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ABSTRACT
Real-world sequential decision problems can be approached using a
reinforcement learning approach. When these problems impact fair-
ness across groups or individuals, considering fairness-aware tech-
niques is crucial. Therefore, we require algorithms that can make
suitable trade-offs between performance and the desired fairness
notions. As the desired performance-fairness trade-off is difficult to
specify a priori, we propose a framework where multiple trade-offs
can be explored. As such, insights provided by the reinforcement
learning algorithm, regarding the obtainable performance-fairness
trade-offs, can be used by stakeholders to select the best policy
for the problem at hand. To capture the appropriate fairness no-
tions, we define an extended Markov decision process, 𝑓MDP, that
explicitly encodes individuals and groups. Given this 𝑓MDP, we
formalise fairness notions in the context of sequential decision
problems. We formulate a fairness framework, that allows us to
compute fairness notions over time. We evaluate our framework in
two scenarios, each with distinct fairness requirements. The first is
a job hiring setting, where strong teams must be composed, while
providing equal treatment to the applicants. The second setting
concerns fraud detection, where fraudulent transactions must be
detected, while ensuring the burden for customers is distributed
fairly.
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1 INTRODUCTION
A wide range of real-world decision problems may risk discrim-
ination when solved, including job hiring [45, 46], epidemic mit-
igation [20, 32], finance [33] and fraud detection [48]. Therefore,
they require solutions that focus on fairness. Moreover, real-world
problems are often sequential, requiring automated decision sup-
port systems to continuously maintain the desired performance and
adapt as needed to unseen situations. This demonstrates the need
for automated decision support systems that learn policies that can
balance performance with fairness over the impacted people.
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Obtaining a policy with an appropriate performance-fairness
trade-off is context-specific and typically relies on multiple fairness
notions to guarantee fairness [35]. Therefore, defining appropriate
performance-fairness trade-offs requires input from stakeholders
and domain experts. Moreover, even with stakeholders’ preferences
and domain expertise, the boundary between fair and unfair and
other ethical considerations is difficult to decide on a priori. Conse-
quently, selecting a suitable policy is challenging. To this end, we
need a framework capable of dealing with multiple fairness notions
simultaneously. Furthermore, it is crucial to provide stakeholders
with an overview of which trade-offs are possible, such that an
informed decision can be made on which policy is most suited for
the problem at hand.

Previous work related to fairness mainly focused on the super-
vised learning setting that operates on a given dataset, such as
machine learning [18, 19, 22, 35, 36] and data mining [8, 21, 28]. In
contrast, automated decision support problems are typically sequen-
tial and can evolve over time. This requires dealing with the impact
of short term and long term decisions [15]. As such, reinforcement
learning (RL) is a suitable approach to enable an agent to learn a
decision support policy by interacting with an environment [50].
At each time 𝑡 , the agent observes the state s𝑡 of the environment
and decides which action 𝑎𝑡 to take, for which it receives a reward
𝑟𝑡 and observes the next state s𝑡+1. The agent learns through trial
and evaluation by repeatedly interacting with the environment,
where it balances between exploration and exploitation to reach an
optimal policy [50].

RL approaches have focused on fairness in application-specific
solutions [10, 26, 27, 44, 47, 53]. However, these solutions focus
on a single fairness notion and rely on reward shaping to define
the performance-fairness trade-off [10, 34]. However, as the de-
sired performance-fairness trade-off cannot be described a priori
by stakeholders, these approaches do not suffice for most real-
world problems. Furthermore, dealing with the performance and
one or multiple, possibly conflicting, fairness notions requires a
multi-objective approach to explore the uncertainty over the obtain-
able trade-offs [24]. To this end, we propose a formal framework
that can learn performance-fairness trade-offs regarding multiple
fairness notions. We evaluate this framework in two settings that
have distinct fairness requirements: job hiring and credit card fraud
detection.
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2 RELATEDWORK
As reinforcement learning approaches are well suited to deal with
sequential processes, new research has focused on multi-armed
bandit approaches [27, 40]. To enforce fairness in job hiring, multi-
armed bandits [45, 46] as well as generalisations towards MDP
approaches [26] have been explored. However, current solutions do
not employ the multi-objective approach that is necessary for learn-
ing an appropriate performance-fairness trade-off. Approaches for
fraud detection often rely on offline trained algorithms [13, 14, 31],
which are retrained as labelled data becomes available with a delay.
Soemers et al. [48] propose a contextual bandit implementation
that is able to adapt to changes in fraudulent behaviour. In the field
of epidemic control, mitigation strategies have been explored in
RL [20, 32]. Reymond et al. [43] present a multi-objective approach
for minimising infections and hospitalisations, taking into account
the social burden of lost contacts. While this work does not focus
on fairness explicitly, it highlights how other real-world problems
have a critical fairness component to consider.

In the context of fairness, group fairness notions often rely on
predefined groups. As such, these group notions do not guaran-
tee fairness amongst any further subgroup divisions. Therefore,
it is possible for an algorithm to learn a fair policy for the given
groups, while being unfair for subgroups. Kearns et al. [29] propose
a technique to deal with this phenomenon, which is known as ger-
rymandering. They highlight the need for a more extensive fairness
evaluation when it comes to group fairness by enforcing fairness
for the subgroups as well. This work aligns with our argument for
a multi-objective approach to enforce multiple fairness constraints
with regards to existing fairness notions.

