
(11)

where X and t are input batch and target vector, L is a loss function, f is a neural network, L is
the number of layers and Ŵq,l,Wq,l are the perturbed and unperturbed integer quantized weights
(stored in two’s complement) of layer l. In the original work by Rakin et al. (2019), the function L
used is the same loss originally used during network training. D(Ŵq,l,Wq,l) represents the Ham-
ming distance between clean- and perturbed-binary weight tensor, and Nb represents the maximum
Hamming distance allowed through the entire CNN.

The attack is executed by flipping the bits along its gradient ascending direction w.r.t. the loss of
CNN. That is, using the Nq-bits binary representation b = [bNq−1, . . . , b0] of weights w ∈ Wq,l,
first the gradients of b w.r.t. to inference loss L are computed

∇bL
[

∂L
∂bNq−1

, . . . ,
∂L
∂b0

]
(12)

and then the perturbed bits are computed via m = b⊕ (sign(∇bL)/2+0.5) and b̂ = b⊕m, where
⊕ denotes the bitwise xor operator.

To improve efficiency over iterating through each bit of the entire CNN, the authors employ a method
called progressive bit search (PBS). As noted earlier, we refer to this BFA variant employing PBS
as Progressive BFA or PBFA. In PBS, at each iteration of the attack (to which we synonymously
refer as attack run), in a first step for each layer l ∈ [0, L], the nb most vulnerable bits in Ŵq,l are
identified through gradient ranking (in-layer search). That is, regarding input batch X and target
vector t, inference and backpropagation are performed successively to calculate the gradients of bits
w.r.t. the inference loss and the bits are ranked by the absolute values of their gradients ∂L/∂b. In a
second step, after the most vulnerable bit per layer is identified, the gradients are ranked across all
layers s.t. the most vulnerable bit in the entire CNN is found (cross-layer search) and flipped.

Should an iteration of PBS not yield an attack solution, which can be the case if no single bit flip
improves the optimization goal given in eq. 11, PBS is executed again and evaluates increasing
combinations of 2 or more bit flips.

D DATASET DESCRIPTIONS

The task associated with the ogb-molhiv dataset is to predict whether a certain molecule struc-
ture inhibits human immunodeficiency virus (HIV) or not. In the larger ogb-molpcba dataset each
graph represents a molecule, where nodes are atoms, and edges are chemical bonds, and the task is
to predict 128 different biological activities (inactive/active). The ogb-moltox21 dataset contains
data with qualitative toxicity measurements on 12 biological targets. The ogbg-toxcast dataset
is another toxicity related dataset. The obgbg-molbace dataset is a biochemical single task binary
classification (inhibition of human β-secretase 1 (BACE-1)) dataset. The ogbg-molmuv dataset
is a subset of PubChem BioAssay commonly used for evaluation of virtual screening techniques.
The COLLAB dataset consist of ego-networks extracted from scientific collaboration networks. In
these datasets, each ego-network represents a researcher, and the objective is to forecast their spe-
cific area of research, such as high energy physics, condensed matter physics, or astrophysics.
GITHUB_STARGAZERS contains graphs depicting GitHub users’ social networks, divided based
on their interactions with popular machine learning and web development repositories. (Hu et al.,
2020; Gao et al., 2022a; Suresh et al., 2021; Wang et al., 2009; Morris et al., 2020). In tab. 2, an
overview of the datasets’ structure is provided.

E ABLATION STUDY

Data selection strategies Fig. 4 shows that the proposed data selection strategies for IBFA1/2
provide an improvement over random data selection. Further, fig. 4 illustrates that IBFA1/2 main-
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Table 2: Overview of the eight real-world benchmark datasets from OGB (Hu et al., 2020) and
TUDataset (Morris et al., 2020) that are used with number of graphs, average of number of nodes
and edges and recommended performance metric.

DATASET GRAPHS NODES EDGES TASKS METRIC TYPE

ogbg-molpcba 437929 26.0 28.1 128 AP Binary Multi-Task
ogbg-molmuv 93087 24.2 26.3 17 AP Binary Multi-Task
ogbg-molhiv 41127 25.5 27.5 1 AUROC Binary Single-Task
ogbg-moltoxcast 8576 18.5 19.3 617 AUROC Binary Multi-Task
ogbg-moltox21 7831 18.6 19.3 12 AUROC Binary Multi-Task
ogbg-molbace 1513 34.1 36.9 1 AUROC Binary Single-Task
GITHUB_STARGAZERS 12725 391.4 456.9 1 ACC Binary Single-Task
COLLAB 5000 74.5 4914.4 3 ACC Multi Class

Figure 4: Pre- (clean) and post-attack test quality metrics AP, AUROC or ACC for IBFA with
different data selection strategies (random, IBFA selection from 1% random subset and full data set)
on a 5-layer GIN trained on 6 ogbg-mol and 2 TUDataset datasets, number of bit flips, averages
of 10 runs. IBFA1 in top row, IBFA2 in bottom row.

tains a strong performance (and typically outperforms PBFA), even when utilizing a significantly
constrained sample for selecting the two batches (1% subset of the dataset).

