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Abstract

Instruction-tuned LLMs can respond to explicit001
queries formulated as prompts, which greatly002
facilitates interaction with human users. How-003
ever, prompt-based approaches might not al-004
ways be able to tap into the wealth of im-005
plicit knowledge acquired by LLMs during pre-006
training. This paper presents a comprehensive007
study of ways to evaluate semantic plausibility008
in LLMs. We compare base and instruction-009
tuned LLM performance on an English sen-010
tence plausibility task via (a) explicit prompting011
and (b) implicit estimation via direct readout012
of the probabilities models assign to strings.013
Experiment 1 shows that, across model archi-014
tectures and plausibility datasets, (i) log likeli-015
hood (LL) scores are the most reliable indicator016
of sentence plausibility, with zero-shot prompt-017
ing yielding inconsistent and typically poor re-018
sults; (ii) LL-based performance is still inferior019
to human performance; (iii) instruction-tuned020
models have worse LL-based performance than021
base models. In Experiment 2, we show that022
LL scores across models are modulated by con-023
text in the expected way, showing high per-024
formance on three metrics of context-sensitive025
plausibility and providing a direct match to ex-026
plicit human plausibility judgments. Overall,027
LL estimates remain a more reliable measure028
of plausibility in LLMs than direct prompting.1029

1 Introduction030

The impressive empirical successes of large lan-031

guage models (LLMs) on many diverse (language)032

tasks (e.g., Devlin et al., 2019; Liu et al., 2019;033

Brown et al., 2020; Achiam et al., 2023; Bubeck034

et al., 2023; Guo et al., 2023) has fueled an ex-035

plosive increase in their popularity. As LLMs are036

becoming more and more integrated in people’s037

everyday lives, it is critical to provide reliable as-038

sessments of their capabilities.039

1Code will be released upon decision.

An important domain to test is LLMs’ general 040

world knowledge. Language training data contains 041

vast amounts of information about the world, in- 042

cluding both factual knowledge explicitly stated in 043

the input and distributional knowledge, inferrable 044

via text co-occurrence patterns (Elazar et al., 2022; 045

Kang and Choi, 2023). Leveraging world knowl- 046

edge is important both for specific NLP tasks (e.g., 047

information retrieval) and for general success of 048

a language model during interactions with a user 049

(e.g., establishing common ground). 050

We focus on one particular way to assess gen- 051

eral world knowledge: estimates of sentence plau- 052

sibility. Plausible sentences conform with world 053

knowledge whereas implausible sentences violate 054

it; thus, the ability to distinguish plausible and im- 055

plausible sentences is an indicator of underlying 056

world knowledge capabilities. 057

Traditionally, NLP researchers evaluated the 058

knowledge that LLMs distill into their weights 059

through a combination of log likelihood compar- 060

isons on minimal sentence pairs (Futrell et al., 061

2019; Warstadt et al., 2020; Hu et al., 2020; Aina 062

and Linzen, 2021; Pedinotti et al., 2021; Sinha 063

et al., 2022; Hu et al., 2024; Michaelov et al., 064

2023; Misra et al., 2024), probing the model’s 065

representations of a stimulus (Hewitt and Man- 066

ning, 2019; Kim et al., 2019; Eisape et al., 2022; 067

Müller-Eberstein et al., 2022; Kauf et al., 2023), 068

adversarial datasets (McCoy et al., 2019; Kassner 069

and Schütze, 2020), or causal interventions (Geiger 070

et al., 2020), among others. Given the closeness 071

to the unsupervised pretraining regime, minimal 072

sentence pair comparisons of likelihood measures, 073

in particular, have been widely adopted. 074

More recently, however, the focus of NLP re- 075

searchers has shifted towards LLMs that have been 076

fine-tuned to follow instructions (Chung et al., 077

2022; Touvron et al., 2023; Almazrouei et al., 078

2023; Jiang et al., 2023), as instruction tuning im- 079

proves the alignment of the models with user in- 080
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tent and leads to better generalization to unseen081

