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ABSTRACT

Accurate and efficient simulation of wave equations is crucial in computational
physics, especially for wave imaging applications like ultrasound computed to-
mography (USCT), which reconstructs tissue properties from scattered waves.
Traditional numerical solvers for wave equations are computationally intensive
and often unstable, limiting their practical applications for quasi-real-time imaging.
Neural operators offer an innovative approach by accelerating PDE solving using
neural networks; however, their effectiveness in realistic imaging is constrained
by existing datasets that oversimplify real-world complexity. In this paper, we
present OpenWaves, a large-scale wave equation dataset designed to bridge the
gap between theoretical equations and practical imaging applications. OpenWaves
provides over 16 million frequency-domain wave simulations using real USCT
configurations, featuring anatomically realistic human breast phantoms across four
categories. It enables comprehensive benchmarking of popular neural operators
for both forward simulation and inverse imaging tasks, allowing analysis of their
performance, scalability, and generalization capabilities. By offering a realistic
and extensive dataset, OpenWaves not only serves as a platform for developing
innovative neural PDE solvers but also facilitates their deployment in real-world
medical imaging problems.

1 INTRODUCTION

Imaging technology decodes wave-matter interactions and plays a critical role in scientific discoveries
and biomedical diagnosis. In recent years, Ultrasound Computed Tomography (USCT) has emerged
as an innovative, radiation-free method with exceptional potential for high-resolution imaging of
human tissues.(Guasch et al., 2020; Li et al., 2022) As illustrated in Fig. 1(a), USCT employs a
specialized transducer array—annular, cylindrical, or hemispherical—for data acquisition. Unlike
conventional B-mode ultrasound, which requires manual operation and relies solely on reflected
signals, USCT is fully automatic. It sequentially emits waves from each transducer and measures
signals with the remaining ones, collecting both transmitted and reflected signals from tissues.(Cueto
et al., 2022) This method enables USCT to reconstruct detailed 2D and 3D tissue structures similar to
those produced by X-ray computed tomography (CT)(Wu et al., 2023; Zhou et al., 2023).

Wave scattering within tissues is significant in USCT because ultrasonic wavelengths are comparable
to human tissue structures. To account for this, USCT employs partial differential equations (PDEs) to
model wave propagation and solves a nonlinear PDE-constrained inverse problem to reconstruct tissue
properties such as attenuation and sound speed.(Bernard et al., 2017; Pérez-Liva et al., 2017) This
process is known as full waveform inversion (FWI). The computationally intensity and numerically
instability of traditional wave equation solvers makes FWI a bottleneck for quasi-real-time USCT
imaging, limiting its widespread clinical applications (Ali et al., 2024).

Neural operators have recently revolutionized PDE-based simulations and inverse problems due
to their powerful approximation capabilities and fast computational speed. By leveraging neural
networks to map between PDE parameter spaces and physical fields, neural operators have shown
remarkable potential across diverse scientific applications, such as turbulent flow modeling, weather
forecasting, and material design.(Lu et al., 2019; Li et al., 2020; 2021; Lu et al., 2021) High-quality
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Figure 1: Schematic diagram of a USCT system and the OpenWaves dataset.(a) The imaging
target is placed inside an annular transducer array, with each transducer emitting waves sequentially
while the others act as receivers. (b) The OpenWaves dataset includes four types of anatomically
realistic human breast phantoms and their corresponding wavefields at different frequencies.

PDE datasets, like PDEBench(Takamoto et al., 2022) and OpenFWI(Deng et al., 2022), have been
instrumental in advancing neural operators. However, although these datasets cover various PDEs,
they often simulate oversimplified scenarios—such as small regions of interest (ROIs), simple
geometric boundaries, or unrealistic random porous media. These simplified settings limit the
applicability to real-world problems, where complexity is much greater. To promote the practical
deployment of neural operators, an application-driven, realistic, and large-scale dataset is desired.

In this paper, we introduce OpenWaves, a large-scale USCT dataset designed for benchmarking wave
simulation and imaging using neural operators. OpenWaves connects theoretical wave equations
with a practical medical imaging application, offering over 16 million frequency-domain wave
simulations based on the Helmholtz equation (wave frequencies × source locations × scattering media
→ wavefields; 8 × 256 × 8,000 → 16,384,000). The dataset features anatomically realistic human
breast phantoms across four categories (Fig. 1(b)), and the source locations and frequencies mimic
the settings of a real annular USCT system. With its quasi-realistic setup, OpenWaves serves both as
a resource for theoretical studies in deep learning and as a platform for training neural operators that
can be deployed in real medical imaging systems.

We also implement multiple popular ML surrogates for both forward simulation and direct inverse
imaging tasks. Both cases are evaluated using standard metrics, such as relative root mean square
error (RRMSE) for forward simulation and structural similarity index measure (SSIM) and peak
signal-to-noise ratio (PSNR) for imaging. Our experiments demonstrate that well-designed datasets
like OpenWaves enable neural PDE solvers to enhance real-world wave simulation and imaging tasks.