3 FAIRNESS FRAMEWORK
To define the fairness framework, we first highlight its requirements
and suitability regarding distinct problem settings. To introduce
fairness notions in an RL context, we illustrate them based on two
real-world settings. The first setting concerns job hiring, where the
aim is to hire qualified candidates while limiting bias towards sen-
sitive features. The second setting involves fraud detection, where
fraudulent transactions must be efficiently flagged, taking into ac-
count that verification requires a costly human effort. Moreover, it
is important that the agent targets real fraudulent transactions to
not displease genuine customers. Additionally, fraudulent transac-
tions constitute anomalies, rendering them challenging to detect.
We highlight that RL can be used both directly or indirectly in
the context of real-world problems. In this paper we make use of
simulated data based on real data distributions.

3.1 𝑓MDP and the fairness history
A sequential decision process can be formally described as aMarkov
Decision Process (MDP) [50], consisting of a set of states S, a
set of actions A, a set of rewards R and a transition function 𝑝 :
S×R×S×A → [0, 1] describing the probability of a next state s𝑡+1
and reward 𝑟𝑡 given the current state s𝑡 and action 𝑎𝑡 . To ensure that
existing fairness notions can be defined in this sequential process,
we extend this default MDP to an 𝑓MDP. As the presence of the
ground truth is required for some fairness notions, it must be either
obtained through feedback or approximated based on previous

interactions. To this end, the 𝑓MDP adds a feedback signal 𝑓𝑡 , that
concerns an indication whether the chosen action 𝑎𝑡 was correct at
time 𝑡 . In the fraud detection setting, this signal would indicate for
a fraudulent transaction that the correct action would have been to
request a reauthentication. Note that this feedback is optional and
can be partial, sparse or delayed.

As existing fairness notions typically concern fair treatment
between individuals or groups, we introduce the following notation.
I𝑡 refers to the set of individuals involved in the decision process at
time 𝑡 and we use 𝑖𝑡 ∈ I𝑡 to refer to an individual of that set. In the
job hiring setting, I𝑡 refers to the set of candidates who applied for
the job at time 𝑡 and for which a decision (i.e., hire or reject) should
be made. In the fraud detection setting, I𝑡 refers to all customers at
time 𝑡 to be considered for verification. We use

I𝑡 =

𝑡⋃
𝑡 ′=0

I𝑡 ′ (1)

to refer to the set of all individuals involved in the decision
process from the start 𝑡 ′ = 0 up to time 𝑡 . We define all individuals
of I𝑡 belonging to group 𝑔 as G𝑔,𝑡 ⊆ I𝑡 . We refer to all individuals
of group 𝑔, involved in the decision process until time 𝑡 , as:

G𝑡
𝑔 =

𝑡⋃
𝑡 ′=0

G𝑔,𝑡 ′ (2)

For ease of notation, we assume that groups are predefined and can
be empty. In the job hiring setting, G𝑡

𝑔 refers to the group of men or
women, who applied for a job until time 𝑡 . For the fraud detection
setting, G𝑡

𝑔 refers to a continent for which the RL agent must not
discriminate when flagging transactions.

To define individuals and groups in terms of the 𝑓MDP, we
use the following operator [ ]. Concretely, a state s𝑡 encodes the
individuals I𝑡 and groups G𝑡 involved in the decision at time 𝑡 .
We use I𝑡 [s𝑡 ] and G𝑡 [s𝑡 ] to refer to the individuals and groups
from the state, respectively. Furthermore, the action 𝑎𝑡 encodes
the decision impacting the involved individuals and groups (I𝑡 [𝑎𝑡 ]
and G𝑡 [𝑎𝑡 ]), and the feedback 𝑓𝑡 specifies the correctness of that
decision (I𝑡 [𝑓𝑡 ] and G𝑡 [𝑓𝑡 ]).

To define fairness over time, a history of encountered states and
chosen actions needs to be maintained. Given an 𝑓MDP, we define a
historyH𝑡 until time 𝑡 of past interaction tuples and their feedback
regarding the ground truth:

H𝑡 = {s𝑡 ′ , 𝑎𝑡 ′ , 𝑟𝑡 ′ , 𝑓𝑡 ′ }𝑡𝑡 ′=0 (3)

The history encodes the individuals and groups encoded in each
interaction it stores. Given the operator [ ], we use I𝑡 [H] and
G𝑡 [H] to refer to individuals and groups from all interactions until
time 𝑡 in the historyH , respectively.

For ease of notation, we define the encountered states and se-
lected actions from historyH respectively asH𝑆 andH𝐴 . We refer
to feedback regarding the correctness of the action asH𝑓 . In the job
hiring setting, the history consists of the encountered applicants
and their corresponding decision, indicating whether or not they
were hired. In the fraud detection setting, the history consists of all
observed transactions, along with their checking status.