tasks (Ouyang et al., 2022). Because instruction-082

tuned models are designed to interact directly with083

a user through LLM-directed queries/prompts, nat-084

ural language prompting has emerged as a way to085

directly query LLMs for the knowledge they en-086

code (e.g., Li et al., 2022; Blevins et al., 2023).087

Critically, as access to log probabilities for newer088

models becomes restricted, it is important to under-089

stand what knowledge can be accessed, and what090

knowledge is inaccessible to the experimenter if091

prompting is the only way to interact with LLMs.092

The link between sentence plausibility and sen-093

tence probability is indirect: raw log probabilities094

have been shown to reflect a number of factors that095

might not be relevant for a given task, including096

low-level properties of the stimulus such as sen-097

tence length, word frequency (Kauf et al., 2023),098

and the number of surface forms that refer to the099

same concept (Holtzman et al., 2021). Thus, direct100

prompting approaches might provide a more direct101

estimate of plausibility by filtering out influences102

of those additional factors. However, initial direct103

comparisons of log likelihood and prompting mea-104

sures on different linguistic/semantic knowledge105

datasets has revealed that prompting may systemati-106

cally underestimate the model’s internal knowledge107

by requiring the models not only to solve the task,108

but also to correctly interpret the prompt and to109

translate their answer into the desired output for-110

mat (Hu and Levy, 2023; Hu et al., 2024).111

In this paper, we test LLMs’ knowledge of plau-112

sibility in single-sentence (Experiment 1) and con-113

textualized scenarios (Experiment 2). Our findings114

include:115

1. Log likelihood (LL) scores, while imperfect,116

are a more dependable measure of plausibility117

than natural language prompting evaluations.118

2. Instruction-tuning often alters an LLM’s log-119

likelihood scores in such a way that they be-120

come less consistent with human plausibility121

judgments relative to base model versions.122

3. LL scores can effectively model the contex-123

tual plausibility of events and replicate key124

patterns of human plausibility-judgment be-125

haviors. Nevertheless, the LLMs’ ability to de-126

tect an implausibility within a target sentence127

locally does not reliably affect their evaluation128

of the full sentence.129

2 Related Work 130

Evaluating single-sentence plausibility in 131

LLMs. In Experiment 1, we evaluate plausi- 132

bility estimates for single sentences describing 133

common events (Table 1). Earlier work in 134

NLP aimed at modeling event-based semantic 135

plausibility via distributional models of thematic 136

fit: verbs and arguments were often considered 137

in isolation, and the goal for the models was 138

to estimate a continuous score expressing to 139

what extent an argument noun (e.g., ball) was 140

fitting a given semantic role of a verb (e.g., the 141

patient role of to throw) (Baroni and Lenci, 2010; 142

Sayeed et al., 2016; Santus et al., 2017). In a 143

more natural evaluation setting, researchers used 144

sentence pairs derived from psycholinguistic 145

experiments that differed only for one argument 146

and displayed different degrees of plausibility (e.g., 147

The mechanic was checking the brakes vs. The 148

journalist was checking the brakes, from Bicknell 149

et al., 2010): in this case, a distributional model 150

had to dynamically “compose” the plausibility of 151

the two argument roles and guess which of the 152

two sentences was the most plausible one (binary 153

judgement task) (Lenci, 2011; Chersoni et al., 154

2019). 155

With the advent of Transformer-based language 156

models, the analysis of their semantic knowledge 157

has often been framed as a probability comparison 158

between sound and anomalous, or atypical sen- 159

tences (Michaelov and Bergen, 2020; Beyer et al., 160

2021; Pedinotti et al., 2021; Kauf et al., 2023; Misra 161

et al., 2023). Similarly to the binary judgement set- 162

ting, a model has to score a sentence pair where 163

two sentences differ only for the presence of a se- 164

mantic violation, and assign a higher score to the 165

plausible one. 166

Pedinotti et al. (2021) and Kauf et al. (2023) 167

specifically tested event plausibility knowledge in 168

LLMs. Pedinotti et al. (2021) showed that LLMs 169

achieve correlation with human judgements on 170

par or better than traditional distributional mod- 171

els. Kauf et al. (2023) investigated event plausi- 172

bility using minimal sentence pairs, in the task of 173

binary judgements. They showed that Transformer- 174

based models retain a considerable amount of event 175

knowledge from textual corpora and vastly outper- 176

form the competitor models (i.e., classical distribu- 177

tional models and LSTM baselines). Nevertheless, 178

both studies show LLMs’ generalization capabili- 179

ties to novel experimental manipulations of the tar- 180
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get sentences are limited and that log probabilities181