Loss functions Fig. 5 illustrates the results if L1 loss is used instead of KL loss in the multi-task
binary classification setting. As can be seen from fig. 5, IBFA1/2 both fail to outperform PBFA on
the multi-task binary classification datasets if L1 loss is used instead of KL loss, which is in line with
our analytical results in sec. 4. As in fig. 4, 1% subset sampling was used for IBFA to accelerate the
experiments. Experiments on obg-molbace, ogbg-molhiv and GITHUB_STARGAZERS are
not included in this experiment as we already used L1 loss in our original experiments with these
datasets.

Figure 5: Pre- (clean) and post-attack test quality metrics AP, AUROC or ACC for IBFA with
different loss functions (L1 vs. KL loss, IBFA selection from 1% random subset) on a 5-layer GIN
trained on 4 ogbg-mol multi-task binary classification datasets and TUDataset COLLAB, number
of bit flips, averages of 10 runs. IBFA1 in top row, IBFA2 in bottom row.
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Progression of degradation IBFA2, as shown in fig. 6, can lead to a slightly faster and more
consistent degradation than IBFA1. Both IBFA variants can induce higher degradation per bit flip
than PBFA. For a set amount of bit flips, this can lead to an increased overall destructiveness of the
proposed method.

Figure 6: Progression of quality degradation of a 5-layer GIN trained on 3 ogbg-mol datasets
with increasing total number of bit flips induced by different BFA variants, averages of 10 runs.

Layer preferences In order to investigate the attack strategies employed by the evaluated attacks
PBFA, IBFA1, and IBFA2, we recorded the probabilities associated with an attack’s selection of
a specific component within the evaluated 5-layer GIN (refer to fig. 7). RBFA was configured to
exhibit a random and uniform distribution of bit flips across the layers and is not shown in fig. 7.
On the other hand, PBFA and IBFA1/2 exhibit distinct and characteristic patterns in terms of layer
selection. PBFA typically confines bit flips to only 2 out of the 5 layers and, in line with Hector et al.
(2022)’s findings for CNNs, displays a preference for layers near the input layer, while IBFA1/2
targets bit flips in at least 4 layers across the entire model, with the majority of flips occurring in the
learnable aggregation functions of the network, namely MLP1-4. The variations in layer selection
observed in IBFA1/2 support our hypotheses: a) introducing non-injectivity into a single layer alone
is insufficient, necessitating an attack on the overall expressivity of GIN, and b) IBFA1/2 effectively
targets the learnable neighborhood aggregation functions.

F OTHER GNN ARCHITECTURES

Motivated by our case study’s findings as well as to obtain a first impression on IBFAs capability to
generalize beyond GIN to other architectures, we repeated several experiments described in sec. 5
using Graph Convolutional Network (GCN) (Welling & Kipf, 2016) instead of GIN. In GCN, an
element-wise mean pooling approach is employed for the COMBINE operation, and the steps of
AGGREGATE and COMBINE are integrated in the following manner (Xu et al., 2019):

h(k)
v = ReLU

(
W ·MEAN

{
h(k−1)
u | u ∈ N(v) ∪ {v}

})
(13)

The mean aggregator used by GCN is not an injective multiset function and thus GCN’s expres-
sive power is limited (Xu et al., 2019). Fig. 8 illustrates results for a 5-layer GCN trained on 4
ogbg-mol datasets. As can be seen from fig. 8, IBFA1/2 outperforms or is on par with PBFA for
GCN. As in fig. 4, 1% subset sampling was used for IBFA to expedite the experiments. Although
not exhaustive, experiments in fig. 8 provide empirical support for our method’s ability to extend
beyond its initial target architecture, GIN.

G RELATION TO DEFENSE MECHANISMS

A cardinal aspect of BFAs is their relation with defense mechanisms (see sec. 1). It is plausi-
ble that without modifications, our attack may not successfully bypass hashing-based approaches,
e.g., (Javaheripi & Koushanfar, 2021; Li et al., 2021; Liu et al., 2020b), given the absence of mea-
sures to evade fundamental assumptions in such methods (e.g., selective flipping limited to the most
significant bit (MSB)). However, our approach, characterized by a unique loss function and opti-
mization goal compared to traditional BFA attacks, will result in a distinct gradient distribution.
This differentiation has the potential to challenge assumptions associated with honeypot-based de-
fenses or gradient obfuscation techniques. To substantiate this assertion, we empirically test our hy-
potheses by evaluating our approach against a honeypot-based defense called Neuropots (Liu et al.,
2023) and RADAR Li et al. (2021), a Run-time Adversarial Weight Attack Detection and Accuracy
Recovery system. Neuropots utilizes honeypots to guide the attacker towards easily reconstructable
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Figure 7: Probability of a component of a 5-layer GIN trained on 3 ogbg-mol datasets being
selected for a bit flip by one of the 3 evaluated attacks, averaged over 10 runs. MLP1-4 denote the
learnable neighborhood aggregation functions used in GIN, Linear denotes the linear output layer
used for graph classification.

