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Abstract

Local SGD, or Federated Averaging, is one of the most widely used algorithms
for distributed optimization. Although it often outperforms alternatives such as
mini-batch SGD, existing theory has not fully explained this advantage under
realistic assumptions about data heterogeneity. Recent work has suggested that a
second-order heterogeneity assumption may suffice to justify the empirical gains of
local SGD. We confirm this conjecture by establishing new upper and lower bounds
on the convergence of local SGD. These bounds demonstrate how a low second-
order heterogeneity, combined with third-order smoothness, enables local SGD to
interpolate between heterogeneous and homogeneous regimes while maintaining
communication efficiency. Our main technical contribution is a refined analysis of
the consensus error, a central quantity in such results. We validate our theory with
experiments on a distributed linear regression task.

1 The Unreasonable Effectiveness of Local SGD

We study the following distributed optimization problem over M machines:

min
x∈Rd

F (x) :=
1

M

∑
m∈[M ]

Fm(x)

 , (1)

where Fm := Ezm∼Dm
[f(x; zm)] is the a stochastic optimization objective on machine m, defined

using a loss function f(·; z ∈ Z) and a data distribution Dm ∈ ∆(Z). Problem (1) appears widely
in machine learning—ranging from multi-GPU training in data centers [1] to decentralized training
on millions of edge devices [2, 3]. Perhaps the simplest, most basic, and most important distributed
setting for solving Problem (1) is that of intermittent communication (IC) [4]. In this model, illustrated
in Figure 1, M machines optimize the objective across R rounds of communication, and in each
round, each machine performs K sequential stochastic gradient updates before communicating.

Several variants of stochastic gradient descent (SGD) have been proposed for the IC setting [5, 6],
most of which build on Local SGD or Federated Averaging. In Local SGD, each machine performs
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K local stochastic updates starting from the last synchronized model and then at the communication
round the machines average their models. Specifically, denoting the overall time by T = KR, at time
step t ∈ [0, T − 1]2, machine m ∈ [M ] samples zmt ∼ Dm and performs the update:

xm
t+1 := xm

t − η∇f(xm
t ; zmt ) if t+ 1 mod K ̸= 0 ,

xm
t+1 :=

1

M

∑
n∈[M ]

(xn
t − η∇f(xn

t ; z
n
t )) if t+ 1 mod K = 0 , (2)

with initialization xm
0 = 0 for all m ∈ [M ]. Despite its simplicity, Local SGD consistently

outperforms other first-order methods in practice [7, 8], including mini-batch SGD [9, 10, 11].
This strong empirical performance has motivated more than a decade of theoretical work aimed at
understanding its advantages [12, 13, 14, 15, 16, 17, 18, 11, 19, 20, 21, 22, 23, 8, 24, 25, 26].
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K local updates
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Figure 1: Illustration of the intermittent communica-
tion setting.

In the homogeneous setting where Dm = D
for all m ∈ [M ], a sequence of results [16, 11,
21, 23, 27, 25, 28] has shown that to explain
the benefit of Local SGD, one must impose
higher-order smoothness assumptions—à la
quadraticity in linear regression or quasi-self-
concordance in logistic regression. However,
in the more general and interesting heteroge-
neous case, most existing works either fail
to demonstrate an advantage of Local SGD
over mini-batch SGD [17, 19, 18], or require
highly restrictive conditions that prevent any
meaningful data variation across machines (c.f. Assumption 7). Wang et al. [8] described this
discrepancy between theory and practice as the unreasonable effectiveness of Local SGD.

Recently, Patel et al. [25] conjectured that combining a second-order heterogeneity condition (c.f.
Assumption 6) with standard first-order conditions (c.f. Assumptions 4 and 5) can account for the
success of Local SGD without requiring overly restrictive assumptions. Concurrently, other works
have shown that these second-order conditions sharply characterize the communication complexity
of various other distributed optimization algorithms [29, 30, 31, 32, 33, 34, 35]. Motivated by these
observations, we aim to validate the conjecture of Patel et al. [25] and show that a low second-order
heterogeneity indeed improves the convergence and communication complexity of Local SGD.

Towards this goal, our main contributions are as follows:

I. New Lower Bound Characterizing Second-order Heterogeneity. In Theorem 1, we refine
the lower bound of Patel et al. [25] to accommodate second-order heterogeneity. Specifically, we
show that low second-order heterogeneity reduces the hardness of their lower bound instance. This
refinement suggests that the communication complexity of Local SGD depends primarily on the
second-order heterogeneity constant, rather than the more conservative second-order smoothness
constant (c.f., τ vs. H in Assumptions 1 and 6).

II. New Upper Bounds without Restrictive Assumptions. In Theorems 2 and 3, we establish upper
bounds that align with the qualitative predictions of our lower bound: Local SGD converges faster
as second-order heterogeneity decreases. These bounds also incorporate the effects of first-order
heterogeneity (Assumptions 4 and 5), allowing us to interpolate smoothly between heterogeneous
and homogeneous regimes. Our key technical contribution is a new, sharper analysis of the consensus
error—a central quantity in distributed optimization—which enables us to avoid the restrictive
heterogeneity assumptions used in prior work [20, 25].

III. Refined Analysis under Third-order Smoothness. We improve our upper bound for quadratic
objectives in Theorems 4 and 5. We then extend the analysis to third-order smooth functions in
Theorem 6, requiring control of the fourth moment of the consensus error and careful handling of
four coupled recursions without losing the benefits of local updates.

IV. A Controlled Regression Experiment. We validate our theory on a synthetic linear regression
task in Figure 2 by independently varying first- and second-order heterogeneity and highlighting the
role of second-order heterogeneity in dictating Local SGD’s communication complexity.

2Throughout the paper, for integers i ≤ j ∈ Z≥0, we will use the notation [i, j] :=
{i, i+ 1, . . . , j − 1, j + 1}, and when i = 1, we denote it by [j].
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Thus, our paper significantly shrinks several gaps in the convergence theory for Local SGD. We
summarize some of our results in Table 1, contextualizing them in existing literature. Our techniques
may also be useful for other areas of distributed optimization where consensus error-like quantities
arise, including communication compression [36, 37, 38], quantization [39, 40], asynchronous
updates [41, 42], differential privacy [43, 44], and Byzantine robustness [45, 46].

2 Setting and Preliminaries

In this section, we introduce our notation and assumptions while discussing several related works.

Local SGD Iterates. For analytical purposes, we will define the average Local SGD iterate at time
t ∈ [0, T ] by xt :=

1
M

∑
m∈[M ] x

m
t , which may not be computed in practice (when t mod K ̸= 0).

Regularity Assumptions. We assume that the local objectives are convex and smooth.
Assumption 1 (Convexity and Smoothness). For all m ∈ [M ], the function Fm(·) is twice differen-
tiable and satisfies µ · Id ⪯ ∇2Fm(·) ⪯ H · Id for some 0 ≤ µ ≤ H . When µ > 0, we say Fm is
strongly convex and denote its condition number by κ = H

µ . Furthermore, there exists Q ≥ 0 such
that for all x, y ∈ Rd, we have

∥∥∇2Fm(x)−∇2Fm(y)
∥∥
2
≤ Q · ∥x− y∥23.

Recall that a strongly convex function admits a unique minimizer. Also, Q = 0 implies that Fm is
quadratic. We further discuss the role of third-order smoothness in Section 5.

We also assume the stochastic gradients have bounded fourth moments.
Assumption 2 (Bounded Fourth Moment of Stochastic Gradients). For all m ∈ [M ] and x ∈ Rd,
we have Ez∼Dm

[∇f(x; z)] = ∇Fm(x), and

Ez∼Dm [∥∇f(x; z)−∇Fm(x)∥42 | x] ≤ σ4 .

Using Jensen’s inequality, the above assumption implies the second moment of the stochastic
gradients are also bounded, i.e., Ez∼Dm [∥∇f(x; z)−∇Fm(x)∥22 | x] ≤ σ2. We only require the
fourth moment bound for Theorem 6, which involves a higher-order moment control of iterates. For
all other results (Theorems 2 to 5), the second moment bound suffices.

Finally, we assume that each local function’s optima and the global objective are bounded.
Assumption 3 (Bounded Optima). For all m ∈ [M ], define the set of optima as S⋆

m :=
argminx∈Rd Fm(x). Then ∃ x⋆

m ∈ S⋆
m such that ∥x⋆

m∥2 ≤ B. Similarly, define the set of op-
tima for the average objective as S⋆ := argminx∈Rd F (x). Then ∃ x⋆ ∈ S⋆ such that ∥x⋆∥2 ≤ B.

These standard regularity assumptions alone are insufficient to establish the utility of a large number
of local update steps for optimizing Problem (1) [20, 18, 25]. To address this, we now introduce
heterogeneity assumptions that control how the data distributions across machines are related.

Heterogeneity Assumptions. The most natural assumption linking the optimization problems across
different machines is that their optima are close. In particular, we assume that at least one pair of
optima from two machines is close relative to their norms.
Assumption 4 (Distance between Clients’ Optima). There exists ζ⋆ ≤ 2B such that,

sup
m,n∈[M ]

inf
x⋆
m∈S⋆

m, x⋆
n∈S⋆

n

∥x⋆
m − x⋆

n∥2 ≤ ζ⋆ .

When all machines share a common minimizer, we have ζ⋆ = 0, and solving Problem (1) recovers
this global optimum. However, when machines do not share an optimizer, we must additionally
assume that at least one minimizer of the average objective is approximately optimal for each machine.
Without this condition, some clients may not benefit from collaboration.
Assumption 5 (Distance between Clients’ and the Average Objective’s Optima). There exists
ϕ⋆ ≤ 2B such that

sup
m∈[M ]

inf
x⋆
m∈S⋆

m, x⋆∈S⋆
∥x⋆

m − x⋆∥2 ≤ ϕ⋆ .

3We use a single assumption for convexity and smoothness, but in our results we will denote µ = 0 to
emphasize when we are considering general convex (as opposed to strongly convex) functions and when we do
not want to capture third-order smoothness in our upper bounds, we will interpret the assumption with Q = ∞.
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Reference Function Sub-optimality Bound Restrictions

Strongly Convex Setting (µ > 0)

Kolosokova et al.
[18] (Upper bound)

σ2

µMKR +
H3ϕ2

⋆

µ2R2 + Hσ2

µ2KR2 R = Ω̃
(

H
µ

)
Woodworth et al.
[20] (Upper Bound)

HB2

HKR+µK2R2 + σ2

µMKR + H3ζ2

µ2R2 + Hσ2

µ2KR2 -

Patel et al. [25]
(Upper Bound)

e−
µKR
H HB2 + σ2

µMKR + τ2σ2

µ3KR2 + τ2H2ζ2

µ3R2 +
Q2σ4

µ5K2R4 + Q2H4ζ4

µ5R4

-

Theorem 3 (Upper
Bound)

e−
µKR
2H µB2 + σ2

µMKR +
τ2Hϕ2

⋆

µ2R2 +
H3ζ2

⋆

µ2R2 + Hτ2σ2

µ4KR3 +
Hσ2

µ2KR2

R = Ω̃
(

τ
√
κ

µ

)

Convex Setting (µ = 0)

Kolosokova et al.
[18] (Upper bound)

HB2

R + σB√
MKR

+
Hϕ2/3

⋆ B4/3

R2/3 + H1/3σ2/3B4/3

K1/3R2/3 -

Woodworth et al.
[20] (Upper Bound)

HB2

KR + σB√
MKR

+ Hζ2/3B4/3

R2/3 + H1/3σ2/3B4/3

K1/3R2/3 -

Patel et al. [25]
(Upper Bound)

HB2

R + σB√
MKR

+ (τσB3)1/2

K1/4R1/2 + (τHζB3)1/2

R1/2 +

(Qσ2B5)1/3

K1/3R2/3 + (QH2ζ2B5)1/3

R2/3

-

Theorem 1 (Lower
Bound)

τB2

R + HB2

KR + σB√
MKR

+min
{
τϕ2

⋆,
τϕ2/3

⋆ B4/3

R2/3

}
+

min
{

σB√
KR

, H1/3σ2/3B4/3

K1/3R2/3

} -

Table 1: Summary of existing and (a subset of) our convergence guarantees for function-value
suboptimality for convex and strongly convex settings (ignoring poly-logarithmic factors). The red
terms are the ones that determine the communication complexity, as these terms can not be made
arbitrarily small even with a very large K. Notably, there is no relevant lower bound in the strongly
convex setting under the assumptions of our upper bounds, and there are gaps between the upper and
lower bounds in the general convex setting.

Most existing first-order heterogeneity conditions are variants of Assumption 5. The quantity ϕ⋆

captures the notion of approximate simultaneous realizability across clients and has also appeared in
the literature on collaborative PAC learning and incentives for Federated Learning [47, 48, 49, 50].
Remark 1 (ζ⋆ vs. ϕ⋆). With µ > 0, Assumption 5 implies Assumption 4 with ζ⋆ ≤ 2ϕ⋆. However,
the reverse is not true in general: there exist problems that satisfy Assumption 4 with ζ⋆ << B,
yet only satisfy Assumption 5 when ϕ⋆ ≈ B. For this reason, we distinguish between these two
assumptions. See the discussion in Appendix A for more context on heterogeneity assumptions.

We also impose the following second-order heterogeneity assumption, which bounds how different
the Hessians can be across machines.
Assumption 6 (Bounded Second-order Heterogeneity). There exists τ ≤ 2H such that,

sup
m,n∈[M ]

sup
x∈Rd

∥∥∇2Fm(x)−∇2Fn(x)
∥∥
2
≤ τ .

Note that the above assumption can always be satisfied by using τ = 2H and Assumption 1. τ
corresponds to the second-order smoothness of the function Fm(·)− Fn(·) for any pair of machines
m,n ∈ [M ]. This observation will enable us to replace H with τ in several places.
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Several recent works have established that Assumption 6 plays a central role in determining the
communication complexity of distributed optimization. A prominent line of research has focused on
distributed proximal-point methods. Early results in the quadratic setting showed that when τ = 0,
these methods can achieve extreme communication efficiency, requiring only a constant number of
communication rounds [51]. More recent works extended these guarantees to the general case with
τ > 0 [32, 33, 34, 35]. In the context of Local SGD, Patel et al. [31] showed that a variance-reduced
variant achieves similar communication efficiency in the non-convex setting when τ = 0, and that
the optimal communication complexity scales linearly with τ when the number of local updates
K is large. Later, Patel et al. [25] studied Local SGD in the convex setting and showed that it
can also be extremely communication-efficient, providing convergence guarantees in terms of τ .
However, their analysis relied on the restrictive heterogeneity Assumption 7 4. They also conjectured
that Assumptions 4 to 6 together are both necessary and sufficient to establish the communication
efficiency and dominance of Local SGD over baselines like mini-batch SGD for convex problems.
However, convergence guarantees under broader conditions—such as non-quadratic objectives—–as
well as lower bounds that decay gracefully with τ , have remained open.
Remark 2 (ζ⋆ and τ vs. ϕ⋆). In some settings, the parameter ϕ⋆ in Assumption 5 can be bounded
using ζ⋆ and τ from Assumptions 4 and 6. For example, if each Fm is a strongly convex quadratic
function with Hessian Am and unique minimizer x⋆

m, then the global optimum satisfies

x⋆ = A−1 · 1

M

∑
m∈[M ]

Amx⋆
m ,

where A := 1
M

∑
m∈[M ] Am. Using this, we can derive [25] (see proof in Appendix A):

∥x⋆
m − x⋆∥2 ≤ ∥x⋆

m − x̄⋆∥2 + ∥x̄⋆ − x⋆∥2 ≤ ζ⋆ +
τζ⋆
µ

, ∀m ∈ [M ] ,

where x̄⋆ := 1
M

∑
m x⋆

m. Hence, we can set ϕ⋆ = ζ⋆(1 + τ/µ). For general non-quadratic problems,
however, it may not be possible to eliminate the dependence on ϕ⋆.

3 A New General Convex Lower Bound with Second-order Heterogeneity

Our first result is the following convergence lower bound for general convex functions, explicitly
capturing second-order heterogeneity τ along with first-order heterogeneity ϕ⋆.
Theorem 1. There exists a quadratic problem instance satisfying Assumptions 1 to 6 (with µ = 0)
such that for any choice of step-size η, Local SGD initialized at x0 = 0 outputs a model xKR with:

E [F (xKR)]− F (x⋆) = Ω

(
τB2

R
+

HB2

KR
+

σB√
MKR

+min

{
σB√
KR

,
H1/3σ2/3B4/3

K1/3R2/3

}

+min

{
τϕ2

⋆,
τϕ

2/3
⋆ B4/3

R2/3

})
.

We prove this theorem in Appendix C. When ϕ⋆ is small and K is large, the lower bound is dominated
by the term τB2

R , which suggests that the communication complexity of Local SGD should scale as
τB2

ϵ —a rate that mirrors known results in the non-convex setting [30, 31].

Comparison to Existing Lower Bounds. The strongest existing lower bound for Local SGD under
the first-order heterogeneity assumption ϕ⋆ is due to Patel et al. [25]. However, their result does not
incorporate second-order heterogeneity as in Assumption 6. As the authors note, their hard instance
degenerates when τ = 0 because the smoothness constant H also vanishes, making the instance
trivial. To address this, we extend the construction of Patel et al. [25] by introducing an additional
dimension, which decouples the effects of τ and H on the convergence behavior of Local SGD.
This modification ensures that our lower bound reduces to the bound of Glasgow et al. [23] when
τ = 0—a bound that is known to be tight in the homogeneous setting.

4Patel et al. [25] also showed that Local SGD converges rapidly to its fixed point and exhibits no fixed-point
discrepancy for quadratics when τ = 0, yielding extreme communication efficiency (see Appendix B).
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Potential Future Improvements. We note that our lower bound does not depend on ζ⋆, and ϕ⋆

alone captures the hardness of first-order heterogeneity. This is because for our hard instance ζ⋆ ≈ ϕ⋆,
which is why we choose to state the result in terms of ϕ⋆, which is usually bigger than ζ⋆ (see
Remarks 1 and 2). Deriving a lower bound that can decouple the dependence on ζ⋆ and ϕ⋆, i.e.,
decouple the proximity of machines’ optima and “fixed-point discrepancy”, remains an open question.
Also, we suspect that in the last term of the lower bound, τ can be replaced by H . Finally, all
quadratic lower bounds for Local SGD [20, 23, 25] do not use unbounded fourth moments. Thus,
we do not know if under a weaker second-moment variant of Assumption 2 the lower bound can be
improved by using higher moments of the noise to “confuse” the local updates.

In the following section, we will prove new upper bounds that exhibit qualitatively similar behavior
to Theorem 1 in regimes with low data heterogeneity and large K, reinforcing the role of τ , ζ⋆, and
ϕ⋆ in governing the performance of Local SGD.

4 Breaking Down the Consensus Error and New Upper Bounds

In this section, we first present our result on convergence in iterates in the strongly convex setting in
Theorem 2, and then on convergence in function values in Theorem 3. Both our results will hold even
when Q = ∞ in Assumption 1, and as such the goal of this section is to highlight the effect of a low
second-order heterogeneity. We will focus here on the key ideas used to derive Theorem 2; the proof
of Theorem 3 is morally similar, and deferred to Appendix I.2.

Our analysis proceeds in three stages. We begin by introducing a standard one-step progress result
in Lemma 1, which quantifies the improvement of Local SGD in terms of the consensus error—–a
quantity that measures the deviation between local and global iterates and plays a central role in the
analysis of many distributed optimization algorithms. We then identify the two main issues in the
existing consensus error bounds: (i) they rely on restrictive assumptions [20, 25]; and (ii) they do
not characterize the effect of second-order heterogeneity. To address both these issues we establish
a new upper bound on the consensus error in Lemma 2, that only depends on Assumptions 4 to 6.
Finally, we substitute this bound into the progress lemma and unroll the resulting recursion to obtain
convergence guarantees for both strongly convex and general convex objectives. These results reveal
how the convergence of Local SGD depends on the data heterogeneity parameters τ , ζ⋆, and ϕ⋆, and
highlight the algorithm’s communication efficiency in regimes of low data heterogeneity and large K.

Lemma 1 (Canonical One-step Lemma). Assume that the problem instance satisfies Assumptions 1,
2 and 6. Then, for step-size η < 1

H and all t ∈ [0, T − 1], Local-SGD’s iterates satisfy:

E
[
∥xt+1 − x⋆∥22

]
≤ (1− ηµ)E

[
∥xt − x⋆∥22

]
+

ηH2

µ
· 1

M

∑
m∈[M ]

E
[
∥xt − xm

t ∥22
]
+

η2σ2

M
.

The above lemma is standard in the analysis of Local SGD [15, 16, 11, 20, 21, 23, 25]; we include a
proof in Appendix F for completeness. The blue term is the consensus error, which vanishes when
all clients communicate at every time step (i.e., in fully synchronous SGD). Early analyses of Local
SGD, such as [20], often controlled this term using the following restrictive assumption:

Assumption 7 (Uniform Bounded First-order Heterogeneity). There exists ζ > 0 such that

sup
m,n∈[M ]

sup
x∈Rd

∥∇Fm(x)−∇Fn(x)∥2 ≤ H · ζ .

Under Assumption 7, Woodworth et al. [20] showed that the consensus error can be bounded as:

1

M

∑
m∈[M ]

E
[
∥xt − xm

t ∥22
]
≤ η2H2ζ2K2 + 2η2σ2K (1 + ln(K)) . (3)

We include a proof of the above statement in Appendix G for completeness. Substituting it into
Lemma 1 and unrolling the recursion yields a convergence rate.5 However, Assumption 7 is very
restrictive as it requires the gradient functions across clients to be pointwise similar, allowing only

5In Appendix G, we also state some iterate convergence results under Assumption 7 that we could not find in
a clean form in the existing literature.
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limited heterogeneity—essentially in the linear terms. Such mild variation can typically be resolved
with constant initial communication rounds (see Appendix A). Notably, Wang et al. [8] criticized
the uniform consensus error bound in (3), arguing that contrary to practice it implies an overly
conservative step-size η = O(1/K) to prevent consensus error from diverging as K → ∞.

The following result relaxes the need for Assumption 7 by providing a new upper bound on the
consensus error that depends on ζ⋆, τ , and the expected iterate error at the most recent communication
round—a quantity that decreases over time.
Lemma 2 (A Coupled Recursion for Consensus Error). Assume that the problem instance satisfies
Assumptions 1 to 6. Then, for step-size η < 1

H and all t ∈ [0, T ], Local-SGD’s iterates satisfy:

1

M

∑
m∈[M ]

E
[
∥xt − xm

t ∥22
]
≤ 2η2H2K2ζ2⋆ +

2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K))

+ 4η2τ2(t− δ(t))2(1− ηµ)2(t−1−δ(t))
(
E
[∥∥xδ(t) − x⋆

∥∥2
2

]
+ ϕ2

⋆

)
,

where δ(t) := t− (t mod K) is the most recent communication round prior to or at time t.