In the remainder of this paper, we review related datasets and baselines (Section 2), introduce the
OpenWaves dataset (Section 3), present and discuss benchmarking results (Section 4), and conclude
by summarizing the dataset’s contributions and limitations.

2 RELATED WORK

2.1 NEURAL OPERATORS

Neural operators are machine learning models designed to learn mappings between infinite-
dimensional function spaces, enabling data-driven solutions to partial differential equations (PDEs).
They are versatile tools for both forward simulations, predicting PDE solutions given parameters, and
inverse problems, inferring underlying parameters from observations. For forward simulations, base-
line neural operator frameworks include UNet(Ronneberger et al., 2015), which utilizes convolutional
neural networks with encoder-decoder architectures; the Fourier Neural Operator (FNO)(Li et al.,
2021; 2020) and its variants—UNet FNO (UFNO)(Wen et al., 2022), Born FNO (BFNO)(Zhao et al.,
2023), Adaptive FNO (AFNO)(Guibas et al., 2022)—which leverage Fourier modes to capture global
information efficiently; and the Multigrid Neural Operator (MgNO)(He et al., 2023), combining
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multigrid methods with neural networks to handle multi-scale problems. In inverse problem, frame-
works like InversionNet(Zeng et al., 2022), which uses a convolutional neural network to directly
model the inversion operator, have been developed. Deep Operator Network (DeepONet)(Lu et al.,
2019; 2021; Cai et al., 2021; Di Leoni et al., 2021; Lin et al., 2021) introduces a “branch and trunk”
architecture to efficiently separate input functions from evaluation locations for operator learning.
Fourier-DeepONet(Zhu et al., 2023) and the Neural Inverse Operator (NIO)(Molinaro et al., 2023)
extend this approach by integrating DeepONet with FNO, combining local and global representations
to improve accuracy and efficiency in mapping observations to PDE parameters.

2.2 PDE DATASETS

High-quality datasets are crucial for advancing deep learning approaches to PDEs, as they provide
benchmarks for training and evaluating neural operator models.(Lu et al., 2022; de Hoop et al., 2022;
Benitez et al., 2023) PDEBench(Takamoto et al., 2022) is a widely used benchmark dataset that
covers various forms of PDEs primarily in fluid mechanics, such as Darcy flow, advection, diffusion,
and Navier-Stokes equations, but it lacks wave propagation PDEs. OpenFWI(Deng et al., 2022)
specifically targets wave equations for geophysical problems, benchmarking neural networks for
direct inversion from partial seismic wavefield observations. Recently, WaveBench(Liu et al., 2024)
has been introduced to benchmark neural operators for forward simulations using extensive datasets
of time-harmonic and time-varying wave simulations.

Despite their contributions, both OpenFWI and WaveBench assume oversimplified scattering media
or sources—OpenFWI uses layered structures, and WaveBench employs Gaussian random fields and
MNIST(LeCun et al., 1998) with fixed source locations—and limit simulations to small ROIs (fewer
than 40 wavenumbers). These simplifications may lead to overly optimistic evaluations that fail to
accurately assess neural operator performance in realistic applications, such as biomedical imaging
scenarios where physical properties vary more complexly and ROIs exceed 100 wavenumbers. This
underscores the need for a dataset that captures the complexities of real-world wave phenomena,
motivating us to create OpenWaves, a more accurate benchmark for neural operator models in
practical biomedical imaging settings. To enable consistent model comparisons, we also provide a
unified PyTorch environment for benchmarking various models for forward and inverse tasks.

3 OPENWAVES: A REALISTIC APPLICATION-DRIVEN BENCHMARK FOR
WAVE EQUATIONS

In this section, we describe the general learning problem addressed by the OpenWaves dataset,
provide the detailed dataset statistics and its creation process, and discuss existing baseline models.

3.1 PROBLEM DEFINITION

The primary goal of the OpenWaves dataset is to facilitate the development of neural operators and
other deep learning techniques for wave equations in real-world applications, with USCT serving as a
representative example. In our dataset, we focus on steady-state (frequency-domain) wave phenomena.
The propagation of ultrasonic waves is modeled by the heterogeneous Helmholtz equation, assuming
negligible shear motion and nonlinear effects:[

∇2 +

(
ω

c(x)

)2
]
u(x) = −s(x). (1)

Here, ω is the angular frequency of ultrasound waves, c(x) is the spatial distribution of sound speed
in the scattering medium, s(x) is the source term, and u(x) is the resulting complex acoustic field.
We further assume that the variation in sound speed, c(x), is confined to a pre-defined region of
interest (ROI), while outside this region, the sound speed remains constant at c0. This results in the
following Sommerfeld radiation condition at infinity:

lim
r→∞

r
n−1
2

(
∂

∂r
− i

ω

c0

)
u(x) = 0 (2)

Equations 1 and 2 define the relationships between ω, c(x), s(x) and u(x), which in USCT correspond
to the transducer’s working frequency, the properties of biological tissues, the point source located
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on the annular ring, and the ultrasound wavefield, respectively. Each dataset entry consists of these
four components — ω, c(x), s(x) and u(x) — allowing the dataset to support both forward wave
simulation and inverse wave imaging tasks.