are affected by task-irrelevant information, such as182

the frequency of words within a target sentence.183

Evaluating context-dependent linguistic judg-184

ments in LLMs. In Experiment 2, we evaluate185

context sensitivity of LLM plausibility estimates186

(Table 4). Initial work in this domain shows that187

(Dutch) LLMs can modulate their probability esti-188

mates to accommodate a previously unlikely target189

word (e.g., A peanut falls in love) following a short190

licensing context (Michaelov et al., 2023) - such191

scenarios, similarly, were shown to elicit a reduced192

N400 amplitude in humans, as a neural signature193

of a decrease of processing complexity of the event194

(Nieuwland and Van Berkum, 2006; Rueschemeyer195

et al., 2015). Nevertheless, probability-based judge-196

ments of LLMs can also be adversely influenced197

by context, for example in cases where the con-198

text contains information that is not related to the199

task (for syntax: e.g., Sinha et al., 2022, for factual200

knowledge: e.g., Kassner and Schütze, 2020).201

Comparing log likelihood measurements and202

prompt-based methods. The direct interaction203

with models through natural language prompts is204

exciting for many reasons, including that it facili-205

tates knowledge exploration in a way that begins to206

mimic the experimental procedure used for humans207

(Lampinen, 2022). Nevertheless, Hu and Levy208

(2023); Hu et al. (2024) showed that the use of209

metalinguistic prompts for model evaluation may210

underestimate their true capabilities. They com-211

pared LLMs’ syntactic/semantic knowledge across212

four minimal sentence pair datasets and showed213

that, on average, direct probability measures were214

a better indicator of these knowledge types than an-215

swers to prompts (they also used the DTFit dataset,216

but their prompts did not explicitly probe the notion217

of plausibility).218

Evaluating the alignment of instruction-tuned219

models with humans. Even though instruction-220

tuning has been claimed to better align the represen-221

tations of LLMs and those computed by the human222

brain (Aw et al., 2023), others show that it does223

not always help for the alignment at the behavioral224

level (Kuribayashi et al., 2023). However, the work225

in this domain is still sparse.226

3 Experiment 1: Explicit vs. Implicit227

Event Plausibility Judgments228

In this section, we compare explicit (prompt-based)229

and implicit (LL-based) plausibility judgments in230

base- and instruction-tuned LLMs across base and 231

instruction-tuned models from 3 families. 232

3.1 Datasets 233

We use two sentence sets adapted from previous 234

studies and compare model scores with human plau- 235

sibility judgements. A schematic illustration of the 236

items in each of the datasets can be seen in Table 1. 237

EventsAdapt. The EventsAdapt dataset (Fe- 238

dorenko et al., 2020) is composed of 391 items, 239

each of which includes (i) a plausible active sen- 240

tence that describes a transitive event in the past 241

tense (The teacher bought the laptop), (ii) the im- 242

plausible version of the same sentence, constructed 243

by swapping the noun phrases (The laptop bought 244

the teacher), as well as passive voice alternatives 245

(The laptop was bought by the teacher and The 246

teacher was bought by the laptop). The items fall 247

into one of two categories: a) animate-inanimate 248

items (AI; The teacher bought the laptop), where 249

the swap of the noun phrases leads to impossible 250

sentences; and b) animate-animate ones (AA; The 251

nanny tutored the boy), where role-reversed sen- 252

tences have milder plausibility violations. Given 253

these differences, we model the two subsets inde- 254

pendently. 255

DTFit. The DTFit dataset (Vassallo et al., 2018) 256

contains 395 items, each of which includes (i) a 257

plausible active sentence that describes a transitive 258

event in the past tense, where an animate agent is 259

interacting with an inanimate patient that is either 260

typical for the agent (The actor won the award); 261

(ii) or less plausible version of the same sentence, 262

constructed by varying the inanimate patient (The 263

actor won the battle). The different degrees of 264

typicality depend on the interaction of the patient 265

with both the agent and the verb (e.g. a battle may 266

be a typical patient for a winning-event, it is just not 267

typical given that the agent is an actor). Thus, word 268

content and not word order is used to distinguish 269

between plausible and implausible sentences. 270

3.2 Human Plausibility Judgments 271

For DTFit, participants answered questions of the 272

form “How common is it for a {agent} to {predi- 273

cate} a {patient}.” (e.g. “How common is it for an 274

actor to win an award?” on a Likert scale from 1 275

(very atypical) to 7 (very typical) (Vassallo et al., 276

2018). For EventsAdapt, participants evaluated the 277

extent to which each sentence was “plausible, i.e., 278

likely to occur in the real world” on a Likert scale 279
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Dataset Plausible? Possible? Voice Example Source

EventsAdapt
(AA, unlikely)

Yes Yes Active The nanny tutored the boy.

Fedorenko et al. (2020)

Passive The boy was tutored by the nanny.
No Yes Active The boy tutored the nanny.

Passive The nanny was tutored by the boy.

EventsAdapt
(AI, impossible)

Yes Yes Active The teacher bought the laptop.
Passive The laptop was bought by the teacher.

No No Active The laptop bought the teacher.
Passive The teacher was bought by the laptop.

DTFit
(AI, unlikely)

Yes Yes Active The actor won the award. Vassallo et al. (2018)No Yes Active The actor won the battle.

Table 1: Example stimuli from the datasets used in Experiment 1. Names in parentheses indicate event participant
animacy (AI = animate agent, inanimate patient; AA = animate agent, animate patient) and the plausibility type of
the implausible sentences in the dataset (impossible vs. unlikely).