We prove this result in Appendix H. Unlike the earlier bound in (3), our upper bound improves
with lower second-order heterogeneity. In the limit τ → 0, it effectively replaces ζ with ζ⋆ in (3),
and can therefore be significantly smaller. While our bound does require setting η = O(1/K) to
prevent blow-up as K → ∞, we provide an alternative bound in Appendix H.3 that avoids this and
addresses the concerns raised by Wang et al. [8]. That said, as we explain in Appendix H.3, the
regime η = O(1/K) is ultimately the most relevant for our analysis, making Lemma 2 more useful.
Finally, we note that similar fine-grained upper bounds on consensus error have also appeared in the
literature on decentralized optimization [52, 53, 54]

Combining the coupled recursions in Lemmas 1 and 2 leads to the following convergence guarantee:
Theorem 2 (Informal, Iterate Error). Assume a problem instance satisfies Assumptions 1 to 6 (with
Q = ∞) and R = Ω̃

(
Hτ
µ2

)
. Then, for a suitable η, and x0 = 0 Local SGD outputs xKR s.t.:

E
[
∥xKR − x⋆∥22

]
= Õ

(
e−

µKR
2H B2 +

σ2

µ2MKR
+

τ2H2ϕ2
⋆

µ4R2
+

H4ζ2⋆
µ4R2

+
H2τ2σ2

µ6KR3
+

H2σ2

µ4KR2

)
.

For the complete theorem statement, the precise step-size choice, and the derivation of the bound, see
Appendix I.1. As a baseline, we can compare the above rate to the convergence rate of mini-batch
SGD in the intermittent communication setting (see e.g., [20]),

E
[∥∥xMB−SGD

KR − x⋆
∥∥2
2

]
= O

(
e−

µR
2H B2 +

σ2

µ2MKR

)
.

It is well known that the convergence rate for mini-batch SGD above is tight and can not improve
with lower data heterogeneity [20, 25]. Patel et al. [25] proved that local SGD can not beat mini-
batch SGD under just Assumptions 4 and 5, leaving open the question of what happens when we
additionally have Assumption 6. Theorem 2 answers this question, showing that with a small τ , Local
SGD can converge much faster than mini-batch SGD. Notably, when K → ∞, the communication
complexity of Local SGD for target accuracy ϵ and large K satisfies:

RL−SGD(ϵ) = Õ
(
Hτ

µ2
+

τHϕ⋆

µ2
√
ϵ
+

H2ζ⋆
µ2

√
ϵ

)
. (4)

The above communication complexity decreases with data heterogeneity, suggesting that Local
SGD becomes increasingly communication-efficient when tasks are more aligned. In particular, the
convergence rate smoothly interpolates to the behavior on homogeneous problems, for which our
bound implies that a constant number of communication rounds suffice. On the other hand, with
similar K, the communication complexity of mini-batch SGD is Ω̃(κ), and does not improve with a
lower data heterogeneity. We note that this is the first ever result to prove the domination of Local
SGD over mini-batch SGD in settings of reasonable heterogeneity, i.e., these rates only depend on τ ,
ζ⋆, ϕ⋆, and not on ζ, while also showing a provable benefit of local update steps.

Using a different progress lemma (Appendix F.3), we also derive a corresponding function-value
convergence result based on the same consensus error bound in Lemma 2.
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Theorem 3 (Informal, Function Error with Strong Convexity). Assume a problem instance satisfies
Assumptions 1 to 6 (with Q = ∞), R = Ω̃

(
τ
√
κ

µ

)
, and KR = Ω(κ). Then, for a suitable η, Local

SGD initialized at x0 = 0 outputs x̂, a weighted combination of its iterates, satisfying,

E [F (x̂)]− F (x⋆) = Õ
(
e−

µKR
2H µB2 +

σ2

µMKR
+

τ2Hϕ2
⋆

µ2R2
+

H3ζ2⋆
µ2R2

+
Hτ2σ2

µ4KR3
+

Hσ2

µ2KR2

)
.

The proof of the above theorem can be found in Appendix I.26. The above convergence rate also has
a desirable dependence on the data heterogeneity constants and improves over mini-batch SGD.

General Convex Functions. One might ask, what is the corresponding rate to Theorem 3 for general
convex functions (with µ possibly zero)? A natural approach to get that rate is using a convex to
strongly convex reduction, using an appropriate amount of regularization in Theorem 3. This strategy,
unfortunately, leads to very stringent constraints on the heterogeneity constants and the number of
communication rounds. This is why we omit stating the result here. We suspect that extending the
ideas in this section to general convex functions might require more technical innovations. We leave
this for future work, and note that this is an important gap as the upper bounds presented in this
section are not directly comparable to Theorem 1.

Finally, it is worth noting that the hard instance in Theorem 1 is a quadratic function, and thus has
Q = 0 while in this section we only present results for general strongly convex objectives. This raises
the possibility that, by restricting attention to quadratics, we may be able to improve upon the upper
bound in Theorems 2 and 3. In the next section, we explore this direction by deriving tighter upper
bounds in regimes where the third-order smoothness constant Q from Assumption 1 is small.

5 Incorporating Third-order Smoothness

In the homogeneous setting, Woodworth et al. [22] showed a surprising result: for smooth and convex
objectives, Local SGD can outperform mini-batch SGD only when SGD on a single machine also
outperforms it. This contradicts empirical findings, where Local SGD consistently outperforms both
mini-batch and single machine SGD [55, 7]. However, for certain objective classes with higher-order
smoothness—such as quadratics [16, 11] and logistic regression [28]—Local SGD can be provably
superior to these two baselines and even be min-max optimal in some scenarios. To alleviate this gap,
Yuan and Ma [21] analyzed Local SGD under a third-order smoothness assumption (i.e., bounded Q
in Assumption 1) providing convergence guarantees that could interpolate between convex functions
and quadratics. Patel et al. [25] extended this to the heterogeneous setting but relied on the restrictive
Assumption 7. In this section, equipped with the new consensus error and a modified one-step
lemma, we relax that assumption and refine our upper bounds from the previous section to make their
dependence on third-order smoothness explicit.

We will begin by stating a modified one-step progress result in Lemma 3 that explicitly captures
second-order heterogeneity and third-order smoothness. This directly recovers improved bounds
for quadratic objectives by setting Q = 0 in Theorems 4 and 5. To handle general third-order
smooth functions, we combine this with new bounds on the fourth moment of the consensus error
(Appendix H.2) and a corresponding fourth-moment progress lemma (Appendix F.2), resulting in
Theorem 6. These results show that when Q and τ are small, Local SGD can achieve significantly
faster convergence, even under substantial first-order heterogeneity.
Lemma 3 (Modified One-step Lemma). Assume the problem instance satisfies Assumptions 1, 2
and 6. Then, for step-size η < 1

H and all t ∈ [0, T − 1], the iterates of Local SGD satisfy:

E
[
∥xt+1 − x⋆∥22

]
≤ (1− ηµ)E

[
∥xt − x⋆∥22

]
+

η2σ2

M

+
2ηQ2

µ
· 1

M

∑
m∈[M ]

E
[
∥xt − xm

t ∥42
]
+

2ητ2

µ
· 1

M

∑
m∈[M ]

E
[
∥xt − xm

t ∥22
]
.

We prove Lemma 3 in Appendix F. Compared to Lemma 1, this recursion introduces an additional
fourth-moment of the consensus error, weighted by the third-order smoothness constant Q. While this

6In the regime κ >> 1 Theorem 3 is much better than just applying second-order smoothness to Theorem 2.
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fourth-moment term can dominate the second-moment term, the decomposition reveals how smoother
problems (with small Q and τ ) reduce the impact of delayed communication. In particular, when
Q = 0—when each Fm is quadratic—we obtain significantly sharper bounds than in Theorem 2.
Assumption 8 (Quadraticity). For all m ∈ [M ], the objective function Fm(·) is quadratic.
Theorem 4 (Informal, Iterate Error for Quadratics). Assume the problem instance satisfies Assump-
tions 1 to 6 and 8, R = Ω̃

(
τ2

µ2

)
and KR = Ω̃(1). Then, for a suitable choice of step-size η, Local

SGD initialized at x0 = 0 outputs xKR such that:

E
[
∥xKR − x⋆∥22

]
= Õ

(
e−

µKR
2H B2 +

σ2

µ2MKR
+

τ4ϕ2
⋆

µ4R2
+

τ2H2ζ2⋆
µ4R2

+
τ4σ2

µ6KR3
+

τ2σ2

µ4KR2

)
.

We prove this theorem in Appendix I.1. To understand the improvement over Theorem 2, consider
the implied communication complexity in the large K regime:

R(ϵ) = Õ
(
τ2

µ2
+

τ2ϕ⋆

µ2
√
ϵ
+

τHζ⋆
µ2

√
ϵ

)
, (5)

which becomes constant when τ = 0. In contrast, the bound in (4) still depends on ζ⋆ even when
τ = 0. This highlights how low third-order smoothness (Q) and low second-order heterogeneity (τ )
improve Local SGD’s performance—especially in settings where first-order heterogeneity is still
large. It is also worth noting that the convergence rates for mini-batch SGD do not improve with a
lower third-order smoothness, as the hard instances for mini-batch SGD are all quadratic [56].

Using a different modified progress lemma (see Appendix F.3), we also derive the following conver-
gence rate in terms of function values.
Theorem 5 (Informal, Function Error for Quadratics). Assume a problem instance satisfies Assump-
tions 1 to 6 and 8, R = Ω̃

(
τ2

µ2

)
, and KR = Ω(κ). Then, for a suitable choice of step-size η, Local

SGD initialized at x0 = 0 outputs x̂, a weighted combination of its iterates, satisfying,

E [F (x̂)]− F (x⋆) = Õ
(
e−

µKR
2H µB2 +

σ2

µMKR
+

τ4ϕ2
⋆

µ3R2
+

τ2H2ζ2⋆
µ3R2

+
τ4σ2

µ5KR3
+

τ2σ2

µ3KR2

)
.

The proof for the above theorem can be found in Appendix I.2. Compared to Theorem 2 we again
see an improvement, as all but the first two terms in the convergence rate go to zero when τ = 0.

Finally, we prove the following result for general third-order smooth functions.
Theorem 6 (Informal, Iterate Error with Q). Assume a problem instance satisfies Assumptions 1 to 6.
Then, for a suitable choice of step-size η, Local SGD initialized at x0 = 0 outputs xKR satisfying:

E
[
∥xKR − x⋆∥22

]
+

1

B2
E
[
∥xKR − x⋆∥42

]
= Õ

(
e−ηµKRB2 +

σ2

µ2MKR
+

σ4

µ4K3R3M2B2

+ κ′
(
τ2ϕ2

⋆

µ2R2
+

τ4σ2

µ6KR5B2
ϕ2
⋆ +

σ2τ2

µ4KR4B2
ϕ2
⋆ +

τ4

µ4B2R4
ϕ4
⋆ +

H2ζ2⋆
µ2R2

+
τ2σ2

µ4KR3

)
+ κ′

(
σ2 ln(K)

µ2KR2
+

H4ζ4⋆
µ4R3B2

+
τ4σ4

µ8K2R5B2
+

σ2H2ζ2⋆
µ4B2R4

+
τ2σ4

µ6KR5B2
+

σ4 ln(K)

µ4KB2R4

))
,

where we assume R = Ω̃
(

τ
√
κ′

µ

)
and define κ′ := 2 + 4Q2B2

µ2 + 6H4

µ4 .

We can see that the above convergence rate improves with smaller τ and Q, via the constant κ′, and
the effect of a low third-order smoothness is most pronounced when B/µ2 is large relative to κ4.
To prove the above theorem, we first derive new fourth-moment bounds on the consensus error and
one-step progress in Appendices F and H. Solving the resulting four coupled recursions directly
is challenging, so we stack the iterate and consensus recursions into two vectors and apply matrix
algebra, leading to a cleaner proof in Appendix I.3. A limitation of our analysis is that the final bound
is expressed in terms of the norm of a stacked vector that includes both second and fourth-moment
errors. Since bounding the fourth moment of the iterate error is not strictly necessary, this may have
introduced extraneous terms in the upper bound. We therefore believe that Theorem 6 could be further
improved through a more refined analysis of the underlying matrix inequalities.
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6 Case Study: Distributed Linear Regression

We consider a linear regression task, where for each client m ∈ [M ], the data consists of covariate-
label pairs zm := (βm, ym) ∼ Dm with Gaussian covariates βm ∼ N (µm, Id) ∈ Rd and labels
ym ∼ ⟨x⋆

m, βm⟩ + N (0, σ2
noise) generated using a ground truth model x⋆

m ∈ Rd. Each client
minimizes the mean squared error, f(x; (βm, ym)) = 1

2 (ym − ⟨x, βm⟩)2 leading to an expected loss:

Fm(x) =
1

2
(x− x⋆

m)⊤(µmµ⊤
m + Id)(x− x⋆

m) +
1

2
σ2

noise .

Under suitable bounds on µm, Σm, and σnoise, this problem satisfies Assumptions 1 to 3 for bounded
x. Furthermore, we have

∥∥∇2Fm(x)−∇2Fn(x)
∥∥
2
≤ (∥µm∥2 + ∥µn∥2) · ∥µm − µn∥2 for any

m,n ∈ [M ]. So Assumption 6 quantifies the covariate shift across clients. Meanwhile, Assumption 4
reflects the concept shift via the bound ∥x⋆

m − x⋆
n∥2 ≤ ζ⋆.

In Figure 2, we examine the convergence behavior of Local SGD on the synthetic linear regression
task. In Figure 2a, we decouple first- and second-order heterogeneity by independently varying the
means µm and the ground truths x⋆

m. We observe that Local SGD performs well only when both types
of heterogeneity are small. This highlights why earlier works that did not account for second-order
heterogeneity (Assumption 6) were unable to explain Local SGD’s effectiveness fully. In Figure 2b,
we fix the first-order heterogeneity and plot the communication complexity required to reach a target
accuracy as a function of τ . As expected, we find a monotonic relationship, further reinforcing the
connection between second-order heterogeneity and the communication efficiency of Local SGD.

Importantly, when varying the heterogeneity, we ensure we do not inadvertently make the individual
optimization problems harder, for example, by increasing the condition number κ or the radius B. In
Appendix J, we describe how we control for this and include additional experiments.

(a) Heatmap of the average best-final ℓ2 error of Local
SGD after R = 5 communication rounds as a function
of covariate shift τ (horizontal axis) and concept shift
ζ⋆ (vertical axis).

(b) Communication complexity of Local SGD versus
covariate shift τ , for a fixed concept shift ζ⋆ = 1.0
to reach an ℓ2 error ≤ 0.04. We allow up to Rmax =
100 rounds, and plot the mean rounds-to-target.

Figure 2: Impact of First- and Second-Order Heterogeneity on Local SGD. In both figures, we
use d = 5, M = 20 clients, K = 10 local steps, and a noise level of σnoise = 0.1. The step-size is
tuned over a logarithmic grid in [10−3, 10−1], and the error is averaged over multiple trials. For (a),
we report the mean error over nruns = 20 trials for each (τ, ζ⋆) pair, tuning the step-size separately
in each trial. Similarly, in (b), we average over nruns = 20 trials for each τ , again tuning the step-size
independently per trial. We discuss in Appendix J how to interpret the τ , ζ⋆ in our plots’ axes.

Practical Implications for Federated Learning. Our results highlight that the performance of Local
SGD depends critically on the structure of data heterogeneity. In practice, this suggests distinguishing
between heterogeneity in optimal predictors (first-order, measured by ζ⋆ and ϕ⋆) and curvature or
feature distributions (second-order, measured by τ ). For example, ζ⋆ may be small for learning in
overparameterized settings while τ remains significant. Large local steps (K) can still yield good
performance and communication savings in such cases. But when τ is very large, aggressive local
updates with a fixed step-size can cause instability. We recommend tuning η as a function of K and
using diagnostic signals—such as consensus error growth or curvature estimates—to adjust training
parameters. Estimating τ from local and running statistics could help guide such choices in practice.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. We provide all information and details needed to reproduce our results in
Section 6 and the Appendix (submitted as part of the supplementary material).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes. We include the code for reproducing all results in the supplemental
material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes. All the details regarding the hyperparameters are mentioned in Section 6
and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes. We repeat the experiment for several times and report the average error.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes. We include the information about the computer resource in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, this research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theoretical and raises no immediate concerns on societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No assets are used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assests are introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No core method development in this paper used LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
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A More Discussion on Heterogeneity Assumptions

A.1 Construction for Remark 1

This sub-section will show a problem with ζ⋆ << B and ϕ⋆ ≈ B. As a preliminary remark, note
that we must consider high-dimensional examples for this: in a single dimension, x⋆ must be in the
convex hull of {x⋆

1, . . . , x
⋆
M} (which is just a line-segment). The instance we will consider will make

use of the following two functions, which take two-dimensional inputs (x, y) ∈ R2,

f(x, y) = 2

(
x+

ζ⋆
2

)2

+

(
x+ y +

ζ⋆
2

)2

and g(x, y) =

(
x− ζ⋆

2

)2

+

(
x+ y − ζ⋆

2

)2

.

Note that both these functions are strictly convex with optimizers at
(

−ζ⋆
2 , 0

)
and

(
ζ⋆
2 , 0

)
respec-

tively. However, the optimizer of the average of these functions is given by
(
− ζ⋆

6 ,
ζ⋆
6

)
, which is

notably not on the convex hull of the optimizers of the constituent functions.

Now we define M different objectives on d dimensions (assuming M , d are even for simplicity) as
follows:

F1(x) = f(x[1], x[2]) +
1

2
∥(0, 0, x[3], . . . , x[M ])∥22 ,

F2(x) = g(x[1], x[2]) +
1

2
∥(0, 0, x[3], . . . , x[M ])∥22 ,

F3(x) = f(x[3], x[4]) +
1

2
∥(x[1], x[2], 0, 0, x[4] . . . , x[M ])∥22 ,

F4(x) = g(x[3], x[4]) +
1

2
∥(x[1], x[2], 0, 0, x[4] . . . , x[M ])∥22 ,

...

FM−1(x) = f(x[M − 1], x[M ]) +
1

2
∥(0, 0, . . . , x[M − 1], x[M ])∥22 ,

FM (x) = g(x[M − 1], x[M ]) +
1

2
∥(0, 0, . . . , x[M − 1], x[M ])∥22 .
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Due to the properties of f, g that we discussed above, note that for any two machines m ̸=
n, ∥x⋆

m − x⋆
n∥2 = ζ⋆. Furthermore, note the optimizer of the obejctive is given by x⋆ =(

− ζ⋆
6 ,

ζ⋆
6 ,−

ζ⋆
6 ,

ζ⋆
6 , . . . ,−

ζ⋆
6 ,

ζ⋆
6

)
. This implies that,

∥x⋆
m − x⋆∥22 =

(
−ζ⋆

2
+

ζ⋆
6

)2

+
(M − 1)ζ2⋆

36
=

(M + 3)ζ2⋆
36

m is odd ,

∥x⋆
m − x⋆∥22 =

(
ζ⋆
2

+
ζ⋆
6

)2

+
(M − 1)ζ2⋆

36
=

(M + 15)ζ2⋆
36

m is even ,

In particular, if we pick M = 36B2

ζ2
⋆
− 15 (assume it is an even number), then we can guarantee that

ϕ⋆ must be at least B. This proves the claim we made in the remark.

A.2 Proof of Remark 2

This is easy to see let us just write x̄⋆ more explicitly,

∥x⋆
m − x⋆∥2 ≤ ∥x⋆

m − x̄⋆∥2 + ∥x̄⋆ − x⋆∥2 ,

=

∥∥∥∥∥∥ 1

M

∑
n∈[M ]

(x⋆
m − x⋆

n)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

M

∑
n∈[M ]

(
x⋆
n −A−1Anx

⋆
n

)∥∥∥∥∥∥
2

,

≤ 1

M

∑
n∈[M ]

∥x⋆
m − x⋆

n∥2 +

∥∥∥∥∥∥ 1

M

∑
n∈[M ]

A−1 (A−An) (x
⋆
n − x̄⋆)

∥∥∥∥∥∥
2

,

≤Assumption 4 ζ⋆ +
1

M

∑
n∈[M ]

∥∥A−1 (A−An) (x
⋆
n − x̄⋆)

∥∥
2

,

≤ ζ⋆ +
1

M

∑
n∈[M ]

∥∥A−1
∥∥
2
∥A−An∥2 (x

⋆
n − x̄⋆) ,

≤ ζ⋆ +
τζ⋆
µ

,

which proves the claim of Remark 2.

B More Discussion on the Fixed Point Perspective

Several papers have pointed out with varying levels of explicitness [57, 58, 25] that the hardness
of analysing Local SGD’s convergence comes from a fixed-point discrepancy, i.e., Local SGD in
the limit of large R converges to a point different from x⋆ whenever K > 1. This is an alternative
viewpoint to data heterogeneity, and can be useful to provide analyses of Local SGD. For the simple
case of strongly convex quadratic functions Patel et al. [25] showed that in the absence of noise,
Local GD converges very quickly—with extreme communication efficiency—to its fixed point and
they also gave a bound for the fixed point discrepancy in terms of Assumptions 4 to 6.

In this section, we will revisit their analysis, showing that it extends to the stochastic case and also
provide a more fine-grained upper bound on the fixed-point discrepancy for the quadratic case. Both
these advancements allow us to provide a convergence for strongly convex quadratics in Theorem 7.
Then we will make a few comments about the convex quadratic setting, i.e., when µ = 0, commenting
on the potential regularization effects of Local-SGD.

Throughout this section, we will consider Local SGD with both an inner step-size η and an outer
step-size β. In the main paper, we only analysed and discussed Local SGD with a single step-size,
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i.e., we set β = 1. To make the notation easier to accommodate two step-sizes, we use the following,

xm
r,0 = x̄r−1 , ∀m ∈ [M ]

xm
r,k+1 = xm

r,k − η∇f(xr,k; z
m
r,k), z

m
r,k ∼ Dm , ∀m ∈ [M ], k ∈ [0,K − 1]

x̄r = x̄r−1 +
β

M

∑
m∈[M ]

(
xm
r,K − x̄r−1

)
.

