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Abstract—While imitation learning-based methods have gained
popularity for enabling robots to perform complex tasks, they
lack flexibility for adapting to preferences and general inter-
pretability. Drawing insights from feature-based reward learning
literature, which emphasizes alignment to human intent, we
propose a novel abstraction called a “preference boundary” to
reusably represent preferences. We also propose a method for
validating alignment with the user’s preferences and provide
preliminary results evaluating these methods. We conclude with
discussions of insights, next steps, and limitations.

I. INTRODUCTION

Robot learning has been gaining traction, in part for the
abilities to handle complex tasks and adapt to novel scenar-
ios [13]. Following the successes of reinforcement learning
from human feedback [17] in training large models in language
and vision [24, 25], attention has turned to creating generalist
robot policies. In particular, imitation learning [38, 18, 9, 7]—
including human-in-the-loop formulations [31, 21, 12, 23]—
has recently produced exciting results for robotics challenges.

However, imitation-learning-based methods such as behav-
ior cloning lack interpretability and align with a human’s
intent only when that intent is clearly present in the training
data. What if a person has a different preference, such as
ordering books on their bookshelf by color rather than author
name? One option is to finetune the policy with data reflecting
the preference, but collecting sufficient data would be time-
intensive [19, 33], placing a high workload on the human.

On the other hand, feature-based reward learning methods
have the ability to more flexibly adapt to user preferences. By
representing semantically-meaningful elements of the task as
individual reward features [4], these methods improve align-
ment to the user’s goals in a more interpretable manner [6].
However, the reward must be relearned and the policy retrained
each time a new feature is learned, resulting in a cumbersome
policy adaptation process. Moreover, these methods struggle
with accurate reward estimation in high-dimensional spaces,
making them less suited than imitation-learning-based coun-
terparts for complex, dexterous tasks [2].

In this work, we aim to explore whether we can maintain
the best of both imitation learning and feature-based reward
learning methods, combining the generalist performance of the
former with the flexibility and increased alignment of the latter.
In particular, we explore the research question: Can imposing
boundaries using methods inspired by feature-based re-

ward learning enable pretrained imitation learning policies
to flexibly adapt to user requirements?

In this work, we contribute:
1) A method for learning and updating individual elements

of a user’s task preferences using a reusable abstraction
called a “preference boundary” inspired by prior work
in feature-based reward learning;

2) A protocol for closed-loop validation of a policy’s
alignment to preferences using preference boundaries;

3) Preliminary evaluation of these two methods and discus-
sion of the inclusion of these strategies in a full system
with a black-box policy, their challenges, and next steps.

II. RELATED WORK

A. Preference Learning

Prior work has explored teaching preferences as individual
features in the reward [4] and adapting pre-trained prefer-
ence models for new tasks [16]. Preferences can be learned
via feature traces [3], through comparisons over states or
features [5, 30], or by adapting pre-trained preference mod-
els [16]. Selection and incorporation of relevant reward fea-
tures based on a user’s preferences have also been automated
using LLMs [29, 14]. All of these methods assume access
to and ability to modify the policy reward, which are not
possible when working with a black-box policy. In this work,
we explore abstracting and learning individual elements of
preferences [3, 4] and leveraging large models to propose
missing elements [29] without access to policy reward.

B. Policy Steering and Shielding

Steering robot policies via in-context learning enables mod-
ification of policy behavior without expensive finetuning.
Researchers have explored encoding visual observations and
trajectories as sequences of tokens [26], biasing sampling
processes with human input [34], and using autoregressive
prediction on trajectories using a causal transformer [11]
to facilitate in-context learning. However, these approaches
require explicit training on the final task. Ma et al. [20]
leverage the sequential structure of robot trajectories to output
value predictions for in-context learning; however, this notion
of value is general rather than being user-specific.

To prevent misalignment to user preferences, we draw on
the idea of shielding from the SafeRL community, which uses
a learned reactive system to ensure an RL policy adheres to



Fig. 1. We present methods for synthesizing a reactive system that wraps around a pretrained policy and adapts its behavior to human preferences.
Preferences are first extracted and abstracted using “preference boundaries,” which are also used to validate that the output of the pretrained policy aligns
with user preferences. This paper examines the preference boundary extraction and alignment modules of this system, outlined in navy.

safety requirements [1, 8, 36]. The shield acts as a supervisor,
monitoring the policy’s behavior and intervening when certain
specifications—pre-defined [1] or learned [8]—are violated.

