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ABSTRACT

Structured benchmarks have advanced text-conditional image generation for real-
world imagery, however, no such benchmark exists for synthetic radiograph gen-
eration. Despite being a highly active area of research, existing studies continue
adopting inconsistent evaluation protocols and lack a unified assessment of the
three most critical criteria: generative fidelity, privacy risk, and downstream utility.
To address these limitations, we introduce CheXGenBench, the first unified eval-
uation framework for synthetic chest radiograph generation that simultaneously
assesses fidelity, privacy risks, and clinical utility across frontier text-to-image
(T2I) generative models. Our evaluation protocol, comprising over 20 quantitative
metrics, covers 11 leading T2I architectures with plug-and-play integration for
newer models. Through a rigorous and fair evaluation protocol, we establish a
new SoTA in synthetic chest X-ray generation. Furthermore, our results uncover
several critical limitations in the applicability of current generative models, which
include (1) even SoTA models struggle with long-tailed medical distributions, (2)
models pose high privacy risks regardless of fidelity quality, and (3) synthetic data
offers limited utility for downstream multimodal tasks. Drawing from these results,
we propose concrete research directions to advance the field. Finally, we curate
and release SynthCheX-75K, a high-quality synthetic dataset comprising 75K
radiographs generated by our top-performing model (Sana 0.6B). The fine-tuned
models and the SynthCheX-75K dataset would be released after acceptance, while
the anonymised code is available at this URL.

1 INTRODUCTION

Recent advances in multi-modal generative models, particularly Text-to-Image (T2I) systems (Ramesh
etal., 2021; Saharia et al., 2022; Hurst et al., 2024; Xie et al., 2025), have demonstrated remarkable ca-
pabilities in producing high-fidelity synthetic images that closely adhere to natural-language prompts.
Central to this progress is the development of comprehensive, well-designed benchmarks that evalu-
ate various aspects of generative performance. These benchmarks drive innovation by establishing
standardised evaluation protocols and creating an equitable foundation for model comparison. The
natural imaging domain has benefited from numerous such benchmarks, each meticulously assessing
specific aspects and identifying limitations that researchers subsequently address in developing
next-generation models. For example, MS-COCO dataset (Lin et al., 2014) has been established
as a seminal benchmark for evaluating general performance across multiple tasks, with particular
emphasis on text-guided image generation. Building upon this foundation, more specialised bench-
marks have emerged to assess specific attributes such as compositional understanding (Huang et al.,
2023; 2025; Ghosh et al., 2023), enabling more nuanced analysis of model capabilities. Despite
the advancements in the natural imaging domain, there remains a significant gap in medical image
analysis, and specifically in terms of benchmarking specialised tasks such as text-to-image generation.

Benchmarking Medical Imaging AI: Medical image analysis has made significant strides by ben-
efiting from rapid advancements in artificial intelligence; however, its progress faces substantial
constraints due to what has be characterised as a benchmarking crisis (Mahmood, 2025). The ultimate
goal of Al applications in medicine remains the development of intelligent systems capable of support-
ing and potentially transforming clinical decision-making processes. Progress toward this objective is
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Figure 1: Figure illustrating the overall schematic of the CheXGenBench benchmark for evaluating
text-to-image models in synthetic radiograph generation. CheXGenBench organises evaluation into

three dimensions: Fidelity (measuring generative quality and mode coverage), Privacy (assessing

memorisation and re-identification risks), and Utility (evaluating practical value of synthetic samples
through image classification and radiology report generation metrics) through 20+ metrics across 11
widely-adopted T2I models.

frequently hindered by insufficient transparency in training and evaluation protocols, coupled with
fragmented assessment criteria. Consequently, claims of “state-of-the-art” performance are often
premature, non-reproducible, or reflect narrow contextual improvements rather than demonstrating
genuine translational capability to clinical practice. The challenges of benchmarking in medical
Al diagnostic tasks such as classification, localisation, segmentation and report generation have
been discussed, and some improvements have been proposed (Irvin et al., 2019; Zong et al., 2023;
Karargyris et al., 2023; Zhang et al., 2024). However, despite opportunities for impactful societal
applications from diagnostic training to rare condition simulation, benchmarking in medical image
generation remains in an even more nascent and unsatisfactory state. This is exacerbated by unique
challenges such as unclear evalution metrics, data scarcity due to privacy constraints, and long-tailed
distributions of rare pathologies.

While medical Al diagnostic tasks have been long studied, the generation of synthetic data through
text prompts (medical descriptions) has recently emerged as a critical research focus. Besides being
an interesting academic measure of medical Al capability, the ultimate motivation is that progress
in diagnostic tasks is usually bottlenecked by data scarcity in the medical domain. High-fidelity
generative models for synthetic data offer the promise to alleviate this bottleneck and ultimately
facilitate clinical impact (Giuffre & Shung, 2023). Chest radiographs are the most commonly
used frontline modality in medical imaging. Although the majority of collected clinical data remain
inaccessible behind institutional firewalls and compliances (Mahmood, 2025), several data repositories
have been opened (Johnson et al., 2016; 2019; Irvin et al., 2019; Zhang et al., 2025), facilitating the
development of generative models capable of synthesizing radiographs with potential relevance to
downstream clinical utility (Ghalebikesabi et al., 2023; Bluethgen et al., 2024; Lee et al., 2024).

Current research on Text-to-Image generation of radiographs can be broadly categorized into two pri-
mary streams: (1) studies prioritizing the enhancement of image fidelity and generative performance
(Lee et al., 2023; Weber et al., 2023; Lee et al., 2024; Dutt et al., 2024; Bluethgen et al., 2024; Han
et al., 2024; Huang et al., 2024; Moris et al., 2024), and (2) investigations focusing on the mitigation
of privacy concerns and patient re-identification risks (Fernandez et al., 2023; Dar et al., 2023;
Akbar et al., 2025; Dutt et al., 2025; Dutt, 2025) that could undermine synthetic data utility. Despite
constituting an active area of research with significant contributions, we have identified several critical
benchmarking dimensions in which existing studies demonstrate consistent limitations. Minimal
or Absent Comparative Baselines: Several notable studies either include minimal (self-proposed)
(Dutt et al., 2024; 2025) or no baselines (Weber et al., 2023) for evaluation. (Han et al., 2024; Lee
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et al., 2024) limit their comparative evaluations to only two competing methodologies. Reporting
Inadequate Metrics: Studies throughout the existing literature predominantly report Fréchet In-
ception Distance (FID) (Heusel et al., 2017), specifically adopting in-domain image encoders based
on primitive architectures (Cohen et al., 2022). Furthermore, no studies adequately report metrics
characterising mode-coverage, a criterion of paramount importance in synthetic image generation for
capturing the diversity of the underlying data distribution. Finally and most importantly, all metrics
are reported as micro-averages across entire datasets without accounting for conditioning, let alone
the long-tailed nature of medical data distributions. For example, excellent average generation fidelity
could be reflective of the ability to generate more common images of healthy individuals, and the
inability to generate images with pathologies of interest. This situation would offer limited clinical
utility for pathology diagnosis.

Restriction to Early-Stage Architectures: Existing studies (Bluethgen et al., 2024; Weber et al.,
2023; Dutt et al., 2024; Favero et al., 2025) have predominantly confined themselves to outdated
T2I model architectures (Rombach et al., 2022), failing to address the crucial question of how
recent advancements in generative modelling (Chen et al., 2024; Xie et al., 2025; Labs, 2024) from
the natural imaging domain translate to the specialised requirements of medical imaging contexts.
Lack of a Unified Evaluation: Existing studies are fragmented between evaluating generative
fidelity (Bluethgen et al., 2024; Weber et al., 2023; Lee et al., 2024) or privacy and re-identification
risks (Fernandez et al., 2023; Akbar et al., 2025; Dutt, 2025), failing to conduct and provide a
unified evaluation of the two key aspects of synthetic radiograph generation research. Limited
Evaluation on Synthetic Data Utility: Most studies fail to comment on the downstream utility of
synthetic radiographs (Weber et al., 2023; Lee et al., 2024) often presenting generation results without
rigorously assessing their potential impact on medical image analysis tasks such as classification,
segmentation, or diagnostic reasoning. This need for rigour is reflected in recent standardisation
efforts, such as the “Scorecards” for synthetic medical data proposed by (Zamzmi et al., 2024), which
reports on key dimensions like fidelity, utility, and privacy.