(6)

B.1 Fast Convergence to Fixed-point in the Quadratic Setting

The following Lemma extends the analysis of Patel et al. [25] for convergence to the fixed point to
the stochastic setting.
Lemma 4. For quadratic problems satisfying Assumptions 1 to 3 and 8, with machine m’s hessian
denoted by Am, with η < 1

H , and β ≤ 1
1−(1−ηH)K

the Local-SGD iterate x̄R (with initialization
x̄0 = 0) satisfies,

E
[
∥x̄R − x∞∥22

]
≤
(
1− β

(
1− (1− ηµ)K

))2R ∥x∞∥22 + ηβ
(
1− (1− β

(
1− (1− ηµ)K

)
)R
) σ2

µM
,

where we define x∞ := 1
M

∑
m∈[M ] C

−1Cmx⋆
m for Cm := I − (I − ηAm)K and C :=

1
M

∑
m∈[M ] Cm. In particular, when β = 1 we have,

E
[
∥x̄R − x∞∥22

]
≤ (1− ηµ)

2KR ∥x∞∥22 + η
(
1− (1− ηµ)

KR
) σ2

µM
.

Proof. We consider quadratic problems of the form,

Fm(x) =
1

2
(x− x⋆

m)TAm(x− x⋆
m) ,

where Am ≻ 0 is a positive definite Hessian matrix. We denote the fixed-point of Local SGD by (for
a simple intuition see [25]),

x∞ :=
1

M

∑
m∈[M ]

C−1Cmx⋆
m , where Cm := I − (I − ηAm)K .

We now note the following about the local-SGD updates between two communication rounds on
machine m ∈ [M ],

xm
r,K − x⋆

m = xm
r,K−1 − x⋆

m − ηAm(xm
r,K−1 − x⋆

m)

+ η
(
Am(xm

r,K−1 − x⋆
m)−∇f(xm

r,K−1; z
m
r,K−1)

)
,

= (I − ηAm)
K (

xm
r,0 − x⋆

m

)
+ η

K−1∑
k=0

(I − ηAm)
K−1−k (

Am(xm
r,k − x⋆

m)−∇f(xm
r,k; z

m
r,k)
)

,

= (I − ηAm)
K
(xr−1 − x⋆

m) + η

K−1∑
k=0

(I − ηAm)
K−1−k

ξmr,k .

This implies the following

xm
r,K − xr−1 = x⋆

m − xr−1 + (I − ηAm)
K
(xr−1 − x⋆

m) + η

K−1∑
k=0

(I − ηAm)
K−1−k

ξmr,k ,

= −
(
I − (I − ηAm)

K
)
(xr−1 − x⋆

m) + η

K−1∑
k=0

(I − ηAm)
K−1−k

ξmr,k ,
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= −Cm (xr−1 − x⋆
m) + η

K−1∑
k=0

(I − ηAm)
K−1−k

ξmr,k ,

= −Cmxr−1 + Cmx⋆
m + η

K−1∑
k=0

(I − ηAm)
K−1−k

ξmr,k .

This implies for the r-th synchronized model,

xr = xr−1 +
β

M

∑
m∈[M ]

(
− Cmxr−1 + Cmx⋆

m + η

K−1∑
k=0

(I − ηAm)
K−1−k

ξmr,k

)
,

= (I − βC)xr−1 +
β

M

∑
m∈[M ]

Cmx⋆
m + ηβ

K−1∑
k=0

(I − ηAm)
K−1−k

 1

M

∑
m∈[M ]

ξmr,k

 ,

= (I − βC) (xr−1 − x∞) + x∞ − βCx∞ +
β

M

∑
m∈[M ]

Cmx⋆
m

+ ηβ

K−1∑
k=0

(I − ηAm)
K−1−k

ξr,k ,

= (I − βC) (xr−1 − x∞) + x∞ − β

M

∑
m∈[M ]

Cmx⋆
m +

β

M

∑
m∈[M ]

Cmx⋆
m

+ ηβ

K−1∑
k=0

(I − ηAm)
K−1−k

ξr,k .

Simplifying and rearranging this, we get for r = R,

xR − x∞ = (I − βC) (xR−1 − x∞) + ηβ

K−1∑
k=0

(I − ηAm)
K−1−k

ξR,k ,

= (I − βC)
R
(x0 − x∞) +

R−1∑
r=0

(I − βC)
R−1−r

(
ηβ

K−1∑
k=0

(I − ηAm)
K−1−k

ξr,k

)
Take the norm, squaring, and taking expectation, we get,

E
[
∥xr − x∞∥22

]
≤ ∥I − βC∥2R2 E

[
∥(x0 − x∞)∥22

]
+ η2β2

R−1∑
r=0

∥I − βC∥2(R−1−r)
2

(
K−1∑
k=0

(I − ηAm)
2(K−1−k) E

[
∥ξr,k∥22

])
,

≤ ∥I − βC∥2R2 ∥x∞∥22

+ η2β2
R−1∑
r=0

∥I − βC∥2(R−1−r)
2

(
K−1∑
k=0

(1− ηµ)K−1−k σ
2

M

)
,

≤ (1− βλmin(C))2R ∥x∞∥22

+ η2β2
R−1∑
r=0

(1− βλmin(C))R−1−r

(
1− (1− ηµ)K

ηµ
· σ

2

M

)
,

We now need upper and lower bounds on the minimum eigenvalue of C. For this, note that,

λmin(C) = λmin

 1

M

∑
m∈[M ]

(
I − (I − ηAm)K

) ,

= min
∥v∥2=1

1

M

∑
m∈[M ]

vT
(
I − (I − ηAm)K

)
v ,
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= 1− max
∥v∥2=1

1

M

∑
m∈[M ]

vT (I − ηAm)Kv ,

∈ 1−
(
(1− ηµ)K , (1− ηH)K

)
,

∈
(
1− (1− ηµ)K , 1− (1− ηH)K

)
.

Plugging these bounds in the above inequality leads to,

E
[
∥xr − x∞∥22

]
≤
(
1− β

(
1− (1− ηµ)K

))2R ∥x∞∥22

+ ηβ
1− (1− β

(
1− (1− ηµ)K

)
)R

1− (1− ηµ)K
· 1− (1− ηµ)K

µ
· σ

2

M
,

≤
(
1− β

(
1− (1− ηµ)K

))2R ∥x∞∥22

+ ηβ
(
1− (1− β

(
1− (1− ηµ)K

)
)R
) σ2

µM
.

Note that the range of λmin(C) is what suggests the upper bound on β of 1
1−(1−ηH)K

.

Next we will establish an upper bound on ∥x∞∥2, which would allow us to provide the upper bound
in terms of B from Assumption 3.

Lemma 5. In the setting of the previous lemma,

∥x∞∥2 ≤ min {ητKκζ⋆ +B, κB} .

Proof. Recall the definition of x∞,

∥x∞∥2 =

∥∥∥∥∥∥C−1

 1

M

∑
m∈[M ]

Cmx⋆
m

∥∥∥∥∥∥
2

,

=

∥∥∥∥∥∥C−1

 1

M

∑
m∈[M ]

(Cm − C + C) (x⋆
m − x̄⋆ + x̄⋆)

∥∥∥∥∥∥
2

,

=

∥∥∥∥∥∥C−1

 1

M

∑
m∈[M ]

(Cm − C) (x⋆
m − x̄⋆)

+ x̄⋆

∥∥∥∥∥∥
2

,

≤ 1

M2

∑
m,n∈[M ]

∥∥C−1(Cm − Cn)
∥∥
2
+

1

M

∑
m∈[M ]

∥x⋆
m∥2 ,

=
1

M2

∑
m,n∈[M ]

∥∥C−1
∥∥
2

∥∥(I − ηAn)
K − (I − ηAm)K

∥∥
2
∥x⋆

m − x⋆
n∥2 +

1

M

∑
m∈[M ]

∥x⋆
m∥2 ,

≤(Lemma 19 and Assumptions 3, 4 and 6) ητK
(
1− (1− ηH)K−1

)
1− (1− ηµ)K

ζ⋆ +B ,

≤ ητK · 1− (1− ηH)K

1− (1− ηµ)K
ζ⋆ +B .

Now we will show that the factor g(K) = 1−(1−ηH)K

1−(1−ηµ)K
can be upper bounded by κ = g(1) for any

choice of step-size η. To do this we show that g(K) is a non-increasing function and thus can be upper
bounded by g(1). To see this note for k ∈ Z≥1, while denoting 0 < a := 1−ηH ≤ 1−ηµ =: b < 1,

g(k) =
1− aK

1− bK
,

=
1− a

1− b
· 1 + a+ · · ·+ ak−1

1 + b+ · · ·+ bk−1
,
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=:
1− a

1− b
· Sk(a)

Sk(b)
,

where we defined the geometric sum Sk(·) for ease of notation. Using this we get that,

(g(k)− g(k + 1))
1− b

1− a
=

Sk(a)

Sk(b)
− Sk+1(a)

Sk+1(b)
,

=
Sk(a)

Sk(b)
− Sk(a) + ak

Sk(b) + bk
,

=
Sk(a)(Sk(b) + bk)− (Sk(a) + ak)Sk(b)

Sk(b)(Sk(b) + bk)
,

=
akbk

Sk(b)(Sk(b) + bk)

(
Sk(a)

ak
− Sk(b)

bk

)
,

=
akbk

Sk(b)(Sk(b) + bk)

k−1∑
i=0

(
ai

ak
− bi

bk

)
,

=
akbk

Sk(b)(Sk(b) + bk)

k−1∑
i=0

(
ai−k − bi−k

)
,

≥(a<b) 0 .

Thus g(·) is a non-increasing function proving our earlier claim. Plugging this above gives us,

∥x∞∥2 ≤ ητKκζ⋆ +B .

Note that in the very first step of the proof we could also upper bound ∥x∞∥2 by g(K)B, thus we
can also get the trivial upper bound κB, following the result of the proof. This proves the lemma.

Combining the previous two lemmas and simplifying we get the following convergence rate to the
fixed point.

Proposition 1 (Fast Convergence to Fixed Point). For quadratic problems satisfying Assumptions 1
to 3 and 8, with machine m’s hessian denoted by Am, with η < 1

H , and β = 1 the Local-SGD iterate
x̄R (with initialization x̄0 = 0) satisfies,

E
[
∥x̄R − x∞∥22

]
≤ e−2ηµKR ·min {ητKκζ⋆ +B, κB}2 + ησ2

µM
.

Note that while in Assumption 3 we assume that ∥x⋆∥2 ≤ B, but in general if we only assume the
norms of the individual machines’ optimizers are bounded by B, then the most natural upper bound
on x⋆ is τζ⋆

µ +B.

B.2 Improved Fixed-point Discrepancy Upper Bound for Quadratics

We will need the following lemma about the Lipschitzness of a specific matrix polynomial.

Lemma 6. Let Am, An ∈ Rd×d be symmetric positive-definite matrices whose spectra lie inside the
interval [µ,H] ⊂ (0, 1/η), with 0 < µ ≤ H and 0 < η < 1/H . Fix an integer K ≥ 1 and define
the polynomial

R(λ) = 1−
(
1− ηλ

)K − ηKλ, λ ∈ R.

Extend R to symmetric matrices by functional calculus, R(X) = I −
(
I − ηX

)K − ηKX . Then∥∥R(Am)−R(An)
∥∥
2

≤ L
∥∥Am −An

∥∥
2
, L = ηK

[
1− (1− ηH)K−1

]
.

Proof. Step 1: A scalar Lipschitz constant. Direct differentiation gives

R′(λ) = ηK
[
(1− ηλ)K−1 − 1

]
,
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which is non-positive and increasing on [µ,H]. Hence

L = sup
λ∈[µ,H]

|R′(λ)| = ηK
[
1− (1− ηH)K−1

]
.

Step 2: Fréchet derivative. Write X = U diag(λ1, . . . , λd)U
⊤ and set F = U⊤EU for any

symmetric perturbation E. The Daleckii–Krein formula yields

DR[X](E) = U(M ⊙ F )U⊤, Mij =
R(λi)−R(λj)

λi − λj
.

Because −R is operator-monotone on [µ,H], the matrix M is positive-semidefinite and its entries
satisfy |Mij | ≤ L.

Step 3: Schur-multiplier estimate. If a PSD matrix M has entries bounded by L, then for every
G ∈ Rd×d

∥M ⊙G∥2 ≤ (max
i

Mii) ∥G∥2 ≤ L ∥G∥2.

Applying this with G = F gives

∥DR[X](E)∥2 ≤ L ∥E∥2.

Step 4: Integration along a line segment. Set ∆ := Am − An and A(t) := An + t∆ for t ∈ [0, 1].
Define Φ(t) := R

(
A(t)

)
. Step 3 implies ∥Φ′(t)∥2 ≤ L∥∆∥2 for all t, so∥∥R(Am)−R(An)

∥∥
2
=
∥∥Φ(1)− Φ(0)

∥∥
2
≤
∫ 1

0

∥Φ′(t)∥2 dt ≤ L ∥∆∥2.

This is precisely the claimed bound.

Now we are ready to prove the following lemma which improves upon the result of Patel et al. [25]
Lemma 7 (Fixed Point Discrepancy for Quadratics). For quadratic functions satisfying Assumptions 1,
4 and 6 we can guarantee the following for η < 1/H ,

∥x⋆ − x∞∥2 ≤ ζ⋆τ

µ
·
(1− ηH)K − 1 + ηHK + ηµK

(
1− (1− ηH)K−1

)
1− (1− ηµ)K

.

Remark 3. Note that the above bound goes to zero when τ or ζ⋆ is zero, which matches the behavior
of the bound due to Patel et al. [25]. However, the bound also goes to zero when K = 1 or η → 0, a
behavior their bound did not capture.

Proof. Note the following,

∥x⋆ − x∞∥2 =

∥∥∥∥∥∥ 1

M2

∑
m,n∈[M ]

(
A−1Am − C−1Cm

)
(x⋆

m − x⋆
n)

∥∥∥∥∥∥
2

,

≤ 1

M2

∑
m,n∈[M ]

∥∥A−1Am − C−1Cm

∥∥
2
∥x⋆

m − x⋆
n∥2 ,

≤ 1

M

∑
m∈[M ]

∥∥A−1Am − C−1Cm

∥∥
2
ζ⋆ ,

Let us denote the following,

Cm := I − (I − ηAm)K =: ηKAm +Rm and R :=
1

M

∑
m∈[M ]

Rm .

In particular, note that when K = 1, then Rm = 0, which implies that R = 0. Using this notation,
we have the following,∥∥A−1Am − C−1Cm

∥∥
2
=
∥∥C−1

(
CA−1Am − Cm

)∥∥
2

,
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=
∥∥C−1

(
(ηKA+R)A−1Am − ηKAm −Rm

)∥∥
2

,

=
∥∥C−1

(
RA−1Am −Rm

)∥∥
2

,

=
∥∥C−1

(
RA−1Am −R+R−Rm

)∥∥
2

,

≤
∥∥C−1

∥∥
2

(
∥R∥2

∥∥A−1Am − I
∥∥
2
+ ∥R−Rm∥2

)
,

≤ 1

1− (1− ηµ)K
1

M

∑
n∈[M ]

(
τ

µ
∥Rn∥2 + ∥Rm −Rn∥2

)
.

Now it suffices to upper bound the two terms ∥Rm∥2 and ∥Rm −Rn∥2. As a sanity check, note that
when K = 1 and τ = 0, the upper bounds are still zero. For the first term, note the following using
the diagonalization of the matrix Am = VmΣmV −1

m ,

∥Rn∥2 =
∥∥I − ηKAn − (I − ηAn)

K
∥∥
2

,

=
∥∥I − ηKΣn − (I − ηΣn)

K
∥∥
2

,

≤ sup
λ∈[µ,H]

|1− ηKλ− (1− ηλ)K | ,

= (1− ηH)K − 1 + ηHK ,

where we use the fact that η < 1
H which implies that ηλ < 1 in the above function, which in turn

implies that |1− ηKλ− (1− ηλ)K | is an increasing function in the range λ ∈ [µ,H]. Now we need
to bound the second term ∥Rm −Rn∥2. Note that ideally we would like the upper bound to also
vanish with K = 1 and τ = 0. We cannot use the strategy from above because we do not know if
the matrices Am and An commute. Instead we will use the following property (see Lemma 6 that
follows),

∥R(Am)−R(An)∥2 ≤ sup
λ∈[µ,H]

|R′(λ)| ∥Am −An∥2 ,

where we define R(λ) := 1− (1− ηλ)K − ηKλ. Note the following,

|R′(λ)| = |ηK(1− ηλ)K−1 − ηK| ,

= | − ηK
(
1− (1− ηλ)K−1

)
| ,

= ηK · |1− (1− ηλ)K−1| .

Plugging this in the above bound gives us,

∥Rm −Rn∥2 = ∥R(Am)−R(An)∥2 ,

≤ sup
λ∈[µ,H]

ηK ∥Am −An∥2 · |1− (1− ηλ)K−1| ,

≤ ηKτ
(
1− (1− ηH)K−1

)
.

For a sanity check, note that when K = 1 or τ = 0, this bound is zero. Plugging the blue and cyan
upper bounds back into the original bound on fixed-point discrepancy, we get,

∥x⋆ − x∞∥2 ≤ ζ⋆
1− (1− ηµ)K

1

M2

∑
m,n∈[M ]

(
τ

µ
∥Rn∥2 + ∥Rm −Rn∥2

)
,

≤ ζ⋆
1− (1− ηµ)K

× 1

M2

∑
m,n∈[M ]

(
τ

µ

(
(1− ηH)K − 1 + ηHK

)
+ ηKτ

(
1− (1− ηH)K−1

))
,

=
ζ⋆τ

µ
·
(1− ηH)K − 1 + ηHK + ηµK

(
1− (1− ηH)K−1

)
1− (1− ηµ)K

.

This proves the lemma.

While the general behavior of the fixed-point discrepancy upper bound can be quite complex, we can
study its effect for a specific step-size, which leads to the following convergence guarantee.
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Theorem 7. Assume we are optimizing a problem instance satisfying Assumptions 1 to 4, 6 and 8,
R ≥ 2 ln

(
B2

ϵ

)
, B2 > ϵ and KR ≥ 2κ ln

(
B2

ϵ

)
for some target accuracy ϵ. Then using η =

1
µKR ln

(
B2

ϵ

)
and β = 1, Local SGD initialized at x0 = 0 outputs x̄r such that,

E
[
∥x̄R − x⋆∥22

]
≤ ϵ2

B2

(
2τ2κ2ζ2⋆
µ2B2R2

ln2
(
B2

ϵ

)
+ 2

)
+

σ2

µ2MKR
+

9ζ2⋆τ
2κ2

µ2R2
ln2
(
B2

ϵ

)
.

Remark 4. As we will see in Appendix I.3, while analysing Local SGD for third-order smooth
functions, we derive a slightly worse convergence rate which contains all the terms in the above upper
bound upto constant factors.

Proof. We will first simplify the upper bound by noting that 1−(1−ηH)K

1−(1−ηµ)K
is non-increasing in K, as

was proved in Lemma 5,

(1− ηH)K − 1 + ηHK + ηµK
(
1− (1− ηH)K−1

)
1− (1− ηµ)K

≤ ηHK

1− (1− ηµ)K
+ ηµK · 1− (1− ηH)K

1− (1− ηµ)K
,

≤ ηHK

1− (1− ηµ)K
+ ηµK · 1− (1− ηH)

1− (1− ηµ)
,

=
ηHK

1− (1− ηµ)K
+ ηHK .

Now, assume that 2κ ln
(

B2

ϵ

)
≤ KR for target accuracy ϵ so that we can pick η = 1

µKR ln
(

B2

ϵ

)
≤

1
2H < 1

H . For this choice of η the above upper bound reduces to,

∥x⋆ − x∞∥2 ≤ ζ⋆τ

µ

 κ
R ln

(
B2

ϵ

)
1− (1− 1/(KR) ln

(
B2

ϵ

)
)K

+
κ

R
ln

(
B2

ϵ

) ,

≤ ζ⋆τκ

µR
ln

(
B2

ϵ

)(
1 +

1

1− e
− 1

R ln
(

B2

ϵ

)
)

.

Now further assuming R ≥ 2 ln
(

B2

ϵ

)
, we can upper e−

1
R ln

(
B2

ϵ

)
by 1

2 which implies,

∥x⋆ − x∞∥2 ≤ 3ζ⋆τκ

µR
ln

(
B2

ϵ

)
.

Let us also upper bound the rate of convergence to the fixed point for this choice of step-size and
under these assumptions,

E
[
∥x̄R − x∞∥22

]
≤ (1− ηµ)

2KR
min {ητKκζ⋆ +B, κB}2 + η

(
1− (1− ηµ)

KR
) σ2

µM
,

≤ ϵ2

B4
min

{
2τ2κ2ζ2⋆
µ2R2

ln2
(
B2

ϵ

)
+ 2B2, κ2B2

}
+

σ2

µ2MKR
,

≤ ϵ · ϵ

B2
min

{
2τ2κ2ζ2⋆
µ2B2R2

ln2
(
B2

ϵ

)
+ 2, κ2

}
+

σ2

µ2MKR
.

The above term is under standard conditions of the order ϵ, so we can ignore it. Cobining this with
the fixed point discrepancy upper bound above proves the statement of the lemma.

B.3 On the Nature of Local SGD’s Fixed Point for Quadratics

While in the general convex setting we can not write an explicit formula for the fixed point x∞,
we can characterize it as the mini-mum norm solution of a certain leas-squares problem, where the
geometry for each machine is defined by the matrices Cm.

31



Proposition 2 (Fixed Point for Convex Quadratics). Assume we have a problem instance satisfying
Assumptions 1 to 3 and 8 with σ = 0, η < 1/H . Further define Cm := I − (I − ηAm)K ,
C := 1

M

∑
m∈[M ] Cm and c := 1

M

∑
m∈[M ] Cmx⋆

m for some x⋆
m ∈ S⋆

m for each m ∈ [M ]. If
c ̸= 0 and c ∈ im(C) = ker(C)⊥, then Local GD converges to the following solution in the limit of
R → ∞,

x∞ = argmin ∥x∥2 , s.t. x ∈ min
x∈Rd

1

M

∑
m∈[M ]

∥x− x⋆
m∥2Cm

.

If on the other hand c ̸= 0 and c ̸∈ im(C), the the iterates do not converge, but if we define the
sequence yR = Cx̄R, then

lim
R→∞

yR =
∑
i∈[l]

viv
T
i c lim

R→∞

(
1− (1− λi)

R
)

,

where C =
∑

i∈[l] λiviv
T
i is the eigen-value decomposition of C for orthonormal vectors

{v1, . . . , vl}. If c = 0, the iterates of Local-GD do not move from x̄0 = 0.
Remark 5. When the objectives on each machine are strongly convex, then we always have c ∈
im(C) = Rd. In general when im(C) = Rd, we can guarantee convergence to a fixed point. An
even weaker sufficient condition is to assume that ∩m∈[M ]ker(Am) = {0}, which guarantees that
ker(C) = {0} and hence im(C) = Rd. We prove this last condition in Lemma 8. The condition⋂M

m=1 ker(Am) = {0} is equivalent to the average Hessian A being positive definite, i.e., A ≻ 0,
or in the global objective being strongly convex. This condition ensures that local curvature from
different clients collectively constrains all directions and the machines are no simultaneously blind to
some direction.