from 1 (completely implausible) to 7 (completely280

plausible) (Kauf et al., 2023). We averaged hu-281

man judgments to obtain a single score for each282

sentence, and assigned a hit every time that the283

plausible version of the sentence was scored higher284

than the corresponding implausible one by the hu-285

man participants pool.286

3.3 Model Plausibility Judgments287

Models. For our experiments, we used the Base288

and the Instruct version of three popular autoregres-289

sive LLMs: Mistral (Jiang et al., 2023), Falcon290

(Almazrouei et al., 2023), and MPT (MosaicML291

NLP Team, 2023), all of them with 7B parame-292

ters. We include GPT2-XL (Radford et al., 2019)293

(1.5B parameters) as a baseline model.294

Metrics. We adopt the evaluation paradigm by295

Hu and Levy (2023) and evaluate models using296

(i) LL scores, and (ii) several zero-shot prompting297

methods (Table 2). The LL score is the sum of the298

log-probabilities of each token wi in a sentence,299

conditioned on the preceding sentence tokens w<i.300

Our prompts, Sentence Choice I/II, Likert Scoring301

and Sentence Judgment are designed to explicitly302

query the LLMs’ knowledge of plausibility, using303

either the same or similar instructions to the task304

that humans solved (see §3.2). For all prompting305

methods except Likert Scoring, we compare the306

probabilities that models assign to ground-truth307

continuations (in green) over implausible continu-308

ations (in red). For Likert Scoring, we ask models309

to generate a number from a constrained set of310

answers, using the outlines python library2 and311

compare the generated scores for plausible vs. im-312

plausible sentences (the results remain consistent313

across free vs. constrained generation prompting,314

2https://github.com/outlines-dev/outlines

see SI §B, Figure 5).3 In our main experiment, 315

all prompts are framed using the direct plausibility 316

query “is plausible”. Supplementary analyses show 317

that this pattern of results remains consistent for 318

alternative queries, such as “makes sense” (SI §B, 319

Figure 6) and “is likely” (SI §A, Figure 4). 320

Binary accuracy. For each dataset item, we 321

compare the scores/generations of the minimally 322

different plausible and the implausible sentence 323

conditions, and assign a hit for every time a higher 324

score was assigned to the plausible version, the 325

same as for the human scores. The binary accuracy 326

for all models is the ratio of dataset items in which 327

plausible sentences received a higher probability 328

score. The chance level is 50% for all benchmarks 329

except Sentence Judgment, where, following Hu 330

and Levy (2023), we compare the models’ propen- 331

sity to output the ground truth answer in both plau- 332

sible and implausible settings, leading to a chance 333

performance of 25%. 334

3.4 Results 335

Result 1: LL scores are a more reliable plausibility 336

measure in LLMs than prompting. 337

Our analysis reveals that across model archi- 338

tectures and plausibility datasets, LL scores are 339

a more reliable indicator of plausibility knowledge 340

than prompt-based approaches. This shows that 341

there is a direct connection between plausibility 342

and probability measures derived from the context 343

prediction pretraining objective of LLMs (see also 344

3Note that the DTFit dataset was included in the study by
Hu and Levy (2023) and was evaluated using different models
and different prompts. Their prompts are not applicable to
the EventsAdapt dataset and do not prompt models explic-
itly for plausibility judgments. We include an evaluation of
our models on their best-performing prompt for DTFit as a
supplementary analysis (SI §A, Figure 4).
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Evaluation type Example

Log Likelihood Score {The nanny tutored the boy., The boy tutored the nanny.}
Sentence Choice I Here are two English sentences: 1) The nanny tutored the boy. 2) The boy tutored the nanny. Which

sentence is more plausible? Respond with either 1 or 2 as your answer. Answer: {1, 2}
Sentence Choice II You are evaluating the plausibility of sentences. A sentence is completely plausible if the situation it

describes commonly occurs in the real world. A sentence is completely implausible if the situation
it describes never occurs in the real world. Tell me if the following sentence is plausible. The nanny
tutored the boy. Respond with either Yes or No as your answer. Answer: {Yes, No}

Likert Scoring You will be given a sentence. Your task is to read the sentence and rate how plausible it is. Here is the
sentence: "The nanny tutored the boy." How plausible is this sentence? Respond with a number on
a scale from 1 to 7 as your answer, with 1 meaning "is completely implausible", and 7 meaning "is
completely plausible". Answer: { 7, 6, 5, 4, 3, 2, 1 }

Sentence Judgment Here is a sentence: The nanny tutored the boy. Is this sentence plausible? Respond with either Yes or
No as your answer. Answer: {Yes, No}

Table 2: Example evaluation strategies. The prompts are extended and adapted from Hu and Levy (2023).

(a) EventsAdapt (AA, unlikely) (b) DTFit (AI, unlikely) (c) EventsAdapt (AI, impossible)

Figure 1: Results of implicit vs. explicit plausibility judgment performance experiments