To address these critical limitations, we introduce CheXGenBench, a comprehensive benchmark
designed for rigorous evaluation of frontier generative models across a diverse spectrum of metrics

encompassing: generation fidelity and mode coverage, privacy and re-identification risk

assessment, and downstream clinical utility through an extensive suite of 20+ quantitative and
interpretable metrics. We establish standardised training and evaluation protocols to enable equitable
comparison between diverse model architectures. Furthermore, our work is highly complementary to
standardised evaluation approaches such as model and data card (Zamzmi et al., 2024) by providing
the information required to populate those cards. CheXGenBench prioritises usability and adaptability,
facilitating seamless plug-and-play integration of both existing and emerging generative frameworks.
Through systematic evaluation, we present several T2I models previously unexplored for radiograph
generation and establish new state-of-the-art (SoTA) performance. Furthermore, we release a synthetic
dataset, SynthCheX-75K , comprising 75K high-quality radiographs generated by our benchmark-
leading model to facilitate advancement in medical image analysis research.

2 CHEXGENBENCH DESIGN

CheXGenBench is designed to evaluate each text-to-image model across three dimensions comprehen-
sively: (1) generative fidelity and mode coverage (Sec 2.2), (2) privacy and patient re-identification
risks (Sec 2.2), and (3) synthetic data utility for downstream tasks (Sec 2.4), which we elucidate in
detail in the following sub-sections.

Design Principles: To maximise usability, CheXGenBench features decoupled training and evalua-
tion pipelines. This allows researchers to use their preferred training frameworks (e.g., Hugging Face
Diffusers (von Platen et al., 2022)) and then automatically assess their models on over 20 standardized
metrics by simply providing the generated images and a metadata file.

2.1 TRAINING DATASET AND PROTOCOL

Criteria for Model Inclusion: Our model selection was guided by two main criteria. First, we
included models previously used for synthetic radiograph generation in existing literature (Rombach
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et al., 2022; Bluethgen et al., 2024; Lee et al., 2024; Pérez-Garcia et al., 2024) to provide continuity
and comparability with prior work. Second, we incorporated recent state-of-the-art models (both
diffusion and auto-regressive) (Chen et al., 2024; Esser et al., 2024; Xie et al., 2025; Qin et al., 2025;
Labs, 2024) from the natural imaging domain that had not yet been evaluated for chest X-ray synthesis.
Thus we both benchmark established methods and assess the potential of newer architectures for
medical image generation.

The models in our benchmark were stratified into two categories based on parameter count: (1) models
with fewer than 1B parameters, and (2) models exceeding 1B parameters. For the smaller models,
we employed full fine-tuning (FFT) of all parameters. For larger architectures, we implemented
Low-Rank Adaptation (LoRA) (Hu et al., 2022) with rank 32 on standard query, key, and value
layers in the attention blocks to address both computational constraints and reflect realistic training
scenarios. In Appendix I, we present an ablation study that investigates the impact of increasing the
LoRA rank for these models.

Training Dataset with Enhanced Captions: All evaluations are conducted on the MIMIC-CXR
dataset (Johnson et al., 2019), which has become the de-facto standard for text-to-image radiograph
generation (Bluethgen et al., 2024; Weber et al., 2023; Pérez-Garcia et al., 2024; Lee et al., 2024;
Dutt et al., 2024). While prior work has often relied on abbreviated captions derived from rule-based
methods (Pérez-Garcia et al., 2024; Bluethgen et al., 2024), these approaches can be inadequate
due to inconsistencies in clinical terminology and report structure (Zambrano Chaves et al., 2025).
Reflecting a recent shift towards deep learning techniques for generating more comprehensive
summaries (Segalis et al., 2023; Zambrano Chaves et al., 2025), and motivated by evidence that
more descriptive captions enhance generative fidelity, we are the first study to adopt the enhanced
“LLaVA-Rad” annotations for this task. We empirically validate this choice in Appendix B, where we
demonstrate that using these annotations leads to improved image fidelity and reduced re-identification
risks, and thus we strongly recommend them for future research in this domain.

Training Protocol: Our analysis revealed that prior studies employed inconsistent training budgets,
undermining valid cross-model comparison. To establish a level evaluation framework, we imple-
mented a standardised training protocol across all T2I models. Each architecture was trained for
precisely 20 epochs on an identical training split of 237,388 samples annotated with “LLaVA-Rad”
annotations. We release the training and evaluation data splits along with the benchmark.

2.2 EVALUATING GENERATIVE FIDELITY, MODE COVERAGE, AND CONDITIONAL ANALYSIS

Limitations of Current Fidelity Assessment: The Fréchet Inception Distance (FID) score (Heusel
etal., 2017) is widely used for evaluating synthetic radiograph fidelity. Standard FID uses InceptionV3
(Szegedy et al., 2016) features trained on natural images, creating domain mismatch for medical
images (Kynk&ddnniemi et al., 2023). While some research employs domain-specific encoders like
DenseNet-121 (Huang et al., 2017) trained on radiographs (Cohen et al., 2022), we argue these
adaptations remain inadequate. DenseNet-121, despite domain alignment, represents an outdated
backbone that fails to capture critical nuances, reducing FID reliability for radiograph quality
assessment. We perform an extensive ablation on this in Appendix Section C. Additionally, studies
using natural image-text pre-trained CLIP (Radford et al., 2021; Bluethgen et al., 2024) further
compromise evaluation integrity due to high domain misalignment.

Improving metric Reliability in CheXGenBench : We address the aforementioned limitations and
enable a more nuanced evaluation of synthetic radiographs in CheXGenBench . For robust image
fidelity assessment using Fréchet Inception Distance (FID), CheXGenBench employs features from
RadDino (Pérez-Garcia et al., 2025), a model with SoTA performance on radiology classification
and report generation tasks. To evaluate image-text alignment, we integrate BioViL-T (Bannur et al.,
2023), a vision-language model specialized in the biomedical domain.

Expanding the Metric Suite with Density and Mode Coverage: All prior studies have reported
generation fidelity without a systematic evaluation of how effectively generated samples capture
critical distributional characteristics, notably the density of the resulting sample distribution and
coverage of distinct modes from the true data. This is of particular importance in medical datasets
since not all pathologies are distributed equally. To address this, CheXGenBench also supports
Precision, Recall, Density and Coverage (Naeem et al., 2020).
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Precision, Recall, Density, and Coverage (PRDC) metrics are essential for evaluating mode coverage,
particularly in long-tailed distributions where FID scores can be skewed by majority classes. This is
evident in the MIMIC-CXR dataset, where “No Finding” radiographs, representing healthy X-rays,
predominate despite pathological images offering greater clinical value for synthesis. Within the
PRDC framework, Precision quantifies generated sample realism, Recall measures how well the real
distribution is captured, Density assesses feature space concentration, and Coverage determines the
proportion of modes of real data successfully generated, together providing a more comprehensive
assessment than global metrics alone.

Conditional Analysis for Individual Pathologies: CheXGenBench extends evaluation capabilities
through pathology-specific conditional analysis, wherein we compute each generation fidelity metric
independently across individual pathologies in the MIMIC-CXR dataset. This granular assessment
approach provides critical insights that enable developers to precisely evaluate generative performance
for specific medical conditions. Such an analysis becomes particularly valuable in scenarios requiring
selective augmentation of underrepresented pathologies through a generative model, which is the most
desired use case. Our framework calculates FID, KID, image-text alignment, and PRDC metrics for
each distinct pathology, facilitating comprehensive performance evaluation at the condition-specific
level. To the best of our knowledge, we are the first study to include pathology-conditional evaluation.

