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Abstract

Coordinated ensemble spiking activity is widely observable in neural recordings
and central in the study of population codes, with hypothesized roles including
robust stimulus representation, interareal communication of neural information, and
learning and memory formation. Model-free measures of synchrony characterize
the coherence of pairwise activity, but not higher-order interactions; this limitation
is transcended by statistical models of ensemble spiking activity. However, existing
model-based analyses often impose assumptions about the relevance of higher-order
interactions and require multiple repeated trials in order to characterize dynamics in
the correlational structure of ensemble activity. To address these shortcomings, we
propose an adaptive greedy filtering algorithm based on a discretized mark point-
process model of ensemble spiking and a corresponding precise statistical inference
framework to identify significant coordinated higher-order spiking activity. In
the course of developing the statistical inference procedures, we also show that
confidence intervals can be constructed for greedily estimated parameters. We
demonstrate the utility of our proposed methods on simulated neuronal assemblies.
Applied to multi-electrode recordings of human cortical ensembles, our proposed
methods provide new insights into the dynamics underlying localized population
activity during transitions between brain states.

1 Introduction

Coordinated ensemble spiking has been observed in a variety of brain areas, prompting a range of
hypotheses about its role in cognitive function. Studies have documented synchronous spiking at all
levels of the mammalian visual pathway [1, 2, 3]. Coordinated neural activity has additionally been
hypothesized to influence interareal communication and the flow of neural information [4, 5, 6, 7, 8],
and been postulated to be mediated by oscillations in local field potentials [9, 10, 11]. The study of
synchrony is also closely tied to memory [12, 13, 14].

The prevalence of coordinated spiking and its functional implications for a range of neural processes
have motivated both model-free and model-based approaches to its characterization. An intuitive
model-free metric is the pairwise correlations of spike trains smoothed by a Gaussian (or exponential)
kernel [15, 16]; several pairwise distance metrics have been proposed [17] as alternatives. Though
the coherence of pairwise activity can be described, such measures do not capture higher-order
coordination, and are limited in the ability to model dynamics in or determine the significance of
pairwise coherence without repeated trials.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Statistical models of neuronal ensemble activity transcend the limitation of model-free metrics
to pairwise comparisons. Two widely-used approaches are the maximum entropy models and
point process generalized linear models (GLM) [18, 19]. Maximum entropy models describe the
state of the neural population only in terms of its instantaneous correlational structure [20, 21].
Models are estimated to match observed firing rates and all pairwise (and potentially higher-order)
correlations simultaneously. Alternatively, point process GLMs for ensemble spiking [22, 23]
characterize the influence of past population activity, or other relevant covariates. Though useful in
estimating functional connectivity [24, 25], each neuron must be assumed conditionally independent
due to regularity conditions that prohibit simultaneous spiking events [26, 27, 28]. This can be
circumvented by using an equivalent marked point processes (MkPP) representation that explicitly
models each disjoint simultaneous spiking event, as derived in [29] and expounded upon in [27].
MkPP representations of ensemble activity have also been utilized to analyze neuronal population
coding in unsorted spiking data [30, 31]. A related approach models disjoint simultaneous spiking
events as log-linear combinations of point process models, hence permitting an intuitive representation
of excess or suppressed synchrony [10, 28].

Though statistical models can capture higher-order neural coordination, existing approaches face key
limitations. Maximum entropy models can track dynamics in coordination using state-space filtering
algorithms, but neglect the influence of past population activity on the ensemble state. Log-linear
point process models address this shortcoming, but still share two shortcomings with maximum
entropy models. First, assumptions on the relevance of higher-order interactions are typically imposed
for tractable model estimation. Second, multiple repeated trials are required to capture dynamics in
correlational structure and to evaluate the statistical significance of coordinated spiking.

We address these limitations by proposing an adaptive greedy filtering algorithm based on the
discretized MkPP formulation in [27] to model dynamics in coordinated spiking within continuous
recordings while capturing the influence of past ensemble activity. Furthermore, we build on recent
theoretical results related to Adaptive Granger Causality analysis [24] to provide a precise statistical
framework to detect significantly coordinated activity of arbitrary order. We demonstrate our proposed
method’s utility in tracking dynamics in coordinated spiking with statistical confidence on simulated
ensemble spiking. Applying our method to continuous multi-electrode recordings of human cortical
assemblies during anesthesia provides novel insights into coordinated spiking dynamics that underlie
transitions between brain states.