C. LLMs and VLMs For Robotics

Recent works leverage the commonsense knowledge of
LLMs or VLMs for robotics, despite these models lacking
training on data representative of real-world physical tasks.
Two approaches address this gap by using latent representa-
tions to address real-world physics [35] and aligning language
to goal images [22], but both require training on data from the
deployment environment, limiting flexibility.

Another strategy for enabling VLMs to contribute to real-
world tasks without having to explicitly reason over spatial do-
mains is by abstracting real-world semantics using keypoints.
For example, previous approaches have encoded spatial con-
straints as constraints over keypoints [15], or used a language
model to generate code defining reward over keypoints [27].
Our work will apply some of these insights.

III. METHOD

A. Desiderata and Overview

The two main desiderata are that the method 1) interpretably
adapts to user preferences and 2) wraps around and steers a
black-box policy.

Since there is no access to policy reward, interpretabil-
ity cannot be addressed through prior methods on inducing
alignment via modification or addition of reward features.
We propose an abstraction called a “preference boundary”
for capturing preferences in a reusable way (Section III-B)
and an alignment verification step with a separate reward
(Section III-C) to address this challenge. Assuming no access
to policy weights for more flexible use with different policies
means the policy cannot be finetuned [32, 28, 35]. We explore
in-context learning to address this challenge [11, 34, 37].

We envision a final system framework as shown in Figure 1.
Given corrective human input—e.g., placing a red book by
others with red spines—the collection of preference bound-
aries is updated to better capture the person’s preferences
(Section III-B)—e.g., organize books by color of spines. Then,
the preference boundaries are provided as contextual input
to the black-box policy, and the output trajectory is verified

(Section III-C)—e.g., a blue book is placed with other blue
books. We leave adaptation of the preference boundaries when
verification fails to future work as detailed in Section V.

B. Representing Preferences With “Preference Boundaries”

We formalize a preference boundary b as a function of
the state s encoding both the notions of an expressed attribute
ϕ(s), similar to a reward feature, as well a threshold h
and direction d representing the permissible amount of that
attribute according to the preference.

b = (ϕ(s), h, d) (1)

Preference boundaries function as abstractions that influ-
ence the steering of the policy according to interpretable
representations of a person’s preferences. An example of a
preference boundary encoding allowable driving aggression is
given in Figure 2. A key advantage of this representation is
that ϕ(s) represents meaningful attributes that may also apply
with variation to future tasks; if the user’s preference does
not directly apply out of the box—for example, they tolerate
a more aggressive driving style in a city than in a suburban
setting—only the threshold h needs to be adjusted.

We leverage the commonsense knowledge of a VLM similar
to prior work [29], but use it to propose and systematically
extract both the ϕ(s) of missing preference boundaries and
the anchoring (h, d). The specific prompt to guide extraction
and updates is given in Appendix A.

1) “Bag of Preference Boundaries”: As each preference
boundary represents an elementary attribute of a preference,
we define a collection, a “bag” B, of m preference boundaries

B = (b1(s), b2(s), . . . , bm(s)) (2)

to represent the suite of a person’s preferences (e.g., organize
books by color, but place oversized books on a separate shelf).
Each preference boundary effectively represents a cut in state
space delineating allowable states, so the bag of preference
boundaries intuitively restricts the traversable state space.

There are two categories of updates to B: adding/removing
a preference boundary, or modifying an existing preference
boundary. Preference boundaries must remain distinct follow-
ing updates to avoid overparameterizing the space. Namely,



Fig. 2. Toy example of a preference boundary representing the acceptable
level of driving aggression. ϕ(s) is a vector delineating the idea of “aggres-
sion” given average speed and average jerk, and (h, d) are a threshold and
direction pair characterizing allowable amount of aggression.

the ϕ vectors must be sufficiently different:

dist(ϕi, ϕj) > η,∀(i, j) ∈ [1,m], i ̸= j (3)

for some η threshold given a distance metric. A modification
on any ϕi must trigger an iterative check on all other ϕj vectors
to ensure this property holds. If such a solution is infeasible,
then redundant vectors may need to be consolidated.

Here, since preference boundaries are represented in the
language domain, the VLM is used to approximate the distance
metric as a first baseline approach. While language models’
next-token prediction does not allow for rigorous computa-
tion of distances, prompting techniques such as sampling or
prompting for relative comparisons can increase reliability.