3.2 Fairness notions
We formally define a fairness notion F as a power set P over
G𝑡 groups (Equation 4) and I𝑡 individuals (Equation 5), given the
history of encountered statesH𝑆 , chosen actionsH𝐴 and feedback
H𝑓 until time 𝑡 :

F : P (G𝑡 ) × P (H𝑆 ) × P (H𝐴) × P (H𝑓 ) ↩→ R− (4)

F : P (I𝑡 ) × P (H𝑆 ) × P (H𝐴) × P (H𝑓 ) ↩→ R− (5)

Concretely, each fairness notion F is defined as the negative abso-
lute difference in treatment between groups or individuals. There-
fore, when F = 0, the agent has achieved exact fairness with re-
spect to the given fairness notion. An exact definition of F can be
intractable due to limitations of defining exact fairness [26]. In such
cases, we propose to approximate it with F̂ . For a future fairness
objective,F , and by extension its approximation F̂ provide a foun-
dation for a reward signal that can be used with a multi-objective
RL approach.

The availability of a ground truth concerning the correctness
of an action and as a consequence the confusion matrix impacts
which fairness notions can be calculated for a given scenario. The
confusion matrix is defined as a two-dimensional table comparing
predictions of a model to the actual values. In the case of binary
actions (e.g., hire or reject an applicant) it specifies the number of
true positives (𝑇𝑃 ), false positives (𝐹𝑃 ), false negatives (𝐹𝑁 ) and
true negatives (𝑇𝑁 ). Consider the group fairness notion statistical
parity [18], where the probability of receiving the preferable treat-
ment of the agent (H

𝐴
= 1) should be the same across groups 𝑔 and

ℎ:

F = −|P(G𝑡
𝑔 [H𝐴] = 1|G𝑡

𝑔 [H𝑆 ])
− P(G𝑡

ℎ
[H𝐴] = 1|G𝑡

ℎ
[H𝑆 ]) |

(6)

Statistical parity requires that (𝑇𝑃 + 𝐹𝑃)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +𝑇𝑁 ) is
equal for both groups 𝑔 and ℎ. Because this fairness notion focuses
on equal acceptance rate across groups, it can be expressed without
knowledge of the ground truth. Other fairness notions require that
the ground truth is (partially) known, such as equal opportunity:

F = −|P(G𝑡
𝑔 [H𝐴] = 1|G𝑡

𝑔 [H𝑓 ] = 1,G𝑡
𝑔 [H𝑆 ])

− P(G𝑡
ℎ
[H𝐴] = 1|G𝑡

ℎ
[H𝑓 ] = 1,G𝑡

ℎ
[H𝑆 ]) |,

(7)

where H
𝑓
= 1 is the correct action as specified by the feedback re-

garding the ground truth. Equal opportunity requires that the recall
𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ) is equal across groups and is consequently indepen-
dent of 𝐹𝑃 . However, to compute it, we require a (partial) ground
truth that informs us about 𝑇𝑃 and 𝐹𝑁 . In the job hiring setting,
this requires knowing how qualified a job candidate is to calculate
the confusion matrix. In the fraud detection setting, the partial
ground truth is available, where transactions flagged as fraudulent
are manually verified, which provides the number of𝑇𝑃 and 𝐹𝑃 . In
contrast, there is no information on unflagged transactions unless
random checks are performed, or when individuals complain about
fraud cases in their experience. Ensuring individuals are treated
fairly, with regard to all groups they are a part of, is achieved by
ensuring all their groups are treated fairly with regard to each other.
If the interest is that each individual receives fair treatment, then
individual fairness notions should be used.

Individual fairness notions aim to treat similar individuals simi-
larly [18]. Given two individuals 𝑖𝑡 and 𝑗𝑡 , we assume a distance
metric 𝑑 (𝑖𝑡 , 𝑗𝑡 ) between the individuals. Note that also a similarity
metric could be used. Given the probability distributions𝑀𝑖 and𝑀𝑗

of the agent’s policy over the actions for 𝑖𝑡 and 𝑗𝑡 respectively, and a
distance metric 𝐷 (𝑀𝑖 | |𝑀𝑗 ) between these probability distributions,
individual fairness requires that:

∀𝑖𝑡 , 𝑗𝑡 ∈ I𝑡 : 𝐷 (𝑀𝑖 | |𝑀𝑗 ) ≤ 𝑑 (𝑖𝑡 , 𝑗𝑡 ) (8)

Individual fairness notions assume that an appropriate distance
metric is chosen based on domain expertise [35]. For the purpose of
evaluating our framework, we have chosen a distance metric where
we exclude the sensitive features, such that similarity is defined
only in terms of non-sensitive features. However, we emphasise
that for deploying algorithms in the real-world, this decision must
be made by stakeholders. To distinguish between nominal features
(e.g., ability to speak a language) and numerical features (e.g., years
of experience), we employ the Heterogeneous Manhattan-Overlap
Metric (HMOM) [54]. Concretely, we define a distance metric using
HMOM in the interval [0, 1] as:

𝑑 (𝑖𝑡 , 𝑗𝑡 ) = 𝑒−𝜆𝐻𝑀𝑂𝑀 (𝑖𝑡 , 𝑗𝑡 ) (9)

where 𝜆 > 0 is a smoothing parameter. We use an exponential
function to output values in the range [0, 1], such that all compared
individuals have the same maximum impact on the outcome of the
individual fairness notion.