2 Preliminaries

In this section, we review the discrete-time marked process representation and two corresponding
likelihood models. First, we present a summary of key notation used throughout the subsequent
sections in Table 1.

Notation Definition
nt =

[
n

(1)
t , . . . , n

(C)
t

]′
Ensemble spiking observation at time bin t of C neurons

λ
(c)
t ∆ Conditional Intensity Function (CIF) of cth neuron
n∗t =

[
n∗

(1)
t , . . . , n∗

(C∗)
t

]′
Marked observations at time bin t of C∗ = 2C − 1 marks

λ∗
(m)
t ∆ CIF of mth mark

n
(g)
t Ground process,

∑C∗

m=1 n
∗(g)
t

λ∗
(g)
t ∆ CIF of the ground process,

∑C∗

m=1 λ
∗(m)
t ∆

µt =
[
µ

(1)
t , . . . , µ

(C∗)
t

]′
Base rate parameters of mark events

ωt =
[
ω

(1)′

t ,ω
(2)′

t , . . . ,ω
(C∗)′

t

]′
Model parameters of history-dependent model

u
(m)
t Log-odds of mth mark event vs. no spiking event
u

(m)
0,t Log-odds of mth mark event vs. no spiking event (restricted model)
γ

(m)
t = u

(m)
t − u(m)

0,t Exogenous factor for mth mark
β Forgetting factor, 0 < β < 1
W Window length

Table 1: Summary of key notation
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2.1 Marked Process Representation of Ensemble Spiking

To characterize coordinated spiking, we utilize the discrete-time marked process (MkPP) representa-
tion of ensemble neuronal activity [27, 28]. For an ensemble of C neurons, the C-variate spiking
process, binned with small bin size ∆, at time bin index t is denoted by nt := [n

(1)
t , n

(2)
t , . . . , n

(C)
t ]′,

where each component is the spiking process of one neuron. Conventional discrete point process
models treat the components as conditionally independent Bernoulli observations. Given our interest
in simultaneous spikes, we instead treat nt as multivariate Bernoulli observations. The spiking pro-
cess nt is mapped to a C∗-variate process n∗t := [n∗t

(1), n∗t
(2), . . . , n∗t

(C∗)]′, which are the binned
observations of a marked point process whose marks count the number of exactly one ofC∗ := 2C−1
disjoint non-zero spiking events; we refer to n∗t as the marked Bernoulli process, distinguishing it
from the multivariate Bernoulli process nt. We define the mark space K := {1, . . . , C∗} [26]. Fig. 1
shows an example of mapping the activity of C = 3 neurons to C∗ = 7 marked processes. At each
time tj such that ntj 6= 0, the sole non-zero element of n∗tj indicates the mark. We also define the

binned ground process n(g)
t that takes value 1 at each such tj and is zero otherwise [26]; the ground

process indicates the occurrence of any spiking event and is represented by n(g)
t :=

∑C∗

m=1 n
∗
t

(m).

}
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Figure 1: Ensemble spiking is mapped to a disjoint representation of simultaneous spiking events. The proposed
method is used to infer the strength of higher-order coordination amongst C neurons in a dynamic fashion.
The marked process representation is not unique, but can be defined in a convenient fashion: treating
the components ofnt as the bits of aC-bit binary number, the mark indexed by the decimal equivalent
of a particular realization of nt will corresponded to that realization. By the disjointness of the
marked representation, the spiking process of the cth neuron can be recovered as the sum of all
marked process whose index, in binary, takes value 1 at the cth bit. For instance, in Fig. 1, the spiking
data of neuron 3 (in blue) is the sum of simultaneous spiking event processes 4–7.

Our main contribution in this work is the dynamic and statistically precise inference of latent
coordinated spiking of C neurons using their simultaneous spiking representation (Fig. 1, bottom
panel). To this end, we next describe two useful likelihood models for simultaneous spiking.