Proof. We recall that even in the convex setting (i.e., with µ = 0) we can write the following for the
Local SGD iterate x̄R in the noise-less setting with β = 1 and initialization x̄0 = 0,

x̄R =
1

M

∑
m∈[M ]

(
(I − ηAm)

K
(x̄R−1 − x⋆

m) + x⋆
m

)
,

=
1

M

∑
m∈[M ]

(
(I − ηAm)

K
)
x̄R−1 +

1

M

∑
m∈[M ]

(
I − (I − ηAm)

K
)
x⋆
m ,

= (I − C) x̄R−1 +
1

M

∑
m∈[M ]

Cmx⋆
m ,

=(x0=0)
R−1∑
j=0

(I − C)jc .

Now let us assume an orthonormal basis for the span of C is given by {v1, . . . , vl} where l ≤ d. This
allows us to write,

C =
∑
i∈[l]

λiviv
T
i ,

where 0 < λi ≤ 1−(1−ηH)K < 1 as our step-size is η < 1/H . Let us extend this to an orthonormal
basis for the entire vector space Rd as {v1, . . . , vl, vl+1, . . . , vd} so that vl+1, . . . , vd ∈ ker(C). This
also implies for j ∈ Z≥0,

(I − C)j =

∑
i∈[l]

(1− λi)viv
T
i +

∑
i∈[l+1,d]

viv
T
i

j

,

=
∑
i∈[l]

(1− λi)
jviv

T
i +

∑
i∈[l+1,d]

viv
T
i .

Now we will inspect how x̄R evolves in each direction, i ∈ [d].
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First let us consider i ∈ [l],

vTi x̄R =

R−1∑
j=0

vTi (I − C)jc ,

=

R−1∑
j=0

(1− λi)
jvTi c ,

=
1− (1− λi)

R

λi
vTi c .

No matter how we pick η, K, this would converge as R → ∞, to some quantity proportional to vTi c.

Now let us consider i ∈ [l + 1, d],

vTi x̄R =

R−1∑
j=0

vTi (I − C)jc ,

=

R−1∑
j=0

vTi c ,

= RvTi c .

Notably, this does not converge unless vTi c = 0.

In particular, the iterates of local GD converge iff vTi c = 0 for all i ∈ [l + 1, d]. Or in other words,
c ∈ im(C) = ker(A)⊥. First let us assume, this is true, then we can conclude that the local GD
iterates only evolve in the sub-space im(C). Where do they converge? Solving the fixed-point
equation in the limit of large R gives us,

x∞ = (I − C)x∞ + c ,

⇒ Cx∞ = c .

Summarizing the two key findings so far we get that assuming c ∈ im(C), Cx∞ = c and x∞ ̸∈
ker(C). This is equivalent to saying that x∞ is the minimum norm solution of the linear system
Cx = c. In other words,

x∞ = arg min
x s.t. Cx=c

∥x∥2 .

Further, note that using the least square formulation we can write the solutions of the linear system
Cx = c as,

min
x∈Rd

1

M

∑
m∈[M ]

∥x− x⋆
m∥2Cm

.

This implies that x∞ (when it exists) is the solution of the following optimization problem,

min ∥x∥2 , s.t. x ∈ min
x∈Rd

1

M

∑
m∈[M ]

∥x− x⋆
m∥2Cm

.

In the case, that c ̸∈ im(A), there exists i ∈ [l + 1, d] such that vTi c ̸= 0. The iterates will explode in
this direction, but still notably, the sequence Cx̄R does converge, because

lim
R→∞

Cx̄R = lim
R→∞

∑
i∈[l]

λiviv
T
i x̄R ,

= lim
R→∞

∑
i∈[l]

viv
T
i c
(
1− (1− λi)

R
)

,

No matter how we pick η, K this limit exists.
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Lemma 8. Let A1, . . . , AM ∈ Rd×d be symmetric positive semidefinite matrices, and let 1/H >
η > 0 and K ∈ N. Define

Cm := I − (I − ηAm)K , C :=
1

M

M∑
m=1

Cm .

Suppose the kernel intersection is trivial:
M⋂

m=1

ker(Am) = {0} .

Assume further that η < 1/λmax(Am) for all m (where λmax(Am) ≤ H denotes the largest
eigenvalue of Am.

Then:

1. For each m, ker(Cm) = ker(Am).

2. The matrix C is full rank: im(C) = Rd, i.e., ker(C) = {0}.

Proof. Part (1): Since Am ⪰ 0, its eigenvalues lie in [0, λmax(Am)]. Then I−ηAm has eigenvalues
in [1− ηλmax(Am), 1] ⊂ (0, 1], so:

Cm = I − (I − ηAm)K =

K∑
j=1

(
K

j

)
(−ηAm)j ,

a matrix polynomial in Am. Due to the polynomial structure it is easy to see that,

ker(Cm) ⊇ ker(Am) .

To see the other side note, we will prove the contrapositive. Suppose that v ̸∈ ker(Am), but
v ∈ ker(Cm), then

Cmv = v − (I − ηAm)Kv = 0 ,

⇒ ∥v∥2 =
∥∥(I − ηAm)Kv

∥∥
2
< ∥v∥2 ,

which is a contradition. Thus v ̸∈ ker(Am) implies that, v ̸∈ ker(Cm), or in other words,

ker(Cm) ⊆ ker(Am) .

This proves the first part of the statement that ker(Am) = ker(Cm).

Part (2): Now suppose for contradiction that Cv = 0 for some v ̸= 0. Then:
M∑

m=1

Cmv = 0 ⇒ ⟨Cv, v⟩ = 1

M

M∑
m=1

⟨Cmv, v⟩ = 0 .

Since each Cm ⪰ 0, it must be that ⟨Cmv, v⟩ = 0 ⇒ Cmv = 0 ⇒ v ∈ ker(Cm) = ker(Am) for all
m. So:

v ∈
M⋂

m=1

ker(Am) = {0} ,

contradicting v ̸= 0. Hence ker(C) = {0}, and since C is symmetric, im(C) = Rd.

B.4 Implicit Regularization due to Local SGD

Several works have tried to understand the effectiveness of Local-SGD from a different perspective,
i.e., by arguing that the solution obtained by Local-SGD is somehow better. In other words, these
works have tried to characterize the implicit regularization of using local update steps. On such
notable work is due to Gu et al. [59].

For convex quadratic problems, the fixed-point perspective can also be used to understand the
implicit regularization of Local SGD. Specifically, recall that under the assumption we discussed in
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Figure 3: The effect of having an outlier with a sharp curvature on Local SGD’s fixed point with
progressively higher local update steps.

the previous sub-section, i.e., ∩m∈[M ] ker(Am) = {0} we can also characterize the fixed-point of
synchronized SGD as follows,

xSGD
∞ = argmin ∥x∥2 , s.t. x ∈ min

x∈Rd

1

M

∑
m∈[M ]

∥x− x⋆
m∥2Am

.

Thus the main difference with respect to Local SGD with K > 1, is a different geometry on each
machine defined by Am as opposed to Cm of Local-SGD,

xL−SGD
∞ = argmin ∥x∥2 , s.t. x ∈ min

x∈Rd

1

M

∑
m∈[M ]

∥x− x⋆
m∥2Cm

.

One natural question is: under what conditions is the geometry endowed by Local-SGD better?

When η is “large enough,” then for larger K, the matrix polynomial Cm = I − (I − ηAm)K

increasingly flattens the influence of high-curvature (i.e., high-eigenvalue) directions in Am. In other
words, Local SGD implicitly applies a spectral filter that downweights directions where the local
objective is sharply curved. This has a regularization effect: machines with highly ill-conditioned
losses or extremely sharp curvature (possibly due to overfitting, poor conditioning, or adversarial
data) contribute less in those sensitive directions. Instead, Local SGD emphasizes agreement in
directions where curvature is more moderate or shared across machines.

As a result, the fixed point xL-SGD
∞ avoids overreacting to any single client’s extreme curvature and

instead biases the solution toward directions of consensus and smoothness. In this sense, Local
SGD can be interpreted as interpolating between machine-specific optimization (via Am) and a more
uniform averaging of preferences (via Cm), particularly in settings with heterogeneous curvature.
This implicit regularization may lead to better generalization in practice, especially when the global
objective inherits pathological structure from just a few problematic machines.

In Figure 3 we simulate the effect of having an outlier with a sharp curvature, showing how progres-
sively more local update steps regularize the geometry.
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B.5 Extension to Non-quadratics?

The biggest issue with extending the above analysis to non-quadratic, is that it becomes hard to even
write the expression for the fixed point in a closed form. As we will see in Appendix I it is much
easier to use the usual consensus error based analysis in these settings.

C Proof of the Lower Bound in Theorem 1

To prove Theorem 1, the main result we need is Lemma 10, which we then combine with the lower
bound due to Glasgow et al. [23]. Notably, Lemma 10 is an improvement of the lower bound due to
Patel et al. and like them we also borrow the folklore Lemma 9 about gradient descent.

We first state the following standard Lemma which in the context of Local-SGD was previously also
used by Patel et al. [25].
Lemma 9. There exists F (x) a convex quadratic function for x ∈ R2 satisfying which is H-smooth,
µ-strongly convex with κ = 12R, and a bounded optima x⋆ with ∥x⋆∥2 ≤ B such that x̂R the Rth

gradient descent iterate initialized at zero and for any step size η > 0, F (x̂R)− F (x⋆) ≥ HB2

8R .

Proof. Let A be the Hessian of F . Observe that we have F (x)− F (x⋆) = 1
2 (x− x⋆)TA(x− x⋆).

Let v1 and v2 be the eigenvectors of norm 1 of A with the greatest and least eigenvalues, respectively.
Assume x⋆ := −B

(
v1+v2√

2

)
, which ensures ∥x⋆∥2 = B. Then, solving for the GD iterates in closed

form, we have

xR − x⋆ = xR−1 − x⋆ − ηA (xR−1 − x⋆) ,

= (I − ηA) (xR−1 − x⋆) ,

=(a) (v1vT1 + v2v
T
2 − ηHv1v

T
1 − ηµv2v

T
2

)R
(x0 − x⋆) ,

=
(
(1− ηH)v1v

T
1 + (1− ηµ)v2v

T
2

)R
(x0 − x⋆) ,

=
(
(1− ηH)Rv1v

T
1 + (1− ηµ)Rv2v

T
2

)
(−x⋆) ,

=
B√
2
(1− ηH)

R
v1 +

B√
2

(
1− η

H

κ

)R

v2 .

where in (a) we ue the eigenvalue decomposition of A = Hv1v
T
1 + µv2v

T
2 and the fact that for

orthonormal vectors v1, v2 we have I2 = v1v
T
1 + v2v

T
2 . Observe that if η ≥ 3

H , then the iterates
explode and we have F (xR) ≥ F (x0) ≥ Ω

(
HB2

)
.

If η ≤ 3
H , then using the fact that κ ≥ 6, we have

F (xR)− F (x⋆) ≥(a) 1

2

(
B√
2

(
1− 3

κ

)R

v2

)T

A

(
B√
2

(
1− 3

κ

)R

v2

)
,

=
B2

4

(
1− 3

κ

)2R

vT2 Av2 ,

=
B2

4

(
1− 3

κ

)2R
H

κ
,

≥(b) HB2

4R

(
1− 6R

κ

)
,

where in (a) we lower bound by the function sub-optimality only in the second component corre-
sponding to v2; and in (b) we assume κ ≥ 3 and Bernoulli’s inequality. Finally using κ = 12R we
get the lower bound HB2

8R . The result follows.

Note that the following proof actually works for Local SGD with both an inner step-size η and
an outer step-size β. In the main paper we only analysed and discussed Local SGD with a single
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step-size, i.e., we set β = 1. This makes the lower bound below stronger and not weaker, as it works
for a more general algorithm. To make the notation easier to accomodate two step-sizes, we use the
following,

xm
r,0 = x̄r−1 , ∀m ∈ [M ]

xm
r,k+1 = xm

r,k − η∇f(xr,k; z
m
r,k), z

m
r,k ∼ Dm , ∀m ∈ [M ], k ∈ [0,K − 1]

x̄r = x̄r−1 +
β

M

∑
m∈[M ]

(
xm
r,K − x̄r−1

)
.

(7)

Lemma 10. There exists a convex quadratic function for x ∈ R3 satisfying Assumptions 1, 3 and 6,
such the Local SGD iterate x̄R, when initialized at zero and for any choice of step-sizes η, β > 0

must have F (x̄R)− F (x⋆) = Ω
(

τB2

R

)
.

Proof. We consider the quadratic functions defined by the following two Hessians for τ ≤ H ,

A1 =

[
τÂ1 0
0 H

]
and A2 =

[
τÂ2 0
0 H

]
,

where we for some α ∈ (0, 1),

Â1 :=

[
1 0
0 0

]
, and

Â2 := vvT = (α,
√
1− α2)(α,

√
1− α2)T =

[
α2 α

√
1− α2

α
√
1− α2 1− α2

]
.

Note about the spectrum of A1,

Spec (A1) = {0, τ,H} .

Similarly for A2 we note that,

det
(
Â2 − λI2

)
= 0 ,

⇒ (λ− α2)(λ− 1 + α2) = α2(1− α2) ,

⇒ λ2 −
(
α2 + 1− α2

)
λ = 0 ,

⇒ λ ∈ {0, 1} .

which implies that also for,

Spec (A2) = {0, τ,H} .

Thus objectives defined by both these Hessians A1 and A2 are H-smooth. Further, we can notice the
following about the difference between these Hessians,

Spec (A1 −A2) = τ · Spec
(
Â1 − Â2

)
∪ {0} ,

= τ · Spec
([

1− α2 −α
√
1− α2

−α
√
1− α2 −(1− α2)

])
∪ {0} ,

=
{
−τ
√
1− α2, 0, τ

√
1− α2

}
∪ {0} ,

which implies that,

∥A1 −A2∥2 = τ
√

1− α2 ≤ τ .

Now we shall split the objectives on each machine as follows, For even m, let

Fm(x) :=
1

2
(x− x∗)TA1(x− x∗) .

For odd m, let

Fm(x) :=
1

2
(x− x∗)TA2(x− x∗) .
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Note that the iterates after K local updates leading up to communication round r on machine m
gives,

x̃m
r,K = (I − ηAi)

K
x̃r−1 ,

where we denote x̃m
r,k = xm

r,k − x⋆ for all k ∈ [0,K] and x̃r = x̄r − x⋆ for all r ∈ [0, R]. For odd
machines it is straightforward that,

(I − ηA1)
K

=

(1− ητ)K 0 0
0 1 0
0 0 (1− ηH)K

 =

[
I2 −

(
1−(1−ητ)K

τ

)
τÂ1 0

0 (1− ηH)K

]
.

For even machines, the above can also be noted using v⊥ as the unit vector orthogonal to v,

(I − ηA2)
K

=

[
I2 − ητÂ2 0

0 1− ηH

]K
=

[
(I2 − ητvvT )K 0

0 (1− ηH)K

]
,

=

[(
vvT + v⊥v

T
⊥ − ητvvT

)K
0

0 (1− ηH)K

]
,

=(a)
[
(1− ητ)KvvT + v⊥v

T
⊥ 0

0 (1− ηH)K

]
,

=

[
I2 − vvT + (1− ητ)KvvT 0

0 (1− ηH)K

]
,

=

[
I2 −

(
1−(1−ητ)K

τ

)
τÂ2 0

0 (1− ηH)K

]
,

where in (a) we note that
(
(1− ητ)vvT + v⊥v

T
⊥
)2

= (1− ητ)2vvT + v⊥v
T
⊥. This implies for the

local updates with η̃ :=
(

1−(1−ητ)K

τ

)
for all m ∈ [M ],

x̃m
r,K =

[
I2 − η̃τ Âm 0

0 (1− ηH)K

]
x̃r−1 =

[(
I2 − η̃τ Âi

)
x̃r−1[1 : 2]

(1− ηH)K x̃r−1[3]

]
.

Now, using the calculations so far, we can write the updates between two communication rounds as,

x̃r = x̃r−1 +
β

M

∑
m∈[M ]

(
x̃m
r,K − x̃r−1

)
,

= x̃r−1 −
β

M

∑
m∈[M ]

[
η̃τ Â(m−1) mod(2)+1x̃r−1[1 : 2]
(1− (1− ηH)K)x̃r−1[3]

]
,

=

[
(I2 − βη̃A[1 : 2; 1 : 2]) x̃r−1[1 : 2](
1− β

(
1− (1− ηH)K

))
x̃r−1[3]

]
.

The above calculation implies that the third coordinate evolves as synchronized gradient descent
with KR iterations, while the first two coordinates evolve with step size βη̃ and a hessian matrix of
A[1 : 2; 1 : 2] (i.e., the top-left 2× 2 block of A the average Hessian) for R iterations7. Now note
that A[1 : 2; 1 : 2] = τ(1− a)Â1 + τaÂ2 and

a :=

{
1/2 if M is even,
(M + 1)/2M otherwise.

Now, all we need to do is apply Lemma 9 to the first two dimensions. To be able to do so we need to
be able to choose a condition number κ = Ω(R) for A[1 : 2; 1 : 2], in particular Ω(κ). Let us first
consider the case with even machines, i.e., when a = 1/2. Then note that,

A[1 : 2; 1 : 2] = τ
Â1 + Â2

2
=

τ

2

[
1 + α2 α

√
1− α2

α
√
1− α2 1− α2

]
,

7We don’t need to restrict the step-sizes because Lemma 9 works for any step-size.

38



which implies for the spectrum of the matrix,

Spec(A[1 : 2; 1 : 2]) =
τ

2
{1− α, 1 + α} ,

which in turn guarantees that,

κ (A[1 : 2; 1 : 2]) =
1 + α

1− α
,

which can indeed be made Ω(R) by picking an α close enough to 1. Now let us look at the case when
M is odd and a = M+1

2M ,

A[1 : 2; 1 : 2] =
τ

2M

[
M − 1 + (M + 1)α2 (M + 1)α

√
1− α2

(M + 1)α
√
1− α2 (M + 1)

(
1− α2

) ] ,

which using simple calculations as before implies for the spectrum of the matrix,

Spec (A[1 : 2; 1 : 2]) =
τ

2M

{
M −

√
1− α2 +M2α2,M +

√
1− α2 +M2α2

}
,

which implies that,

κ (A[1 : 2; 1 : 2]) =
M +

√
1− α2 +M2α2

M −
√
1− α2 +M2α2

,

which can which can indeed be made Ω(R) by picking an α close enough to 1. Finally this allows us
to use Lemma 9 which implies that the progress on the first two coordinates is lower bounded by τB2

R
for any choice of hyperparameters. To make this more explicit, note the following for any model x̂,

F (x̂)− F (x⋆) =
1

2
xTAx− (Ax⋆)Tx ,

=
1

2
xTAx− (x⋆)TAx ,

=
1

2
x[1 : 2]TA[1 : 2; 1 : 2]x[1 : 2]− (x⋆[1 : 2])TA[1 : 2; 1 : 2]x[1 : 2]

+
H

2
x[3]2 −Hx⋆[3]x[3] ,

≥ 1

2
x[1 : 2]TA[1 : 2; 1 : 2]x[1 : 2]− (x⋆[1 : 2])TA[1 : 2; 1 : 2]x[1 : 2] ,

=: F1:2(x̂)− F1:2(x
⋆) ,

where we define a different quadratic objective F1:2 : R2 → R2 using the top left two-dimensional
block of the Hessian A. This implies that we can lower bound the sub-optimality F (xR)− F (x⋆) by
τB2

R , which finishes the proof of the lemma.

Now to conclude the proof, we first note the following tight lower bound for the homogeneous setting
due to Glasgow et al. [23] for the local SGD iterate x̄R, which we recall also uses a quadratic hard
instance satisfying Assumptions 1 to 3,

F (x̄R)− F (x⋆) = Ω

(
HB2

KR
+

σB√
MKR

+min

{
σB√
KR

,
H1/3σ2/3B4/3

K1/3R2/3

})
.

We also recall the heterogeneous lower bound due to Glasgow et al. [23] using a quadratic hard
instance satisfying Assumptions 1 to 3, and apply it on τ -smooth problems (instead of H-smooth in
their construction, as they do not decouple τ and H in their construction),

F (x̄R)− F (x⋆) = Ω

(
min

{
τϕ2

⋆,
τϕ

2/3
⋆ B4/3

R2/3

})
.

To translate their bound to our setting we also set ζ⋆ (in their lower bound, not to be confused with our
Assumption 4) as ϕ⋆τ to account for the different definitions of first-order heterogeneity in their paper
and ours (c.f., Assumption 5). Combining Lemma 10 with the above two lower bounds from Glasgow
et al. [23] by placing different hard instances on disjoint co-ordinates and noting the independent
evolution in the gradient descent iterates completes the proof of Theorem 1.
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D Notation and Outline of the Upper Bounds’ Proofs

Recall that the algorithm we would like to analyze is local SGD in the intermittent communication
setting. In particular, we assume the algorithm runs over R ∈ N communication rounds, with K ∈ N
local update steps between each communication round and total T = KR time steps. We also
assume we have M ∈ N machines/clients/agents with each agent m ∈ [M ] sampling from their
data distribution Dm ∈ ∆(Z). These samples from the data distribution are used to calculate the
stochastic gradients for each machine for each time step. In particular, at time t ∈ [0, T ] agent m
calculated gmt := ∇f(xm

t ; zmt ) where zmt ∼ Dm. We recall the local SGD updates that use these
stochastic gradients for all t ∈ [0, T − 1] and m ∈ [M ],

xm
t+1 := xm

t − ηgmt if t+ 1 mod K ̸= 0 ,

xm
t+1 :=

1

M

∑
n∈[M ]

(xn
t − ηgnt ) if t+ 1 mod K = 0 .

We will also define the “ghost iterate” for all times t ∈ [0, T ] which may or may not be physically
computed depending on the time t,

xt :=
1

M

∑
m∈[M ]

xm
t .

Considering these iterations, we will define several quantities in the analyses throughout the appendix.
We include this notation in Table 2 for ease of reference. With the above notation in mind, our
analysis aims to provide upper bounds for A(KR) and E(KR) as a function of problem-dependent
parameters that appear in all our assumptions. To do this:

• We will first state some technical lemmas in Appendix E.

• Then in Appendix F we state recursions across communication rounds for the sequences
A(·), B(·), and E(·) in terms of the consensus error sequences C(·) and D(·). These
recursions8 highlight the need to control the consensus error sequences C(·) and D(·).

• In Appendix G we first control the consensus error by relying on the strongest Assumption 7.
In the following sections, we relax this need for the ζ assumption and do a more fine-grained
analysis of the consensus error.

• In Appendix H we provide more fine-grained recursions for C(·) and D(·), which depend
on A(·) and B(·), i.e., they leads to coupled recursions. The main technical contribution
of this paper is providing these coupled recursions and using them to provide new upper
bounds.