As group fairness notions aim to similarly treat groups that
differ by a set of sensitive features, they cannot detect unfairness
at an individual level, as all attributes except the sensitive ones
are ignored [18]. Similarly, individual fairness notions lack the
ability to ensure fairness between groups. Ideally, an RL agent
conforms to a collection of both group and individual fairness
notions to manage this trade-off, which can be managed using a
multi-objective learning approach [24].

3.3 Fairness in sequential decision making
Defining fairness in a sequential setting requires knowledge of
how fairness notions can be defined given the agent-environment
interactions. Consider the fraud detection setting, where an agent
must decide how to efficiently flag transactions each day for a credit
card company [56]. Throughout the day, each individual client may
decide to make transactions. The agent aims to flag suspicious
transactions, in a way that every continent is subject to a similar
proportion of re-authentication requests.

Suppose in our fraud detection setting, that each hour the agent
encounters transactions from different continents. Each hour, the
agent chooses how to flag transactions for these respective conti-
nents. Then at each time 𝑡 , given an observed state s𝑡 and chosen
action 𝑎𝑡 , given G𝑡 groups, a group fairness notion can be defined
if s𝑡 contains all respective groups G𝑡 [s𝑡 ] and the chosen action 𝑎𝑡
represents the action taken towards each group G𝑡 [𝑎𝑡 ]. Figure 1a
visualises the possible scenarios with regards to the available action,
which can be an action over all groups G𝑡 , or a specific action for
each group 𝑔. Note that if individuals are defined within the state
representation, then all individuals I𝑡 can be grouped under their
respective groups G𝑡 .



Next in the fraud detection setting, consider that the agent only
encounters certain continents on an hourly basis, which would be
the case due to time zone differences. Then a sufficiently long time
horizon must be considered to encounter all continents. Concretely,
if the state s𝑡 contains only information on a strict subsetB𝑡 ⊂ G𝑡 of
the respective groups impacted by the decision at time 𝑡 , a fairness
notion can only be defined over the history H until 𝑡 , to contain
sufficient information about all impacted G𝑡 groups for time 𝑡 :

G𝑡 [s𝑡 ] = G𝑡 [H𝑆 ] (10)

Similarly, we require multiple timesteps if the action 𝑎𝑡 does not
define the action for all groups:

G𝑡 [𝑎𝑡 ] = G𝑡 [H𝐴] (11)

(a) (b)

(c) (d)

Figure 1: (a) (b) Scenarios where group fairness can be calcu-
lated. (a) All groups G𝑡 are encountered at each time 𝑡 . Top:
action 𝑎𝑡 is an action over all groups G𝑡 . Bottom: action 𝑎𝑡
encodes a specific action for each group 𝑔. (b) All groups G𝑡

are encountered over a time horizon until time 𝑡 . The + sym-
bol indicates a union over states and actions. (c) (d) Scenarios
where individual fairness can be calculated. (c) All individ-
uals I𝑡 are encountered at each time 𝑡 . Top: action 𝑎𝑡 is an
action over all individuals I𝑡 . Bottom: action 𝑎𝑡 encodes a
specific action for each individual 𝑖𝑡 . (d) All individuals I𝑡 are
encountered over a time horizon until time 𝑡 . The + symbol
indicates a union over states and actions.

If individuals are defined within the state representation of the
environment, Equations 10 and 11 can be extended to consider cases
where a subset of individuals is encountered. Figure 1b visualises
the scenario where only a subset of the groups is available at each
time 𝑡 , requiring a history of timesteps in order to express group
fairness notions.

Following up on the same fraud detection setting, when the
agent encounters all customers each hour, then individual fairness
notions can be calculated for the transactions. To define an individ-
ual fairness notion for I𝑡 individuals at time 𝑡 , given an observed
state s𝑡 and a chosen action 𝑎𝑡 , we require that I𝑡 [s𝑡 ] and I𝑡 [𝑎𝑡 ]
are defined. Figure 1c visualises the scenarios where individual
fairness can be calculated at each time 𝑡 . Note that the action can

be fine-grained for each individual or coarse-grained over their
respective countries or continents.

When only a portion of the individuals is encountered at each
time step, then we can only calculate individual fairness notions
when we maintain a history of interactions. An example for fraud
detection is checking a subset of all customers for a given continent
at different times during the day, to monitor suspicious transactions
based on their local time. In this case, a fair agent should balance
over time which continents are checked more often to not cause
certain customers to re-authenticate more than others. If state s𝑡
does not contain all I𝑡 individuals but rather a strict subset C𝑡 ⊂ I𝑡 ,
an individual fairness notion can be defined over a history H until
𝑡 when subsets of the individuals are encountered:

I𝑡 [s𝑡 ] = I𝑡 [H𝑆 ] (12)
I𝑡 [𝑎𝑡 ] = I𝑡 [H𝐴] (13)

Figure 1d visualises the scenario where individual fairness can
be expressed over multiple time steps. Note how both group and
individual fairness notions can be expressed if the encountered
states contain all necessary information about the respective groups
and individuals. Regardless of whether the action was specifically
assigned to them, their group, or the entire population, we can
compare the action which affects them to calculate fairness notions.
In this paper, we consider the scenarios from Figures 1b and 1d,
where all groups and individuals are encountered over a history,
respectively.