Hu and Levy, 2023). Nevertheless, for the best-345

performing model (across all prompting metrics,346

except Sentence Choice II), Mistral Instruct,347

Sentence Choice I certain prompting setups con-348

sistently match (Figure 1, panels (b), (c)) or even349

outperform (Figure 1, panel (a)) log likelihood task350

performance. Despite this success, our comparison351

critically shows that there is not a single prompt352

that reliably taps into plausibility knowledge across353

model architectures, and none of our tested models354

are robust against slight variations in the way in355

which prompting is set up (see also Sclar et al.,356

2023). In fact, many of the prompting methods357

lead to chance-level performance or below-chance358

performance for most models, even though their359

log probabilities evidence substantial knowledge360

about what events are plausible vs. implausible.361

This result is in line with Hu and Levy (2023)’s362

finding of a competence-performance gap when363

probing models’ metalinguistic judgments.364

Result 2: LL scores encode substantial plausibility365

knowledge but fall short of human performance.366

The LL results in Figure 1 show that LLMs ac-367

quire substantial event knowledge from distribu-368

tional linguistic patterns; all of them performing369

well above chance on the task. Nevertheless, they 370

consistently fall short of human performance and 371

do not improve reliably over older LLMs (espe- 372

cially in cases where an event is comprised of two 373

animate event participants) (Figure 1, left panel): 374

On EventsAdapt (AI, impossible), all models were 375

successful in distinguishing plausible and implausi- 376

ble sentences, even though all but one model (Fal- 377

con Base) fell short of human performance (all 378

Bonferroni-corrected ps > .05 except for Falcon 379

base: t = −2.14, p = .02). At the same time, 380

none of the models significantly outperformed the 381

GPT2-XL baseline model. On the more challeng- 382

ing EventsAdapt (AA, unlikely) subset, all models 383

performed significantly worse than humans in dis- 384

tinguishing AA plausible from implausible events 385

(all ps < .001), and only one model, Mistral Base, 386

significantly improved over the smaller baseline 387

model (t = 2.96, p < .05; all other ps > .05). 388

Lastly, the high task performance on DTFit (AI, un- 389

likely), we observe that LLMs can distinguish plau- 390

sible and implausible AI event descriptions even 391

when low-level distributional cues (like selectional 392

preference restrictions) cannot be used to distin- 393

guish the minimal pairs. Although all models still 394
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Mistral Falcon MPT

Base Instruct Base Instruct Base Instruct

EventsAdapt 0.82** 0.73 0.79 0.74 0.71 0.71
EventsAdapt 0.95 0.93 0.97* 0.94 0.93 0.93
DTFit 0.91 0.93* 0.92 0.91 0.93 0.93

Table 3: Log Likelihood results across metrics and tar-
get regions. Significant differences from dependent
t-tests between Base and Instruct models are marked
with asterisks (p < .05: *; p < .01: **).

fall short of human performance for this dataset at395

ps < .001, all but two of the tested LLMs signifi-396

cantly improved over the GPT2-XL baseline on this397

dataset (only Mistral Base and Falcon Instruct are398

not better, ps > .05).399

Result 3: Instruction-tuning worsens LL score400

alignment with human plausibility judgments.401

Next, we zoom in on the comparison of LL402

scores derived from Base vs. Instruct variants of the403

same model. Because instruction tuning constrains404

model behaviors to align with human-desired re-405

sponse characteristics (Zhang et al., 2023; Chia406

et al., 2023), it is reasonable to assume that the407

models’ learned probability distributions align bet-408

ter with human expectations of plausible sequences409

than the base variant, which might be more sus-410

ceptible to the reporting bias in textual corpora411

(Gordon and Van Durme, 2013).412

Figure 2: Base vs. instruct model performance in active
and passive sentence pairs