Figure 8: Pre- (clean) and post-attack test quality metrics AP or AUROC for RBFA, PBFA, IBFA1/2
(selection from 1% random subset), on a 5-layer GCN trained on 3 ogbg-mol datasets, averages
of 10 runs.

neurons and incidentally possesses the ability to obfuscate gradients and safeguard critical neurons
while RADAR groups, interleaves and hashes weights using a hash function protecting the 2 MSBs
of each weight in a group. If a group is found to be compromised, the entire group is zeroed out.

Neuropots Neuropots (Liu et al., 2023), which we ported from CNNs, introduces a proactive de-
fense concept which involves the integration of a few ’honey neurons’ deliberately designed as vul-
nerabilities within the GNN model. These vulnerabilities are strategically placed to entice potential
attackers to inject faults into them, simplifying the process of fault detection and model recovery.
The authors leverage Neuropots to create a defense framework that incorporates trapdoors. They
devise a strategy for selecting honey neurons and propose two distinct methods for embedding trap-
doors into the CNN model: a theoretically derived re-training based variant and practically more
relevant heuristic variant. The retraining-based trapdoored model construction method is complex
and costly, suitable only for defenders with access to ample training data. In contrast, the one-
shot trapdoored model construction simplifies the process. Both approaches encompass a two-step
process: initially augmenting the activation level of a specified neuron to incorporate the trapdoor,
followed by fine-tuning connected weights to uphold the neuron’s influence on the subsequent layer,
thus reducing errors. This methodology proves effective for models utilizing full precision, albeit po-
tentially introducing slight quantization inaccuracies in quantized models. The single-step strategy
is universally applicable across all layers, inclusive of the input layer, achieved by directly modify-
ing the activation levels of honey neurons. Moreover, given the anticipated focal point of injected
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bit flips on these trapdoors, an approach utilizing checksums (specifically, the sum of the weights of
the trapdoors of a layer) for detection is employed to effectively identify faults within this subset.
Subsequently, the model’s accuracy is reinstated through a process akin to ’refreshing’ the identi-
fied faulty trapdoors. That is, compromised trapdoor neurons are replaced by their uncompromised
copies, which have been kept in a safe storage.

The practically more relevant one shot encoding process used by Neuropots can be described as
follows:

ol+1
i =

nl∑
j=1

wl
ji · olj = wl

0i · ol0 + . . .+

(
1

γ
· wl

hi

)(
γ · olh

)
(14)

where olh denotes the honey neuron at layer l, and wl
hi denotes the associated honey weights. For a

typical neuron, its influence on the next layer in the presence of BFAs can be formulated as ol+1 =
(w+∆w)·ol, where ∆w denotes the weight distortion arising from bit-flips. Conversely, considering
the one-shot trapdoor as an example, the impact of a ’honey neuron’ on the subsequent layer can be
represented as:

ol+1 =

(
1

γ
· w +∆w

)
· γ · ol = (w +∆w) · ol + (γ − 1) ·∆w · ol (15)

It is evident that ol+1 experiences an increase of (γ− 1) ·∆w · ol in comparison to a regular neuron.
Furthermore, it’s worth noting that attackers are more inclined to flip the MSBs of weights, resulting
in a substantial perturbation ∆w. Consequently, the impact of the ’honey neuron’ on ol+1 becomes
more pronounced, particularly for larger values of γ. This alteration propagates and accumulates
across subsequent layers, causing a substantial shift in the model’s output. The honey pots that are
altered during one-shot trapdoor construction are randomly chosen before model deployment and γ
is a hyperparameter provided by the user.