2.3  EVALUATION PROTOCOL: PRIVACY AND PATIENT RE-IDENTIFICATION

Deep generative models can inadvertently memorise distinctive training examples, allowing an
attacker to reverse—engineer sensitive patient information from seemingly “synthetic”” images (Carlini
et al., 2023; Jegorova et al., 2023). In the medical domain, even coarse anatomical cues may be
enough to link a generated radiograph back to an individual, breaching data-protection regulations
such as HIPAA! and the EU GDPR2. Consequently, to assess clinical relevance claims, a benchmark
that must characterise (i) how much a model memorises, and (ii) how easily a real patient can be
re-identified from its outputs.

Re-identification risk formulation. To evaluate privacy and patient re-identification risks, we
implement established metrics from the existing literature (Fernandez et al., 2023; Akbar et al.,
2025; Dutt et al., 2025; Dutt, 2025). Let Dyeat = {4, cl-}f»V:l be the training set of chest radiographs
x; with corresponding captions ¢;, and let Gy denote a text-to-image model producing synthetic
images & = Gy (c). We assess whether a generated sample & memorizes any training image x; via a
learned similarity function ¢(&, x;) with Memorised(x;) < 4(Z, z;) > J, where ¢ is a fixed safety
margin. We evaluate similarity through three distinct lenses: (i) Pixel distance (¢pix): ||Z — 2;]|2,
to detect near-duplicates (Carlini et al., 2023). (ii) Latent distance (¢}, ): Normalized Euclidean
distance in the embedding space of RadDino (Pérez-Garcia et al., 2025). (iii) Re-identification score
(sreid): Probability that & and z; are from the same patient, as estimated by a Siamese neural network
(Packhiuser et al., 2022) The privacy metrics are further formalised in Appendix J.

Assessing re-identification. Instead of relying solely on pixel-based (Carlini et al., 2023) or structural-
based (Kumar et al., 2017) similarity, we adopt the deep learning-based metric £ = fge"d (Packhduser
et al., 2022). The model fée'id is a Siamese network with a ResNet-50 (He et al., 2016) backbone
trained to classify whether two chest X-ray images originate from the same patient. For any pair
(&, ) of a generated and real image, f5¢ outputs a re-identification score siig € [0,1] after a
sigmoid layer. A synthetic image  is considered re-identified if s.jg > & for any training image x.
Acknowledging that any single DL-based metric can be unreliable, CheXGenBench provides a more
robust privacy assessment by using pixel distance (¢y;x) and latent distance (¢1,) as complementary
evaluation methods.

2.4 EVALUATION PROTOCOL: SYNTHETIC DATA UTILITY FOR DOWNSTREAM TASKS

A significant application of synthetic data in radiology lies in enhancing downstream model perfor-
mance, potentially circumventing the stringent sharing restrictions imposed on medical datasets. For
our utility assessment framework, we have strategically selected two prevalent downstream tasks
previously established in radiological evaluation (Bluethgen et al., 2024): (1) Image Classification

"https://www.hhs.gov/hipaa/for-professionals/privacy/index.htm
*http://gdpr.eu/what-is-gdpr/
p://gdpr.eu/what-is-gdpr
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Table 1: Table comparing the results for generative fidelity for 11 different T2I models in the
benchmark. The best result for each metric is indicated with bold, while the second-best result is

underlined. The overall best performing model (See Appendix Tab. 8) is highlighted in green .

) Default  Prev. Available . FID KID|  Alignment N )
Model Sire e P Cany . FineTuning ¥ o I ﬂDi;Ll()) ighment 1 precision ? Recall { Density 7 Coverage
SD V1-4 (Rombach et al., 2022) 086B 512 v FET 125186 0.172 0.357 0488 0301 0236 0217
SD V1-5 (Rombach et al., 2022) 0868 512 v FFT 118932 0.147 0.326 053 0473 0242 0256
SD V2 (Rombach et al., 2022) 0868 512 v FFT 194724 0376 0311 0480 0086  0.166 0.057
SD V2-1 (Rombach et al., 2022) 0.86B 512 v FFT 186.530 0.413 0.197 0.530 0.049 0.180 0.038
RadEdit (Pérez-Garciaetal, 2024)  0.86B 512 v N/A 60.695 0033 0.677 0397 0544 0150 0.285
Pixart Sigma (Chen et al., 2024) 060B 512 x FFT 60.154 0023 0.697 0666 052 0506 0506
Sana (Xie et al., 2025) 060B 512 x FFT 54225 0.016 0.695 0674  0.614 0520 0548
SD V3.5 Medium (Esser etal., 2024) 2.50B 1024 x LoRAG=32) 91302  0.103 0.044 0632 0205 0401 0244
Lumina 2.0 (Qin et al., 2025) 260B 1024 x LoRA(=32) 101198  0.110 0.121 0574 0014 0256 0.170
Flux.1-Dev (Labs, 2024) 2B 1024 x LoRA(r=32) 122400  0.144 0.036 0420 0008  0.125 0326
LLM-CXR (Lee et al., 2024) 12B 256 v N/A 71243 0061 0.319 0782 0041 0671 0459

and (2) Radiology Report Generation (RRG). These tasks were deliberately chosen for their distinct
complexities. Image classification serves as a unimodal assessment, directly evaluating the intrinsic
quality of synthetic radiographs, while RRG functions as a more demanding multimodal evaluation,
assessing the factual correctness between synthetic images and their corresponding clinical descrip-
tions. Note that other downstream tasks, such as segmentation and localisation were deliberately
excluded due to the absence of relevant ground-truth annotations in the MIMIC-CXR dataset.

Downstream Image Classification: We adopt the experimental setting previously utilised (Bluethgen
et al., 2024) and measure classification performance when a classifier (He et al., 2016) is trained
exclusively on synthetic data (20K samples) (D) (for 20 epochs). This provides us with an idea of
the stand-alone clinical value of the synthetic data from a generative model. The performance metrics
are calculated on a held-out real test set (D;s;) to ensure clinical relevance and generalizability of our
findings. We quantify classification performance through standard accuracy, F1-Score, and AUROC
metrics.

Downstream Report Generation: We choose an existing multimodal model LLaVA-Rad (Zam-
brano Chaves et al., 2025) with SoTA radiograph understanding abilities and continue to fine-tune it
with 20,000 synthetic samples. The performance is reported on a real test set (D;.s;). We quantify
RRG performance using the standard metrics adopted in literature (Bluethgen et al., 2024; Zam-
brano Chaves et al., 2025): BLEU (Papineni et al., 2002), ROUGE-L (Lin, 2004), F1-RadGraph
(Jain et al., 2021), and F1-Score. BLEU-1 and BLEU-4 measure word and short phrase overlap
with reference reports to gauge basic fluency and word choice. ROUGE-L focuses on sentence-level
structure and recall of important, potentially non-contiguous, phrases. F1-RadGraph evaluates for
factual correctness, while F1-Scores (F1-5 and F1-14) assess the accuracy of identifying the presence
or absence of a predefined set of 5 or 14 specific radiological findings within the generated report.

3 EXPERIMENTS AND RESULTS

Training Setting: Our evaluation used various T2I models with different training approaches. We
used existing radiograph generation models (RadEdit (Pérez-Garcia et al., 2024), LLM-CXR (Lee
et al., 2024)) unmodified. For models under 1B parameters, we performed full fine-tuning (FFT),
while larger models used Parameter-Efficient Fine-Tuning (PEFT) with LoRA (Hu et al., 2022) (rank
32) on query, key, and value layers. Stable-Diffusion variants utilised Huggingface Diffusers (von
Platen et al., 2022), while Sana and Pixart-Sigma were trained using their official repositories. Larger
models employed the ai-toolkit package®. Training followed officially recommended hyperparameters
with a consistent total batch size of 128 across 4 Nvidia H200 GPUs, using 237,388 training samples
and 5,034 test samples. Downstream evaluation experiments were conducted on Nvidia A100 GPUs.

3.1 FIDELITY OF SYNTHETIC GENERATIONS

Results on Global Assessment

3https://github.com/ostris/ai-toolkit
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Table 2: Comparison of FID (RadDino) scores (J) across individual pathologies in the MIMIC-
CXR dataset. Lower values indicate superior performance, with the best results for each pathology
highlighted in bold. The most challenging pathology (highest average FID across models) is

highlighted in red , while the best-performing model overall is highlighted in green . We also
highlight the best performing pathology for each model in blue .