2.2 Two Likelihood Models of Simultaneous Spiking

In the discrete formulation, the conditional intensity functions (CIFs) of nt and n∗t are approximated
by the probabilities of observing an event at time bin t given the ensemble’s spiking history. That is,

λ
(c)
t ∆ = P[n

(c)
t = 1|Ht], λ∗t

(m)∆ = P[n∗t
(m) = 1|Ht], (1)

for c = 1, . . . , C and m = 1, . . . , C∗. We can relate λ(c)
t ∆ to λ∗t

(m)∆ in the same manner as n(c)
t to

n∗t
(m), and obtain the CIF of the ground process λ∗t

(g)∆ =
∑C∗

m=1 λ
∗
t

(m)∆.

The marked process permits a generative description of simultaneous spiking events: ensemble
spiking events are characterized by the ground process, occurring with probability λ∗t

(g)∆; the event
is then assigned to the mth mark (i.e. the mth simultaneous spiking outcome) with conditional
probability λ∗t

(m)∆

λ∗t
(g)∆

. Thus, at time t the likelihood of ensemble event n∗t is given by:

p(n∗t ) =

C∗∏
m=1

(
λ∗t

(m)∆

λ∗t
(g)∆

)n∗t (m) (
λ∗t

(g)∆
)n(g)

t
(

1− λ∗t
(g)∆

)1−n(g)
t

. (2)
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The likelihood in (2) is used to form a multinomial generalized linear model (mGLM) with multi-
nomial logistic link function of which we consider two versions. The first makes the simplifying
assumption that there is no history dependence; the resulting model depends only on contempora-
neous spiking, permitting compact parameterization by µt = [µ

(1)
t , µ

(2)
t , . . . , µ

(C∗)
t ]′. Defining the

baseline firing parameter for the mth mark to be

µ
(m)
t := log

(
λ∗t

(m)∆

1− λ∗t
(g)∆

)
, m = 1, 2, · · · , C∗, (3)

or equivalently λ∗t
(m)∆ = eµ

(m)
t

1+
∑C∗
j=1 e

µ
(j)
t

, the log-likelihood can be rewritten as a linear function of

n∗t , resembling the maximum entropy model [20, 21]:

log p(n∗t ) = µ′tn
∗
t − ψ(µt), where ψ(µt) := log

(
1 +

C∗∑
m=1

eµ
(m)
t

)
. (4)

The second, more general version utilizes the ensemble history as covariates in the mGLM. Letting
the covariate vector xt be the ensemble history up to some fixed lag at time t (augmented by a
constant element of 1), the model is parameterized by ωt :=

[
ω

(1)′

t ,ω
(2)′

t , . . . ,ω
(C∗)′

t

]′, where the
parameters for themth mark ω(m)

t :=
[
µ

(m)
t ,θ

(m)′

t

]′ consists of an ensemble history-modulation vector
θ

(m)
t in addition to the baseline firing parameter. Thus, the log-likelihood in this case admits a similar

form to (4), by simply replacing µ(m)
t with x′tω

(m)
t .

3 Adaptive Estimation of the History-Dependent mGLM

Unlike conventional mGLM models, here the parameters are allowed to change in time. To capture
their dynamics, we take a similar approach to the dynamic history-independent model of [32] and
extend it to the history-dependent mGLM.

We assume conditional independence across time bins and that the parameters ωt admit piece-wise
constant dynamics and are constant over consecutive windows of length W . The ensemble history up
to lag p defines the covariates as xt := [1, n

(1)
t−1, . . . , n

(1)
t−p, . . . , n

(C)
t−1, . . . , n

(C)
t−p]

′. The set of history
covariate vectors at the ith window are denoted byXi = [x1+i(W−1), . . . ,xiW ]′. Since the mapping
from n∗t to nt is injective, the influence of past spiking activity can be equivalently captured by
defining history covariates in terms of either; however, using nt reduces the dimensionality of ωt and
quantifies the influence of past spiking activity directly rather than through categorical variables. Let
n
∗(m)
i = [n

∗(m)
1+W (i−1), . . . , n

∗(m)
iW ]′ denote the sequence of outcomes of the mth mark in the ith window.