3.1.1 WAVE SIMULATION

The objective of forward wave simulation is to predict the wavefield u(x) given the properties of the
source s(x) and the scattering medium c(x). Mathematically, this task can be expressed as learning a
surrogate model P : (ω, c (x) , s (x)) → u(x;ω) .

Since wavefields at different frequencies exhibit distinct oscillatory behaviors, we typically train
a separate deep learning model for each frequency, denoted as Pω : (c (x) , s (x)) → u(x). These
models are then combined into a mixture-of-experts (MoE) framework to form the overall surrogate
model, P = {Pω1

, · · · ,PωN
}, where N represents the number of frequencies.

3.1.2 WAVE IMAGING

Inverse wave imaging aims to reconstruct the spatial distribution of sound speed c(x) within biological
tissues using the measurements from transducers. This problem is modeled as a PDE-constrained
optimization:

min
c(x)

N∑
j=1

M∑
k=1

∥∥∥yj
k − uj

k(xf )
∥∥∥2
2
, s.t.

[
∇2 +

(
ωj

c(x)

)2
]
uj
k(x) = −sk(x), (3)

where k ∈ [1,M ] indexes the transducers, j ∈ [0, N ] indexes the frequencies, yj
k ∈ RM represents

the measurements from all transducers when the k-th transducer is activated at the j-th frequency,
and xf ∈ RM denotes the transducer locations. M and N represent the number of transducers and
frequencies, respectively. When a transducer is activated, it creates a point source sk(x). The total
measurement for a given c(x) forms a tensor Y ∈ CM×M×N .

This inverse problem can be tackled in two ways using neural operators: 1) Gradient-based optimiza-
tion: Once the forward operator P is learned, the image reconstruction problem becomes:

min
c(x)

N∑
j=1

M∑
k=1

∥∥∥yj
k − P(ωj , c, sk)(xf )

∥∥∥2
2

(4)

2) Direct inversion: Alternatively, we can approximate the inverse operator
P−1 : ({ωj}Nj=1, {sk}Mk=1,Y) → c(x) utilizing an end-to-end neural networks P−1

θ

that directly maps the multi-frequency measurements Y back to c(x), bypassing the need for explicit
forward modeling.

3.2 OVERVIEW OF THE DATASET

3.2.1 PHYSICAL SETTINGS AND STATISTICS

OpenWaves includes 8,000 breast phantoms designed to represent the distribution of diverse human
breast types in the population. As shown in Fig. 1(b), the dataset is divided into four groups, each
corresponding to a specific breast density type: heterogeneous (HET), fibroglandular (FIB), all
fatty (FAT), and extremely dense (EXD). The wavefields are simulated using parameters from a real
annular USCT system, which consists of 256 transducers arranged in a 220 mm diameter ring. The
system operates at frequencies (ω/2π) ranging from 300 kHz to 1500 kHz, corresponding to acoustic
wavelengths between 1 mm and 5 mm. In our simulations, we focus on 8 frequencies between 300
kHz and 650 kHz, sampled at 50 kHz intervals, resulting in ROIs with approximately 50 to 100
wavenumbers. For each breast phantom, wavefields are simulated by activating each transducer at all
frequencies, generating a total of 8, 000 × 256 × 8 = 16, 384, 000 data entries. Detailed statistics
and physical settings of the dataset are summarized in Table 1.

3.2.2 DATA GENERATION

The dataset generation involves two key steps: 1) generating anatomically accurate breast phantoms,
and 2) simulating the corresponding wavefields using real USCT system parameters.
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Phantom Generation The breast phantoms are generated using a medical simulation tool developed
by the Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) project at the US Food
and Drug Administration (FDA).(Li et al., 2022) This tool produces 3D models of various breast
anatomies, categorized into the four density types mentioned earlier. These models are sliced into 2D
tissue maps, and then scaled by a random factor to simulate breasts of varying sizes. To replicate real
experimental conditions, the area surrounding the breast models is filled with water.

Wavefield Simulation After generating the breast phantoms, we simulate the wavefields using
numerical solvers based on the USCT system’s source locations and frequencies. We employ the
Convergent Born Series (CBS) algorithm(Osnabrugge et al., 2016), an iterative solver for simulating
the Helmholtz equation. Unlike the standard Born series, CBS incorporates a preconditioner to ensure
convergence, making it reliable for simulating complex media with strong scattering properties.

Data Statistics
Breast Type Frequency #Train/#Test # Source Storage

Heterogeneous (HET) 300∼650 kHz 1800/200 256 7.2TB
Fibroglandular (FIB) 300∼650 kHz 2700/300 256 10.8TB

Fatty (FAT) 300∼650 kHz 1800/200 256 7.2TB
Extremely dense (EXD) 300∼650 kHz 900/100 256 3.6TB

Physical Settings
Grid Spacing Resolution Ring Diameter Source Spacing Source Value

0.5 mm 480× 480 220 mm 2π
256 rad 0.195− 0.0275i

Table 1: Overview of OpenWaves. Dataset composition and physical settings for data generation.