413

414

A comparative analysis of the Base and Instruct415

results across different model architectures reveals416

no beneficial effect of instruction-tuning for gaug-417

ing event plausibility through LL measurements:418

In all but one instance do instruction-tuned models419

performed similar or even slightly worse than their420

corresponding base model (Table 3). Interestingly,421

the gap is most noticable for the most challenging422

dataset, EventsAdapt (AA, unlikely). An investiga-423

tion of this difference shows that certain low-level424

features of the input may disproportionately af-425

fect the LLs that instruction-tuned models assign to426

word sequences: much of the performance differ-427

ence is due to the instruction-tuned models’ worse428

performance in discerning plausible and implausi- 429

ble active-voice sentences (see Figure 2). This vari- 430

ance highlights the fact that even though direct mea- 431

surements of model-derived string probabilities in 432

many cases encode task-relevant information (e.g., 433

modeling of grammaticality, Warstadt et al. (2020), 434

of N400 effects, Michaelov and Bergen (2020), 435

etc.), they are additionally influenced by low-level 436

features of the input (Pedinotti et al., 2021; Kauf 437

et al., 2023). 438

4 Experiment 2: Context-Dependent 439

Plausibility Judgments 440

Experiment 1 has shown that LLs are the most reli- 441

able, albeit imperfect, metric for probing the plau- 442

sibility of isolated sentences in LLMs. However, 443

most of the time, humans and LLMs to not process 444

sentences in isolation, but rather as part of a larger 445

context. On the other hand, language models have 446

also been shown to be sensitive to priming effects 447

from inter-sentential context (Misra et al., 2020; 448

Kassner and Schütze, 2020). In Experiment 2, we 449

investigate whether LLMs appropriately modulate 450

their judgments of event plausibility when provided 451

with different discourse contexts. Specifically, we 452

test how and to what extent judgments of event 453

plausibility from minimal pair accuracies change 454

in English LLMs in the presence of (i) supporting 455

or (ii) non-supporting but related single-sentence 456

contexts. 457

4.1 Dataset 458

To test the sensitivity of the LLM plausibility 459

judgments to discourse context effects, we use 460

a dataset from language neuroscience, collected 461

by Jouravlev et al. (2019). This dataset includes 462

100 items in three experimental conditions: a con- 463

trol condition (Control), in which the target sen- 464

tence describes a plausible situation and the (op- 465

tional) context sentence adds extra information; a 466

semantically anomalous condition (SemAnom), in 467

which the target sentence describes an implausible 468

situation and the context sentence does not pro- 469

vide licensing information; and a critical condition 470

(Critical), which shares the same target sentence 471

with SemAnom, but here, the context sentence makes 472

it plausible (see the examples in Table 4). 473
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Target sentence

Condition Context sentence (optional) Prefix Tgt. word Spill-over region

Control The kids were looking at a canary in the pet store. The bird had a little beak and a bright yellow tail.
SemAnom Anna was definitely a very cute child. The girl had a little beak and a bright yellow tail.
Critical The girl dressed up as a canary for Halloween. The girl had a little beak and a bright yellow tail.

Table 4: Sentence manipulations in the dataset by Jouravlev et al. (2019). Tgt. – Target.

4.2 Metrics474

We evaluate the models’ context-aware plausibility475

judgements on three critical metrics:476

General Plausibility. This metric measures the477

propensity of models to assign a higher probability478

to plausible sentences than to minimally different479

implausible sentence variants when no influencing480

context is present (similar to §3). For every dataset481

item, we assign a model a hit in case482

P (targetContr.) > P (targetCrit.)483

Context-Dependent Plausibility. This metric mea-484

sures the ability of models to increase the probabil-485

ity they assign to an a priori implausible sentence486

in the presence of a licensing context. For every487

dataset item, we assign a model a hit in case488

P (targetCrit.|contextCrit.) > P (targetCrit.)489

Context Sensitivity. This metric measures the490

models’ ability to selectively update sentence prob-491

abilities. For every dataset item, we assign a model492

a hit in case493

P (targetCrit.|contextCrit.) >
P (targetCrit.|contextAnom.)

494

For each metric, we evaluate model performance495

the likelihood they assign (i) a critical word within496

the target sentence and (ii) the target sentence itself.497

If a critical word consists of multiple tokens, we498

use the sum of the log likelihood scores of the word499

tokens. Whereas critical/target word likelihoods500

measures the ability of models to detect a contex-501

tually unexpected linguistic event, target sentence502

likelihood measures investigate whether implau-503

sibility is reliably reflected in the probability the504

models assign to tokens after encountering a se-505

mantically anomalous item. This is because the506

token likelihood of plausible and implausible sen-507

tences are shared up until the first occurrence of a508

contextually unlicensed word.509

4.3 Results 510

Result 1: Target word LLs are better modulated by 511

context than target sentence LLs. 512

When comparing target word vs. target sentence 513

LLs, a clear trend emerges: all models perform 514

extremely well (around 95%) across all metrics 515

when comparing the probabilities of target words 516

(Table 5, Word columns); at the same time, when 517

using the likelihoods they assign to sentences as an 518

indicator of event plausibility knowledge, perfor- 519

mance degrades for two of the three metrics (Table 520

5, Sent. columns). In particular, even though al- 521

most all LLMs are able to distinguish plausible 522

and implausible sentences (General Plausibility, 523

similar to §3); and are able to modulate the prob- 524

ability they assign an unexpected sentence in the 525

presence of licensing context, they fail to update 526

the sentence probabilities selectively (this is evi- 527

denced by the substantial drop in performance for 528

the Context Sensitivity metric across LLMs (al- 529

though they perform significantly better than the 530

baseline GPT2-XL model). This pattern suggests 531

that while a semantically licensing context assists 532

the models in up-weighing the probability of an 533

otherwise implausible target word/event descrip- 534

tion (see Context-Dependent Plausibility; in line 535

with Michaelov et al., 2023), contextual implausi- 536

bility is not reliably reflected in LLMs’ sentence 537

likelihoods. In particular, once an unexpected tar- 538

get word has been encountered (which the LLMs 539

are able to discern, see Context Sensitivity, Word 540

columns), the LLMs appear to quickly adjust the 541

predictions in the post-target region, in some cases 542

Gen. Plaus. Context-Dep. Plaus. Context Sens.

Word Sent. Word Sent. Word Sent.