Model Atelectasis  Cardiomegaly Consolid. Edema EC Fracture LL LO NF PE PO PN PT SD

SD Vi-4 134.11 131.04 184.30 144.84 21775 238.78 225.99 129.38 106.34 128.16  255.84 163.82 21248 135.10
SD V1-5 125.67 124.75 181.25 139.94 21394 243.17 123.13  255.64 167.81 19375  243.17 101.08 119.91 123.64
SD V2 188.72 193.91 241.24 214.40 21440 25391 26828  280.11 193.99  299.48 22343  250.96 183.34 193.99
SD V2-1 179.20 181.79 228.43 193.62  242.65 263.01 260.15 185.00 192.30 178.84 28727 21326 242.60 176.99
RadEdit 63.38 62.79 136.59 76.94 15597 197.58 184.11 61.90 67.88 60.60  215.92 114.66 151.34 53.10
Pixart Sigma 59.27 60.39 133.96 7393 15553 179.44 174.63 56.83 48.74 59.05  210.90 108.42 150.55 51.61
Sana 51.03 54.68 127.46 67.84  147.00 172.32 163.14 49.23 44.60 49.80 199.45 99.52 141.99 46.51
SD V3.5 Medium 94.94 94.84 149.05 111.94 16848 184.75 173.37 86.72 89.60 91.92  203.62 124.07 163.27 86.99
Lumina 2.0 109.39 111.11 162.36 131.18  182.35 191.83 182.22 99.53 95.66 105.25  213.50 134.58 165.09 102.78
Flux.1-Dev 137.10 133.60 176.76 15291 19148 191.02 194.97 133.37 100.58 137.66  221.23 156.59 190.93 127.03
LLM-CXR 71.57 71.37 136.65 83.18  148.28 168.50 163.22 66.93 64.62 67.83  200.84 108.04 147.52 67.54

The results are presented in Tab. 1, where we showcase both fidelity and mode coverage metrics.
Sana (Xie et al., 2025) delivers superior overall performance across key metrics, achieving the lowest
FID and KID scores, indicating exceptional generation fidelity, while simultaneously attaining the
highest Recall and Coverage, demonstrating its capacity to capture diverse modes (distributions)
throughout the dataset. Pixart Sigma (Chen et al., 2024) emerges as a strong contender, exhibiting
the highest image-text alignment alongside second-best FID, KID, and Coverage scores. LLM-CXR
(Lee et al., 2024) exhibits specialised capabilities, substantially outperforming all other models in
Precision; however, its notably low Recall suggests limited generative scope, primarily effective for
specific distributions (pathologies). This also highlights that conventional fidelity metrics like FID
do not present a complete picture of the model performance. Earlier Stable-Diffusion variants (SD
V1-x, V2-x) demonstrate consistently suboptimal scores across all metrics despite full fine-tuning, a
particularly significant finding given their prevalent adoption in the synthetic radiograph generation
literature (Bluethgen et al., 2024; Favero et al., 2025; Fernandez et al., 2023; Dutt et al., 2024). Larger
architectural models (SD V3-5 (Esser et al., 2024), Lumina 2.0 (Qin et al., 2025), Flux.1-Dev (Labs,
2024)), with the exception of LLM-CXR, yield predominantly inferior performance across evaluation
metrics. SD V3-5 exhibits high Precision but low Recall, Density, and Coverage scores, mirroring
trends observed in LLM-CXR. We hypothesise that this stems from the inability of LoRA to provide
sufficient adaptation for the medical domain, a limitation previously observed in (Dutt et al., 2024).
Performance improvements might be achievable by extending LoRA to other linear layers beyond
attention (Q,K,V) layers, however, we leave this exploration to future work. Overall, Sana achieves
the optimal performance-efficiency trade-off among all evaluated models. Notably, Sana has been
adapted for synthetic radiograph generation for the first time through this work.

Results on Conditional Assessment

Results for conditional analysis on individual pathologies are presented in Tab. 2. Consistent with
trends observed in Tab. 1, Sana demonstrates superior performance, achieving the lowest FID scores
across 12 of the 14 pathology categories. This indicates Sana’s robust capability to generate high-
fidelity radiographs across diverse pathological conditions. Pixart Sigma maintains its position as
the second-best performing model, while RadEdit frequently secures the third-best scores across
multiple categories. LLM-CXR demonstrates competitive performance for specific pathologies,
notably achieving strong results for Edema (83.18) and No Finding (64.62), frequently outperforming
both earlier Stable Diffusion models and certain large-scale models (SD V3.5, Lumina, Flux.1-Dev).

Concerning Observations: This analysis reveals concerning patterns. Substantial performance
variation exists across pathologies for each model, regardless of overall performance. For instance,
Sana exhibits FID scores ranging from 44.60 for “No Finding (NF)” to 199.45 for “Pleural Other
(PO)”. Notably, five of the eleven models achieve optimal performance on “No Finding” cases, which
represent healthy radiographs with limited clinical utility from synthetic X-rays, while all models
consistently perform poorly on “Pleural Other (PO)” pathology. In Appendix E and Tab. 10, we
empirically demonstrate that model performance strongly correlates with pathology prevalence in the

!Note: EC = Enlarged Cardiomediastinum, LL = Lung Lesion, LO = Lung Opacity, NF = No Finding, PE =
Pleural Effusion, PO = Pleural Other, PN = Pneumonia, PT = Pneumothorax, SD = Support Devices.



Under review as a conference paper at ICLR 2026

Table 3: Results on Re-Identification Risk and Patient Privacy Metrics. We present the average scores
across 2000 samples and individual scores with maximum privacy risks.

Model SDV1-4 SDV1-5 SDV2 SDV2-1 RadEdit Sana Pixart-X SDV3-5 Lum.2.0 Flux LLM-CXR

Avg. Re-ID Score (]) 0.539 0.572  0.533 0.503 0.481 0.551 0.548 0.365 0.513  0.404 0.537
Avg. Latent Distance (1) 0.592 0.583  0.588 0.592 0.560 0.540 0.561 0.601 0.591  0.595 0.557
Avg. Pixel Distance (1) 143 143 143 145 145 162 159 147 145 155 149
Max. Re-ID Score (|) 0.996 0.996  0.996 0.997 0.992  0.996 0.994 0.997 0.993  0.992 0.994
Count Re-ID > 6 (]) 434 498 454 392 380 442 442 236 223 196 419

training dataset (correlation coefficient: 0.947), suggesting that current models mainly reproduce
the largest modes in the dataset, while failing to model the longer tail of pathologies, and thus fail
to achieve general clinical utility. Thus future medical image generation models should follow this
evaluation protocol in order to make claims of clinical utility. We also hope this analysis encourages
developers to incorporate training strategies tailored for long-tailed distributions (Qin et al., 2023).

3.2 RESULTS ON PRIVACY AND RE-IDENTIFICATION RISKS

Experimental Setting: To quantify re-identification risks, we select a subset of 2000
image-text pairs (z.™9, zt*') from the training set and generate N(= 10) synthetic samples
gimol gime2 39N ysing 10 different random seeds for each training prompt. Next, we
calculate Re-ID scores, Pixel and Latent Distances between each real-synthetic pair (/™9 &/™9"™)

(4)

forall n € {1,2,..., N'}. Finally, we report the maximum Re-ID score max; s,

distance min; ééf)z and minimum latent distance min; fl(g[) across IV generations for each sample.
This approach enables us to identify the greatest privacy risk posed for each training sample across

multiple generations.

minimum pixel

Results: The privacy risk assessment results are detailed in Tab. 3. Most models exhibit Aver-
age Re-ID scores within a comparable range, with SD V3-5 notably achieving the lowest (most
favourable) score. For latent and pixel distances, a similar pattern emerges, where SD V3-5 and

Sana demonstrate superior performance (i.e., lower average distances), respectively. Concerns:

We conducted a detailed analysis of individual scores across 2,000 samples, with particular atten-
tion to two key metrics: (1) the maximum Re-ID score, which represents the highest potential for
re-identification, and (2) the frequency of samples exceeding a high-risk threshold (6 = 0.85). Our
results reveal that all models, regardless of their fidelity performance, generate samples that can be
re-identified with high confidence. The proportion of samples presenting significant re-identification
risk remains substantial across all models, ranging from 10% to 25%. Notably, models trained
with LoRA demonstrate a relatively lower incidence of high-risk samples, potentially due to their
reduced capacity for memorization (Dutt et al., 2025). These findings underscore a critical insight:

generative models pose substantial privacy risks irrespective of their generative capabilities.