3.3 EXISTING BASELINES

We benchmark several existing methods for both wave simulation and wave imaging tasks on the
OpenWaves dataset. All baselines are implemented in PyTorch, with detailed architectures provided
in Appendix A.1. The model sizes and corresponding inference times are summarized in Table 2.

3.3.1 BASELINES FOR FORWARD WAVE SIMULATION

For forward modeling, we include UNet, FNO, BFNO, AFNO, and MgNO as baseline methods:

UNet(Ronneberger et al., 2015) is a convolutional neural network with an encoder-decoder architec-
ture and skip connections, effective for capturing multiscale features in images.

Fourier Neural Operator (FNO)(Li et al., 2021) uses Fourier transforms to parameterize integral
operators, efficiently learning mappings between function spaces for solving PDEs.

Adaptive Fourier Neural Operator (AFNO)(Guibas et al., 2022) enhances FNO by adaptively
selecting Fourier modes through an attention mechanism, improving performance on high-resolution
inputs and discontinuities.

Born Fourier Neural Operator (BFNO)(Zhao et al., 2023) modifies FNO by incorporating the
iterative Born approximation, sharing parameters across layers to better model wave scattering.

Multigrid Neural Operator (MgNO)(He et al., 2023) integrates multigrid techniques with neural
operators for efficient and accurate modeling of multiscale phenomena.

Forward Wave Simulation Baselines Inverse Wave Imaging Baselines
Model # Parameters Inference time [s] Model # Parameters Inference time [s]
UNet 36.0M 0.015 DeepONet 36.3M 0.089
FNO 734M 0.018 InversionNet 55.6M 0.058

AFNO 58.6M 0.013 NIO 56.3M 0.077
BFNO 104M 0.024 Gradient-based

Optim (FNO) - ∼300MgNO 26.6M 0.015

Table 2: Model size and computational cost. Comparison of the number of parameters and inference
time for baseline models in both forward (Left) and inverse (Right) tasks.
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3.3.2 BASELINES FOR INVERSE WAVE IMAGING

For inverse imaging, we benchmark DeepONet, InversionNet, and NIO for direct inversion, and
also evaluate optimization-based image reconstruction using the neural operators trained for forward
simulation:

Deep Operator Network (DeepONet)(Lu et al., 2019) employs a branch-trunk architecture to map
observations to PDE parameters.

InversionNet(Zeng et al., 2022) proposes a CNN-based network, leveraging the exceptional capability
of CNNs in handling image-related tasks.

Neural Inverse Operator (NIO)(Molinaro et al., 2023) combines DeepONet and FNO, with an
added bagging mechanism to improve inversion accuracy and generalizability.

Gradient-based Optimization(Zeng et al., 2023) solves the inverse problem using conventional
gradient-based methods but replaces traditional numerical wave equation solvers with the more
efficient neural operators (Eq. 4).

3.3.3 EVALUATION METRICS

We evaluate the performance of the baseline methods independently for each task:

Forward Modeling Performance is measured using Relative Root Mean Square Error (RRMSE,
taking mean w.r.t samples) and Maximum Error (Maximum of RRMSE w.r.t samples) across the
predicted wavefields.

Inverse Imaging The quality of the reconstructed breast sound speed images is assessed using
Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR).

4 EXPERIMENTS

In this section, we present the experimental results of baseline methods on the OpenWaves dataset.
Sections 4.1 and 4.2 discuss the baseline performance on forward wave simulation and inverse wave
imaging tasks, respectively. In Section 4.3, we provide additional analysis on the complexities
introduced by different breast types and wave frequencies in our dataset, as well as examine the
scalability and generalization capabilities of the baseline models.

4.1 WAVE SIMULATION BENCHMARKS

We evaluated five forward simulation baselines — UNet, FNO, BFNO, AFNO, and MgNO — using
a subset of OpenWaves dataset comprising wavefields at three frequencies (300, 400, and 500 kHz)
from 64 uniformly sampled sources out of 256. All models were trained with relative L2 loss on four
NVIDIA A800 PCIe 80 GB GPUs. Further implementation details are provided in the Appendix.

Table 3 summarizes the performance of the baselines across all breast categories and frequencies.
Figure 2 presents the inference results on the test set at 300 kHz, while results for 400 and 500 kHz
are provided in the Appendix A.3 (Figures 6 and 7). Quantitative analysis indicates that MgNO
consistently achieved the lowest prediction errors, and all FNO variants outperformed the UNet
architectures.