Mistral (base) 0.90 0.93 0.93 1.00 0.97 0.79
Mistral (instr) 0.97 0.90 0.93 1.00 0.90 0.84
Falcon (base) 0.96 0.94 0.93 0.92 0.98 0.79
Falcon (instr) 0.98 0.91 0.95 0.95 0.96 0.77
MPT (base) 0.96 0.93 0.95 1.00 0.99 0.76
MPT (instr) 0.94 0.93 0.93 1.00 0.95 0.80
GPT2-xl 0.91 0.85 0.88 1.00 0.91 0.64

Table 5: LL results for Expt 2. Gen.–General; Context-
Dep.–Context-Dependent; Plaus.–Plausibility; Sens.–
Sensitivity; Word/Sent.–scores for target word/sentence.
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Figure 3: Target word LLs replicate patterns of human sentence sensibility judgments. Human data from Jouravlev
et al. (2019). Bars indicate average plausibility of sentences (Human) and average target word log likelihoods
(LLMs). Dots represent individual sentence scores (averaged across the participant pool for Human).

assigning even higher probabilities to post-target543

words than in the Critical condition, with the544

consequence that the scores for anomalous sen-545

tences and contextually-licensed ones differ less546

significantly at the sentence level.547

This suggests that a semantically-licensing con-548

text helps a model in predicting an otherwise549

anomalous word, but the global probability of the550

target sentence benefits less from a the specific551

context. After meeting an unexpected target word,552

LLMs seem to be quickly able to adjust the pre-553

dictions for the following ones, with the conse-554

quence that the scores for anomalous sentences and555

contextually-licensed ones differ less significantly556

at the sentence level.557

Result 2: Context-modulated LLs align with human558

contextual judgment patterns.559

Finally, we investigate how contextual plausi-560

bility judgments correspond to human behavior561

for the same stimuli. We focus on the sensibility-562

judgment task, in which participants were asked563

to decide if a target sentence made sense (i) to564

them within the provided context, or (ii) to another565

person who did not have access to the context sen-566

tence (Jouravlev et al., 2019). Here, we model this567

dataset in a ‘single-participant setting’, by expos-568

ing the LLMs to the full items and comparing the569

log probabilities assigned to the target words in570

the three experimental conditions, with or without571

licensing context. Across models, we see a remark-572

able match between human- and model-derived573

plausibility scores, both in the isolated sentence574

and the contextualized setup. For completeness,575

we report results for the exact replication of the576

human study in LLMs, using Sentence Judgment577

prompts in SI §D. We note that, again, LLs provide578

a better fit to human data, even though the prompt-579

ing results for Instruct models matched the human580

behavioral patterns qualitatively (see also SI §C).581

5 Conclusion 582

Overall, we show through careful investigation that 583

LL scores, reflecting co-occurrence patterns dis- 584

tilled by LLMs from the task of next-word predic- 585

tion at scale during pre-training, remain a more 586

reliable measure of sentence plausibility than both 587

(i) direct prompting and (ii) log likelihood scores 588

from models finetuned to follow instructions. This 589

is true in scenarios that encompass both isolated 590

and context-dependent sentence plausibility esti- 591

mates. Even though instruction-tuning has been 592

claimed to align LLMs and human brain represen- 593

tations (Aw et al., 2023), other studies show that 594

it does not always help for the alignment at the 595

behavioral level (Kuribayashi et al., 2023). The 596

results presented in our work are consistent with 597

the latter finding. 598

Concerning LLMs’ sensitivity to sentence con- 599

text, we observe that by using LL scores at the level 600

of the target word, all the models perform around 601

90% with respect to the ground truth and are well 602

aligned to human judgement patterns. On the other 603

hand, when using sentence-level LL scores, we 604

notice that the models have the tendency to "re- 605

balance" the log likelihoods after processing an 606

unexpected word, with the consequence that se- 607

mantically anomalous sentences and contextually- 608

licensed ones become harder to distinguish. 609

Although it is possible that model- and task- 610

specific prompts will outperform raw LL scores 611

as a way to estimate sentence plausibility, our work 612

highlights that LL scores are an easy, zero-shot way 613

to assess LLMs’ implicit knowledge. Thus, getting 614

a raw LL estimate of model performance can pro- 615

vide an initial estimate of whether or not custom 616

prompt-based solutions can be successful or—in 617

some cases—obviate the need for prompt tuning 618

altogether. 619
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Limitations620

A first, obvious limitation of this work is that it621

has been conducted on English datasets, so we622

cannot be sure that our findings on LLMs and event623

knowledge would generalize to other languages.624

Second, even though our prompting setup mim-625

ics that of humans, it differs in substantial ways.626

For example, whereas we ask LLMs to evaluate627

sentences in isolation, participants assign scores628

within the context of the full experiment, having629

access to their answer history.630

Lastly, we only focused on LLMs up to 7 billion631

parameters, due to the limit of our computational632

resources, and we only used three representative633

models in their Base and in their Instruct version.634

It is possible that with larger and more powerful635

models the performance will improve and the exist-636

ing gap with human performance on distinguishing637

plausible vs. implausible sentences will be closed638

(cf. Kauf et al., 2023).639

Ethical Considerations640

Our work aims to better understand and charac-641

terize the capacities of models, and contributes to642

work highlighting the importance of open access to643

model representations. Our work shows that LLM644

pre-training distills a wealth of world knowledge645

into the models’ weights, but cannot guarantee the646

consistency of these representations with human647

world knowledge. Consequently, LLMs should not648

be expected to generate statements that are consis-649

tent with human world knowledge. General ethical650

concerns about LLMs and their impact on human651

life, especially as they become more and more inte-652

grated into people’s everyday lives, also apply to653

our work.654
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Supplementary Information917