C. Keypoint-Based Alignment Validation

In this section, we present a method for validating that
policy output is aligned with learned preference boundaries.

A key challenge to alignment verification is translating
from the language domain, where preference boundaries are
collected, to the spatial domain of real-world robot trajectories.
We build off of recent work on encoding spatial elements rele-
vant to task completion as keypoints in image space [15, 27].
Thus, the model is only required to reason in 2D cartesian
space, as opposed to reasoning over poses in SE(3) space.

We propose the following process for alignment validation.
First, keypoints are extracted keypoints using an off-the-shelf
visual feature extractor such as DINOv2 [25]. Then, keypoints
are downsampled to keep a sparse number of semantically-
meaningful ones [15]. Next, the VLM is prompted to generate
code calculating alignment cost over keypoints, similar to the
method proposed by Patel et al. [27]. Finally, this code is
executed in-the-loop (along with keypoint tracking) during
execution of the robot trajectory to evaluate alignment. If
alignment is low, then the robot iteratively refines the learned
preference boundaries or queries the person for help. Returning
to the bookshelf organizing example, keypoints may each
represent a single book, and the cost may be calculated as
the sum of euclidean distances between the keypoint of the
book to be moved and its two closest matches (Appendix C).

Fig. 3. Evaluation of ability to extract preference boundaries in a bookshelf
organization task. The latent preference is to organize books by color. In the
baseline method (left), the VLM is given only the correction of where The
Kite Runner should be placed. In the proposed method (right), the VLM is
asked to extract the relevant preference boundary feature ϕ and anchoring
(h, d) after being given the same correction. Books are indeed ordered by
color in the proposed case, which is untrue in the baseline case.

The prompt for alignment cost is given in Appendix B.

IV. PRELIMINARY EVALUATION

Preliminary evaluation was performed using GPT-4o [24]
and focuses on validating preference boundary extraction and
alignment verification using a VLM; evaluation with a full
pipeline including robot policy is left to future work.

A. Preference Boundary Extraction and Updates

The three main goals of evaluation for preference boundary
extraction were: first, to extract both the features and anchor-
ings of preference boundaries using a VLM with a human in
the loop; second, to validate bag of preference boundaries up-
dates; and third, to ensure that extracted preference boundaries
meaningfully influence task outputs. For the third, the VLM
was used as a proxy “agent” for preliminary evaluation.

Three tasks were evaluated: organizing a bookshelf, sorting
laundry into delicates versus normal wash, and gathering
matching stationery. Each task incorporated a latent prefer-
ence: organize by color, consider any decorations on top of
original fabric to be delicate, and match by thematic element.

In the experimental cases, the model was prompted to
propose five most likely missing preference boundaries fol-
lowing a correction, then to update the bag of preference
boundaries with the human-labeled closest match. The VLM
was instructed that latent preferences should be represented
as preference boundaries and given an example. The same
number of corrections were given for the baseline cases, in
which general instructions about latent preferences were given
without knowledge of preference boundaries.



Below, we report the accuracy of predictions for each task
for the proposed and baseline methods (n = 5), the maximum
number of corrections provided for each task (constant for
all trials), and average rankings of the correct preference
boundaries in the proposed lists (proposed method only).

Task Proposed Baseline Corrections Avg Rank

Bookshelf .75 0.2 1 4

Laundry .75 .56 4 1.2

Stationery .67 .37 2 2.6

TABLE I
RESULTS FROM PREFERENCE BOUNDARY EVALUATION

Overall, task accuracies are higher using the proposed
method (p = 0.004, p = 0.003, p = 8.4e−4, respectively),
suggesting that preference boundaries can meaningfully affect
downstream tasks. Moreover, all correct latent preference
boundaries were proposed within the five top candidates, val-
idating the use of VLMs in extracting preference boundaries.

The discrepancy in performance between proposed and
baseline methods is greater when the preferences deviate more
from common sense. For example, in the bookshelf task, the
average rank of the preference to organize by color was fourth
(commonly after alphabetical by author, alphabetical by title,
reverse alphabetical by author, etc.). In the baseline, the VLM
struggles to organize the books by color, instead leveraging
prior knowledge that books are often alphabetized by author
or title even when the data contradict this (Figure 3).