The log-likelihood of the ith window is thus given by

`i(ωi) :=

C∗∑
m=1

n∗i
(m)′Xiω

(m)
i −

iW∑
j=1+(i−1)W

log

(
1 +

C∗∑
m=1

exj
′ω

(m)
i

)
. (5)

Motivated by the RLS objective function [33], a forgetting factor mechanism is utilized to combine
the log-likelihoods up to the kth window, capturing the dynamics in each mark’s rates. For a forgetting
factor 0 ≤ β < 1, the adaptively-weighted log-likelihood at window k is thus defined as:

`βk(ωk) := (1− β)

k∑
i=1

βk−i`i(ωk). (6)

Parameter estimation can be performed by solving a sequence of maximum likelihood problems:

ω̂k := arg max
ωk

`βk(ωk), k = 1, 2, · · · ,K. (7)

Two issues arise when considering large ensembles. First, the dimensionality of µk grows exponen-
tially with C; second, it is likely that some marks will not contain any events. To address this, we
employ a thresholding rule similar to [34], considering only “reliable interactions”, i.e. the subset
of the mark space K̄ = {m ∈ K :

∑
t n
∗
t

(m) > Nthr} for some pre-defined constant Nthr > 0, and
treating the rates of the remaining marked processes as negligible due to their infrequency.
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To efficiently solve the sequence of problems in (7) in an online fashion, we develop an adaptive greedy
approach based on a generalized Orthogonal Matching Pursuit (OMP) [35] [36]. The OMP iteratively
identifies the parameter support set (the non-zero components) of fixed size (a hyperparameter for
which we cross-validate) to encourage sparsity, thus capturing the inherent sparsity of network
interactions based on past ensemble activity [37, 38, 39]. Moreover, the greedy estimation over a
sparse subset of parameters mitigates the intractability of the estimation problem for large ensembles
where regularization-based constraints still require optimization over all parameters. The proposed
adaptive OMP (AdOMP) algorithm, so named because the support set is permitted to change between
windows, is detailed in Algorithm 1 in Appendix A.1. The key element of AdOMP is efficient
evaluation of the gradient ∇ω`

β
k(ωk) at the lth iterate ω̂(l),k, to determine the next addition to the

parameter support set and to solve the new maximization problem via gradient descent. Hence, its
recursive computation is crucial for the algorithm to operate in an online fashion. To this end, we
utilize a recursive update rule to compute the gradient at the kth window, generalizing the adaptive
filtering techniques employed in [40] for Bernoulli observations to a multivariate setting.

4 Statistical Inference of Higher-Order Coordination

Coordinated spiking can indicate relationships between components of a neuronal ensemble and,
potentially, effects of unobserved processes. However, simultaneous spiking events can still occur
by chance amongst independent neurons, necessitating a test of significance to distinguish between
excessive (or suppressed) and chance simultaneous events. In this section, we detail such a framework:
first, we quantify the two alternatives by constructing a nested hypothesis test; second, we generalize
the de-sparsifying procedure for `1-regularized maximum-likelihood estimators established by [41]
to the AdOMP; and third, we use the latter to establish a precise statistical inference framework
by proving the applicability of an adaptive de-biased deviance test, used for identifying significant
Granger-causal influences [24], to our setting.

4.1 Hypothesis Test Formulation for rth-Order Coordinated Spiking

We characterize the significance of all rth-order simultaneous spiking events for the history-dependent
mGLM. The corollary for the history-independent model is addressed in Appendix C.4. The sig-
nificance of r-wise simultaneous spiking for r ≥ 2 is tested by considering the two alternatives:

H0 : rth-order simultaneous spikes occur as frequently as they would between
independent units, given ensemble spiking history

H1 : rth-order simultaneous spikes occur at a significantly different rate than they
would between independent units, given ensemble spiking history

(8)