• Appendix I then brings together the results from Appendix F and Appendix H and provides
convergence guarantees in terms of the step size η. Then we tune the step-size and obtain all
the upper bounds from the main body of the paper.

E Useful Technical Lemmas

E.1 Useful Facts about Stochastic Noise

Throughout this sub-section, we will assume Assumption 2. Recall the following standard lemmas
about the stochastic gradient noise,

Lemma 11 (Averaged Stochastic Noise Second Moment). For t ∈ [0, T − 1] we have,

E
[
∥ξt∥22

]
≤ σ2

M
.

8We note that we are less explicit about randomness in the proof of these recursions and the following results.
In particular, we often omit repetitive steps using the tower rule and conditional expectations to shorten the
already complex proofs. We urge the reader to familiarize themselves with applying these techniques by first
reading the proof of Lemma 20.
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Symbol Definition

A(t) E
[
∥xt − x⋆∥22

]
, ∀ t ∈ [0, T ]

B(t) E
[
∥xt − x⋆∥42

]
, ∀ t ∈ [0, T ]

C(t) 1
M2

∑
m,n∈[M ] E

[
∥xm

t − xn
t ∥

2
2

]
, ∀ t ∈ [0, T ]

D(t) 1
M2

∑
m,n∈[M ] E

[
∥xm

t − xn
t ∥

4
2

]
, ∀ t ∈ [0, T ]

E(t) E [F (xt)]−minx⋆∈Rd F (x⋆), ∀ t ∈ [0, T ]

δ(t) t− t mod (K), ∀ t ∈ [0, T ]

gmt ∇f(xm
t ; zmt ), zmt ∼ Dm, ∀ t ∈ [0, T ], m ∈ [M ]

ξmt ∇Fm(xm
t )−∇f(xm

t ; zmt ), zmt ∼ Dm, ∀ t ∈ [0, T ], m ∈ [M ]

gt gt :=
1
M

∑
m∈[M ] g

m
t , ∀ t ∈ [0, T ]

ξt ξt :=
1
M

∑
m∈[M ] ξ

m
t , ∀ t ∈ [0, T ]

Ht σ
(
{zm0 }Mm=1 , . . . ,

{
zmt−1

}M
m=1

)
, ∀ t ∈ [1, T ]

Table 2: Summary of the notation used in the appendix. In the definition of the filtration Ht, we
abuse the notation (c.f., Assumption 2) and use σ(X) to denote the sigma algebra defined by the set
of random variables X .

Proof. Recall that at any time step t ∈ [0, T − 1],

E
[
∥ξt∥22

]
= E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
2

2

 ,

=(Tower rule) E

E

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

(gmt −∇f(xm
t ; zmt ))

∥∥∥∥∥∥
2

2

|Ht


 ,

=(a) E

 1

M2

∑
m∈[M ]

E
[
∥(gmt −∇f(xm

t ; zmt ))∥22 |Ht

] ,

≤(Assumption 2) 1

M2

∑
m∈[M ]

σ2 =
σ2

M
,
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where (a) uses the fact that for all m ̸= n, zmt ⊥ znt |Ht, i.e., ξ1t , . . . , ξ
M
t are independent conditioned

on the history Ht.

We can also give the following stronger bound on the fourth moment of the stochastic noise.
Lemma 12 (Averaged Stochastic Noise Fourth Moment). For t ∈ [0, T − 1] we have,

E
[
∥ξt∥42

]
≤ 3σ4

M2
.

Proof. Recall that at any time step t ∈ [0, T − 1],

E
[
∥ξt∥42

]
= E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
4

2

 ,

= E



∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
2

2


2 = E


 1

M2

∑
m,n∈[M ]

⟨ξmt , ξnt ⟩

2
 ,

=
1

M4

∑
l,m,n,o∈[M ]

E
[〈
ξlt, ξ

m
t

〉
⟨ξnt , ξot ⟩

]
,

=(Tower Rule) 1

M4

∑
l,m,n,o∈[M ]

E
[
E
[〈
ξlt, ξ

m
t

〉
⟨ξnt , ξot ⟩ |Ht

]]
,

Recall that for all m ̸= n, zmt ⊥ znt |Ht, i.e., ξ1t , . . . , ξ
M
t are independent conditioned on the history

Ht. In the above sum, the only non-zero terms are the ones where either l = m = n = o, or where
the set {l,m, n, o} has two distinct values, each repeated twice. There are M terms of the first kind,
and 3M(M−1) terms of the second kind (first choose two colours out of M , then choose two indices
out of {l,m, n, o} which divides into two groups, i.e., total M(M−1)

2 × 4!
2!2! ). Using this we get,

E
[
∥ξt∥42

]
=

1

M4

∑
l∈[M ]

E
[∥∥ξlt∥∥42]+ 3

∑
l ̸=m∈[M ]

E
[∥∥ξlt∥∥22]E [∥ξmt ∥22

] ,

≤ 1

M4

(
Mσ4 + 3M(M − 1)σ4

)
,

≤ 3σ4

M2
,

which proves the lemma.

Lemma 13 (Averaged Stochastic Noise Third Moment). For t ∈ [0, T − 1] we have,

E
[
∥ξt∥32

]
≤

√
3σ3

M3/2
.

Proof. This result follows from simply noting the previous two lemmas, and the fact that,

E
[
∥ξt∥32

]
= E

[
∥ξt∥22 ∥ξt∥2

]
,

≤Cauchy Shwartz

√
E
[
∥ξt∥42

]√
E
[
∥ξt∥22

]
,

≤Lemmas 11 and 12

√
σ2

M

√
3σ4

M2
,

≤
√
3σ3

M3/2
,

which proves the lemma.
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We can also note the following about the difference of the stochastic noise in two machines.
Lemma 14 (Second Moment of Difference). For t ∈ [0, T − 1] and for m ̸= n ∈ [M ] we have,

E
[
∥ξmt − ξnt ∥

2
2

]
≤ 2σ2 .

Proof. Note the following for m ̸= n ∈ [M ], and for t ∈ [0, T − 1]

E
[
∥ξmt − ξnt ∥

2
2

]
= E

[
∥ξmt ∥22 + ∥ξmt ∥22 − 2 ⟨ξmt , ξnt ⟩

]
,

=(a), (Tower Rule) E
[
∥ξmt ∥22

]
+ E

[
∥ξnt ∥

2
2

]
− 2E [⟨E [ξmt |Ht] ,E [ξnt |Ht]⟩] ,

≤(Assumption 2), (b) 2σ2 ,

where in (a) we used that ξmt ⊥ ξnt |Ht; and in (b) we used that E [ξmt |Ht] = E [ξnt |Ht] = 0. This
proves the lemma.

Lemma 15 (Fourth Moment of Difference). For t ∈ [0, T − 1] and for m ̸= n ∈ [M ] we have,

E
[
∥ξmt − ξnt ∥

4
2

]
≤ 8σ4 .

Proof. Note the following for m ̸= n ∈ [M ], and for t ∈ [0, T − 1]

E
[
∥ξmt − ξnt ∥

4
2

]
= E

[(
∥ξmt ∥22 + ∥ξmt ∥22 − 2 ⟨ξmt , ξnt ⟩

)2]
,

=(a) E
[
∥ξmt ∥42

]
+ E

[
∥ξnt ∥

4
2

]
+ 4E

[
(⟨ξmt , ξnt ⟩)

2
]

+ 2E
[
∥ξmt ∥22

]
E
[
∥ξnt ∥

2
2

]
− 2E

[
∥ξmt ∥22 ξ

m
t

]T
���*0
E [ξnt ]

− 2E
[
∥ξnt ∥

2
2 ξ

n
t

]T
����:0E [ξmt ] ,

= E
[
∥ξmt ∥42

]
+ E

[
∥ξnt ∥

4
2

]
+ 6E

[
∥ξmt ∥22

]
E
[
∥ξnt ∥

2
2

]
,

≤(Assumption 2) 8σ4 ,

where in (a) we used that ξmt ⊥ ξnt |Ht along with tower rule several times like in previous lemmas.
This finishes the proof.

E.2 Other Analytical Lemmas

We will also use the following inequality several times, essentially a variant of the A.M.-G.M.
inequality.
Lemma 16. For any a, b ∈ R and γ > 0 we have,

(a+ b)2 ≤
(
1 +

1

γ

)
a2 + (1 + γ) b2 ,

(a+ b)4 ≤
(
1 +

1

γ

)3

a4 + (1 + γ)
3
b4 .

Proof. Note the following,

(a+ b)2 = a2 + b2 + 2ab ,

= a2 + b2 + 2

(
a
√
γ

)
(
√
γb) ,

≤(A.M.-G.M. Inequality) a2 + b2 +
a2

γ
+ γb2 ,

≤
(
1 +

1

γ

)
a2 + (1 + γ) b2 ,
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which proves the first statement of the lemma. To get the second statement we will just apply the first
statement twice as follows,

(a+ b)4 ≤
((

1 +
1

γ

)
a2 + (1 + γ) b2

)2

,

≤
(
1 +

1

γ

)((
1 +

1

γ

)
a2
)2

+ (1 + γ)
(
(1 + γ) b2

)2
,

=

(
1 +

1

γ

)3

a4 + (1 + γ)
3
b4 ,

which proves the second statement of the lemma.

Lemma 17. For any a, b, c ∈ R we have,

(a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 ,

(a+ b+ c)4 ≤ 27a4 + 27b4 + 27c4 .

Proof. We note the following,

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2bc+ 2ca ,

≤(A.M.-G.M. inequality) a2 + b2 + c2 + (a2 + b2) + (b2 + c2) + (c2 + a2) ,

= 3(a2 + b2 + c2) ,

which proves the first statement. For the second statement using the first statement note the following,

(a+ b+ c)4 ≤
(
3a2 + 3b2 + 3c2

)2
,

≤ 3
(
3a2
)2

+ 3
(
3b2
)2

+ 3
(
3c2
)2

,

= 27a4 + 27b4 + 27c4 ,

which proves the lemma.

Lemma 18. Let x ∈ (0, 1) and K > 1 then we have
K−1∑
i=1

xi−1i2 ≤ K

(1− x)2
.

Proof. Note the following,
K−1∑
i=1

xi−1i2 ≤ K

K−1∑
i=1

ixi−1 ,

= K∇x

(
K−1∑
i=1

xi

)
,

= K∇x

(
x
1− xK

1− x

)
,

= K
1− xK

1− x
+Kx

1−KxK−1 + (K − 1)xK

(1− x)2
,

= K
1− xK − x+ xK+1

(1− x)2
+K

x−KxK + (K − 1)xK+1

(1− x)2
,

= K
1− (K + 1)xK +KxK+1

(1− x)2
,

≤ K

(1− x)2
,

where in the last inequality we just note that 1 − (K + 1)xK + KxK+1 ≤ 1. This proves the
lemma.
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Lemma 19. Let A and B be two positive-semi definite matrices. We have:

Ak −Bk =

k−1∑
j=0

Ak−1−j(A−B)Bj

Proof. we prove by induction. For k = 1 we have:

A−B =

0∑
j=0

A−j(A−B)Bj = A−B

for k + 1 we have:

Ak+1 −Bk+1 = AAk −BBk = AAk −ABk +ABk −BBk = A(Ak −Bk) + (A−B)Bk

for the first term in the above equality we have:

A(Ak −Bk) = A

k−1∑
j=0

Ak−1−j(A−B)Bj =

k−1∑
j=0

Ak−j(A−B)Bj

By adding the second term we have:

Ak+1 −Bk+1 =

k−1∑
j=0

Ak−j(A−B)Bj + (A−B)Bk =

k∑
j=0

Ak−j(A−B)Bj

which completes the proof.

F Deriving Round-wise Recursions for Errors

In this section, we derive several recursions that prove useful later in the analysis and form the core
of our proof. An informed reader would note that the ideas and in some cases the entire recursions
occur in previous works [25, 20, 18, 15].

F.1 Second Moment of the Error in Iterates

The main result of this sub-section is the following result, which relates A(·) to C(·) and D(·).
Lemma 20. Assume we have a problem instance satisfying Assumptions 1, 2 and 6. Then assuming
η < 1

H we have for all t ∈ [0, T − 1],

A(t+ 1) ≤ (1− ηµ)A(t) +
η

µ
·min

{
2Q2D(t) + 2τ2C(t), H2C(t)

}
+

η2σ2

M
.

This also implies that for all r ∈ [R],

A(Kr) ≤ (1− ηµ)
K
A(K(r − 1)) +

(
1− (1− ηµ)

K
) ησ2

µM

+
η

µ

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−j min
{
2Q2D(j) + 2τ2C(j), H2C(j)

}
.

Remark 6. Note that the above lemma implies that if Q and τ are both zero—i.e., we have a
quadratic problem with no second-order heterogeneity—then we will achieve extreme communication
efficiency, matching the convergence rate of mini-batch SGD, with KR communication rounds. As
such, the trade-off between the red and blue upper bounds is that the former allows us to exploit
higher-order assumptions, but we need to be able to bound the fourth moment of the consensus error.
In contrast, the latter only requires a bound on the second moment of the consensus error.

Proof. We note the following about the progress made in a single iteration for t ∈ [0, T − 1],

A(t+ 1) = E
[
∥xt+1 − x⋆∥22

]
,
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=(Tower rule) E

E

∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

gmt

∥∥∥∥∥∥
2

2

∣∣∣∣Ht


 ,

=(a) E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

+ η2E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
2

2

 ,

≤(Lemma 11) E


∥∥∥∥∥∥xt − η∇F (xt)− x⋆ + η∇F (xt)−

η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

+
η2σ2

M
,

≤(Lemma 16), (b)
(
1 +

ηµ

1− ηµ

)
(1− ηµ)

2 E
[
∥xt − x⋆∥22

]

+

(
1 +

1− ηµ

ηµ

)
η2E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

(∇Fm(xt)−∇Fm(xm
t ))

∥∥∥∥∥∥
2

2

+
η2σ2

M
,

= (1− ηµ)E
[
∥xt − x⋆∥22

]
+

η

µ
· E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

(∇Fm(xt)−∇Fm(xm
t ))

∥∥∥∥∥∥
2

2

+
η2σ2

M
,

≤(c) (1− ηµ)E
[
∥xt − x⋆∥22

]
+

η

µ
· E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇2Fm(x̂m
t )(xt − xm

t )

∥∥∥∥∥∥
2

2

+
η2σ2

M
,

where in (a) we used the fact that ξ1t , . . . , ξ
1
t ∈ mHt i.e., they are measurable/“non-random” under

Ht and zero-mean, which allows us to ignore the cross-terms while squaring; in (b) we use the fact
that η < 1/H which implies that 0 ⪯ I−η∇2F (·) ⪯ (1−ηµ) ·Id and also that (1−ηµ) > 0; and in
(c) we note that due to the mean-value theorem there exists some x̂m

t which is a convex combination
of xm

t and xt. From this point, we can proceed in two different ways. First, to get the blue upper
bound we just use smoothness as follows,

A(t+ 1)

≤ (1− ηµ)E
[
∥xt − x⋆∥22

]
+

η

µ
· E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇2Fm(x̂m
t )(xt − xm

t )

∥∥∥∥∥∥
2

2

+
η2σ2

M
,

≤(Jensen’s Inequality) (1− ηµ)E
[
∥xt − x⋆∥22

]
+

η

µ
· 1

M

∑
m∈[M ]

E
[∥∥∇2Fm(x̂m

t )(xt − xm
t )
∥∥2
2

]
+

η2σ2

M
,

≤ (1− ηµ)E
[
∥xt − x⋆∥22

]
+

ηH2

µ
· 1

M

∑
m∈[M ]

E
[
∥xm

t − xt∥22
]
+

η2σ2

M
,

≤(Jensen’s Inequality) (1− ηµ)E
[
∥xt − x⋆∥22

]
+

ηH2

µ
· 1

M2

∑
m,n∈[M ]

E
[
∥xm

t − xn
t ∥

2
2

]
+

η2σ2

M
,

= (1− ηµ)A(t) +
ηH2

µ
C(t) +

η2σ2

M
,

which proves one part of the lemma. To get the red upper bound, we will use second-order hetero-
geneity and third-order smoothness as follows,

A(t+ 1)
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≤ (1− ηµ)E
[
∥xt − x⋆∥22

]
+

η

µ
· E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇2Fm(x̂m
t )(xt − xm

t )

∥∥∥∥∥∥
2

2

+
η2σ2

M
,

= (1− ηµ)E
[
∥xt − x⋆∥22

]
+

η

µ
· E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

(
∇2Fm(x̂m

t )−∇2Fm(xt) +∇2Fm(xt)−∇2F (xt)
)
(xt − xm

t )

∥∥∥∥∥∥
2

2


+

η2σ2

M
,

≤(Jensen’s Inequality), (Lemma 16) (1− ηµ)E
[
∥xt − x⋆∥22

]
+

2η

µM

∑
m∈[M ]

E
[∥∥(∇2Fm(x̂m

t )−∇2Fm(xt)
)
(xt − xm

t )
∥∥2
2

]
+

2η

µM

∑
m∈[M ]

E
[∥∥(∇2F (xt)−∇2Fm(xt)

)
(xt − xm

t )
∥∥2
2

]
+

η2σ2

M
,

≤(Assumptions 1 and 6) (1− ηµ)E
[
∥xt − x⋆∥22

]
+

2ηQ2

µM

∑
m∈[M ]

E
[
∥x̂m

t − xt∥22 ∥xt − xm
t ∥22

]
+

2ητ2

µM

∑
m∈[M ]

E
[
∥xt − xm

t ∥22
]
+

η2σ2

M
,

≤(a) (1− ηµ)E
[
∥xt − x⋆∥22

]
+

2ηQ2

µM

∑
m∈[M ]

E
[
∥xt − xm

t ∥42
]
+

2ητ2

µM

∑
m∈[M ]

E
[
∥xt − xm

t ∥22
]

+
η2σ2

M
,

≤(Jensen’s Inequality) (1− ηµ)E
[
∥xt − x⋆∥22

]
+

2ηQ2

µM2

∑
m,n∈[M ]

E
[
∥xn

t − xm
t ∥42

]
+

2ητ2

µM2

∑
m,n∈[M ]

E
[
∥xn

t − xm
t ∥22

]
+

η2σ2

M
,

= (1− ηµ)A(t) +
2ηQ2D(t)

µ
+

2ητ2C(t)

µ
+

η2σ2

M
,

where in (a) we use that ∥x̂m
t − xt∥2 ≤ ∥xm

t − xt∥2 for all m ∈ [M ]. This proves the second part of
the upper bound, thus finishing the proof for the first statement of the lemma. Note that for r ∈ [R]
we can re-write this result as follows,

A(Kr) ≤ (1− ηµ)A(Kr − 1)

+
η

µ
·min

{
2Q2D(Kr − 1) + 2τ2C(Kr − 1), H2C(Kr − 1)

}
+

η2σ2

M
,

≤ (1− ηµ)
K
A(K(r − 1))

+
η

µ

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−j min
{
2Q2D(j) + 2τ2C(j), H2C(j)

}
+

ησ2

µM
,

where in the second inequality we just unrolled the recursion till the time-step of the previous
communication. This finishes the proof of the lemma.

It would also be helpful to state the following lemma, which talks about the convergence on individual
machines between two communication rounds.
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Lemma 21 (Single Machine SGD Second Moment). For any machine m ∈ [M ], for t ∈ [0, T ], and
for k ≥ 0 we have the following for η < 1

H ,

E
[∥∥∥xm

δ(t)+k − x⋆
∥∥∥2
2

]
≤ (1− ηµ)2kE

[∥∥xδ(t) − x⋆
m

∥∥2
2

]
+

ησ2

µ
.

The above lemma follows the usual strongly convex analysis of SGD (see, for instance, [60]), since
we can rely on that between two communication rounds.

F.2 Fourth Moment of the Error in Iterates

Lemma 22. Assume we have a problem instance satisfying Assumptions 1, 2 and 6. Then assuming
η < 1

H we have for all t ∈ [0, T − 1],

B(t+ 1) ≤ (1− ηµ)B(t) +

(
ηH4

µ3
+

16η3σ2Q2

µM

)
D(t) +

8η2σ2(1− ηµ)

M
A(t)

+
16η3σ2τ2

µM
C(t) +

9η4σ4

M2
.

We can also get the following simpler upper bound,

B(t+ 1) ≤ (1− ηµ)B(t) +
ηH4

µ3
D(t) +

8η2σ2(1− ηµ)

M
A(t) +

8η3σ2H2

µM
C(t) +

9η4σ4

M2
.

This also implies that for r ∈ [R] we have,

B(Kr) ≤ (1− ηµ)KB(K(r − 1)) +

(
ηH4

µ3
+

16η3σ2Q2

µM

) Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−jD(j)

+
8η2σ2

M

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−jA(j) +
16η3σ2τ2

µM

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−jC(j)

+
9η3σ4

µM2
.