4.2 WAVE IMAGING BENCHMARKS

We compared the performance of three baselines — DeepONet, InversionNet, and NIO — and an
optimization-based FWI baseline using neural operators. All methods were trained and tested using
three frequencies (300, 400, and 500 kHz) data. All baselines were trained end-to-end on a single
NVIDIA A800 PCIe 80 GB GPU, with measurements as input (3 × 256 × 256) and ground-truth
images as output (480×480). The optimization-based FWI performed gradient descent reconstruction,
where gradients were calculated using the adjoint method (Appendix A.2) with pre-trained FNOs
from Section 4.1.
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Figure 2: Forward simulation results at 300 kHz. Comparison of wavefield predictions for four
breast types using a numerical solver (CBS) and five baseline neural operators.

Frequency(kHz) Metric Models
UNet FNO AFNO BFNO MgNO

300 RRMSE↓ 0.1236 0.0269 0.0165 0.0113 0.0028
Max Error↓ 0.2551 0.0617 0.0293 0.0519 0.0092

400 RRMSE↓ 0.1503 0.0426 0.0242 0.0148 0.0105
Max Error↓ 0.3017 0.1172 0.0464 0.0840 0.0244

500 RRMSE↓ 0.1798 0.0490 0.0276 0.0209 0.0181
Max Error↓ 0.3571 0.1432 0.0639 0.0838 0.0410

Table 3: Quantitative evaluation of forward simulation baselines. Performance was evaluated on
the test set using RRMSE and Max Error. Bold:Best, Underlined:Second Best

Table 4 and Figure 3 present the wave imaging performance of different methods across four breast
types. Notably, NIO outperformed DeepONet on all breast categories, demonstrating the strength
of the global modeling capability provided by the Fourier layer. InversionNet also achieved much
better results compared to DeepONet, indicating that convolution-based networks are well-suited
for complex image reconstruction tasks. It is worth mentioning that the neural operator-based
optimization approach revealed significantly higher resolution than all direct inversion methods,
although it incurs higher computational costs due to the iterative gradient-descent process (still much
faster than traditional iterative reconstruction with numerical solvers). This suggests that the forward
operators better capture the underlying wave physics, while direct inversion pipelines may overly
rely on memorizing prior knowledge about the anatomy of the training breasts. In practical FWI
applications, it’s crucial to carefully balance reconstruction accuracy and computational efficiency.
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l GT Optim (CBS) Optim (FNO) NIO InversionNet DeepONet

H
E

T

PSNR/SSIM 43.8/0.968 36.6/0.953 21.1/0.859 23.5/0.658 17.8/0.613

FI
B

PSNR/SSIM 36.3/0.934 32.8/0.942 25.2/0.895 26.2/0.680 21.9/0.671

FA
T

PSNR/SSIM 39.2/0.922 32.2/0.932 22.9/0.933 24.0/0.704 20.4/0.715

E
X

D

PSNR/SSIM 46.6/0.978 31.5/0.939 15.6/0.810 18.2/0.618 15.5/0.619

Figure 3: Inverse imaging results. Comparison of reconstructed breast sound speeds for four breast
types using three direct inversion baselines and an optimization-based method with FNO surrogate.
Results from gradient-based optimization with a numerical solver (CBS) are provided as a reference.

Metric Models
DeepONet InversionNet NIO Gradient-based Optimization Method

PSNR↑ 17.14 20.67 18.06 33.70
SSIM↑ 0.6483 0.6605 0.8680 0.9341

Table 4: Quantitative evaluation of inverse imaging baselines. Performance was evaluated on the
test set using PSNR & SSIM. Bold: Best, Underlined: Second Best.

4.3 ADDITIONAL ANALYSIS

4.3.1 DATA COMPLEXITIES

Breast Types Different breast categories have distinct internal structures, leading to significant
variations in sound speed distribution and wave scattering effects within the tissue. As observed in
Figures 1, the heterogeneous and extremely-dense breasts exhibit the most complex tissue structures
and the strongest scattering because of their higher densities, while the fibroglandular and fatty breasts
show the weakest scattering. This is further validated by the prediction accuracy of the learned neural
operators for both forward and inverse problems as shown in Appendix A.3 (Figures 8 and 9), where
heterogeneous and extremely-dense breasts reveal higher errors.

Frequencies All baseline neural operators experience performance degradation when learning
wavefields at higher frequencies, as shown in Fig. 4 (a). This indicates that higher frequency wave
equations define a more challenging operator learning task with greater complexity (Engquist & Zhao,
2018). Among all baselines, the UNet degrades the fastest, while the FNO and MgNO show less
pronounced error increases. This suggests that incorporating global, local, and multiscale features is
crucial for achieving high-accuracy approximations in operator learning across different frequency
levels.