A similar formulation is used in [28] to determine whether one mark occurs at a significantly different
rate than expected. The likelihood of the mark is modeled as the product of marginal likelihoods
times an additional multiplicative factor. Noting that the additional factor takes value 1 if the
neurons are truly independent, the null hypothesis is quantified accordingly. To account for all
marks of order r, we instead estimate a reduced model that assumes rth-order interactions are chance
occurrences by constraining the base rate parameters for each rth-order mark. For the mth mark,
let u(m)

t := xt
′ω

(m)
k = µ

(m)
k + x̄′tθ

(m)
k . We decompose the base rate parameter as µ(m)

k = µ
(m)
0,k + γ

(m)
k ,

where µ(m)
0,k is rate under the null hypothesis and γ(m)

k is analogous to the additional multiplicative
factor in [28] that captures potential exogenous effects after conditioning on ensemble spiking history.

We thus estimate the reduced model ω̂(R)
k := arg max

ω
(R)
k

`βk(ω
(R)
k ), where the base rate parameters

of rth-order events are constrained to those under the null hypothesis. That is, for each m ∈ Kr :=

{m ∈ K :
∑C
c=1mc = r}, where mc is the cth least significant bit of m in binary, we fix µ(m)

k to µ(m)
0,k

and optimize the remaining parameters. To explicitly obtain the constraints, first recall that xt′ω(m)
k is

the log-odds of n∗(m)
t = 1 versus n(g)

t = 0 given ensemble spiking history. Under the assumption that
the neurons are independent, the probabilities of each event is given, respectively, by

P[n∗t
(m) = 1|Ht] =

∏
ca:mca=1

(
λ

(ca)
t ∆

) ∏
cb:mcb=0

(
1− λ(cb)

t ∆
)
, and P[n

(g)
t = 0|Ht] =

C∏
c=1

(
1− λ(c)

t ∆
)
. (9)
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Taking the ratio evaluated at the full model estimate ω̂k, we obtain u(m)
0,t :=

∑
c:mc=1 log

(
λ̂
(c)
t ∆

1−λ̂(c)
t ∆

)
.

Assuming the difference between u(m)
t and u(m)

0,t is due only to exogenous factors, we estimate the
corresponding term at the kth window as γ̂(m)

k = 1
W

∑kW
t=(k−1)W+1

(
u

(m)
t − u(m)

0,t

)
. Thus, for the reduced

model, we fix µ(m)
k at µ̂(m)

k − γ̂(m)
k for m ∈ Kr. The hypotheses are then quantitatively stated as:

H0 : ωk = ω̂
(R)
k , H1 : ωk 6= ω̂

(R)
k . (10)

To control the possible abrupt variations of γ̂(m)
k across windows, we apply Kalman forward/backward

smoothing to the exogenous factor and use the smoothed values, γ̃(m)
k , in lieu of γ̂(m)

k . The procedure
is summarized in Algorithm 2 in Appendix A.3.

4.2 De-Sparsifying AdOMP Estimates

To test the hypotheses defined above, it is necessary to be able to construct confidence intervals for
the parameter estimates. The procedure is well-established for unrestricted or unregularized linear
regression models, but there is a paucity of work to this end for greedily-estimated high-dimensional
sparse models. In the closely-related problem of `1-regularized maximum-likelihood estimation, a
set of elegant results [41, 42, 43] have established techniques to de-sparsify parameter estimates and
construct confidence intervals. In particular, we extend the de-sparsification technique of [41], based
on close inspection the Karush-Kuhn-Tucker conditions, in the greedy high-dimensional setting. In
Appendix A.2, we derive the de-sparsified AdOMP parameters following s∗ iterations as

ŵk := ω̂(s∗),k −
(
∇2`βk(ω̂(s∗),k)

)−1 (
∇`βk(ω̂(s∗),k)

)
. (11)

Next, the asymptotic normality of the de-sparsified AdOMP estimates is established. While a related
result is established in [41], the independence of each realization of the covariates and observations is
assumed; additionally, several conditions involved are tailored for `1-regularized maximum likelihood
estimation. Hence, we adapt the treatment in [41] for AdOMP to establish the following result:

Theorem 1. Consider the maximization of the total data log-likelihood `βk(ωk) at the kth window,
where the true parameter ωk ∈ Rd is (s, ξ)-compressible with ξ < 1

2 . Let ω0
k be the maximum

likelihood estimate and ω̂k be the AdOMP estimate after O(slog(s)) iterations. If conditions (C1)–
(C6) are met, the de-sparsified AdOMP estimate ŵk satisfies√

1 + β

1− β
(
ŵk − ω0

k

)
= Vk + oP(1) · 1,

where, as β → 1, Vk
d−→ N (0, I−1

k ) with I−1
k = −Σ−1

k the inverse of the Fisher information matrix.