Proof. For t ∈ [0, T − 1] we note the following,

E
[
∥xt+1 − x⋆∥42

]
= E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t ) +

η

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
4

2

 ,

= E

[(∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥ η

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
2

2

+ 2η

〈
xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t ),

1

M

∑
m∈[M ]

ξmt

〉)2
]

,

= E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
4

2

+ η4E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
4

2


+ 4η2E


〈xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t ),

1

M

∑
m∈[M ]

ξmt

〉2

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+ 2η2E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
2

2



+ 4ηE


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )



T

×
���

���
���*

0

E

 1

M

∑
m∈[M ]

ξmt


+ 4η3E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
3

2

 ,

≤(Cauchy Shwartz) E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
4

2

+ η4E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
4

2


+ 4η2E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
2

2


+ 2η2E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
2

2


+ 4η3E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
3

2

 ,

=(Tower Rule) E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
4

2

+ η4E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
4

2


+ 6η2E

E

∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
2

2

∣∣∣∣∣Ht




+ 4η3E

E

∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
3

2

∣∣∣∣∣Ht


 ,

=(a) E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
4

2

+ η4E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
4

2


+ 6η2E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
2

2

∣∣∣∣∣Ht




+ 4η3E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

ξmt

∥∥∥∥∥∥
3

2

∣∣∣∣∣Ht


 ,
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≤(Lemmas 11 to 13), (b) E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
4

2

+
3η4σ4

M2

+
6η2σ2

M
E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2



+
4
√
3η3σ3

M3/2

√√√√√√E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

 ,

= E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
4

2

+
3η4σ4

M2

+
6η2σ2

M
E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2



+ 4

√√√√√√(3η4σ4

M2

)η2σ2

M
E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2


 ,

≤(A.M.-G.M. Inequality) E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
4

2

+
9η4σ4

M2

+
8η2σ2

M
E


∥∥∥∥∥∥xt − x⋆ − η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

 ,

= E


∥∥∥∥∥∥xt − x⋆ − η∇F (xt) + η∇F (xt)−

η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
4

2

+
9η4σ4

M2

+
8η2σ2

M
E


∥∥∥∥∥∥xt − x⋆ − η∇F (xt) + η∇F (xt)−

η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

 ,

=(c) E


∥∥∥∥∥∥(I − η∇2F (x̂t)

)
(xt − x⋆) + η∇F (xt)−

η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
4

2

+
9η4σ4

M2

+
8η2σ2

M
E


∥∥∥∥∥∥(I − η∇2F (x̂t)

)
(xt − x⋆) + η∇F (xt)−

η

M

∑
m∈[M ]

∇Fm(xm
t )

∥∥∥∥∥∥
2

2

 ,

≤(Lemma 16), (d)
(
1 +

ηµ

1− ηµ

)3

(1− ηµ)4E
[
∥xt − x⋆∥42

]

+

(
1 +

1− ηµ

ηµ

)3

η4E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

(∇Fm(xt)−∇Fm(xm
t ))

∥∥∥∥∥∥
4

2

+
9η4σ4

M2
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+
8η2σ2

M

(
1 +

ηµ

1− ηµ

)
(1− ηµ)2E

[
∥xt − x⋆∥22

]

+
8η2σ2

M

(
1 +

1− ηµ

ηµ

)
η2E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

(∇Fm(xt)−∇Fm(xm
t ))

∥∥∥∥∥∥
2

2

 ,

≤(Jensen’s Inequality) (1− ηµ)E
[
∥xt − x⋆∥42

]
+

η

µ3M

∑
m∈[M ]

E
[
∥(∇Fm(xt)−∇Fm(xm

t ))∥42
]
+

9η4σ4

M2

+
8η2σ2(1− ηµ)

M
E
[
∥xt − x⋆∥22

]
+

8η3σ2

µM
E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

(∇Fm(xt)−∇Fm(xm
t ))

∥∥∥∥∥∥
2

2

 ,

≤(Assumption 1), (d) (1− ηµ)B(t) +
ηH4

µ3
D(t) +

8η2σ2(1− ηµ)

M
A(t) +

9η4σ4

M2

+
8η3σ2

µM
E


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

(
∇2Fm(x̂m

t )−∇2Fm(xt) +∇2Fm(xt)−∇2F (xt)
)
(xt − xm

t )

∥∥∥∥∥∥
2

2

 ,

≤(Assumptions 1 and 6), (e) (1− ηµ)B(t) +
ηH4

µ3
D(t) +

8η2σ2(1− ηµ)

M
A(t) +

9η4σ4

M2

+
8η3σ2

µM

2Q2

M

∑
m∈[M ]

E
[
∥xt − xm

t ∥42
]
+

2τ2

M

∑
m∈[M ]

E
[
∥xt − xm

t ∥22
] ,

≤(Jensen’s Inequality) (1− ηµ)B(t) +
ηH4

µ3
D(t) +

8η2σ2(1− ηµ)

M
A(t) +

9η4σ4

M2

+
8η3σ2

µM

(
2Q2D(t) + 2τ2C(t)

)
,

= (1− ηµ)B(t) +

(
ηH4

µ3
+

16η3σ2Q2

µM

)
D(t) +

8η2σ2(1− ηµ)

M
A(t) +

16η3σ2τ2

µM
C(t)

+
9η4σ4

M2
,

where in (a) we used the fact that xt − x⋆ − η
M

∑
m∈[M ] ∇Fm(xm

t ) ∈ mHt; in (b) we used the

Jensen’s inequality E [∥y∥2] ≤
√

E
[
∥y∥22

]
; in (c) we use mean value theorem to conclude that

there exists some x̂t which is a convex combination of xt and x⋆ such that ∇F (xt) = ∇F (x⋆) +
∇2F (x̂t) (xt − x⋆); in (d) we apply mean value theorem to find a x̂m

t which is a convex combination
of xt and xm

t such that ∇Fm(xt) = ∇Fm(xm
t ) +∇2Fm(x̂m

t ) · (xt − xm
t ); and in (e) we used the

fact that ∥x̂m
t − xt∥2 ≤ ∥xm

t − xt∥2. This finishes the proof of the first statement of the lemma. By
letting t+ 1 = Kr for some r ∈ [R], and unrolling till the previous communication round we get,

B(Kr)

≤ (1− ηµ)B(Kr − 1) +

(
ηH4

µ3
+

16η3σ2Q2

µM

)
D(Kr − 1)

+
8η2σ2(1− ηµ)

M
A(Kr − 1) +

16η3σ2τ2

µM
C(Kr − 1) +

9η4σ4

M2
,

≤ (1− ηµ)KB(K(r − 1)) +

(
ηH4

µ3
+

16η3σ2Q2

µM

) Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−jD(j)
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+
8η2σ2

M

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−jA(j) +
16η3σ2τ2

µM

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−jC(j) +
9η3σ4

µM2
,

where in the last inequality for the last term we used that
∑Kr−1

j=K(r−1)(1 − ηµ)Kr−1−j ≤
1−(1−ηµ)K

ηµ ≤ 1
ηµ . This proves the second statement of the lemma.

It would also be helpful to state the following lemma, which talks about the convergence on individual
machines between two communication rounds.
Lemma 23 (Single Machine SGD Fourth Moment). For any machine m ∈ [M ], for t ∈ [0, T ], and
for k ≥ 0 we have the following for η < 1

H ,

E
[∥∥∥xm

δ(t)+k − x⋆
∥∥∥4
2

]
≤ (1− ηµ)4kE

[∥∥xδ(t) − x⋆
m

∥∥4
2

]
+ 8η2σ2k(1− ηµ)2kE

[∥∥xδ(t) − x⋆
m

∥∥2
2

]
+

11η2σ4

µ2
.

We can also get the following simpler bound,

E
[∥∥∥xm

δ(t)+k − x⋆
∥∥∥4
2

]
≤ (1− ηµ)3kE

[∥∥xδ(t) − x⋆
m

∥∥4
2

]
+

16ησ4

µ3
.

Proof. For any machine m ∈ [M ] note the following for t ≥ δ(t),

E
[∥∥xm

t+1 − x⋆
m

∥∥4
2

]
= E

[
∥xm

t − x⋆
m − η∇Fm(xm

t ) + ηξmt ∥42
]

,

= E
[(

∥xm
t − x⋆

m − η∇Fm(xm
t )∥22 + η2 ∥ξmt ∥22 + 2η ⟨xm

t − x⋆
m − η∇Fm

t (xm
t ), ξmt ⟩

)2]
,

≤ E
[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥42
]

+ η4E
[
∥ξmt ∥42

]
+ 4η2E

[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥22
]
E
[
∥ξmt ∥22

]
+ 2η2E

[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥22
]
E
[
∥ξmt ∥22

]
+ 4η3E [∥xm

t − x⋆
m − η∇Fm(xm

t )∥2]E
[
∥ξmt ∥32

]
+ 4ηE

[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥22 (x
m
t − x⋆

m − η∇Fm(xm
t ))T

]
����:0E [ξmt ] ,

≤(a) E
[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥42
]
+ η4σ4 + 6η2σ2E

[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥22
]

+ 4η3σ3E [∥xm
t − x⋆

m − η∇Fm(xm
t )∥2] ,

≤(Jensen’s Inequality) E
[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥42
]
+ 6η2σ2E

[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥22
]

+ 4η3σ3

√
E
[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥22
]
+ η4σ4 ,

≤(A.M.-G.M. Inequality) E
[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥42
]
+ 6η2σ2E

[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥22
]

+ 4η3
(
ησ4

2
+

σ2

2η
E [∥xm

t − x⋆
m − η∇Fm(xm

t )∥2]
2

)
+ η4σ4 ,

= E
[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥42
]
+ 3η4σ4 + 8η2σ2E

[
∥xm

t − x⋆
m − η∇Fm(xm

t )∥22
]
,

≤(b) (1− ηµ)4E
[
∥xm

t − x⋆
m∥42

]
+ 3η4σ4 + 8η2σ2(1− ηµ)2E

[
∥xm

t − x⋆
m∥22

]
,
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≤(Lemma 21) (1− ηµ)4E
[
∥xm

t − x⋆
m∥42

]
+ 3η4σ4

+ 8η2σ2(1− ηµ)2
(
(1− ηµ)2(t−δ(t))E

[∥∥xδ(t) − x⋆
m

∥∥2
2

]
+

ησ2

µ

)
,

= (1− ηµ)4E
[
∥xm

t − x⋆
m∥42

]
+ 3η4σ4

+ 8η2σ2(1− ηµ)2(t+1−δ(t))E
[∥∥xδ(t) − x⋆

m

∥∥2
2

]
+

8η3σ4(1− ηµ)2

µ
,

≤(c) (1− ηµ)4E
[
∥xm

t − x⋆
m∥42

]
+ 8η2σ2(1− ηµ)2(t+1−δ(t))E

[∥∥xδ(t) − x⋆
m

∥∥2
2

]
+

11η3σ4

µ
,

= (1− ηµ)4(t+1−δ(t))E
[∥∥∥xm

δ(t) − x⋆
m

∥∥∥4
2

]
+

11η2σ4

µ2

+ 8η2σ2
t∑

j=δ(t)

(1− ηµ)4(t−j)(1− ηµ)2(j+1−δ(t))E
[∥∥xδ(t) − x⋆

m

∥∥2
2

]
,

≤ (1− ηµ)4(t+1−δ(t))E
[∥∥xδ(t) − x⋆

m

∥∥4
2

]
+ 8η2σ2E

[∥∥xδ(t) − x⋆
m

∥∥2
2

] t∑
j=δ(t)

(1− ηµ)2(t+1−δ(t)) +
11η2σ4

µ2
,

≤ (1− ηµ)4(t+1−δ(t))E
[∥∥xδ(t) − x⋆

m

∥∥4
2

]
+ 8η2σ2 (t+ 1− δ(t)) (1− ηµ)2(t+1−δ(t))E

[∥∥xδ(t) − x⋆
m

∥∥2
2

]
+

11η2σ4

µ2
,

where in (a) we used the fact that E
[
∥ξmt ∥32

]
≤
√
E
[
∥ξmt ∥22

]
E
[
∥ξmt ∥42

]
and Assumption 2; in (b)

we used that ∥xm
t − η∇Fm(xm

t ) − x⋆
m∥ ≤ (1 − ηµ) ∥xm

t − x⋆
m∥2 for η < 1

H ; in (c) we use that

η < 1
H ≤ 1

µ which implies that 3η4σ4 ≤ 3η3σ4

µ . We gave the above analysis for t+ 1 > δ(t), thus it
can be translated for k > 0 as follows,

E
[∥∥∥xm

δ(t)+k − x⋆
m

∥∥∥4
2

]
≤ (1− ηµ)4kE

[∥∥xδ(t) − x⋆
m

∥∥4
2

]
+ 8η2σ2k(1− ηµ)2kE

[∥∥xδ(t) − x⋆
m

∥∥2
2

]
+

11η2σ4

µ2
.

Since when k = 0, this is still a valid upper bound, we have proven the first lemma statement. To get
the simpler upper bound, we will complete the square, proceeding from the red term in the above
analysis as follows,

E
[∥∥xm

t+1 − x⋆
m

∥∥4
2

]
≤ (1− ηµ)4E

[
∥xm

t − x⋆
m∥42

]
+ 3η4σ4 + 8η2σ2(1− ηµ)2E

[
∥xm

t − x⋆
m∥22

]
,

≤Jensen’s Inequality (1− ηµ)4E
[
∥xm

t − x⋆
m∥42

]
+ 16η4σ4 + 8η2σ2(1− ηµ)2

√
E
[
∥xm

t − x⋆
m∥42

]
,

≤

(
(1− ηµ)2

√
E
[
∥xm

t − x⋆
m∥42

]
+ 4η2σ2

)2

.

Taking the square root of both sides, we get,√
E
[∥∥xm

t+1 − x⋆
m

∥∥4
2

]
≤ (1− ηµ)2

√
E
[
∥xm

t − x⋆
m∥42

]
+ 4η2σ2 ,

≤ (1− ηµ)2(t+1−δ(t))

√
E
[∥∥∥xm

δ(t) − x⋆
m

∥∥∥4
2

]
+

4ησ2

µ
.
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Finally whole squaring and using Lemma 16 we get,

E
[∥∥xm

t+1 − x⋆
m

∥∥4
2

]
≤
(
1 +

ηµ

1− ηµ

)
(1− ηµ)4(t+1−δ(t))E

[∥∥∥xm
δ(t) − x⋆

m

∥∥∥4
2

]
+

(
1 +

1− ηµ

ηµ

)
16η2σ4

µ2
,

≤ (1− ηµ)3(t+1−δ(t))E
[∥∥∥xm

δ(t) − x⋆
m

∥∥∥4
2

]
+

16ησ4

µ3
.

We proved this for t+ 1 > δ(t), but clearly it also holds when t+ 1 = δ(t), which implies that for
all k ≥ 0,

E
[∥∥∥xm

δ(t)+k − x⋆
∥∥∥4
2

]
≤ (1− ηµ)3kE

[∥∥xδ(t) − x⋆
m

∥∥4
2

]
+

16ησ4

µ3
,

thus finishing the proof of the lemma.

F.3 Function Value Error

The main result of this sub-section comes from the work [25], which relates E(·) to C(·) and D(·).
Lemma 24 (Section D.4, [25]). Assume we have a problem instance satisfying Assumptions 1 and 2.
Then assuming η < 1

H we have for all t ∈ [0, T − 1],

E(t) ≤
(
1

η
− µ

2

)
E
[
∥xt − x⋆∥22

]
− 1

η
E
[
∥xt+1 − x⋆∥22

]
+

8τ2

µ
C(t) +

2Q2

µ
D(t) +

ησ2

M
.

Remark 7. The above result is known from the paper [25], and we do not claim any novelty here.
Our contribution is improving the bound on the second and fourth moment consensus error (C(t)
and D(t)). Later, we will put our improved bound in this lemma and provide a tighter convergence
guarantee for local SGD under the ζ assumption.

We will also recall the more straightforward recursion, which does not explicitly depend on Q, used
in several existing results, including the following due to Woodworth et al. [20].
Lemma 25 (Lemma 7, [20]). Assume we have a problem instance satisfying Assumptions 1 and 2.
Then assuming η ≤ 1

10H we have for all t ∈ [0, T − 1],

E(t) ≤
(
1

η
− µ

)
E
[
∥xt − x⋆∥22

]
− 1

η
E
[
∥xt+1 − x⋆∥22

]
+ 2HC(t) +

3ησ2

M
.

G Uniform Control over the Consensus Error and Analysis using
Assumption 7

G.1 Upper Bound on Second Moment of Consensus Error

In this subsection, we re-state the upper bound on the second moment of consensus error from the
work [20]. We do not claim any novelty and include this lemma for completeness.
Lemma 26 (Lemma 8 from [20]). For all t ∈ [0, T ] under Assumptions 2 and 7 with a stepsize
η ≤ 1

2H we have,

C(t) ≤ 6K2η2H2ζ2 + 6Kσ2η2 . (8)

Proof. Note the following about the second moment of the difference between the iterates on two
machines m,n ∈ [M ] when t > δ(t),

E
[
∥xm

t − xn
t ∥

2
2

]
= E

[∥∥xm
t−1 − xn

t−1 − ηgmt−1 + ηgnt−1

∥∥2
2

]
,

≤ E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

]
+ 2η2σ2 ,
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= E
[∥∥xm

t−1 − xn
t−1 − η

(
∇Fm(xm

t−1)−∇Fm(xn
t−1)

)
− η

(
∇Fm(xn

t−1)−∇Fn(x
n
t−1)

)∥∥2
2

]
+ 2η2σ2 ,

≤(a) E
[∥∥xm

t−1 − xn
t−1 − η∇2Fm(c)(xm

t−1 − xn
t−1)− η

(
∇Fm(xn

t−1)−∇Fn(x
n
t−1)

)∥∥2
2

]
+ 2η2σ2 ,

= E
[∥∥(I − η∇2Fm(c)

)
(xm

t−1 − xn
t−1)− η

(
∇Fm(xn

t−1)−∇Fn(x
n
t−1)

)∥∥2
2

]
+ 2η2σ2 ,

≤
(
1 +

1

K − 1

)
E
[∥∥(I − η∇2Fm(c)

)
(xm

t−1 − xn
t−1)

∥∥2
2

]
+ 2Kη2E

[∥∥∇Fm(xn
t−1)−∇Fn(x

n
t−1)

∥∥2
2

]
+ 2η2σ2 ,

≤
(
1 +

1

K − 1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
+ 2Kη2H2ζ2 + 2η2σ2 ,

≤
(
1 +

1

K − 1

)
E
[∥∥xm

t−1 − xn
t−1

∥∥2
2

]
+ 2Kη2H2ζ2 + 2η2σ2 ,

where in (a) we use the mean value theorem to find a c between xm
t−1 and xn

t−1 such that ∇Fm(xm
t−1)−

∇Fm(xn
t−1) = ∇2F (c) · (xm

t−1 − xn
t−1). Unrolling the recursion for K − 1 steps givse us,

E
[
∥xm

t − xn
t ∥

2
2

]
≤ 6K2η2H2ζ2 + 6η2Kσ2 ,

G.2 Upper Bound on Fourth Moment of Consensus Error

In this sub-section, we re-state the fourth moment upper bound on consensus error from the work
[25]. Here we do not claim any novelty and we include it for completeness.

Lemma 27 (Lemma 12 from [25]). For all t ∈ [0, T ] under Assumptions 2 and 7 with a stepsize
η ≤ 1

2H we have,

D(t) ≤ 3840η4K4H4ζ4 + 5920η4K2σ4 .

Proof. Note the following about the fourth moment of the difference between the iterates on two
machines m,n ∈ [M ],

E
[
∥xm

t − xn
t ∥

4
2

]
= E

[∥∥xm
t−1 − xn

t−1 − ηgmt−1 + ηgnt−1

∥∥4
2

]
,

= E
[(∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1) + ηξmt−1 − ηξnt−1

∥∥2
2

)2]
,

= E

[(∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥2
2
+ η2

∥∥ξmt−1 − ξnt−1

∥∥2
2

+ 2η
〈
xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1), ξ

m
t−1 − ξnt−1

〉)2
]

,

= E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥4
2

]
+ η4E

[∥∥ξmt−1 − ξnt−1

∥∥4
2

]
+ 4η2E

[(〈
xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1), ξ

m
t−1 − ξnt−1

〉)2]
+ 2η2E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥2
2

∥∥ξmt−1 − ξnt−1

∥∥2
2

]
+ 4η3E

[〈
xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1), ξ

m
t−1 − ξnt−1

〉 ∥∥ξmt−1 − ξnt−1

∥∥2
2

]
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+ 4ηE

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥2
2

(
xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

) ]
·
��������:0
E
[
ξmt−1 − ξnt−1

]
,

≤(C.S. Inequality, Assumption 2) E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥4
2

]
+ 8σ4η4

+ 6η2E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

]
E
[∥∥ξmt−1 − ξnt−1

∥∥2
2

]
+ 4η3E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥
2

]
E
[∥∥ξmt−1 − ξnt−1

∥∥3
2

]
, (a)

In order to bound the term E
[∥∥ξmt−1 − ξnt−1

∥∥3
2

]
we use Cauchy-Schwarz Inequality:

E
[∥∥ξmt−1 − ξnt−1

∥∥3
2

]
= E

[∥∥ξmt−1 − ξnt−1

∥∥
2
·
∥∥ξmt−1 − ξnt−1

∥∥2
2

]
≤
√

E
[∥∥ξmt−1 − ξnt−1

∥∥2
2

]
E
[∥∥ξmt−1 − ξnt−1

∥∥4
2

] Assumption 2
≤ 4

√
σ6

Also the term 4η3E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥
2

]
can be bounded as:

E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥
2

]
Jensen’s Inequality

≤
√

E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(xn
t−1)

∥∥2
2

]
Putting everything back into (a) gives us:

E
[
∥xn

t − xm
t ∥42

]
(Assumption in (2))

≤ E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥4
2

]
+ 8η4σ4

+ 12η2σ2E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

]
+ 16η3

√
σ6E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(xn

t−1)
∥∥2
2

]
,

To bound the third term in the above inequality, we use the A.M. - G.M. Inequality
√
ab ≤ a

2γ + γb
2

for γ > 0. Let γ = η, a = σ2E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

]
, b = σ4. We

have:

16η3
√

σ6E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(xn
t−1)

∥∥2
2

]
= 16η3

√
(σ4)

(
σ2E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(xn

t−1)
∥∥2
2

])
,

≤ 16η3
(
ησ4

2
+

σ2

2η
E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

])
,

So we have:

E
[
∥xn

t − xm
t ∥42

]
≤ E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥4
2

]
+ 8η4σ4

+ 12η2σ2E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

]
+ 16η3

(
ησ4

2
+

σ2

2η
E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

])
,
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= E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥4
2

]
+ 20η2σ2E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥2
2

]
+ 16η4σ4 ,

= E
[∥∥xm

t−1 − xn
t−1 − η

(
∇Fm(xm

t−1)−∇Fm(xn
t−1)

)
+ η

(
∇Fn(x

n
t−1)−∇Fm(xn

t−1)
)∥∥4

2

]
+ 20η2σ2E

[∥∥xm
t−1 − xn

t−1 − η
(
∇Fm(xm

t−1)−∇Fm(xn
t−1)

)
+ η

(
∇Fn(x

n
t−1)−∇Fm(xn

t−1)
)∥∥2

2

]
+ 16η4σ4 ,

Now by using Lemma 16 we have:

E
[
∥xm

t − xn
t ∥

4
2

]
≤
(
1 +

1

γt−1

)3

E
[∥∥xm

t−1 − xn
t−1 − η

(
∇Fm(xm

t−1)−∇Fm(xn
t−1)

)∥∥4
2

]
+ η4(1 + γt−1)

3E
[∥∥∇Fn(x

n
t−1)−∇Fm(xn

t−1)
∥∥4
2

]
+ 20η2σ2

(
1 +

1

γt−1

)
E
[∥∥xm

t−1 − xn
t−1 − η

(
∇Fm(xm

t−1)−∇Fm(xn
t−1)

)∥∥2
2

]
+ 20η4σ2(1 + γt−1)E

[∥∥∇Fn(x
n
t−1)−∇Fm(xn

t−1)
∥∥2
2

]
+ 16η4σ4 ,

From the mean-value theorem we know that ∇F (x) − ∇F (y) = ∇2F (c)(x − y) for some c =
λx+ (1− λ)y. By applying this theorem to the first and third term of the above inequality we have:(

1 +
1

γt−1

)3

E
[∥∥xm

t−1 − xn
t−1 − (η∇Fm(xm

t−1)− η∇Fm(xn
t−1))

∥∥4
2

]
=

(
1 +

1

γt−1

)3

E
[∥∥xm

t−1 − xn
t−1 − η∇2Fm(c)(xm

t−1 − xn
t−1)

∥∥4
2

]
,

=

(
1 +

1

γt−1

)3

E
[∥∥(I − η∇2Fm(c))(xm

t−1 − xn
t−1)

∥∥4
2

]
,

≤
(
1 +

1

γt−1

)3

(1− ηµ)4E
[∥∥xm

t−1 − xn
t−1

∥∥4
2

]
,

With the same approach for the third term we have:

20η2σ2

(
1 +

1

γt−1

)
E
[∥∥xm

t−1 − xn
t−1 − η

(
∇Fm(xm

t−1)− η∇Fm(xn
t−1)

)∥∥2
2

]
≤ 20η2σ2

(
1 +

1

γt−1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
,

Putting all together gives us:

E
[
∥xn

t − xm
t ∥42

]
≤
(
1 +

1

K − 1

)3

(1− ηµ)4E
[∥∥xm

t−1 − xn
t−1

∥∥4
2

]
+ 16η4K3

(
E
[∥∥∇F (xm

t−1)−∇Fm(xm
t−1)

∥∥4
2

]
+ E

[∥∥∇F (xn
t−1)−∇Fn(x

n
t−1)

∥∥4
2

])
+ 20η2σ2

(
1 +

1

K − 1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
+ 40η4σ2K

(
E
[∥∥∇F (xm

t−1)−∇Fm(xm
t−1)

∥∥2
2

]
+ E

[∥∥∇F (xn
t−1)−∇Fn(x

n
t−1)

∥∥2
2

])
+ 16η4σ4 ,

≤
(
1 +

1

K − 1

)3

(1− ηµ)4E
[∥∥xm

t−1 − xn
t−1

∥∥4
2

]
+ 32η4K3H4ζ4
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+ 20η2σ2

(
1 +

1

K − 1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
+ 80η4σ2KH2ζ2 + 16η4σ4 ,

≤
(
1 +

1

K − 1

)3

E
[∥∥xm

t−1 − xn
t−1

∥∥4
2

]
+ 32η4K3H4ζ4

+ 40η2σ2
(
3Kσ2η2 + 6K2η2H2ζ2

)
+ 80η4σ2KH2ζ2 + 16η4σ4 ,

≤
(
1 +

1

K − 1

)3

E
[∥∥xm

t−1 − xn
t−1

∥∥4
2

]
+ 32η4K3H4ζ4 + 136η4Kσ4 + 320η4σ2K2H2ζ2 ,

≤
(
1 +

1

K − 1

)3(K−1) (
32η4K4H4ζ4 + 136η4K2σ4 + 320η4σ2K3H2ζ2

)
,

≤(a) 20
(
32η4K4H4ζ4 + 136η4K2σ4 + 160 · 2 ·

(
η2σ2K

)
·
(
η2H2ζ2K2

))
,

≤ 20
(
192η4K4H4ζ4 + 296η4K2σ4

)
,

≤ 3840η4K4H4ζ4 + 5920η4K2σ4 ,

where in (a) we used that (1 + 1/x)x ≤ 20 for all x ≥ 0. Finally averaging this over m,n ∈ [M ]
implies,

1

M

∑
m∈[M ]

E
[
∥xt − xm

t ∥42
]
≤ 1

M2

∑
m,n∈[M ]

E
[
∥xn

t − xm
t ∥42

]
,

≤ 3840η4K4H4ζ4 + 5920η4K2σ4 ,

which proves the lemma.