8
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4.3.2 SCALING WITH DATASET SIZE

Figure 4 (b) examines how the performance of different forward neural operators scales with the size
of the training dataset. An increased amount of training data consistently enhances wave simulation
accuracy, validating the scaling law of operator learning and underscoring the necessity of creating
large-scale datasets for studying neural operator frameworks. Neural operator architectures scale
differently with increasing training data. Notably, MgNO and the FNO family show continued
improvement as the number of training phantoms increases from 4,000 to 8,000, demonstrating better
data efficiency than UNet, which shows limited improvement with additional training data.
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Figure 4: Analysis of Data Complexity, Model Scalability, and Generalization. (a) RRMSE
variation of neural operators trained on data at different frequencies. (b) RRMSE variation of neural
operators trained with different numbers of breast phantoms. (c) RRMSE variation of neural operators
trained with different numbers of source locations.

Metric PSNR↑ SSIM↑

Train
Test HET FIB FAT EXD HET FIB FAT EXD

HET 16.07 12.92 7.50 10.04 0.8275 0.7311 0.6482 0.6745
FIB 12.23 20.13 9.97 9.57 0.7463 0.8666 0.8156 0.6390
FAT 8.16 9.88 18.35 6.55 0.7426 0.7739 0.9080 0.6519
EXD 12.37 12.92 8.70 17.58 0.6942 0.6092 0.6416 0.8402
All 19.67 23.71 21.34 17.89 0.8426 0.8861 0.9239 0.8339

HET+FAT 16.39 13.31 17.79 6.29 0.8320 0.7331 0.9069 0.6747

Table 5: Quantitative evaluation of direct inversion baseline (NIO) on OOD breasts. Each row
indicates the breast type(s) used for training, and each column indicates the breast type used for
testing. Bold: Best, Underlined: Second Best.

4.3.3 GENERALIZATION CAPABILITY

Previous sections demonstrated that baseline models produce strong results on in-distribution (ID)
samples for both forward and inverse problems. In this section, we investigate the out-of-distribution
(OOD) generalization capabilities of the representative FNO and NIO models.

Breast Types Figure 5 and Table 5, along with Figure 10 and Table 6 in Appendix A.3, show the
performance of forward and inverse neural operators trained on selected breast types and tested
across all categories. The results show that, for both forward and inverse tasks, performance on OOD
samples degrades significantly compared to ID samples. However, neural operators trained on more
complex breast types (e.g., heterogeneous) tend to generalize better than those trained on simpler
types. Training neural operators on two significantly different breast types (e.g., heterogeneous +
fatty) also enhances generalization. Additionally, the performance degradation is less pronounced in
forward simulation than in inverse imaging, again suggesting that forward models better capture the
underlying physics, while inverse models may tend to memorize anatomical structures.

Source Locations Figure 4(c) illustrates the baseline models’ ability to generalize to different wave
source locations. We trained the forward neural operators on datasets with varying numbers of source
locations (8, 16, 32, 64) and validated them on datasets with unseen sources. As expected, prediction
accuracy improves with an increasing number of training source locations. MgNO demonstrates
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Figure 5: Inverse imaging results of direct inversion baseline on OOD breasts. This figure shows
reconstruction samples from the NIO models. Each column represents the breast type(s) used for
training, and each row represents the type used for testing. Ground-truth (GT) images are provided
for reference. While direct inversion models can roughly capture the shapes of OOD samples, they
tend to reproduce internal structures similar to the training data, indicating limited generalization.

strong generalization to new source locations by effectively capturing the underlying physical
principles, even with limited data. As the number of sources increases, FNO’s accuracy approaches
that of MgNO, while UNet’s performance fails to improve, indicating its difficulty in modeling wave
propagation. Detailed performance for different models is provided in the Appendix A.3 (Figure 11
and Table 7).

5 CONCLUSION

We introduced OpenWaves, a large-scale, anatomically realistic USCT dataset designed to bridge the
gap between numerical studies of wave equations and practical imaging applications. OpenWaves
provides over 16 million frequency-domain wave simulations based on a real USCT system, featuring
anatomically accurate human breast phantoms across four density categories. We benchmarked
several baseline methods for both forward wave simulation and inverse imaging tasks, comparing
their performance. Our results highlight the strengths and limitations of existing neural operator
architectures, providing insights into their generalization capabilities and scalability. OpenWaves
offers a valuable platform for developing and benchmarking neural wave equation solvers, enabling
their application in real-world imaging tasks involving complex wave phenomena.

Limitations While OpenWaves represents a significant step toward realistic benchmarking of neural
wave equation solvers, it has certain limitations. The dataset is currently limited to breast phantoms;
including other organs like limbs or brains would enhance its applicability. Simulations are restricted
to 2D due to computational constraints; incorporating 3D data would provide a more accurate
representation of real-world scenarios. The dataset primarily varies sound speed as the tissue
property; incorporating other properties like attenuation and anisotropy could further enhance realism.
Additionally, our study focuses on neural operator architectures without extensively exploring the
influence of their hyperparameters such as the number of FNO layers or other network parameters.
Future work will address these limitations by expanding the dataset’s scope and conducting more
comprehensive analyses, aiming to provide even more valuable resources for the development of
robust neural wave equation solvers.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 FORWARD BASELINES