For brevity, the technical conditions (C1)–(C6) are omitted here, but are presented in Appendix C.2
along with a detailed proof. Based on Theorem 1, confidence intervals for the AdOMP estimates can
be constructed by adapting the recursive procedure of [40] to our setting.

4.3 Deviance Difference Test for rth-Order Coordinated Spiking

Classical results on likelihood ratio tests between two nested hypotheses [44, 45] have established the
use of the deviance difference as a common procedure. However, they are ill-suited in our setting due
to the highly-dependent covariates and forgetting-factor mechanism in the data log-likelihood. These
issues are addressed in a related context [24] for the inference of Granger-causal links by defining the
adaptive de-biased deviance difference and characterizing its limiting distribution under presence and
absence of Granger-causal links. We similarly utilize the adaptive de-biased deviance difference

D
(r)
k,β

(
ω̂

(F )
k , ω̂

(R)
k

)
:=

(
1 + β

1− β

)[
2
(
`βk(ω̂

(F )
k )− `βk(ω̂

(R)
k )

)
−
(
B

(F )
k −B

(R)
k

)]
(12)

as the test statistic, where B
(F )
k and B

(R)
k are the respective biases of the full and reduced models.

As we show in Appendix A.1, the full and reduced log-likelihoods can also be computed in an online
fashion, in a similar manner as the gradients.

The limiting distributions of the adaptive de-biased deviance difference for the greedily-estimated
joint model under both the null and alternative hypotheses are characterized in a similar fashion to
[24] by utilizing the asymptotic normality of the de-sparsified AdOMP estimates from Theorem 1:
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Theorem 2. Let ω̂(F )
k and ω̂(R)

k respectively be the full and reduced greedily-estimated mGLM
parameters at window k, where ω̂(R)

k assumes conditionally independent rth-order simultaneous
spiking. Then, as β → 1,

i) if rth-order coordination matches independent rth-order interactions given ensemble spiking
history, then D(r)

k,β

(
ω̂

(F )
k , ω̂

(R)
k

) d−→ χ2(M (r)), i.e. chi-square, and

ii) if rth-order coordination diverges from independent rth-order interactions given ensemble
spiking history, and assuming the base rate parameters of rth-order interactions scale at least as
O
(√

1−β
1+β

)
, then D(r)

k,β

(
ω̂

(F )
k , ω̂

(R)
k

) d−→ χ2(M (r), ν
(r)
k ), i.e. non-central chi-square,

where ν(r)
k is the non-centrality parameter at window k and the degrees of freedom M (r) := |Kr| is

the difference in the cardinalities of the full and reduced support sets.

A detailed proof is provided in Appendix C.3. In order to fully characterize the limiting distribution
of D(r)

k,β under H1, we must estimate the non-centrality parameter for each window. Assuming the
parameter evolves smoothly in time, we use a state-space smoothing algorithm [24] to estimate it
from the observed D(r)

k,β values. This not only allows us to identify significant coordination, but to
also quantify the degree of significance using Youden’s J-statistic

J
(r)
k := 1− α− F

χ2(M(d),ν̂
(r)
k )

(
F−1
χ2(M(d))

(1− α)
)

(13)

for significance level α, where F (·) denotes the CDF. Values of Jk close to 1 imply that the
rejection of the null is a stronger indication of coordination than for smaller values of Jk. Thus,
the J-statistic characterizes the test in terms of both type I and type II errors. By convention, we
take Jk = 0 when H0 is not rejected at the kth window. Under the alternative, it is possible to
observe either significant excess or suppressed coordination; this can be reflected in the J-statistic
by incorporating the net exogenous effect on rth-order coordination and using a signed J-statistic
J

(r)
k ·sgn

(∑
m∈Kr γ̂

(m)
k

)
. The full procedure for identifying significant rth-order coordinated spiking

is summarized by Algorithm 3 in Appendix C.