G.3 Convergence in Iterates

In this sub-section, we provide a convergence guarantee for the iterates of local SGD under Assump-
tions 1, 6 and 7. We do so by using the red upper bound from Lemma 20.
Lemma 28 (Convergence with ζ, τ and Q). We can prove the following convergence guarantee
assuming η < 1/H:

A(T ) ≤ (1− ηµ)
KR

B2 +
15360Q2η4K4H4ζ4

µ2
+

23680Q2η4K2σ4

µ2
+

24τ2η2K2H2ζ2

µ2

+
12τ2η2Kσ2

µ2
+

ησ2

µM
.

Proof. Use the red upper bound for one-step progress from Lemma 20. We first restate the one-step
lemma using the red upper bound,

A(KR)

≤ (1− ηµ)A(KR− 1) +
2ηQ2

µ
D(KR− 1) +

2ητ2

µ
C(KR− 1) +

η2σ2

M
,

≤ (1− ηµ)
K
A(K(R− 1)) +

2η

µ

KR−1∑
j=K(R−1)

(1− ηµ)KR−1−j
(
Q2D(j) + τ2C(j)

)
+
(
1− (1− ηµ)K

) ησ2

µM
,

≤ (1− ηµ)
K
A(K(R− 1))

+
2Q2η

µ

KR−1∑
j=K(R−1)

(1− ηµ)KR−1−j
(
3840η4K4H4ζ4 + 5920η4K2σ4

)
+

2τ2η

µ

KR−1∑
j=K(R−1)

(1− ηµ)KR−1−j
(
6K2η2H2ζ2 + 3Kη2σ2

)
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+
(
1− (1− ηµ)K

) ησ2

µM
,

≤ (1− ηµ)
K
A(K(R− 1))

+

(
7680Q2η5K4H4ζ4

µ
+

11840Q2η5K2σ4

µ

) KR−1∑
j=K(R−1)

(1− ηµ)KR−1−j

+

(
12τ2η3K2H2ζ2

µ
+

6τ2η3Kσ2

µ

) KR−1∑
j=K(R−1)

(1− ηµ)KR−1−j

+
(
1− (1− ηµ)K

) ησ2

µM
. (a)

Note that we can simplify the summation as follows,
KR−1∑

j=K(R−1)

(1− ηµ)KR−1−j =

K−1∑
i=0

(1− ηµ)i =
1− (1− ηµ)K

ηµ
.

Plugging the above result back into (a) gives us,

A(KR) ≤ (1− ηµ)
K
A(K(R− 1)) +

(
1− (1− ηµ)K

)(7680Q2η4K4H4ζ4

µ2

)
+

(
1− (1− ηµ)K

)(11840Q2η4K2σ4

µ2
+

12τ2η2K2H2ζ2

µ2
+

6τ2η2Kσ2

µ2
+

ησ2

µM

)
,

Now we unroll the above inequality over R rounds and we have,

A(KR) ≤ (1− ηµ)
KR

B2 +
7680Q2η4K4H4ζ4

µ2
+

11840Q2η4K2σ4

µ2
+

12τ2η2K2H2ζ2

µ2

+
6τ2η2Kσ2

µ2
+

ησ2

µM
,

which finishes the proof.

G.4 Tuning the Step-size

In the previous subsection, we provided the following bound on the iterates of local SGD,

A(KR) ≤ e−ηµKRB2 +
7680Q2η4K4H4ζ4

µ2
+

11840Q2η4K2σ4

µ2
+

12τ2η2K2H2ζ2

µ2

+
6τ2η2Kσ2

µ2
+

ησ2

µM
.

To achieve the final bound, we need to tune the step-size to have the following Theorem,
Lemma 29. For all t ∈ [0, T ] under Assumptions 1, 2, 6 and 7 assuming η ≤ 1

2H we have,

A(KR) ≤ e−
µKR
2H + Õ

(
7680Q2K4ζ4

µ6R4
+

11840Q2σ4

µ6K2R4
+

12τ2ζ2

µ4R2
+

6τ2σ2

µ4KR2
+

σ2

µ2MKR

)
.

Proof. We pick the step-size as follows:

• if 1
2H ≥ 1

µKR ln(max{2, µ2B2T/σ2}), we choose η = 1
µKR ln(max{2, µ2B2T/σ2}).

• if 1
2H ≤ 1

µKR ln(max{2, µ2B2T/σ2}), we choose η = 1
2H .

Which gives us the following result,

A(KR) ≤ e−
µKR
2H ++Õ

(
7680Q2K4ζ4

µ6R4
+

11840Q2σ4

µ6K2R4
+

12τ2ζ2

µ4R2
+

6τ2σ2

µ4KR2
+

σ2

µ2MKR

)
,

where the notation Õ (·) hides the logarithmic terms. This proves the lemma.
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H Double Recursions for Consensus Error

In this section, we will relate the consensus error to the iterate errors of the previous communication
round. This would allow us to get more fine-grained upper bounds on consensus error, which would
decay with time and more communication.

H.1 Second Moment of the Consensus Error

We can prove the following bound on the second moment of the consensus error using Assumptions 4
and 6.

Lemma 30. For all t ∈ [0, T ] assuming η < 1
H we have,

C(t) ≤ 2η2H2K2ζ2⋆ +
2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K))

+ 4η2τ2 (t− δ(t))
2
(1− ηµ)2(t−1−δ(t))

(
A(δ(t)) + ϕ2

⋆

)
,

≤ 2η2H2K2ζ2⋆ +
2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K)) + 4η2τ2K2

(
A(δ(t)) + ϕ2

⋆

)
.

This also implies that for r ∈ [R],

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−jC(j)

≤ 1− (1− ηµ)K

ηµ

(
2η2H2K2ζ2⋆ +

2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K))

)
+

1− (1− ηµ)K

ηµ
4η2τ2K2(1− ηµ)K−2

(
A(K(r − 1)) + ϕ2

⋆

)
.

Proof. Note the following about the difference of iterates on two machines m,n ∈ [M ] for some
time t > δ(t) (for t = δ(t) the l.h.s. is zero),

E
[
∥xm

t − xn
t ∥

2
2

]
= E

[∥∥xm
t−1 − xn

t−1 − ηgmt−1 + ηgnt−1

∥∥2
2

]
,

≤(Assumption 2), (a) E
[∥∥xm

t−1 − xn
t−1 − η

(
∇Fm(xm

t−1)−∇Fn(x
n
t−1)

)∥∥2
2

]
+ 2η2σ2 ,

=(b) E
[∥∥xm

t−1 − xn
t−1 − η

(
∇Fm(xm

t−1)−∇Fm(xn
t−1)

)
− η

(
∇Fm(xn

t−1)−∇Fn(x
n
t−1

)∥∥2
2

]
+ 2η2σ2 ,

where in (a) we exploited the fact that ξmt ⊥ ξnt |Ht and xm
t−1, x

n
t−1 ∈ mHt as well as used tower

rule to introduce conditional expectation; and in (b) we added and subtracted the term ∇Fm(xn
t−1).

By mean value theorem we know that there exists a c = xn
t−1 + θ(xm

t−1 − xn
t−1) for some θ ∈ [0, 1]

such that:

∇Fm(xm
t−1)−∇Fm(xn

t−1) = ∇2Fm(c)(xm
t−1 − xn

t−1)

Using this in the above inequality, we get:

E
[
∥xm

t − xn
t ∥

2
2

]
≤ E

[∥∥xm
t−1 − xn

t−1 − η∇2Fm(c)(xm
t−1 − xn

t−1)− η
(
∇Fm(xn

t−1)−∇Fn(x
n
t−1)

)∥∥2
2

]
+ 2η2σ2 ,

= E
[∥∥(I − η∇2Fm(c)

)
(xm

t−1 − xn
t−1)− η

(
∇Fm(xn

t−1)−∇Fn(x
n
t−1)

)∥∥2
2

]
+ 2η2σ2 ,

≤(a)
(
1 +

1

γt−1

)
E
[∥∥(I − η∇2Fm(c)

)
(xm

t−1 − xn
t−1)

∥∥2
2

]
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+ (1 + γt−1) η
2E
[∥∥∇Fm(xn

t−1)−∇Fn(x
n
t−1)

∥∥2
2

]
+ 2η2σ2 ,

≤(b)
(
1 +

1

γt−1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
+ (1 + γt−1) η

2E
[∥∥∇Fm(xn

t−1)−∇Fn(x
n
t−1)

∥∥2
2

]
+ 2η2σ2 ,

=

(
1 +

1

γt−1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
+ 2η2σ2

+ (1 + γt−1) η
2E
[∥∥∇Fm(xn

t−1)−∇Fm(x⋆
n)−∇Fn(x

n
t−1) +∇Fm(x⋆

n)
∥∥2
2

]
,

≤(c)
(
1 +

1

γt−1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
+ 2 (1 + γt−1) η

2E
[∥∥∇Fm(xn

t−1)−∇Fm(x⋆
n)−∇Fn(x

n
t−1) +∇Fn(x

⋆
n)
∥∥2
2

]
+ 2 (1 + γt−1) η

2E
[
∥∇Fm(x⋆

n)−∇Fm(x⋆
m)∥22

]
+ 2η2σ2 ,

≤(Assumptions 1 and 4)
(
1 +

1

γt−1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
+ 2 (1 + γt−1) η

2E
[∥∥∇Fm(xn

t−1)−∇Fn(x
n
t−1)− (∇Fm(x⋆

n)−∇Fn(x
⋆
n))
∥∥2
2

]
+ 2 (1 + γt−1) η

2H2ζ2⋆ + 2η2σ2 ,

where in (a) and (c) we used Lemma 16; and in (b) we used Assumption 1 and the fact that η < 1/H .
We will again use the mean value theorem for the blue term in the above inequality. For v := xn

t−1−x⋆
n

we have:

∇Fm(xn
t−1)−∇Fn(x

n
t−1)− (∇Fm(x⋆

n)−∇Fn(x
⋆
n))

=

∫ 1

0

(
∇2Fm(x⋆

n + tv)−∇2Fn(x
⋆
n + tv)

)
vdt ,

⇒
∥∥∇Fm(xn

t−1)−∇Fn(x
n
t−1)− (∇Fm(x⋆

n)−∇Fn(x
⋆
n))
∥∥
2

≤
∫ 1

0

∥∥∇2Fm(x⋆
n + tv)−∇2Fn(x

⋆
n + tv)

∥∥
2
∥v∥2 dt ,

⇒
∥∥∇Fm(xn

t−1)−∇Fn(x
n
t−1)− (∇Fm(x⋆

n)−∇Fn(x
⋆
n))
∥∥
2
≤ τ

∥∥xn
t−1 − x⋆

n

∥∥
2

.

Plugging this in the inequality above gives the following,

E
[
∥xm

t − xn
t ∥

2
2

]
≤
(
1 +

1

γt−1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
+ 2 (1 + γt−1) η

2τ2E
[∥∥xn

t−1 − x⋆
n

∥∥2
2

]
+ 2 (1 + γt−1) η

2H2ζ2⋆ + 2η2σ2 ,

≤
(
1 +

1

γt−1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
+ 2 (1 + γt−1) η

2H2ζ2⋆ + 2η2σ2

+ 2 (1 + γt−1) η
2τ2

×
(
(1− ηµ)2(t−1−δ(t))E

[∥∥xδ(t) − x⋆
n

∥∥2
2

]
+
(
1− (1− ηµ)2(t−1−δ(t))

) ησ2

µ

)
,

where in the last inequality above we just used an upper bound for the convergence of SGD on a
single machine n ∈ [M ]. As a sanity check note that if t − 1 = δ(t) then the red term becomes
E
[∥∥xδ(t) − x⋆

n

∥∥2
2

]
. Continuing further and choosing γj = j − δ(j) (note that the term with 1/γt−1

becomes 1 when t− 1 = δ(t), making this choice well defined), this leads to,

E
[
∥xm

t − xn
t ∥

2
2

]
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≤
t−1∏

j=δ(t)

(
1 +

1

γj

)
(1− ηµ)2E

[∥∥xδ(t) − xδ(t)

∥∥2
2

]

+ 2η2
t−1∑

j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)
(1− ηµ)2

((1 + γj)H
2ζ2⋆ + σ2

)

+ 2η2τ2
t−1∑

j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)
(1− ηµ)2

 (1 + γj) (1− ηµ)2(j−δ(t))E
[∥∥xδ(t) − x⋆

n

∥∥2
2

]

+
2η3τ2σ2

µ

t−1∑
j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)
(1− ηµ)2

 (1 + γj)
(
1− (1− ηµ)2(j−δ(t))

)
,

= 2η2
t−1∑

j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

) (1− ηµ)2(t−1−j)
(
(1 + γj)H

2ζ2⋆ + σ2
)

+ 2η2τ2
t−1∑

j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

) (1− ηµ)2(t−1−j) (1 + γj) (1− ηµ)2(j−δ(t))E
[∥∥xδ(t) − x⋆

n

∥∥2
2

]

+
2η3τ2σ2

µ

t−1∑
j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

) (1− ηµ)2(t−1−j) (1 + γj)
(
1− (1− ηµ)2(j−δ(t))

)
,

= 2η2
t−1∑

j=δ(t)

 t−1∏
i=j+1

i+ 1− δ(t)

i− δ(t)

 (1− ηµ)2(t−1−j)
(
(j + 1− δ(t))H2ζ2⋆ + σ2

)

+ 2η2τ2
t−1∑

j=δ(t)

 t−1∏
i=j+1

i+ 1− δ(t)

i− δ(t)

 (j + 1− δ(t)) (1− ηµ)2(t−1−δ(t))E
[∥∥xδ(t) − x⋆

n

∥∥2
2

]

+
2η3τ2σ2

µ

t−1∑
j=δ(t)

 t−1∏
i=j+1

i+ 1− δ(t)

i− δ(t)

 (j + 1− δ(t))
(
(1− ηµ)2(t−1−j) − (1− ηµ)2(t−1−δ(t))

)
,

= 2η2
t−1∑

j=δ(t)

t− δ(t)

j + 1− δ(t)
(1− ηµ)2(t−1−j)

(
(j + 1− δ(t))H2ζ2⋆ + σ2

)
+ 2η2τ2

t−1∑
j=δ(t)

(t− δ(t)) (1− ηµ)2(t−1−δ(t))E
[∥∥xδ(t) − x⋆

n

∥∥2
2

]

+
2η3τ2σ2

µ

t−1∑
j=δ(t)

(t− δ(t))
(
(1− ηµ)2(t−1−j) − (1− ηµ)2(t−1−δ(t))

)
,

= 2η2(t− δ(t))

t−1∑
j=δ(t)

(1− ηµ)2(t−1−j)

(
H2ζ2⋆ +

σ2

j + 1− δ(t)

)
+ 2η2τ2 (t− δ(t))

2
(1− ηµ)2(t−1−δ(t))E

[∥∥xδ(t) − x⋆
n

∥∥2
2

]
+

2η3τ2σ2

µ

t−1∑
j=δ(t)

(t− δ(t))
(
(1− ηµ)2(t−1−j) − (1− ηµ)2(t−1−δ(t))

)
,

≤ 2η2(t− δ(t))2H2ζ2⋆ + 2η2(t− δ(t))σ2
t−1∑

j=δ(t)

1

j + 1− δ(t)
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+ 2η2τ2 (t− δ(t))
2
(1− ηµ)2(t−1−δ(t))E

[∥∥xδ(t) − x⋆
n

∥∥2
2

]
+

2η3τ2σ2 (t− δ(t))
2

µ
,

≤(a) (t− δ(t))2
(
2η2H2ζ2⋆ +

2η3τ2σ2

µ

)
+ 2η2σ2(t− δ(t)) (1 + ln(t− δ(t)))

+ 4η2τ2 (t− δ(t))
2
(1− ηµ)2(t−1−δ(t))

(
E
[∥∥xδ(t) − x⋆

∥∥2
2

]
+ ∥x⋆ − x⋆

n∥
2
2

)
,

≤ (t− δ(t))

(
2η2H2Kζ2⋆ +

2η3τ2Kσ2

µ
+ 2η2σ2 (1 + ln(K))

)
+ 4η2τ2 (t− δ(t))

2
(1− ηµ)2(t−1−δ(t))

(
A(δ(t)) + ϕ2

⋆

)
, (9)

≤ 2η2H2K2ζ2⋆ +
2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K))

+ 4η2τ2 (t− δ(t))
2
(1− ηµ)2(t−1−δ(t))

(
A(δ(t)) + ϕ2

⋆

)
,

where in (a) we combined the red terms into one, used the fact that

1− (1− ηµ)2(t−δ(t))

1− (1− ηµ)2
≤ 1

ηµ(2− ηµ)
≤ 1

ηµ

because η < 1/H and used Lemma 16. As a sanity check, note that the above bound has the property
that when t = δ(t), it automatically becomes zero (we adopt the notation that 0 · (−∞) in the second
term becomes 0). Thus, we can safely drop the assumption that t > δ(t), making the above bound
valid for all values of t. Finally, averaging the upper bound over m,n ∈ [M ] proves the lemma’s
main upper bound. To get the other result, we will simply use this upper bound. In particular noting
that δ(j) = K(r − 1) we get,

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−jC(j)

≤
Kr−1∑

j=K(r−1)

(1− ηµ)Kr−1−j

(
2η2H2K2ζ2⋆ +

2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K))

)

+

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−j
(
4η2τ2 (j −K(r − 1))

2
(1− ηµ)2(j−1−K(r−1))

(
A(K(r − 1)) + ϕ2

⋆

))
,

=
1− (1− ηµ)K

ηµ

(
2η2H2K2ζ2⋆ +

2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K))

)
+ 4η2τ2(1− ηµ)K−2

(
A(K(r − 1)) + ϕ2

⋆

) Kr−1∑
j=K(r−1)

(1− ηµ)j−1−K(r−1) (j −K(r − 1))
2

,

≤ 1− (1− ηµ)K

ηµ

(
2η2H2K2ζ2⋆ +

2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K))

)
+

1− (1− ηµ)K

ηµ
4η2τ2K2(1− ηµ)K−2

(
A(K(r − 1)) + ϕ2

⋆

)
.

This finishes the proof.

H.2 Fourth Moment of the Consensus Error

Lemma 31. For all t ∈ [0, T ] assuming η < 1/H we have,

D(t) ≤
(
128η5τ4σ2

µ
(t− δ(t)) + 320η4σ2τ2

)
(t− δ(t))3(1− ηµ)t−1−δ(t)

(
A(δ(t)) + ϕ2

⋆

)
+ 64η4τ4(t− δ(t))4(1− ηµ)t−1−δ(t)

(
B(δ(t)) + ϕ4

⋆

)
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+

(
8η3H4ζ4⋆

µ
+

88η5τ4σ4

µ3
+ 160η4Kσ2H2ζ2⋆ +

160η5τ2Kσ4

µ
+ 112η4σ4 (1 + ln(K))

)
(t− δ(t))3 ,

≤
(
128η5τ4K4σ2

µ
+ 320η4σ2τ2K3

)(
A(δ(t)) + ϕ2

⋆

)
+ 64η4τ4K4

(
B(δ(t)) + ϕ4

⋆

)
+

8η3K3H4ζ4⋆
µ

+
88η5K3τ4σ4

µ3
+ 160η4K4σ2H2ζ2⋆ +

160η5τ2K4σ4

µ
+ 112η4K3σ4 (1 + ln(K)) .