We trained all forward simulation baseline models for 30 epochs using the AdamW optimizer, with
an initial learning rate of 5e-3, decayed by a StepLR scheduler (0.5 decay rate, 10-step size). We used
relative L2 loss for training and RRMSE for validation. The detailed architecture of each network is
provided below:

UNet:We implement UNet using the same structure as (Ronneberger et al., 2015) but a increased
model size to other baselines for the sake of fairness. We use the UNet structure with resolution size
sequence {[60] × 6, [120] × 5, [240] × 5, [480] × 4} and 4 skip channels for Upsample block. An
input block with the downsample structure using stride 1 is added to the beginning.
FNO:We use a vanilla FNO model with 7 FNO layers whose modes are {[128]× 7} and width is 40
to enlarge the representative ability.
BFNO: The modes and width are set to match those of FNO. Due to its parameter-sharing architecture,
BFNO has a smaller parameter size compared to FNO, but its inference time is longer.
AFNO: The adaptive FNO uses multi-head Fourier layers that combines the attention mechanism and
Fourier convolution. We set head = 4 and feature = 512 with modes list as [40]× 11. The lifting
operator uses Conv2d with patch size = [4, 4].
MgNO: The model is based on the standard MgNO architecture. In this adaptation, the MGCONV
modules are modified for the OpenWaves dataset by replacing the standard convolution operation
with DYNAMICAL CONVOLUTION. The MgNO consists of 6 layers of MGCONV. In each MGCONV,
the number of channels in each convolutional layer increases progressively as the model moves from
fine to coarse levels. Specifically, the channel sizes at the five levels are [24, 32, 64, 128, 256].

A.1.2 INVERSION BASELINES

We trained the three direct inversion baseline models for 500 epochs using the AdamW optimizer,
with an initial learning rate of 1e-3 and a weight decay of 1e-6. L1 loss was used for training to
preserve edges and fine details in the images, while SSIM and PSNR were used for evaluation.

NIO:In this paper, we modified the original setting of Convolution layer in Branch net to adapt to the
resolution of this problem. For the DeepONet, a CNN with 10 Conv2d layers is applied to obtain a
512 feature coefficients and a linear layer is then applied to map it into 25 basis. The Conv2d layers
we uses are listed below:

convblock1 = ConvBlock(1, 64, kernel_size=(1, 7), stride=(1, 2), padding
=(0, 3))

convblock2 = ConvBlock(64, 128, kernel_size=(1, 3), stride=(1, 2),
padding=(0, 1))

convblock3 = ConvBlock(128, 128, kernel_size=(1, 3), padding=(0, 1))
convblock4 = ConvBlock(128, 256, kernel_size=(1, 3), stride=(1, 2),

padding=(0, 1))
convblock5 = ConvBlock(256, 256, kernel_size=(1, 3), padding=(0, 1))
convblock6= ConvBlock(256, 512, kernel_size=(1, 3), stride=(1, 2),

padding=(0, 1))
convblock7 = ConvBlock(512, 512, kernel_size=(1, 3), padding=(0, 1))
convblock8 = ConvBlock(512, 512, kernel_size=(1, 3), stride=(1, 2),

padding=(0, 1))
convblock9 = ConvBlock(512, 512, kernel_size=(1, 3), stride=(1, 2),

padding=(0, 1))
convblock10 = ConvBlock(512, 512, kernel_size=(6, 4), padding = 0)

The trunk net uses an 8 layer MLP with 100 hidden neurons. For the FNO part, we use 4 Fourier
layer with 40 modes and 32 width.
InversionNet:In this paper, we train the encoder and decoder of InversionNet in a supervised manner,
using USCT observations from multiple sources as input and predicting 2D sound speed maps
(width × height) as output. The convolution layers are adjusted to accommodate the resolution
of this dataset. Additionally, in the USCT setting, we use frequency domain input structured as

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Frequencies×Receiver×Source to correspond with the time domain input Source×Receiver×Time
as used in seismic FWI, which improves the model’s performance.
DeepONet:The implementation of DeepONet is the same as the DeepONet part of NIO. We further
use a MLP to map the final 25 basis function to the output.

A.2 ADJOINT METHOD IN FWI

The frequency-domain FWI can be formulated as a PDE-constrained optimization problem:

min
c(x),uk(x)

L =

M∑
k=1

Lk =

M∑
k=1

∥yk − uk(xf )∥22

s.t.

[
∇2 +

(
ω

c(x)

)2
]
uk(x) = −sk(x).