5 Applications

5.1 Simulated Ensemble Spiking Data

We validate our proposed methods in a simulated example, performing complementary history-
independent and history-dependent analyses. Let the base rate parameter and exogenous effect for the
history-independent model be denoted by µk and γk; and the same for the history-dependent model
by µk,H and γk,H, with history-modulation parameter θk. Then, the reduced model constraints imply
γk = γk,H+ x̄′tθk. If the observed rate of higher-order events is equal to that of independent neurons,
γk = 0; however, higher-order interactions may still be coordinated, i.e. γk,H = −x̄′tθk 6= 0.
Conversely, the observed rate of higher-order events may differ from that of independent neurons,
i.e., γk 6= 0. If γk,H = 0, observed coordination can be attributed to the effects of ensemble history;
otherwise, observed coordination was driven by an unobserved process. A MATLAB implementation
of both algorithms is provided in supplementary material.

Ensemble spiking of five neurons was generated by a marked Bernoulli process as described in Eq.
(2) with an average rate of ∼ 0.1 spikes per bin. In the first and third simulated epochs, 4th-order
spiking events were excited by amplifying the default history-modulation parameters. In the second
epoch, the base rate parameter was increased to induce 3rd-order spiking events. These adjustments
respectively reflected simultaneous spiking induced by ensemble history and by an unobserved
process. Figure 2–A shows the simulated spiking activity, from which no obvious coordination is
observable. The aggregate rth-order marks are visualized in Fig. 2–B, with apparent increased rates
of 3rd- and 4th-order spiking events.

For comparison, we also used three single-trial measures of coordinated spiking. The first is the
average Pearson correlation between smoothed spiking responses. The second, is the spiking
regularity, quantified by average coefficient of variation (ratio of the standard deviation to the mean
inter-spike interval) [46]. A ratio close to 1 indicates Poisson statistics; larger ratios indicate greater
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variability due to self-exciting dynamics while smaller ratios indicate regularity in spiking (i.e.
globally coordinated spiking). Both measures are computed over non-overlapping windows of 250
samples to track dynamics. The third measure is the average difference between rth-order mark CIFs
and probabilities of rth-order independent interactions, generalizing the measure employed in [27] to
higher-order simultaneous spiking. Other model-based analyses require multiple trial repetitions and
are thus unsuited to our single-trial simulation setting.

Statistical analyses of rth-order coordination for r = 2, . . . , 5 using the history-independent model
(W = 10; β = 0.975) reveals facilitated 3rd-order coordination during the second epoch, indicated
by large positive values of the J-statistics (Fig. 2–C). Facilitated 4th-order coordination is detected
during the first and third epochs. Ensemble spiking was also analyzed using the history-dependent
model (W = 10; β = 0.99) (Fig. 2–D). Conditional facilitation of 3rd-order coordination was
correctly detected during the second epoch and 4th-order coordination was correctly conditioned out.
The history-dependent analysis also detected conditional suppression of 2nd-order coordination.

In contrast, the three control measures are unable to capture the underlying dynamics. Significant
pairwise correlations (Fig. 2–E) are stably indicated throughout the simulation, insensitive to changes
in coordinated spiking across epochs. Similarly, the spiking regularity (Fig. 2–F) indicates Poisson
spiking statistics rather than coordinated activity. The 3rd- and 4th-order mark CIF differences (Fig. 2–
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A. Simulated ensemble spiking of five neurons. B. Sum of the rth-order simultaneous spiking events for
r = 2, 3, 4, 5. Spiking coordination varies across 3 epochs, demarcated by vertical dashed lines. C. Significant
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G) weakly reflect the underlying dynamics, but closer inspection reveals the oscillatory nature of this
sample-to-sample measure that diminishes its reliability (Fig. 2–G, insets). We further examine the
effect of hyperparameters W and β in Appendix B.1, inspect the model goodness-of-fit in Appendix
B.2, and provide a complementary simulation study with more complex dynamics in Appendix B.3.