A Additional prompting results for DTFit918

Prompt Example

Word Com-
parison

What word is most likely to come next in the
following sentence (award, or battle)? The
actor won the {award, battle}

Table 6: Additional prompt used for Vassallo et al.
(2018) evaluation in Figure 4. This prompt is the best-
performing prompt for this dataset in Hu and Levy
(2023).

919

Figure 4: Prompting results for DTFit, including best
prompt from Hu and Levy (2023).

920

921

B Evidence for invariance to prompting922

variations for DTFit923

B.1 Free vs. constrained generation924

Here, we evaluate prompt-based generation in two925

ways: using a free vs. constrained generation926

paradigm. In the free paradigm, we ask the model927

to generate up to 20 tokens in the completion and928

find responses that include a valid response (ex-929

actly one numeral between 1-2 or 1-7). In the930

constrained paradigm, we only allow completions931

from a predefined set of tokens, i.e., either the932

set {1,2} or the set {1,2,3,4,5,6,7}, using a regex-933

matching generation procedure from outlines4.934

Results are roughly consistent across metrics, yield-935

ing no advantage of one over the other prompting936

paradigm in both Sentence Choice and Likert Scor-937

4https://github.com/outlines-dev/outlines

ing paradigms. 938

Figure 5: Comparison of free vs. constrained generation
prompting. Note that MPT results are missing for the free
Likert Scoring method.

939

940

B.2 Query types 941

Figure 6: Comparison of different query types for
prompts of type Sentence Choice I.

942

943

C Replicating the sensibility-judgment 944

task by Jouravlev et al. (2019) using 945

sentence log likelihoods 946

In Figure 7, we replicate the human experiment by 947

Jouravlev et al. (2019) in LLMs using sentence log 948

likelihood measurements. We generally observe 949

similar trends than the comparison with the target 950

word measurement. 951

D Replicating the sensibility-judgment 952

task by Jouravlev et al. (2019) using 953

prompting 954

To replicate the human experiment by Jouravlev 955

et al. (2019) in LLMs using prompting, we queried 956

the models using an adjusted Sentence Judgment 957

prompt (see Table 2): [No context:] Here is a 958

sentence: “sentence”. Does this sentence make 959

sense? Respond with either Yes or No as your 960

answer. [With context:] Here is a context: “con- 961

text”, and here is a sentence: “sentence”. Does 962

12
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Figure 7: Replicating the sensibility-judgment task in LLMs using sentence LL measures. Human data from
Jouravlev et al. (2019).

this sentence make sense considering the context?963

Respond with either Yes or No as your answer. We964

report our results in Figure 8.965

We observe that while GPT2-XL and most base966

models often favor one answer option (GPT2-XL967

almost always assigns more probability mass to968

Yes rather than No in this setup; see also Figure 1,969

Sentence Judgment), the instruction-tuned models970

exhibit more a nuanced behavior: These models are971

more consistent with human responses in this bi-972

nary sensitivity judgment task, matching them qual-973

itatively. Nevertheless, instruction-tuned models974

tend to (i) systematically underestimate the contex-975

tual plausibility of the Critical sentences (Figure976

8, upper panel), and (ii) systematically overesti-977

mate the plausibility of implausible sentences rela-978

tive to humans (SemAnom conditions and Critical979

condition, Figure 8, lower panel) in the binary980

sensibility-judgment task setup.981
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Figure 8: Replicating the sensibility-judgment task in LLMs using prompting via the adjusted Sentence Judgment
prompt in §D. Human data from Jouravlev et al. (2019). We use a barplot to visually set apart this prompt-based
comparison vs. LL-based ones in Figures 3, 7.

14


	Introduction
	Related Work
	Experiment 1: Explicit vs. Implicit Event Plausibility Judgments
	Datasets
	Human Plausibility Judgments
	Model Plausibility Judgments
	Results

	Experiment 2: Context-Dependent Plausibility Judgments
	Dataset
	Metrics
	Results

	Conclusion
	Additional prompting results for DTFit
	Evidence for invariance to prompting variations for DTFit
	Free vs. constrained generation
	Query types

	Replicating the sensibility-judgment task by jouravlev2019tracking using sentence log likelihoods
	Replicating the sensibility-judgment task by jouravlev2019tracking using prompting