These results also support the proposed updates to the bag
of preference boundaries. The multiple corrections given in the
laundry and stationery tasks each reflected different elements
of the preference (e.g., “any decorations” includes embroidery,
graphic prints, sequins, etc.), which were successfully reflected
in the bag of preference boundaries, while the baseline method
struggled to generalize. Moreover, corrections given in the
laundry task showing an increased tolerance of fragile ele-
ments belonging in normal wash resulted in only updates to
the anchoring of the correct preference boundary.

B. Keypoint-Based Alignment Validation

We evaluated whether it is possible to generate cost func-
tions over keypoints that represent alignment to preference
boundaries using the bookshelf task. The VLM was prompted
with a single image manually annotated with keypoints repre-
senting each book (Figure 4 (a)) and the instruction to generate
a cost function over alignment with the preference to organize
by color. The outputted function, which adds the euclidean
distances between the target book and the two other red books,
was used to evaluate two test images, one with the book in the
correct location, and one with the incorrect location as shown
in Figure 4 (b) and (c), respectively. The cost for the correct
placement (119) was indeed lower than the cost for incorrect
placement (338), validating the preference alignment cost.

We also found that the generated cost could reflect a
changing anchoring of the preference, such as if books could

Fig. 4. Evaluation of reward generation in toy bookshelf scenario to validate
alignment with latent preference of organizing by color. The image on the
top (a) was given as input, and the two on the bottom were used as test. The
cost calculated using the output reward function (119) for (b), where The Kite
Runner is placed correctly next to other red books, is indeed lower than the
cost (338) for (c), where it is incorrectly placed next to the blue books.

be approximately ordered by color. This generated function
still resulted in a lower cost when the book is inserted correctly
(30) in Figure 4 (b) versus incorrectly (74) in Figure 4 (c).

However, while these generated cost functions are able to
reflect relative preference alignment, we found GTP-4o limited
for verifying preference boundary anchoring. Specifically, the
model was unable to generate a cost function where negative
values represent permissible examples and positive values rep-
resent invalid examples according to anchoring. Further work
is required to better evaluate preference boundary anchoring.

V. DISCUSSION

In this work, we introduced methods for abstracting a user’s
preferences to influence downstream tasks and validating that
the policy adheres to the preferences.

A. Future Work

We plan to next explore using an open-source vision-
language-action model or training a diffusion-based pol-
icy [35] in the system pipeline. To ground the preference
boundaries, we are interested in investigating using a state
editor to mask or augment the input image [29] or extracting
a latent encoding for each preference boundary vector.

Future work also includes exploring strategies for active
learning through strategic querying when verification fails,
managing conflicting preference boundaries, and identifying
the most effective mode(s) for interaction [10].

B. Limitations

One central limitation is this system is only as capable as
the underlying pretrained policy. If the policy is incapable
of handling fine-grained requirements dictated by a person’s
preferences (such as moving two books to insert a third),
well-represented preferences cannot overcome this limitation.
Additionally, visual keypoints cannot represent arbitrary pref-
erences, and identifying that a policy does not adhere to the
learned preference boundaries does not inform as to how to
prevent that alignment failure in the future.
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A. Preference Boundary Extraction and Updates

The VLM is given the following priming instruction to
familiarize it with the idea of a preference boundary (concept)
and anchoring (calibration):

You are a household robot helping me
to perform various tasks. As you help me
with various tasks, I may have certain
preferences about how they should be
done and give you a correction in the
form of rules that I want you to follow
when you help me perform these tasks.
Think of each rule as having 2 parts:
there will be an underlying concept,
specifying what attribute(s) of the task
a preference concerns, and a calibration
of the concept, specifying how much of
the concept makes something preferred
vs. not. For example, if I wanted you to
help me select 7 avocados at the grocery
store, I might have a preference that
the 7 avocados should range from ripe
to unripe such that they will ripen at
different times and I can eat one a day
for a week. The concept in this case is
the variety in avocado ripeness, and the
calibration is that I want it to be as
varied as possible.

The VLM is given the following priming instruction in the
control evaluation case:

You are a household robot helping me
to perform various tasks. As you help me
with various tasks, I may have certain
preferences about how they should be done
and give you a correction in the form of
rules that I want you to follow when you
help me perform these tasks.