3.3 UTILITY OF SYNTHETIC SAMPLES FOR DOWNSTREAM TASKS

Downstream Image Classification: We present the results in Tab. 4. Sana emerges as exceptionally
effective, with its synthetic images enabling classifiers to match or exceed the original data baseline
on an impressive 10 out of 13 pathologies. Interestingly, it surpasses the baseline on Fracture, an
under-represented class in MIMIC-CXR. Other models, such as RadEdit, Pixart-Sigma, and LLM-
CXR, show limited success by matching the baseline for at most two pathologies, failing to surpass
it. Models like SD V1-4, SD V3-5, Lumina 2.0, and Flux.1-Dev generally produce synthetic data
that leads to classifiers significantly underperforming the Original Data baseline across most or all
pathologies. Viability: The results from Sana strongly suggest that high-quality synthetic data can,
in some cases, be a viable standalone replacement for real data for training medical image classifiers.
This is a powerful finding with implications for data privacy, scarcity, and augmentation. In Appendix
D, we expand on the correlation between generative fidelity and downstream utility for classification.

Downstream Radiology Report Generation The results are presented in Tab. 5. Firstly, we observe
that additional fine-tuning with synthetic data, irrespective of the model, leads to a performance
degradation as compared to the original baseline (trained with real data). In terms of the models,



Under review as a conference paper at ICLR 2026

Table 4: Performance Comparison (AUC 1) of a ResNet50 classifier trained only on synthetic data
vs. Original (Real) Data Baseline for all pathologies in the MIMIC dataset. Results matching or
exceeding the Original Data baseline are bolded and within 0.01 AUC are underlined.

Atel- Cardio- Consol-
ectasis megaly idation

Original (Real)  0.75 0.76 0.72 0.85 0.61 0.58 063 070 0.84 0.84 074 067 071 0.83

Model Edema EC Fracture LL LO NF PE PO PN PT SD

SD VI1-4 0.70 0.70 0.67 0.81 0.56 0.57 0.63 067 080 0.77 0.65 060 0.65 0.80
SD VI-5 0.72 0.72 0.69 0.81 0.60 0.53 066 067 082 079 068 062 070 0.83
SD V2 0.66 0.69 0.66 0.78 0.61 0.53 055 063 075 0.76 050 061 0.64 0.78
SD V2-1 0.63 0.67 0.65 0.71 0.55 0.59 0.62 062 075 0.74 057 056 0.61 0.75
RadEdit 0.73 0.73 0.72 0.84  0.61 0.56 0.60 0.69 081 082 0.72 0.66 0.66 0.77
Pixart Sigma 0.74 0.73 0.70 0.84  0.61 0.58 0.61 069 0.83 081 068 0.63 070 0.80
Sana 0.74 0.76 0.72 085  0.61 0.62 063 070 0.83 0.84 073 064 072 0.83
SD V3-5 0.55 0.55 0.56 0.55 0.47 0.47 047 053 0.60 054 058 049 055 0.71
Lumina 2.0 0.46 0.48 0.52 0.51 0.46 0.57 053 052 059 055 057 049 050 0.71
Flux.1-Dev 0.41 0.41 0.44 0.40  0.44 0.52 048 042 040 038 050 048 044 0.67
LLM-CXR 0.70 0.69 0.70 0.81 0.61 0.57 0.54 065 0.80 077 0.66 0.61 063 0.73

Table 5: Radiology Report Generation (RRG) performance metrics for various generative models.

Metric Original SDV1-4 SDVI-5 SDV2 SDV2-1 RadEdit Pixart-¥ Sana SDV3-5 Lumina2.0 Flux.1-Dev LLM-CXR
BLEU-1 (1) 38.16 25.85 26.02 26.62 26.76 30.55 31.25 31.11 23.49 17.96 18.19 29.78
BLEU-4 (1) 15.38 6.76 7.50 7.35 7.38 8.36 791 7.70 491 427 3.36 7.93
ROUGE-L (1) 0.31 0.23 0.24 0.24 0.24 0.24 0.23 0.24 0.20 0.20 0.18 0.23
F1-RadGraph (1) 0.29 0.21 0.24 0.23 0.22 0.24 0.22 0.23 0.17 0.18 0.14 0.21
Micro F1-5 (1) 0.57 0.56 0.54 0.57 0.57 0.55 0.50 0.57 0.31 0.41 0.32 0.55
Micro F1-14 (1) 0.57 0.53 0.51 0.55 0.53 0.55 0.52 0.55 0.35 0.41 0.36 0.53

RadEdit and Sana emerge as leading performers. RadEdit excels in BLEU-4 (fluency) and is a top
contender in F1-RadGraph and Micro F1-14, while Sana demonstrates strengths in ROUGE-L and
Micro F1 scores for identifying specific findings. LLM-CXR also gives a strong performance, often
giving second- or third-best scores. Pixart Sigma shows the best individual word usage (BLEU-1),
and models like SD V2 also perform well in Micro F1 scores. Overall, no single model dominates in

all metrics. Concerns: These results reflect that current T2I models might show high fidelity, but
their utility for multimodal tasks such as report generation is still limited under the current setting.
Potentially, generations with stronger image-text alignment or training VQA models on a collection
of real and synthetic data from scratch can alleviate this.

4 CONCLUSION

We’ve addressed critical gaps in synthetic radiograph generation research by introducing CheX-
GenBench, a unified framework to assess generation fidelity, privacy, and clinical utility. Our work
highlights key limitations of current models: even state-of-the-art (SoTA) models struggle with
long-tailed data distributions, and those with poor fidelity can still pose significant privacy risks.
Additionally, while synthetic data shows promise for unimodal tasks, its utility for more complex,
multimodal applications remains limited. These observations provide key research directions for
future work in synthetic radiograph generation. We envision CheXGenBench to grow with new
generative models and paradigms and serve as a dynamic standard for the medical AI community.

In addition to the evaluation framework, our contributions also include the new SoTA model (Sana
0.6B) and SynthCheX-75K, a synthetic dataset comprising 75K high-quality samples with multi-
faceted utility. First, it serves as a high-quality standalone training resource, enabling the development
of diagnostic models without requiring access to real patient data. Second, it can also be used to
augment existing datasets, particularly for rare conditions. Finally, SynthCheX-75K can also be used
as a challenging out-of-distribution test set to validate the robustness of new discriminative models
trained on real/ synthetic data.

Reproducibility Statement: To ensure full reproducibility, the code, along with detailed environment
setup instructions, is anonymously provided at the following URL.


https://anonymous.4open.science/r/CheXGenBench-52F0/README.md
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A APPENDIX

B BENEFITS OF ADOPTING LLAVA-RAD ANNOTATIONS

Distribution of Character Lengths and Text Encoder Token Limits
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Figure 2: Figure depicting distribution of character lengths for original MIMIC captions and LlaVA-
Rad annotations. We also illustrate the text-encoder token length limits for all SD variants and Flux
(77 tokens), RadEdit (128 tokens), and Pixart Sigma (300 tokens).

Note: We treat 1 token ~ 4 characters>

Table 6: Comparison of generation fidelity (left) and privacy preservation (right) metrics across
different stable diffusion models. LlaVA-Rad annotations consistently outperform original MIMIC
impressions, yielding improved image quality (FID/KID ({), higher alignment (1)) and enhanced
privacy protection (Re-ID ({), latent/pixel distances (1)).