RADAR RADAR Li et al. (2021) was designed to safeguard CNN weights against PBFA. The
authors systematically organize weights, distributed within a layer, into distinct groups and employ
a checksum-based algorithm to generate a 2-bit signature for each group. During runtime, this
2-bit signature is computed and compared with a securely stored reference signature to identify
any bit-flip attacks within a group. Upon successful detection, they zero out all weights within
the affected group to mitigate the adverse impact on accuracy caused by malicious bit-flips. This
proposed approach is seamlessly integrated into the inference computation stage. Commonly used
detection methods like CRC or SEC-DED incur significant storage overhead and are impractical.
RADAR uses simple addition-based checksum scheme and enhance its resilience against attacks by
incorporating interleaving of weights and checksum on masked weights. To achieve this, RADAR
calculates M , the sum of G weights in a group, and generates a two-bit signature Si, j = {SA, SB}
from M for the i-th layer and j-th group as follows

SA =

⌊
M

256

⌋
%2, SB =

⌊
M

128

⌋
%2 (16)

whereby ⌊. . . ⌋ represents the floor operation, and % signifies the remainder operation. It is im-
portant to note that in hardware, the binarization step can be achieved through straightforward bit
truncation. Like the parity code, SB has the ability to identify an odd count of bit-flips on the MSBs
within a group of G weights. SB can’t detect even bit-flips, so RADAR uses SA as a second bit.
SA only detects double bit-flips if they happen in the same direction, like (0→1, 0→1) or (1→0,
1→0). Yet, flips like (0→1, 1→0) go undetected as they do not alter M’s value. RADAR mitigates
this vulnerability by calculating the checksum on masked and interleaved weights. RADAR applys
a randomly generated secret key as a mask to a weight group, influencing whether its two’s comple-
ment is considered during summation. The secret key varies in length (Nk bits) from one layer to
another. While a larger Nk decreases the chance of correct operation sequence guessing by attack-
ers, it raises implementation complexity. RADAR opts for Nk = 16, offering ample security with
216 diverse key combinations. Due to the vulnerability of addition checksum to double bit errors, an
attacker can strategically target multiple bits within the same group to evade detection. To address
this, RADAR calculates the checksum on a group of weights originally spaced m locations apart,
where m > 1. This technique, known as interleaving, is a recognized method used to handle burst
errors in communication systems. For instance, when there are N groups and each group comprises
weights initially NW locations apart, the k-th group includes weights at positions k +NW l, where
0 ≤ l < N and 0 ≤ k < NW . By default, RADAR uses NW = G and an additional offset of 3.
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Figure 9: Neuropots statistics for reconstruction (repair), bit flip detection rates for GIN under
IBFA1 (selection from 1% random subset, top) and PBFA (bottom) with varying amount of bit flips,
aggregated means across datasets, 10 runs per dataset per bar chart (460 runs in total). Rescaling
parameter set to γ = 2.0 (as proposed in the original paper) and honeypot percentage set to 5%.
GNN quality refers to pre- and post-attack quality metrics relative to the clean (unperturbed) model.

Results For this series of experiments, we used an identical experimental setup as previously de-
scribed in sec. 5, except that we gradually increased the number of attack runs (and therefore bit
flips) to find out up to which point Neuropots and RADAR have a good chance of reconstructing a
model attacked by PBFA/IBFA1. We omitted IBFA2 experiments to reduce runtime as it bears great
similarity to IBFA1.

As can be seen from fig. 9, which displays aggregated statistics over all evaluated datasets, IBFA1
significantly reduces bit flip detection and GNN reconstruction (i.e., the repaired GNN is identical to
the GNN before being subjected to BFA) rates of Neuropots compared to PBFA. The best observed
reconstruction rate of Neuropots for IBFA1 was 23% wherby models attacked by PBFA could be
fully reconstructed via Neuropots in up to 70% of the runs of 0-5 bit flips experiment. Furthermore,
despite Neuropots capability to actively steer a BFA attacker away from the most vulnerable neurons
and towards randomly selected trapdoor neurons, IBFA1 is capable of selecting weights in neurons
that degrade the model significantly more than PBFA. Fig. 10 displays the same statistics as fig. 9

Figure 10: RADAR statistics for reconstruction (repair), bit flip detection rates for GIN under
IBFA1 (selection from 1% random subset, top) and PBFA (bottom) with varying amount of bitflips,
aggregated means across datasets, 10 runs per dataset per bar chart (460 runs in total). Group size
G = 16, interleaving offset m = 3. GNN quality refers to pre- and post-attack quality metrics
relative to the clean (unperturbed) model.

for RADAR. While RADAR, as a hashing-based approach, cannot easily be bypassed by IBFA
without stealth modifications (such as, e.g., exploiting the fact that RADAR limits protection to
the 2 MSBs of each weight) as easily as Neuropots, IBFA1 detection rates are still significantly
lower than for PBFA, which, given RADARs operating mechanism, implies that IBFA1 more often
flips bits other than the MSB 2 bits compared to PBFA. Additionally, for a set amount of bit flips,
RADAR’s capability to repair the attacked GNN’s prediction quality after IBFA1 is notably limited
compared to PBFA. This indicates an inherent ability of IBFA1 to circumvent hashing-based defense
strategies and future evaluation of stealthy IBFA variants might be worthwhile.
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