We consider each fairness notion by computing its approxima-
tion F̂ , through a history with a sliding window of the most recent
interactions. Note that this approximation is necessary due to the
intractability of fairness notions to achieve exact fairness over the
full history. On the one hand, we require enough interactions to
guarantee exact fairness [26]. On the other hand, considering the
full history makes computing the fairness notions intractable. In-
dividual fairness notions in particular become intractable due to
the pairwise comparisons needed between each new individual and
all those previously encountered. In the context of data mining,
approaches focus on over-representing minorities or rare events
[38] in the training data. Similarly, recommender systems suffer
from uneven data distributions which impacts fairness and as such
requires re-distributing the data to appropriately compare groups
and individuals [52].We consider such approaches as future work to
learn better approximations for fairness notions over a full history.

3.4 Learning and exploration
In the previous sections, we assume that the states in the history
encompass all groups G𝑡 and individuals I𝑡 necessary to compute
the relevant fairness notions. However, to meet this assumption,
the relevant states need to be encountered, which is highly depen-
dent on how the agent interacts with the environment. To establish
this, we need an appropriate exploration strategy that ensures that
sufficient information is collected about all groups G𝑡 and individ-
uals I𝑡 . On the one hand, to guarantee optimality, this exploration
strategy will need to collect information on groups and individu-
als as broadly as possible. On the other hand, to keep the process
computationally tractable, the exploration strategy should be ef-
fective and targeted. To support decision makers, policies can be



learned in simulated environments or directly in the real-world.
This choice depends on the problem at hand, and particularly how
the agent’s actions would impact the groups and individuals. Fur-
thermore, the availability of a simulated environment may provide
insights on which performance-fairness trade-offs are possible prior
to deploying them in the real world. This facilitates a model-based
reinforcement learning loop that could mitigate the hurdle of com-
putationally intensive exploration strategies.

4 SCENARIOS
In this section, we introduce a job hiring and fraud detection sce-
nario, that we use in our experiments, along with their distinct
fairness implications.

4.1 Job hiring
Job hiring is a reoccurring process throughout the company’s life-
time. This allows companies to use previous data when training
algorithms. However, the training data may be subject to historical
bias, which is then further exacerbated by the algorithm [35]. Addi-
tionally, the job hiring process is sequential, typically consisting of
multiple decision stages, i.e., resume screenings and possibly multi-
ple rounds of interviews [7], which warrants a sequential approach.
Moreover, unfairness at one stage may be propagated to consecu-
tive stages. In job hiring, gender-based discrimination ranges from
stereotypes and employer beliefs [4, 51] to occupational-specific
characteristics [1, 2, 12, 25, 30]. Ethnic discrimination has been
studied from an immigration perspective [57] and is based on im-
plicit interethnic attitudes [6]. Moreover, combinations of sensitive
features are known to cause discrimination [3, 17, 41].

Job hiring 𝑓MDP. We define the job hiring setting as an 𝑓MDP,
where an agent must learn to build a well-performing team of
employees, when presented applicants sampled from the <country>
population [Omitted for anonymity reasons]. Given an applicant
and the current team composition, the agent must decide on the
appropriate action 𝑎𝑡 , i.e., to hire or reject the applicant, based
on their estimated qualifications. To calculate the qualification of
each applicant, we define an objective but noisy goodness score
𝐺 ∈ [−1, 1], that quantifies how much the applicant is estimated to
improve the company based on their skills. We define this goodness
score as the ground truth for our experiments based on which the
𝑓MDP classifies applicants. Using a threshold 𝜖 = 0.5, the ground
truth action 𝑎𝑡 says to hire the applicant if 𝐺𝑡 >= 𝜖 , otherwise
reject. We provide additional details in Appendix A on the job
hiring 𝑓MDP and the applicant generation.

Fairness notions in job hiring. In this work, we consider fairness
concerns in job hiring based on discrimination grounded in two
sensitive features: gender and nationality. As the agent observes
an applicant in the state s𝑡 at each timestep 𝑡 , both individual and
group fairness notions are applicable (Section 3.2). We consider the
context of unfairness based on gender, where an applicant 𝑖𝑡 ∈ I𝑡

can belong to the group of men G𝑡
𝑚𝑒𝑛 or women G𝑡

𝑤𝑜𝑚𝑒𝑛 . For job
hiring, we consider the group fairness notions statistical parity
(Equation 6) and equal opportunity (Equation 7) as objectives in
addition to the main reward. We define individual fairness between

applicants as in Equation 8. We set 𝜆 = 0.1 for the heterogeneous
distance metric.