Prompt FID KID Alignment

Model 5 A Prompt Max. Re-ID  Min Latent  Min. Pixel
Type (RadDino)  (RadDino)  Score Rodel Type Distance Distance? Distance
SD-V1-4  Original MIMIC ~ 147.298 0.198 0.272 SD-V1-4 Original MIMIC 0.725+0.71 0.482+0.66 13224 +4.6
SD-V1-4 LlaVA-Rad 125.186 0.172 0.357 SD-V1-4 LlaVA-Rad 0.539+0.31  0.592+0.05 143.44+4.6
SD-V1-5 Original MIMIC ~ 144.661 0.201 0.257 SD-V1-5  Original MIMIC ~ 0.721 +0.47 0.476 +0.41  131.44 +4.2
SD-V1-5 LlaVA-Rad 118.932 0.147 0.326 SD-V1-5 LlaVA-Rad 0.572+0.29 0.583+0.04 143.634+4.2
x o SD-V2  Original MIMIC 0.687+0.23 0.483+0.34 132.64+4.3
gg_z; Slr ;%}X?E%IMIC %;iggi 8"3‘22 8;‘? SD-V2  LlaVA-Rad 0.533+0.32  0.588+0.05 143.936+ 4.3

(a) Generation fidelity metrics. (b) Privacy and memorisation risk metrics.

In this section, we demonstrate that LLaVA-Rad Annotations lead to substantial improvements
in both fidelity performance and reduction of re-identification risks (Table 6). We attribute these
improvements to two key factors: the enhanced descriptiveness of the annotations and the removal of
certain tokens from the original MIMIC annotations known to increase privacy risks (Dutt, 2025).
Figure 2 displays the distribution of average character lengths across both annotation types. MIMIC
annotations cluster around significantly smaller values, while LLaVA-Rad Annotations exhibit a
wider distribution, indicating greater descriptive detail. Table 6a reveals that LLaVA-Rad Annotations
significantly enhance all three fidelity metrics (FID, KID, and Image-Text Alignment) compared to
the original MIMIC annotations. Additionally, in Tab. 6b, we observe a substantial improvement in
privacy risk mitigation, further validating the superiority of the LLaVA-Rad annotation approach.

C UNRELIABILITY IN FIDELITY ESTIMATES WITH OUTDATED BACKBONES

We demonstrate that existing protocols for evaluating generative fidelity in radiographic imaging are
unreliable. Current approaches (Bluethgen et al., 2024; Dutt et al., 2024; Lee et al., 2024) calculate
image fidelity (FID Score) using an in-domain DenseNet-121 model trained on the MIMIC-CXR

2https ://help.openai.com/en/articles/4936856-what-are-tokens—and-how-to-count—-them
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Table 7: Comparison of FID and KID metrics across models using two distinct in-domain encoders.
While the conventional DenseNet-121 encoder (Cohen et al., 2022) exhibits minimal variance (0.001
- 0.075) across models, indicating limited discriminative power, the RadDino encoder (Pérez-Garcia
et al., 2025) demonstrates substantially greater metric differentiation (54.22 - 194.72), providing
more meaningful evaluation of model performance.

Metric SDV14 SDV1-5 SDV2 SDV2-1 RadEdit PixartSigma Sana  SDV3-5 Lumina2.0 Flux.1-Dev LLM-CXR
FIp  DenseNet 0.025 0.075 0.053 0.056 0.001 0.001 0.001 0.002 0.001 0.001 0.025
RadDino 125.180  118.930  194.720  186.530 69.690 60.150 54.220 91.300 101.190 122.400 71.240
KID DenseNet 0.004 0.004 0.005 0.005 0.001 0.001 0.001 0.004 0.003 0.006 0.003
RadDino 0.172 0.147 0.376 0.413 0.033 0.023 0.016 0.103 0.110 0.144 0.061

dataset. We argue this model lacks sufficient discriminative power, resulting in less meaningful
fidelity assessments.

In our CheXGenBench benchmark, we address this limitation by leveraging features from RadDino,
a state-of-the-art model specifically designed for radiographs. As shown in Table 7, FID evaluation
with DenseNet-121 shows minimal variance across models, often ranking several models at the same
position. In contrast, the RadDino encoder significantly enhances evaluation quality by providing
more meaningful feature representations that better differentiate between model performances.

D CORRELATION BETWEEN FIDELITY AND DOWNSTREAM TASKS

Image Fidelity: We present the rank for each T2I model across each individual fidelity and mode
coverage metric in Tab. 8. We also present the combined rank averaged across all the metrics resulting
in Sana (Xie et al., 2025), Pixart Sigma (Chen et al., 2024), and LLM-CXR (Lee et al., 2024) as the
top-three performers across all models.

Downstream Image Classification: We present the rank for each T2I model across each individual
pathology in Tab. 9.

The Pearson correlation between fidelity and classification rank is 0.70. Based on the correlation
coefficient of 0.70 between image fidelity and downstream classification performance, we can derive
several important conclusions:

1. Strong Positive Correlation: A correlation of 0.70 indicates a strong positive relationship
between image fidelity and downstream classification performance. This means that as
image fidelity increases, classification performance tends to increase substantially as well.
This also supports the value of developing high-fidelity synthetic image generators for
medical applications.

2. Substantial Explained Variance: The coefficient of determination (12) would be approxi-
mately 0.49, suggesting that about 49% of the variance in classification performance can be
explained by image fidelity.

3. Model Selection Guidance: When choosing models for generating synthetic medical
images for training purposes, prioritizing those with higher fidelity metrics would be a
data-driven approach that’s likely to yield better downstream performance.

4. Not a Perfect Relationship: While strong, the correlation of 0.70 still leaves about 51%
of the variance unexplained. This suggests other factors beyond simple image fidelity also
influence classification performance, such as:

(a) Diversity of the generated images

(b) Representation of edge cases

(c) Specific features that are diagnostically relevant but might not contribute heavily to
overall fidelity metrics

For medical imaging applications specifically, this correlation supports the hypothesis that realistic-
looking synthetic images translate to better diagnostic model performance, though the relationship
isn’t perfect. This finding could help justify investments in more sophisticated image generation
techniques that prioritize visual fidelity.
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Table 8: Performance ranking of generative models for image fidelity across multiple evaluation
metrics (lower rank indicates better performance). The top-3 performers are (1) Sana (Xie et al.,
2025), (2) Pixart Sigma (Chen et al., 2024), and (3) LLM-CXR (Lee et al., 2024).

Model FID KID Alignment Precision Recall Density Coverage Average Normalized
Inception RadDino Inception RadDino Score Rank Rank
SD V1-4 9 9 9 9 4 8 5 7 8 7.55 8
SD V1-5 8 7 8 8 5 6 4 6 6 6.44 6
SD V2 10 11 10 10 7 9 6 9 10 9.11 10
SD V2-1 11 10 11 11 8 7 7 8 11 9.33 11
RadEdit 3 3 3 3 3 11 2 10 5 4.78 4
SD V3-5 5 5 5 5 10 2 11 4 7 6.00 5
Lumina 2.0 6 6 6 6 9 5 9 5 9 6.78 7
Flux.1-Dev 7 8 7 7 11 10 10 11 4 8.33 9
LLM-CXR 4 4 4 4 6 1 8 1 3 3.89 3
Pixart Sigma 2 2 2 2 1 4 3 3 2 2.33 2
Sana 1 1 1 1 2 3 1 2 1 1.44 1

Note: Lower rank numbers indicate better performance. Top three models highlighted based on normalized rank.

Table 9: Ranking each T2I Model for synthetic data utility (image classification) across all 14

pathologies.