B. Keypoint-Based Alignment Evaluation

The VLM is given the following prompt to ground its code
generation for evaluating alignment cost:

Your job is to help with evaluating
whether taking an action will result in
what the user wants by writing code in
python. The setting is given as an image
of the environment overlaid with keypoints
marked with their indices along with a
text instruction. What the person wants
is given in the text instruction as a
"concept": this consists of an "idea",
and "anchoring" of how much the action
must comply with the idea. These keypoints
are in 3D space, and are projected onto
the 2D image. They are attached with the
objects, and move along with them. The
text instruction will also include the
task that will be performed.

The code should be a mathematical
operation on keypoints; you should
decide which (or all) of the keypoints
are relevant to both the task and the
user’s desired "concept" The input to
the function is a dictionary of keypoint
coordinates. So keys will be strings like
"1", "2", ... and their values will be
numpy arrays ([x, y, z]) representing the
3D location of the keypoint corresponding
to that index. The function will return
a single value representing the cost of
the current state in accordance with the
user’s desired "concept". The lower the
cost, the more the action aligns with
the concept. If this action is allowable
according to the person’s concept anchor,
the cost value should be strictly less
than 0.

You should not forecast the cost of the
future; do not attempt to decide how to
solve the task or to calculate the cost
after the task has been solved. Your job
is only to generate a function that will
be evaluated multiple times as the action
is being taken to evaluate how well the
user’s concept is being satisfied.

Structure your output in a single
python code block as follows:

def get_concept_cost(keypoint_coordinates):
# Put your explanation here.
keypoint_indices_to_use = ?

# mathematical operation on keypoints to determine
# the cost of taking actions in accordance with
# the user’s desired ‘‘concept’’
total_cost = 0
for keypoint_ind in keypoint_indices_to_use:

# Write calculation here.
# You may use multiple lines
cost_ind = ?
total_cost += cost_ind

return total_cost

C. VLM output for the strict organization case

def get_concept_cost(keypoint_coordinates):
"""
This function evaluates how well the current
state of book arrangement satisfies the concept
of organizing by spine color.
Specifically, it computes how well the book
labeled ’A’ is integrated into a local region
with similar spine colors.

We treat keypoints as representing individual
books, and use spatial proximity in 3D to infer
placement. To match the concept, we expect that
’A’ is placed adjacent to books of similar spine
color (reddish).Based on the image, books 5, 6,
and possibly 7 (reddish tones) are appropriate
neighbors for keypoint ’A’.



The cost is computed as the 3D Euclidean
distance from ’A’ to its most similar-color
group (book 5 and 6).
Lower distance > better placement > lower cost.
If it’s too far, the cost will be high.
"""

# Red group neighborhood (based on spine color)
red_group_indices = ["5", "6"]
a_position = keypoint_coordinates["A"]

total_cost = 0
for keypoint_ind in red_group_indices:

group_pos = keypoint_coordinates[
keypoint_ind]

cost_ind = np.linalg.norm(
a_position - group_pos
)

total_cost += cost_ind

return total_cost

D. VLM output for the lenient organization case (books may
be within 2 books of correct placement)

def get_concept_cost(keypoint_coordinates):
"""
This function evaluates how well the current
book arrangement satisfies the concept of
approximate color gradient organization.
Keypoint ’A’ represents the book to be
integrated into the left grouping. The spine
of this book is maroon/red.

Based on the concept, the goal is for similarly
colored books to be close together (with
leniency: up to two books apart).

Red-colored books are around keypoints 5 and 6.
The ideal position for ’A’ is next to these
(either directly adjacent or within two
positions away).

To compute the cost, we calculate the minimum
distance from ’A’ to keypoints 4-8 (a 5-book
window centered around the red zone),
penalizing more for further distance.
If ’A’ is within two-book positions from 5
or 6, cost is zero. Otherwise, cost increases
with distance from this red cluster.
"""
red_center_indices = [str(i) for i in range(4,

9)]
# range of possibly acceptable placements

a_position = keypoint_coordinates["A"]
min_distance = float(’inf’)

for keypoint_ind in red_center_indices:
other_pos = keypoint_coordinates[

keypoint_ind]
dist = np.linalg.norm(

a_position - other_pos
)

if dist < min_distance:
min_distance = dist

# Cost is proportional to distance from the red
# group
# Acceptable if ’A’ is within ˜2-book spacing
# (threshold set empirically as 2 book widths ˜
# 10 units in 3D)

return min_distance - 10
# cost < 0 means acceptable placement
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