5.2 Real Data Example: Anesthesia Data

We next present our analysis of human cortical neuronal assemblies during the transition into propofol-
induced general anesthesia. The data were retrieved in a fully anonymized format with permission
from the authors in [47], who obtained written consent from the participants in compliance with the
institutional review board (please refer to [47] for details). We employed the proposed algorithms to
analyze higher-order coordination and compared them against the average Pearson correlation and
spiking regularity. The CIF-based measure is omitted given its highly oscillatory nature, rendering
its interpretation uncertain. We analyzed spiking data from one subject, selecting the 8 neurons
with the highest average firing rate. In contrast to the simulation in Fig. 2, the average firing rate
was ∼ 0.05 spikes per bin. In Fig. 3–A, their ensemble spiking activity is shown, aligned to the
loss of consciousness (LOC) at 0 s. Ensemble activity recovered after ∼250 s, when propofol was
re-administered. The decomposition of ensemble spiking into rth-order events (Fig. 3–B) highlights
lower rates of higher-order spiking events.

History-independent analysis (W = 10; β = 0.99) of rth-order spiking revealed high rates of 3rd-,
4th-, and 5th-order events during consciousness (Fig. 3–C). Additionally, 2nd-order coordination was
suppressed during consciousness. However, history-dependent analysis (W = 10; β = 0.995) did
not identify conditional coordination during consciousness (Fig. 3–D). Together, these suggest that
rates of higher-order simultaneous spiking events diverged from the rate of such interactions amongst
independent neurons, but coordination during consciousness is attributable to ensemble history. The
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high J-statistic values at the start of the recording were transients related to the initial convergence of
the adaptive filters.

After LOC, the rates of simultaneous events matched those amongst independent neurons (Fig. 3–C).
However, significant 2nd- and 3rd-order conditional coordination were detected during anesthesia.
Third-order coordination was persistently and exogenously facilitated; 2nd-order coordination changed
from a state of initial suppression to facilitation at ∼250 s. Our results show local neuronal networks
during both conscious and unconscious states exhibited coordinated spiking, but the underlying
mechanisms differed between states, and the differences manifested rapidly in concurrence with
LOC.

These dynamics are poorly reflected by the Pearson correlation and spiking regularity, both computed
over windows of 250 samples (resp., Fig. 3–E and Fig. 3–F). Prior to LOC, pairwise correlations
may have been high but spiking was not globally synchronized. Hence, spiking statistics seem to
match Poisson spiking and neurons seem uncorrelated because of irregular low-order coordinated
spiking. Slight increases in correlation during anesthesia weakly indicate coordinated spiking. The
fluctuating spiking regularity leaves the nature of higher-order coordination indeterminate.

6 Concluding Remarks

The proposed modeling and statistical inference algorithms constitute a novel approach to studying
coordinated neuronal spiking. In contrast to previous model-based approaches, the proposed method
is tailored for the analysis of continuous recordings of neuronal data. We demonstrated that the
framework can capture both time-varying spiking rates and the influence of spiking history, and thus
can detect endogenously or exogenously induced coordinated spiking.

In developing this framework, we showed that confidence intervals can be constructed around greedily
estimate parameters in similar fashion to sparsity-regularized parameter estimates. We found this to
be a noteworthy gap in existing literature, as theoretical analyses of greedy algorithms focused instead
on guarantees of model recovery. This result enabled us to develop a precise statistical inference
framework in which the statistical strength of discovered synchronous spiking can be quantified.

Simulation studies demonstrated the efficacy of our framework in detecting suppressed or facilitated
coordinated spiking activity. Moreover, in application to spontaneous ensemble spiking during the
transition into propofol-induced anesthesia, our proposed method provided greater detail about the
correlation structure of local neuronal networks in both the conscious and unconscious states. Addi-
tionally, our results reflected the abruptness of the transition between network states by characterizing
dynamics in coordinated spiking. The ability to track transitions in higher-order network interactions
through adaptive filtering techniques can be used to address current gaps in understanding the local
mechanisms underlying the emergence of different brain states.
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