Model Atel. Card. Cons. Edema EC Fract. LL LO NF PE PO PN PT SD Avg
SD V1-4 5.5 5.0 6.0 5.0 7.0 5.0 25 45 55 55 60 70 50 35 50
SD V1-5 4.0 4.0 5.0 5.0 6.0 8.5 1.0 45 30 40 35 40 25 1.5 40
SD V2 7.0 6.5 7.0 7.0 3.0 8.5 70 70 75 70 105 55 60 50 70
SD V2-1 8.0 8.0 8.0 8.0 8.0 2.0 4.0 8.0 7.5 8.0 8.5 8.0 8.0 7.0 7.0
RadEdit 3.0 2.5 1.5 2.5 3.0 7.0 6.0 2.5 4.0 2.0 2.0 1.0 4.0 6.0 3.0
Pixart Sigma 1.5 2.5 3.5 2.5 3.0 3.0 5.0 2.5 1.5 3.0 3.5 3.0 2.5 3.5 3.0
Sana 1.5 1.0 1.5 1.0 3.0 1.0 25 10 15 1.0 10 20 10 15 1.0
SD V3-5 9.0 9.0 9.0 9.0 9.0 11.0 11.0 9.0 9.0 100 7.0 9.5 9.0 9.5 9.0
Lumina 2.0 10.0  10.0 10.0 10.0 10.0 5.0 90 100 100 90 85 95 100 95 9.0
Flux.1-Dev 11.0 11.0 11.0 11.0 11.0 10.0 100 11.0 11.0 11.0 105 11.0 11.0 11.0 110
LLM-CXR 55 6.5 35 5.0 3.0 5.0 80 60 55 55 50 55 70 80 60

Legend: Atel. = Atelectasis, Card. = Cardiomegaly, Cons. = Consolidation, EC = Enlarged
Cardiomediastinum, Fract. = Fracture, LL = Lung Lesion, LO = Lung Opacity, NF = No Finding,
PE = Pleural Effusion, PO = Pleural Other, PN = Pneumonia, PT = Pneumothorax, SD = Support
Devices, Avg. = Average Ranks
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E CORRELATION BETWEEN FIDELITY AND DISEASE DISTRIBUTION

In this section, we examine whether generative fidelity performance for individual pathologies, as
reported in Tab. 2, correlates with the frequency of pathology occurrence in the training dataset.
Fig. 3 illustrates the occurrence frequency distribution of 14 distinct pathologies in the training set.
Conditions such as “No Finding (NF)”, “Pleural Effusion (PE)”, “Support Devices (SD)”, and “Lung
Opacity (LO)” represent the most frequently observed pathologies in the training data. Conversely,
“Fracture” and “Pleural Other” exhibit significantly lower occurrence frequencies.

Tab. 10 presents the comparative rankings according to occurrence frequency and FID scores.
Analysis reveals a remarkably strong positive correlation coefficient of 0.947 between these rankings,
providing compelling evidence that generative fidelity demonstrates substantial dependence on
pathology occurrence frequency in the training distribution.

Training Set Pathology Counts

AT ™M cb ED EC Frac LL ol Lo NF PE Pb PN P‘T Sb
Pathologies
Figure 3: Figure depicting the distribution of pathology counts for the 14 different conditions present
in the MIMIC dataset. We indicate pathologies with there abbreviations.
Note: AT (Atelectasis), CM (Cardiomegaly), CD (Consolidation), ED (Edema), EC (Enlarged Cardiomedi-
astinum), Frac. (Fracture), LL (Lung Lesion), LO (Lung Opacity), NF (No Finding), PE (Pleural Effusion),
PO (Pleural Other), PN (Pneumonia), PT (Pneumothorax), SD (Support Devices).

Table 10: Occurrence Frequency and Generative Fidelity for Different Pathologies with rankings. We
calculate the "Fidelity Rank" across models from Tab. 2

Pathology Count Prevalence FID Fidelity

Code (n) Rank (RadDino) Rank
NF 78,939 1 110.75 2
SD 71,537 2 109.77

PE 56,433 3 130.45 5
LO 53,513 4 133.77 7
AT 47,704 5 114.28 3
CM 46,602 6 114.89 4
ED 28,601 7 130.75 6
PN 16,832 8 146.69 8
CD 11,290 9 172.14 9
PT 10,971 10 172.15 10
EC 7,454 11 188.95 11
LL 6,491 12 194.99 12

Frac. 4,671 13 211.58 13
PO 2,024 14 227.43 14

Note: Lower FID (Fréchet Inception Distance) scores indicate better generative fidelity. The table shows a
correlation between pathology prevalence and generative quality. Pathology codes: NF = No Finding, SD =
Support Devices, PE = Pleural Effusion, LO = Lung Opacity, AT = Atelectasis, CM = Cardiomegaly, ED =
Edema, PN = Pneumonia, CD = Consolidation, PT = Pneumothorax, EC = Enlarged Cardiomediastinum,
LL = Lung Lesion, Frac. = Fracture, PO = Pleural Other.
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F EFFECT OF ADDITIONAL FINE-TUNING OF SANA

In this section, we analyze the impact of extended fine-tuning on our benchmark-leading model, Sana
(0.6B), by increasing training from 20 epochs (as reported in the main benchmark) to 50 epochs. Our
analysis reveals a nuanced picture of how prolonged training affects different performance dimensions.
In Tab. 13, we show the improvements from the 20 epoch checkpoint on Report Generation task.

Fidelity Improvements: As illustrated in Figure 4a, extended fine-tuning yields modest but consistent
improvements in FID scores across all pathologies. The most significant gains were observed in No
Finding, which stands as the class with the most number of samples in the MIMIC dataset.

Improvement in Recall Scores: Fig. 4b demonstrates that recall scores show more substantial
improvements than fidelity metrics. This pattern indicates that extended training primarily enhances
the model’s ability to reproduce a larger spectrum of pathological variations rather than incrementally
improving visual quality. Interestingly, in this scenario, all classes (majority and minority) show
significant improvement.

Takeaway: Despite the additional training epochs, performance improvements on rare pathologies
remain disproportionately small compared to common conditions. This observation shows that
addressing long-tailed distribution challenges cannot be solved through extended fine-tuning alone
and would require specialised algorithmic changes.

FID (RadDino) Scores (Epoch 20 vs 50) Recall Scores (Epoch 20 vs Epoch 50)
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(a) Comparing FID () for fidelity (b) Comparing Recall Scores (1) for mode coverage

Figure 4: Extended Training Impact on Sana Model Performance. Comparison of generative quality
metrics after standard (20 epochs) and extended (50 epochs) fine-tuning of the Sana model. While
FID scores show modest improvement, the Recall metric exhibits substantial enhancement across all
pathologies, indicating significantly improved sample diversity without compromising fidelity.

F.1 'TRAINING SETTINGS AND HYPERPARAMETERS
The hyperparameters (learning rates) for Text-to-Image model training are provided in Tab. 11.
Existing foundation models (RadEdit, LLM-CXR) were not re-trained and used as is.

For evaluating downstream utility, the learning rates are provided in Tab. 12.

Table 11: Hyperparameters for fine-tuning of T2I models.

Hyper-Params SD V1-4 SDV1-5 SDV2 SDV2-1 RadEdit PixartSigma Sana SD V3-5 Lumina 2.0  Flux.1-Dev LLM-CXR

Fine-Tuning FFT FFT FFT FFT N/A FFT FFT LoRA (1-32) LoRA (r-32) LoRA (r-32) N/A
Learning Rate Se-6 Se-6 5e-6 5e-6 - 2e-5 le-4 le-4 le-4 le-4 -

G DATA FILTRATION FOR SYNTHCHEX-75K

Generative models can lead to both high and low-fidelity generations on different subsets of the
dataset. In order to keep the sample quality high in SynthCheX-75K, a stringent filtration process
was adopted using HealthGPT (Lin et al., 2025), a highly-capable medical VLM with advanced
understanding, reasoning and generation.
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Table 12: Hyperparameters for the downstream evaluation tasks.

Model ResNet-50 LLaVA-Rad
(Classification) (RRG)

Fine-Tuning FFT LoRA

Learning Rate le-4 le-4

Table 13: Comparing the performance of fine-tuning Sana from 20 to 50 epochs for the RRG task.
Additional fine-tuning does provide benefits, however, they are marginal.