4.2 Fraud detection
Fraudulent credit card transactions result in significant losses when
undetected [16]. While manual investigations can accurately detect
fraud, it is unfeasible for the large number of transactions without
suffering delays. Moreover, fraudsters are known to change their
behaviour over time to avoid detection [14], requiring an online
approach to continuously adapt to new fraud behaviours. As cus-
tomers performmultiple transactions over a certain time period, the
credit card company must deal with customer satisfaction and pa-
tience when requiring authentication steps to process a transaction
[56]. As transactions typically include personal and location data,
algorithms may learn to discriminate based on sensitive features.
For example, countries with higher base rates (i.e., proportions of
fraudulent transactions) than others may have customers checked
more often based only on their location [35]. To this end, fraud
detection requires fairness notions which take into account this
difference in base rate to accurately flag transactions.

Fraud detection 𝑓MDP. The fraud detection setting concerns on-
line credit card transactions where multi-modal authentication is
used to identify and reject fraudulent transactions. To simulate
customer behaviour, we use the MultiMAuS simulator [56], which
is based on a database of real-world credit card transactions. We ex-
tend this simulator to a 𝑓MDP, by providing the current company’s
fraudulent transactions percentage and customer satisfaction along
with the transaction in the state at each time step. The feedback
signal 𝑓 is defined based on the gain or loss in reward, indicating
if revenue was lost due to fraud. Concretely, the agent receives a
positive reward of +1 for every successful genuine transaction and
−1 for uncaught fraudulent transactions and cancelled transactions.
We provide additional details on the MultiMAuS simulator and the
𝑓MDP in Appendix B.

Fairness notions in fraud detection. We investigate unfairness in
fraud detection based on the continent of the customers. As the
agent observes a new transaction in state s𝑡 at timestep 𝑡 , both
individual and group fairness notions are applicable. For simplicity,
we consider two continents, 𝐶𝑎 and 𝐶𝑏 , with the most transactions.
We define group fairness notions as follows: Given transactions
𝑖𝑡 ∈ I𝑡 , where transaction 𝑖𝑡 can belong to continent 𝐶𝑎 or 𝐶𝑏 ,
all group fairness notions require that the difference in treatment
between the groups G𝑇

𝐶𝑎
and G𝑇

𝐶𝑏
is minimised. For the group

fairness notion overall accuracy equality [5], the accuracy of the
agent should be the same across the continent groups 𝐶𝑎 and 𝐶𝑏 .

F = −|P(G𝑡
𝐶𝑎

[H𝐴] = G𝑡
𝐶𝑎

[H𝑓 ] |G𝑡
𝐶𝑎

[H𝑆 ])
− P(G𝑡

𝐶𝑏
[H𝐴] = G𝑡

𝐶𝑏
[H𝑓 ] |G𝑡

𝐶𝑏
[H𝑆 ]) |

(14)

Predictive parity [11] requires that the probability of being fraudu-
lent, given that the agent requested a re-authentication, is the same
across groups 𝐶𝑎 and 𝐶𝑏 .

F = −|P(G𝑡
𝐶𝑎

[H𝑓 ] = 1|G𝑡
𝐶𝑎

[H𝐴] = 1,G𝑡
𝐶𝑎

[H𝑆 ])
− P(G𝑡

𝐶𝑏
[H𝑓 ] = 1|G𝑡

𝐶𝑏
[H𝐴] = 1,G𝑡

𝐶𝑏
[H𝑆 ]) |

(15)



In fraud detection, we define individual fairness between transac-
tions using the complement of the consistency score [55]:

F = − 1
| |I𝑡 | |

∑︁
𝑖∈I𝑡

1
𝑘
|𝑎𝑖 −

∑︁
𝑗∈𝑘𝑁𝑁 (𝑖 )

𝑎 𝑗 | (16)

given action 𝑎𝑖 for an individual 𝑖 , where 𝑘 is the number of nearest
neighbours to consider, given a 𝑘-nearest neighbour algorithm
𝑘𝑁𝑁 [37]. We assume the same distance metric and 𝜆 = 0.1 as for
individual fairness.

5 RESULTS
As both scenarios deal with a reward and multiple fairness ob-
jectives, the number of policies with suitable trade-offs can scale
exponentially. To learn all policies would therefore be computation-
ally intractable, to explore the entire state space. To this end, we
use Pareto Conditioned Networks (PCN) [42]. PCN trains a single
neural network to approximate all non-dominated policies, by ap-
plying supervised learning techniques to improve the policy. We
provide additional details on PCN in Appendix C.

For all experiments, we report the learned non-dominated cover-
age sets for all objectives [24]. As the number of trade-off policies
learned is quite high, we selected a representative subset of policies
which provide a good approximation of the Pareto front the figures
below. We provide additional details on the visualisation in Appen-
dix D. The reward vector consists of the following objectives: the
performance reward (R), statistical parity (SP), equal opportunity
(EO), overall accuracy equality (OAE), predictive parity (PP), indi-
vidual fairness (IF), consistency score complement (CSC). Note that
the fairness notions EO, OAE and PP require access to the ground
truth or a proxy to be computed. We present results for 10 seeds
per experiment of 500 000 timesteps and implement the fairness
history as a sliding window of 500 timesteps. We use the HEOM
distance metric for the individual fairness notions.