(5)

A prevalent approach for computing the gradient, ∂Lk/∂c, in FWI is the adjoint method. Using the
method of Lagrange multipliers, the problem can be converted into an unconstrained form

min
c(x),uk(x),λk(x)

L =

M∑
k=1

Lk =

M∑
k=1

∥yk − uk(xf )∥22

−
M∑
k=1

⟨λk(x),Scuk(x) + sk(x)⟩

(6)

where L is the Lagrangian function, ⟨f, g⟩ denotes the real part of inner product of function f and g
in L2(C), yk denotes the measurement obtained by transducer for source sk, and Sc is the differential
operator

Sc(·) =

[
∇2 +

(
ω

c(x)

)2
]
(·), (7)

We then calculate the partial derivatives of Lk with respect to λk, uk, c, respectively. Setting
∂Lk

∂λk
(x) = 0 yields the Helmholtz equations itself. Similarly, enforcing ∂Lk

∂uk
(x) = 0 leads to

the derivation of the adjoint equation,

Scλk(x) =

M∑
i=1

[uk(x
(i)
f )− y

(i)
k ]δ(x

(i)
f ), (8)

where i denotes the index of USCT transducers and δ(·) defines a normalized point source at a
specific transducer location. Substituting Eq. 7 and Eq. 8 into ∂Lk/∂c results in

∂Lk

∂c
(x) =

∂Sc

∂c
(x)λ⋆

k(x)uk(x)

= −2ω2λ
⋆
k(x)uk(x)

c(x)3
,

(9)

The gradient is proportional to the product of two wavefields, where uk(x) is the forward simulation
result for source sk and λk(x) arises from the backward simulation whose source term is defined by
the discrepancies between forward predictions and measured data.

A.3 ADDITIONAL FIGURES AND TABLES
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Figure 6: Forward simulation results at 400 kHz. Comparison of wavefield predictions for four
breast types using a numerical solver (CBS) and five baseline neural operators.
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Figure 7: Forward simulation results at 500 kHz. Comparison of wavefield predictions for four
breast types using a numerical solver (CBS) and five baseline neural operators.
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Figure 8: Comparison of forward simulation errors across different breast categories. RRMSE
(a) and Max Errors (b) of five forward simulation baselines are reported across four breast categories.
Larger errors in heterogeneous and extremely dense breasts indicate that their more complex internal
tissue structures lead to stronger scattering effects and more challenging learning problems.
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Figure 9: Comparison of direct inversion quality across different breast categories. SSIM (a)
and PSNR (b) of three direct inversion baselines are reported for four breast categories. Lower
reconstruction quality in heterogeneous and extremely dense breasts suggests that their more complex
internal tissue structures lead to stronger scattering effects and more challenging learning tasks.
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Figure 10: Wavefield prediction results of forward simulation baseline on OOD breasts. This
figure shows wavefield prediction samples from FNO models. Each column indicates the breast type(s)
used for training, and each row indicates the type used for testing. Ground-truth (GT) wavefields
from the CBS solver are provided for reference. The forward simulation models demonstrate better
generalization than direct inversion baselines, especially when trained on Heterogeneous (HET) and
Fibroglandular (FIB) breasts. FNO trained on all four breast categories consistently achieves accurate
wavefield predictions.

Metric RRMSE↓ Max Error↓

Train
Test HET FIB FAT EXD HET FIB FAT EXD

HET 0.0738 0.1413 0.8113 0.5210 0.1412 0.2033 1.0129 0.7653
FIB 0.2425 0.0208 0.9284 0.6434 0.4730 0.0523 1.0702 0.8136
FAT 0.4640 0.7257 0.0244 0.4966 0.6552 0.8339 0.0404 0.9889
EXD 0.2668 0.6802 1.2434 0.0292 0.5269 0.9783 2.1184 0.0687
All 0.0236 0.0187 0.0270 0.0302 0.0417 0.0318 0.0446 0.0584

HET+FAT 0.0269 0.5241 0.0287 0.3147 0.0484 0.7941 0.0545 0.5821
FIB+EXD 0.1918 0.0169 0.8983 0.0300 0.3753 0.0349 1.0160 0.0610

Table 6: Quantitative evaluation of forward simulation baseline (FNO) on OOD breasts. Each
row indicates the breast type(s) used for training, and each column indicates the breast type used for
testing. Bold: Best, Underlined: Second Best.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

ID

GT 8 Sources 16 Sources 32 Sources 64 Sources

O
O

D
1

O
O

D
2

Figure 11: Wavefield prediction results of forward simulation baseline on OOD source locations.
This figure shows wavefield predictions from FNO models trained on varying numbers of source
locations. Ground-truth (GT) wavefields from the CBS solver are provided for reference. Prediction
accuracy for OOD sources improves as the number of training sources increases.

Frequency(kHz) Metric Models
UNet FNO AFNO BFNO MgNO

300 RRMSE↓ 0.1237 0.0347 0.0567 0.0115 0.0041
Max Error↓ 0.2551 0.0927 0.4447 0.0610 0.0131

400 RRMSE↓ 0.1532 0.0426 0.1656 0.0151 0.0108
Max Error↓ 0.2858 0.1172 1.3172 0.0840 0.0246

500 RRMSE↓ 0.1877 0.0632 0.2184 0.0212 0.0183
Max Error↓ 0.3524 0.1843 1.5160 0.0854 0.0416

Table 7: Quantification of the model’s generalization to OOD source locations. Performance was
evaluated by training models on the 64 source locations and testing them on the whole 256 sources
(192 unseen). Bold:Best, Underlined:Second Best
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