Model BLEU-1 BLEU-4 ROUGE-L F1-RadGraph Micro F1-5 Micro F1-14
Original 38.16 15.38 0.31 0.29 0.57 0.57
Sana (Epoch 20) 29.83 7.70 0.24 0.23 0.57 0.55

Sana (Epoch 50) 30.80 (+0.97) 7.91(+0.21) 0.25(+0.01)  0.24 (+0.01)  0.58 (+0.01)  0.57 (+0.02)

The VLM was provided with the following meta-prompt to classify the quality of each generated
sample.

Meta Prompt for HealthGPT

You are an expert radiologist with extensive experience in medical image interpretation and
quality assessment. Your task is to evaluate the quality of a medical image based on its
correspondence to the provided clinical description.

Classification Guidelines:

**High Quality:** Excellent image clarity, accurate anatomical representation, clear visibility
of described pathological findings, suitable for diagnostic purposes

**Medium Quality:** Acceptable image quality with minor limitations, anatomical
structures are recognizable, described findings are visible but may lack optimal clarity

**Low Quality:** Poor image resolution, unclear anatomical structures, difficult to
identify described pathological findings, limited diagnostic value

**Not Relevant:** Image content does not correspond to the provided description
or shows different anatomical regions/pathologies than described

Response Format:
Provide only one of these four classifications: "High Quality", "Medium Quality", "Low
Quality", or "Not Relevant". Do not include explanations or additional commentary.

After quality label assignment, images with "Low Quality" and "Not Relevant" labels were removed
from the dataset leading to 75,649 samples of high-quality radiographs with pathological annotations.
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H SYNTHETIC MEDICAL DATA CARD FOR SYNTHCHEX-75K

In accordance with the synthetic medical data (SMD) documentation framework established by
(Zamzmi et al., 2024), we present a comprehensive SMD Card for the SynthCheX-75K dataset.
This standardized documentation protocol serves multiple critical functions: it systematically cap-
tures essential dataset characteristics, including intended applications and scope; provides detailed
descriptions of data composition and generation methodology; identifies inherent limitations and
potential biases; offers evidence-based recommendations for appropriate usage; and delivers a rigor-
ous assessment of data quality and reliability. The SMD Card framework ensures transparency and
reproducibility in synthetic medical data research while facilitating informed decision-making by
potential users regarding dataset suitability for their specific applications.

H.0.1 GENERAL INFORMATION

General Information

* Name: SynthCheX-75K

* Release Date: 14th May 2025

* Dataset Size: 137 GB

* Dataset Modality: Plain film X-Ray

» Dataset Provenance: The synthetic dataset was generated using Sana (Xie et al.,
2025), a state-of-the-art text-to-image diffusion model, which underwent domain-
specific fine-tuning on medical imaging data. The fine-tuning process involved
training the model for 50 epochs using 237,388 chest X-ray samples from the
MIMIC-CXR (Johnson et al., 2019) dataset.

» Dataset Labels: The dataset contains two types of labels. (1) multi-label diagnostic
annotations that systematically categorise 14 frequently occurring pathological
conditions present in the MIMIC-CXR dataset. (2) Free-text radiology reports
providing the clinical findings by a board-certified radiologist.

* Access: The dataset is publicly available on the HuggingFace platform.
* Licensing: The dataset is released under the Apache-2.0 license.

H.0.2 DATA QUALITY EVALUATION

Data Quality Evaluation

* Congruence: SynthCheX-75K underwent a strict filtration process to remove low-
quality generations using a state-of-the-art vision-language assistant (Lin et al.,
2025).

* Coverage: SynthCheX-75K is derived from MIMIC-CXR and hence, follows a sim-
ilar distribution in terms of pathologies prevalence, patient race, and demographics.

¢ Constraint: SynthCheX-75K contains only high-quality, clinically-plausible radio-
graphs due to a strict filtration process.

* Completeness: The metadata in SynthCheX-75K is complete without any missing
values.

e Compliance: SynthCheX-75K is derived from the MIMIC-CXR dataset which
underwent a de-identification procedure to protect sensitive patient information.
However, generative models can generate synthetic images with high patient re-
identification risk.
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H.0.3 SYNTHETIC DATA USAGE

Synthetic Data Usage

* Repository Access: The dataset is publicly available on the HuggingFace platform.

* Preprocessing Requirements: SynthCheX-75K can be directly loaded from Hug-
gingFace without performing any preprocessing steps.

* Intended Audience: SynthCheX-75K is intended to be used researchers and devel-
opers as a public synthetic training set for multi-label classification tasks, and (2) a
stress-test substrate for evaluating classifiers’ robustness to synthetic-only training.

H.0.4 ETHICAL, LEGAL, AND PRACTICAL CONSIDERATIONS

Practical Considerations

* Privacy and Anonymization: SynthCheX-75K is derived from the MIMIC-CXR
dataset, which underwent a de-identification procedure to protect sensitive patient
information (Protected Health Attributes). However, generative models, especially
diffusion models, can generate synthetic images with high patient re-identification
risk. Hence, care must be taken while adopting synthetic variants in your use-case.

* Biases: SynthCheX-75K is derived from the MIMIC-CXR dataset, which contains
known biases in terms of diagnostic pathology labels (long-tailed disease distribu-
tion). Furthermore, MIMIC-CXR was curated at a single institution, leading to
potential demographic bias in the patient population.

* Recommendations: SynthCheX-75K is intended to be used researchers and devel-
opers as a public synthetic training set for multi-label classification tasks, and (2) a
stress-test substrate for evaluating classifiers’ robustness to synthetic-only training.

H.0.5 REFERENCE DATASET GENERAL INFORMATION

Reference Dataset General Information

* Origin and Source: The reference dataset for SynthCheX-75K is MIMIC-CXR
(Johnson et al., 2019), a large dataset of 227,835 imaging studies for 65,379 patients
collected at the Beth Israel Deaconess Medical Centre Emergency Department
between 2011-2016.

* Dataset Size: The original uncompressed size of the MIMIC-CXR dataset is 4.6
TB.

* Ground Truth Labels: The dataset contains two types of labels. (1) multi-label
diagnostic annotations that systematically categorise 14 frequently occurring patho-
logical conditions. (2) Free-text radiology reports providing the clinical findings by
a board-certified radiologist.

* Metadata: The dataset contains metadata for View Position (frontal/ lateral), subject
ID, study ID, study data and time.

* Known Limitations: The dataset exhibits a long-tailed distribution across the 14
diagnostic pathologies, reflecting the natural prevalence patterns observed in clinical
practice. This inherent class imbalance poses substantial challenges, providing a
potential source of bias.
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I ABLATIONS OF LORA RANK

Our ablation study on the LoRA rank for large models (>1B parameters), presented in Tab. 14,
reveals that increasing the rank modestly improves generation fidelity. However, our key finding is
that a fully fine-tuned smaller model (Sana, 0.6B) still significantly outperforms much larger models
adapted with PEFT (e.g., SD V3.5, 2.5B; Flux.1-Dev, 1.2B). This result is crucial for the medical
image analysis community, as it highlights that thorough adaptation of an efficient model can be more
effective and accessible than resource-intensive scaling of larger architectures.

Table 14: Performance comparison across different generative models and LoRA ranks. FID scores
calculated using RadDino metric (lower is better). Best performance for each model is highlighted in
bold.

FID Score (RadDino) by LoRA Rank

Model

Rank 32 Rank 64 Rank 128
SD v3.5 91.30 84.14 74.58
Lumina 2.0  101.19 96.51 88.28
Flux.1-Dev 122.40 105.28 95.17
Average 104.96 95.31 85.68

J FORMALISATION OF PRIVACY METRICS

G) g0)

Given a dataset of M generated images {37 }]Ai1 (across M different random seeds), let s, £,/

and égx) denote, respectively, the Re-ID score, latent-space distance, and pixel-space distance of
sample j to its closest training image. We report the following dataset—level statistics:

M M
1 ) _ 1 )
Avg. Re-ID Score () : Sreiq = i sr(g%, Avg. Latent Distance (1) : {iy = Vi Z &ﬁﬁ%
j=1 i=1
M
Avg. Pixel Distance (1) : {,ix = L ZEQ ) Max. Re-ID Score (|) : sqps = max s
O - Lpix M - pix . + “reid 1<5<M reid’
=
M .
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