5.1 Job hiring
For the job hiring scenario, we train an agent to hire and maintain
a well-performing team of 100 employees, where each episode
lasts for a maximum of 1000 timesteps. We consider the Belgian
population, informed by the official statistics registry of Belgium,
STATBEL [49], where the agent must be fair towards men and
women in the hiring process.

First, we consider the cases where the agent optimises for a
single objective. Figure 2 shows the results for building a team of
100 employees. When asked to optimise the performance reward,
the agent obtains a reward close to the maximum (0). When the
agent is requested to learn to optimise one of the group fairness
notions, the other group fairness notions also receive a close to zero
score. This can be explained as most group fairness notions require
the confusion matrix to be computed, there are overlaps regarding
the involved true and predicted actions. Or phrased differently,
the group fairness notions are, in this use case, quite well aligned,
and it is feasible to optimise more than one group fairness notion
simultaneously.

In contrast, individual fairness notions make pair-wise compar-
isons of similar individuals. Concretely, it is possible for the agent

to find larger differences in the non-dominated values, as IF consid-
ers the probability distributions over the actions, while CSC only
considers the action. Optimising for any fairness notion results in
a lower performance reward. We observe lower individual fairness
when optimising for the reward or some group fairness notions in
particular.

Figure 2: Representative set of learned hiring policies when
optimising a single objective, split per type of objective. Left:
Optimising for the performance reward. Center: Optimis-
ing a group fairness notion. Right: Optimising an individual
fairness notion. Different fairness notions are indicated by
different colours. Lines in the same colour represent out-
comes of different runs.

Figure 3: Representative set of learned hiring policies when
simultaneously optimising R, EO and CSC with different
trade-offs under three different reward configurations. Note
that SP, PP and OAE are not used in the optimisation process,
but are included in the plots for informative reasons. Due to
computational reasons, we only show the requested individ-
ual fairness notion CSC. In Appendix Ewe provide additional
results when learning policies that include IF instead.

To investigate the strengths and shortcomings of all fairness no-
tions, we consider two additional reward configurations next to the
currently objective configuration, which assigns a similar reward
to individuals who apply to the same team with the same qualifica-
tions. The second configuration assigns a +0.1 bias to men, while
the third configuration assigns a +0.1 bias to Belgian men. Figure
3 shows the learned policies when optimising for R, EO and CSC
for each reward configuration. As in the previous results, the agent
achieves high group fairness for most of the policies. Depending on
the (lack of) bias, the agent finds different trade-offs. The policies
that maximise the reward in the default unbiased configuration
result in the lowest individual fairness. In contrast, the agent is able
to obtain higher individual fairness in the biased configurations. As
CSC compares individuals directly, it is better suited when dealing
with multiple sensitive attributes. Consequently, by optimising for



CSC, the agent is able to learn policies that reach a high individual
fairness in all 3 reward configurations. However, there is a notable
difference in the group fairness notions PP and OAE in the +0.1
men configuration. Specifically, there is a larger difference in the
probability of being a qualified applicant when hired, as well as
the accuracy for hiring and rejecting applicants. This difference
in treatment is undetected in the +0.1 Belgian men configuration,
as the group notions do not consider sub-group implications, al-
lowing the agent to gerrymander [29]. In the +0.1 Belgian men
configuration, CSC detects unfairness if the policy prioritises the
biased reward, while the group fairness notions cannot. We provide
additional results in Appendix E.

Figure 4 shows the learned multi-objective policies, when opti-
mising the performance reward, a group fairness notions and an
individual fairness notion simultaneously. In general, all group fair-
ness notions, including the ones who were not initially requested,
are easy for the agent to optimise. We observe the largest differ-
ences in the learned trade-offs with regards to the reward and either
individual fairness notion. Note that the requested group fairness
notion does impact which trade-offs can be found, indicating the
combination of requested fairness notions influences the overall
fairness a policy can provide.

Figure 4: Representative set of learned hiring policies when
optimising the reward (R), a group fairness notion (SP or EO)
and an individual fairness notion (IF or CSC).

Figure 5 shows the impact of different history sizes on the learned
trade-off policies. In general, we observe that group fairness ben-
efits from a larger history. As group fairness notions focus more
on statistical measures over groups of individuals, it is easier for
the agent to provide equal treatment over the groups. In contrast,
individual fairness (IF and CSC) are more impacted by the trade-
offs with the performance reward (R). Note that for both individual
fairness notions, across all 4 window sizes, the reward can only
be improved at the cost of individual fairness and vice versa. This
indicates that these objectives may be conflicting.

5.2 Fraud detection
For the fraud detection scenario, we assume the default parameters
of the MultiMAuS simulator [56], but increase the frequency of
fraudulent transactions to ensure enough genuine and fraudulent
transactions are encountered for continents𝐶𝑎 and𝐶𝑏 . This results
in approximately 10% fraudulent transactions. Note that continents
𝐶𝑎 and 𝐶𝑏 have different base rates of fraudulent transactions. We
let the agent check transactions for a week, resulting in at most
1000 transactions per episode, where the agent must be fair towards
requesting re-authentications from both continents.

(a) Reward (R) and Individual Fairness (IF)

(b) Reward (R) and Consistency Score Complement (CSC)

Figure 5: Representative set of learned hiring policies when
optimising the reward and an individual fairness notion.
Showing results for histories with different sliding window
sizes.

Figure 6: Representative set of learned fraud detection poli-
cies optimising a single objective, split per objective type.
Left: Optimising for the performance reward. Center: Opti-
mising a group fairness notion. Right: Optimising an individ-
ual fairness notion. Different fairness notions are indicated
by different colours. Lines in the same colour represent out-
comes of different runs.

Figure 6 shows the learned single-objective policies. When opti-
mising for the reward (i.e., detecting fraudulent transactions), small
variations in the reward lead to high variations with respect to EO
and OAE. This indicates that interesting trade-offs can be found
in this use case. Overall, we observe that the agent is unable to
find policies which maximise CSC, regardless of the objective. We
attribute this to the difficulty of the environment, when it comes
to treating similar transactions similarly. We hypothesise that this
may be caused by a correlation between the action and the sensi-
tive features of the transaction, including the continent where the
transaction originates from.

As the choice of sliding window impacts the calculation of all
fairness notions, we consider additional window sizes. For a multi-
objective approach, we ask the agent to optimise for R and CSC.
In Figure 7, we note that using a smaller window size makes it
more difficult to maximise both group and individual fairness no-
tions. Note that CSC is still low compared to the other objectives,
indicating the performance reward is conflicting with the agent’s



fairness. The largest contributor to this effect is the different base
rates for fraudulent transactions between individuals. While the
policies improve both R and CSC compared to the single-objective
results, we again notice a larger variation with the EO and OAE
fairness notions. This is caused by the similarity in treatment re-
quired by these fairness notions. Concretely, OAE requires that the
agent has the same accuracy across continents, while EO requires
that fraudulent transactions are flagged with the same probability
across continents. We provide additional results in Appendix F.

Figure 7: Representative set of fraud detection policies when
optimising R and CSC under different history sizes.

In Figure 8, we note that most trade-offs have the largest dif-
ferences across the reward R, EO and OAE. Note how individual
fairness does not change as much regardless of the requested objec-
tives. As such, we opted to present the results on CSC.We emphasise
how the combination of requested objectives impact the obtainable
trade-offs. This further highlights the need for multiple fairness no-
tions, which should be chosen by stakeholders with the necessary
domain expertise.

While the reward (R) and consistence score complement (CSC)
were easier to optimise in the job hiring setting, we observe the
opposite effect in the fraud detection setting. We hypothesise this is
caused by the context of the problem. Concretely, in job hiring it is
easier to find applicants with similar attributes that must be treated
similarly. For example, individuals with the same qualifications
should receive the same decision as their most similar neighbours
under CSC. As IF considers the probability distribution over the
actions, and compares all individuals, it is more difficult for the
agent to provide the appropriate treatment. In contrast, in the fraud
detection setting it is not necessarily the case that similar transac-
tions are all fraudulent or all genuine. This makes it more difficult
to ensure equal treatment with regards to CSC. Moreover, fraud
detection constitutes anomalies, making it more likely that most
transactions are ignored, providing better (but possibly misleading)
results for IF.

Figure 8: Representative set of learned fraud detection poli-
cies when optimising the reward (R), a group fairness notion
(SP or EO) and an individual fairness notion (IF or CSC).

6 DISCUSSION
We propose a framework for exploring the use of fairness notions
in RL. In this framework, we establish a formulation of fairness
notions that can be used as additional reward signals following a
multi-objective learning approach. Based on this formulation, we
classify distinct fairness settings grounded in real-world problems.
We highlight the need of multiple fairness notions, particularly
ensuring both group and individual fairness simultaneously. Due to
the context dependency of fairness, we show how requested fairness
notions can be conflicting with the performance reward. As such,
we argue the multi-objective aspect is crucial in the development
of the fairness framework.

By formulating fairness notions in terms of the history defined,
we establish a formal way to reason about fairness notions as re-
ward functions. Yet, as maintaining the full history will prove com-
putationally intractable for most real-world applications, a major
challenge remains to construct approximate fairness notions. Indi-
vidual fairness notions in particular require pair-wise comparisons
of individuals, in contrast to group fairness notions that rely on
the statistical measures of each group. One research direction is
to consider a sliding window approach, where the history is kept
for a fixed or varying number of steps [39]. Another path is to
explore the use of distinct neural sub-networks for approximating
different fairness notions directly. We highlight that the size of the
history further influences the fairness, especially when considering
multiple fairness notions.

Within the overarching topic of ethics, work on explainable AI
focuses on making algorithms interpretable and provides explana-
tions for their decisions [23]. While explainability aims to provide
transparency regarding an agent’s decisions and policy, fairness
focuses on whether or not the agent makes decisions which con-
form to expected impartial treatment. We argue that fairness is an
equally important aspect to focus on to work towards ethical AI.
To truly build a fair decision support system, we envision the need
to combine fairness notions with explainable reinforcement learn-
ing, such that fairness can be taken into account when explaining
policies to the decision maker.
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