This also implies that for r ∈ [R],
Kr−1∑

j=K(r−1)

(1− ηµ)Kr−1−jD(j)

≤
(
1− (1− ηµ)

K
)(128η4K4τ4σ2

µ2
+

320η3K3σ2τ2

µ

)
(1− ηµ)K−4

(
A(K(r − 1)) + ϕ2

⋆

)
+
(
1− (1− ηµ)

K
) 64η3K4τ4

µ
(1− ηµ)K−5

(
B(K(r − 1)) + ϕ4

⋆

)
(
1− (1− ηµ)

K
)

×
(
8η2K3H4ζ4⋆

µ2
+

88η4K3τ4σ4

µ4
+

160η3K4σ2H2ζ2⋆
µ

+
160η4τ2K4σ4

µ2
+

112η3K3σ4 (1 + ln(K))

µ

)
.

Proof. Note the following about the fourth moment of the difference between the iterates on two
machines m,n ∈ [M ] for t > δ(t) (for t = δ(t) the l.h.s. is zero),

E
[
∥xm

t − xn
t ∥

4
2

]
= E

[∥∥xm
t−1 − xn

t−1 − ηgmt−1 + ηgnt−1

∥∥4
2

]
,

= E
[(∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1) + ηξmt−1 − ηξnt−1

∥∥2
2

)2]
,

= E

[(∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥2
2
+ η2

∥∥ξmt−1 − ξnt−1

∥∥2
2

+ 2η
〈
xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1), ξ

m
t−1 − ξnt−1

〉)2
]

,

=(a) E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥4
2

]
+ η4E

[∥∥ξmt−1 − ξnt−1

∥∥4
2

]
+ 4η2E

[(〈
xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1), ξ

m
t−1 − ξnt−1

〉)2]
+ 2η2E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥2
2

∥∥ξmt−1 − ξnt−1

∥∥2
2

]
+ 4η3E

[〈
xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1), ξ

m
t−1 − ξnt−1

〉 ∥∥ξmt−1 − ξnt−1

∥∥2
2

]
,

≤(Lemma 15), (b) E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥4
2

]
+ 8σ4η4

+ 6η2E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

]
E
[∥∥ξmt−1 − ξnt−1

∥∥2
2

]
+ 4η3E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥
2

]
E
[∥∥ξmt−1 − ξnt−1

∥∥3
2

]
,

where in (a) we use the fact that E
[
ξmt−1 − ξnt−1|Ht−1

]
= 0 and the conditional indepence of

stochastic noise i.e.,
{
ξmt−1, ξ

n
t−1

}
⊥

{
xm
t−1, x

n
t−1

}
| Ht−1 allowing us to ignore one of the

terms while expanding the square; and in (b) we again used this fact along with an application of
Cauchy Shwartz inequality. In order to bound the term E

[∥∥ξmt−1 − ξnt−1

∥∥3
2

]
we use Cauchy-Schwarz

Inequality:

E
[∥∥ξmt−1 − ξnt−1

∥∥3
2

]
= E

[∥∥ξmt−1 − ξnt−1

∥∥
2
·
∥∥ξmt−1 − ξnt−1

∥∥2
2

]
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≤
√
E
[∥∥ξmt−1 − ξnt−1

∥∥2
2

]
E
[∥∥ξmt−1 − ξnt−1

∥∥4
2

]
,

≤(Lemmas 12 and 14) 4
√
σ6 = 4σ3 .

Also the term E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥
2

]
can be bounded as:

E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥
2

]
(Jensen’s Inequality)

≤
√

E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(xn
t−1)

∥∥2
2

]
Putting everything back together gives us:

E
[
∥xn

t − xm
t ∥42

]
(Assumption 2)

≤ E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥4
2

]
+ 8η4σ4

+ 12η2σ2E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

]
+ 16η3

√
σ6E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(xn

t−1)
∥∥2
2

]
,

To bound the third term in the above inequality, we use the A.M. - G.M. Inequality
√
ab ≤ a

2γ + γb
2

for γ > 0. Let γ = η, a = σ2E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

]
, b = σ4. We

have:

16η3
√
σ6E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(xn

t−1)
∥∥2
2

]
= 16η3

√
(σ4)

(
σ2E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(xn

t−1)
∥∥2
2

])
≤ 16η3

(
ησ4

2
+

σ2

2η
E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

])
Plugging this upper bound and following a similar strategy as in Lemma 30 we get

E
[
∥xn

t − xm
t ∥42

]
≤ E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥4
2

]
+ 8η4σ4

+ 12η2σ2E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

]
+ 16η3

(
ησ4

2
+

σ2

2η
E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

])
,

= E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fn(x
n
t−1)

∥∥4
2

]
+ 20η2σ2E

[∥∥xm
t−1 − xn

t−1 − η∇Fm(xm
t−1) + η∇Fn(x

n
t−1)

∥∥2
2

]
+ 16η4σ4 ,

= E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fm(xn
t−1)− η∇Fm(xn

t−1) + η∇Fn(x
n
t−1)

∥∥4
2

]
+ 16η4σ4

+ 20η2σ2E
[∥∥xm

t−1 − xn
t−1 − η∇Fm(xm

t−1) + η∇Fm(xn
t−1)− η∇Fm(xn

t−1) + η∇Fn(x
n
t−1)

∥∥2
2

]
,

≤(Lemma 16)
(
1 +

1

γt−1

)3

(1− ηµ)4E
[∥∥xm

t−1 − xn
t−1

∥∥4
2

]
+ (1 + γt−1)

3
η4E

[∥∥∇Fm(xn
t−1)−∇Fn(x

n
t−1)−∇Fm(x⋆

n) +∇Fm(x⋆
n)
∥∥4
2

]
+ 20η2σ2

(
1 +

1

γt−1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
65



+ 20η4σ2(1 + γt−1)E
[∥∥∇Fm(xn

t−1)−∇Fn(x
n
t−1)−∇Fm(x⋆

n) +∇Fm(x⋆
n)
∥∥2
2

]
+ 16η4σ4 ,

≤(Lemma 16 and Assumptions 4 and 6)
(
1 +

1

γt−1

)3

(1− ηµ)4E
[∥∥xm

t−1 − xn
t−1

∥∥4
2

]
+ 8 (1 + γt−1)

3
η4
(
τ4E

[∥∥xn
t−1 − x⋆

n

∥∥4
2

]
+H4ζ4⋆

)
+ 20η2σ2

(
1 +

1

γt−1

)
(1− ηµ)2E

[∥∥xm
t−1 − xn

t−1

∥∥2
2

]
+ 40η4σ2(1 + γt−1)

(
τ2E

[∥∥xn
t−1 − x⋆

n

∥∥2
2

]
+H2ζ2⋆

)
+ 16η4σ4 .

Averaging this over m,n ∈ [M ] we have for all t > δ(t),

D(t) ≤
(
1 +

1

γt−1

)3

(1− ηµ)4D(t− 1)

+ 8 (1 + γt−1)
3
η4τ4

1

M

∑
n∈[M ]

E
[∥∥xn

t−1 − x⋆
n

∥∥4
2

]
+ 8 (1 + γt−1)

3
η4H4ζ4⋆

+ 20η2σ2

(
1 +

1

γt−1

)
(1− ηµ)2C(t− 1)

+ 40η4σ2τ2(1 + γt−1)
1

M

∑
n∈[M ]

E
[∥∥xn

t−1 − x⋆
n

∥∥2
2

]
+ 40η4σ2(1 + γt−1)H

2ζ2⋆ + 16η4σ4 ,

Now we will use a couple of upper bounds that we already have for E
[∥∥xn

t−1 − x⋆
n

∥∥4
2

]
from

Lemma 23, E
[∥∥xn

t−1 − x⋆
n

∥∥2
2

]
from Lemma 21 and C(t− 1) for t− 1 ≥ δ(t) from (9) in the proof

of Lemma 30. This gives us the following with γj = j − δ(j) = j − δ(t) for j ≥ δ(t),

D(t)

≤
(
1 +

1

γt−1

)3

(1− ηµ)4D(t− 1) + 8 (1 + γt−1)
3
η4H4ζ4⋆ + (1 + γt−1)

3 88η6τ4σ4

µ2

+ 8 (1 + γt−1)
3
η4τ4

1

M

∑
n∈[M ]

(
(1− ηµ)4(t−1−δ(t))E

[∥∥xδ(t) − x⋆
n

∥∥4
2

])
+ 8 (1 + γt−1)

3
η4τ4

1

M

∑
n∈[M ]

(
8η2σ2(t− 1− δ(t))(1− ηµ)2(t−1−δ(t))E

[∥∥xδ(t) − x⋆
n

∥∥2
2

])
+ 20η2σ2

(
1 +

1

γt−1

)
(1− ηµ)2C(t− 1)

+ 40η4σ2τ2(1 + γt−1)
1

M

∑
n∈[M ]

(
(1− ηµ)2(t−1−δ(t))E

[∥∥xδ(t) − x⋆
n

∥∥2
2

]
+

ησ2

µ

)
+ 40η4σ2(1 + γt−1)H

2ζ2⋆ + 16η4σ4 ,

≤(Lemma 16 and Assumption 5)
(
1 +

1

γt−1

)3

(1− ηµ)4D(t− 1) + 8 (1 + γt−1)
3
η4H4ζ4⋆

+ 64 (1 + γt−1)
3
η4τ4

(
(1− ηµ)4(t−1−δ(t))

(
B(δ(t)) + ϕ4

⋆

))
+ (1 + γt−1)

3 88η6τ4σ4

µ2

+ 128 (1 + γt−1)
3
η4τ4

(
η2σ2(t− 1− δ(t))(1− ηµ)2(t−1−δ(t))

(
A(δ(t)) + ϕ2

⋆

))
+ 20η2σ2

(
1 +

1

γt−1

)
(1− ηµ)2

(
4η2τ2 (t− 1− δ(t))

2
(1− ηµ)2(t−2−δ(t))

(
A(δ(t)) + ϕ2

⋆

))
+ 20η2σ2

(
1 +

1

γt−1

)
(1− ηµ)2

(
2(t− 1− δ(t))

(
η2KH2ζ2⋆ +

η3τ2Kσ2

µ
+ η2σ2 (1 + ln(K))

))
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+ 40η4σ2τ2(1 + γt−1)

(
2(1− ηµ)2(t−1−δ(t))

(
A(δ(t)) + ϕ2

⋆

)
+

ησ2

µ

)
+ 40η4σ2(1 + γt−1)H

2ζ2⋆ + 16η4σ4 ,

≤
t−1∏

j=δ(t)

(
1 +

1

γj

)3

(1− ηµ)4

����������:0

E
[∥∥xδ(t) − xδ(t)

∥∥4
2

]

+

(
8η4H4ζ4⋆ +

88η6τ4σ4

µ2

) t−1∑
j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)3

(1− ηµ)4

 (1 + γj)
3

+ 64η4τ4
(
B(δ(t)) + ϕ4

⋆

)
×

t−1∑
j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)3

(1− ηµ)4

 (1 + γj)
3(1− ηµ)4(j−δ(t))

+ 128η6τ4σ2
(
A(δ(t)) + ϕ2

⋆

)
×

t−1∑
j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)3

(1− ηµ)4

 (1 + γj)
3(j − δ(t))(1− ηµ)2(j−δ(t))

+ 80η4σ2τ2
(
A(δ(t)) + ϕ2

⋆

)
×

t−1∑
j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)3

(1− ηµ)4

(1 + 1

γj

)
(j − δ(t))(1− ηµ)2(j−δ(t))

+ 40η2σ2

(
η2KH2ζ2⋆ +

η3τ2Kσ2

µ
+ η2σ2 (1 + ln(K))

)

×
t−1∑

j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)3

(1− ηµ)4

 (1− ηµ)2
(
1 +

1

γj

)
(j − δ(t))

+ 80η4σ2τ2
(
A(δ(t)) + ϕ2

⋆

)
×

t−1∑
j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)3

(1− ηµ)4

 (1 + γj)(1− ηµ)2(j−δ(t))

+ 40η4σ2

(
ητ2σ2

µ
+H2ζ2⋆

) t−1∑
j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)3

(1− ηµ)4

 (1 + γj)

+ 16η4σ4
t−1∑

j=δ(t)

 t−1∏
i=j+1

(
1 +

1

γi

)3

(1− ηµ)4

 ,

=

(
8η4H4ζ4⋆ +

88η6τ4σ4

µ2

) t−1∑
j=δ(t)

(t− δ(t))3(1− ηµ)4(t−1−j)

+ 64η4τ4
(
B(δ(t)) + ϕ4

⋆

) t−1∑
j=δ(t)

(t− δ(t))3(1− ηµ)4(t−1−δ(t))

+ 128η6τ4σ2
(
A(δ(t)) + ϕ2

⋆

) t−1∑
j=δ(t)

(t− δ(t))3(j − δ(t))(1− ηµ)4(t−1)−2j−2δ(t))

+ 80η4σ2τ2
(
A(δ(t)) + ϕ2

⋆

) t−1∑
j=δ(t)

(t− δ(t))3

(j + 1− δ(t))2
(1− ηµ)4(t−1)−2j−2δ(t)
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+ 40η2σ2

(
η2KH2ζ2⋆ +

η3τ2Kσ2

µ
+ η2σ2 (1 + ln(K))

) t−1∑
j=δ(t)

(t− δ(t))3

(j + 1− δ(t))2
(1− ηµ)4(t−j)−2

+ 80η4σ2τ2
(
A(δ(t)) + ϕ2

⋆

) t−1∑
j=δ(t)

(t− δ(t))3

(j + 1− δ(t))2
(1− ηµ)4(t−1)−2j−2δ(t)

+ 40η4σ2

(
ητ2σ2

µ
+H2ζ2⋆

) t−1∑
j=δ(t)

(t− δ(t))3

(j + 1− δ(t))2
(1− ηµ)4(t−1−j)

+ 16η4σ4
t−1∑

j=δ(t)

(t− δ(t))3

(j + 1− δ(t))3
(1− ηµ)4(t−1−j) ,

≤(a)
(
8η3H4ζ4⋆

µ
+

88η5τ4σ4

µ3

)
(t− δ(t))3

+ 64η4τ4
(
B(δ(t)) + ϕ4

⋆

)
(t− δ(t))4(1− ηµ)4(t−1−δ(t))

+
128η5τ4σ2

µ

(
A(δ(t)) + ϕ2

⋆

)
(t− δ(t))4(1− ηµ)2(t−1−δ(t))

+ 160η4σ2τ2
(
A(δ(t)) + ϕ2

⋆

)
(t− δ(t))3(1− ηµ)2(t−1−δ(t))

+ 80η2σ2

(
η2H2Kζ2⋆ +

η3τ2Kσ2

µ
+ η2σ2 (1 + ln(K))

)
(t− δ(t))3

+ 160η4σ2τ2
(
A(δ(t)) + ϕ2

⋆

)
(t− δ(t))3(1− ηµ)2(t−1−δ(t))

+ 80η4σ2

(
ητ2σ2

µ
+H2ζ2⋆

)
(t− δ(t))3 + 32η4σ4(t− δ(t))3 ,

≤(b)
(
8η3H4ζ4⋆

µ
+

88η5τ4σ4

µ3
+ 160η4Kσ2H2ζ2⋆ +

160η5τ2Kσ4

µ
+ 112η4σ4 (1 + ln(K))

)
(t− δ(t))3

+ 64η4τ4(t− δ(t))4(1− ηµ)4(t−1−δ(t))
(
B(δ(t)) + ϕ4

⋆

)
+

(
128η5τ4σ2

µ
(t− δ(t)) + 320η4σ2τ2

)
(t− δ(t))3(1− ηµ)2(t−1−δ(t))

(
A(δ(t)) + ϕ2

⋆

)
,

where in (a) we used that
∑t−1

j=δ(t)
1

(j+1−δ(t))3 <
∑t−1

j=δ(t)
1

(j+1−δ(t))2 ≤ π2

6 < 2; in (b) we used that
η < 1/H ≤ 1/µ to get the red and blue terms. This finishes the proof of the lemma, once we note
that when t = δ(t), the upper bound is zero, which means we can extend the proof to t ≥ δ(t), which
essentially means all t.

We can now use this bound to give the following bound for r ∈ [R],

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−jD(j)

≤ 128η5τ4σ2

µ

(
A(K(r − 1)) + ϕ2

⋆

) Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−j(j −K(r − 1))4(1− ηµ)2(j−1−K(r−1))

+ 320η4σ2τ2
(
A(K(r − 1)) + ϕ2

⋆

) Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−j(j −K(r − 1))3(1− ηµ)2(j−1−K(r−1))

+ 64η4τ4
(
B(K(r − 1)) + ϕ4

⋆

) Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−j(j −K(r − 1))4(1− ηµ)4(j−1−K(r−1))

(
8η3H4ζ4⋆

µ
+

88η5τ4σ4

µ3
+ 160η4Kσ2H2ζ2⋆ +

160η5τ2Kσ4

µ
+ 112η4σ4 (1 + ln(K))

)
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×
Kr−1∑

j=K(r−1)

(1− ηµ)Kr−1−j(j −K(r − 1))3 ,

≤ 128η5K4τ4σ2

µ
(1− ηµ)K−4

(
A(K(r − 1)) + ϕ2

⋆

) Kr−1∑
j=K(r−1)

(1− ηµ)j−K(r−1)

+ 320η4K3σ2τ2(1− ηµ)K−4
(
A(K(r − 1)) + ϕ2

⋆

) Kr−1∑
j=K(r−1)

(1− ηµ)j−K(r−1)

+ 64η4K4τ4(1− ηµ)K−5
(
B(K(r − 1)) + ϕ4

⋆

) Kr−1∑
j=K(r−1)

(1− ηµ)3(j−K(r−1))

(
8η3K3H4ζ4⋆

µ
+

88η5K3τ4σ4

µ3
+ 160η4K4σ2H2ζ2⋆ +

160η5τ2K4σ4

µ
+ 112η4K3σ4 (1 + ln(K))

)
×

Kr−1∑
j=K(r−1)

(1− ηµ)Kr−1−j ,

≤
(
1− (1− ηµ)

K
) 128η4K4τ4σ2

µ2
(1− ηµ)K−4

(
A(K(r − 1)) + ϕ2

⋆

)
+
(
1− (1− ηµ)

K
) 320η3K3σ2τ2

µ
(1− ηµ)K−4

(
A(K(r − 1)) + ϕ2

⋆

)
+
(
1− (1− ηµ)

K
) 64η3K4τ4

µ
(1− ηµ)K−5

(
B(K(r − 1)) + ϕ4

⋆

)
(
1− (1− ηµ)

K
)

×
(
8η2K3H4ζ4⋆

µ2
+

88η4K3τ4σ4

µ4
+

160η3K4σ2H2ζ2⋆
µ

+
160η4τ2K4σ4

µ2
+

112η3K3σ4 (1 + ln(K))

µ

)
,

which proves the claim.

H.3 Should Consensus Error Explode for a Large Step-size?

Note that the results in Lemmas 30 and 31 suggest that when K → ∞ we must pick η = O
(

1
K

)
so that the consensus error does not explode. This small step-size was criticized by Wang et al. [8]
through experiments showing that even without such a small step-size, consensus error did not blow
up in the regime of large K. In the following lemma we show that even with η = θ

(
1
H

)
, consensus

error does not blow up, and actually saturates to a value that depends on the data heterogeneity
Assumptions 4 to 6. The lemma relies on just the evolution of iterates on a single machine, and the
fact that it is decoupled between communication rounds.
Lemma 32 (Alternative Bounds on the Consensus Error ). We have the following for any t ≥ δ(t)
for η < 1/H when optimizing a problem that satisfies Assumptions 1, 2, 4 and 5,

C(t) ≤ 12(1− ηµ)2(t−δ(t))
(
A(δ(t)) + ϕ2

⋆

)
+

6ησ2

µ
+ 3ζ2⋆ ,

D(t) ≤ 432(1− ηµ)3(t−δ(t))
(
B(δ(t)) + ϕ4

⋆

)
+

864ησ4

µ3
+ 27ζ4⋆ .

In particular, when t − δ(t) → ∞ the upper bounds converge to 6ησ2

µ + 3ζ2⋆ and 864ησ4

µ3 + 27ζ4⋆
respectively.

Proof. We note that for any and m,n ∈ [M ]

E
[
∥xm

t − xn
t ∥

2
2

]
= E

[
∥xm

t − x⋆
m − xn

t + x⋆
n + x⋆

m − x⋆
n∥

2
2

]
,
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≤(Lemma 17 and Assumption 4) 3E
[
∥xm

t − x⋆
m∥22

]
+ 3E

[
∥xn

t − x⋆
n∥

2
2

]
+ 3ζ2⋆ ,

≤(Lemma 21) 3

(
(1− ηµ)2(t−δ(t))E

[∥∥xδ(t) − x⋆
m

∥∥2
2

]
+

ησ2

µ

)
+ 3

(
(1− ηµ)2(t−δ(t))E

[∥∥xδ(t) − x⋆
n

∥∥4
2

]
+

ησ2

µ

)
+ 3ζ2⋆ .

Averaging this over m,n ∈ [M ],

C(t) ≤ 6(1− ηµ)2(t−δ(t)) 1

M

∑
m∈[M ]

E
[∥∥xδ(t) − x⋆

m

∥∥2
2

]
+

6ησ2

µ
+ 3ζ2⋆ ,

≤ 12(1− ηµ)2(t−δ(t))
(
E
[∥∥xδ(t) − x⋆

∥∥2
2

]
+ ϕ2

⋆

)
+

6ησ2

µ
+ 3ζ2⋆ ,

= 12(1− ηµ)2(t−δ(t))
(
A(δ(t)) + ϕ2

⋆

)
+

6ησ2

µ
+ 3ζ2⋆ ,

which proves the first statement. For the second result we similarly note that for any and m,n ∈ [M ]
and t ∈ [0, T ],

E
[
∥xm

t − xn
t ∥

4
2

]
= E

[
∥xm

t − x⋆
m − xn

t + x⋆
n + x⋆

m − x⋆
n∥

4
2

]
,

≤(Lemma 17 and Assumption 4) 27E
[
∥xm

t − x⋆
m∥42

]
+ 27E

[
∥xn

t − x⋆
n∥

4
2

]
+ 27ζ4⋆ ,

≤(Lemma 23) 27

(
(1− ηµ)3(t−δ(t))E

[∥∥xδ(t) − x⋆
m

∥∥4
2

]
+

16ησ4

µ3

)
+ 27

(
(1− ηµ)3(t−δ(t))E

[∥∥xδ(t) − x⋆
n

∥∥4
2

]
+

16ησ4

µ3

)
+ 27ζ4⋆ .

Averaging this over m,n ∈ [M ],

D(t) ≤ 54(1− ηµ)3(t−δ(t)) 1

M

∑
m∈[M ]

E
[∥∥xδ(t) − x⋆

m

∥∥4
2

]
+ 27ζ4⋆ +

864ησ4

µ3
,

≤(Lemma 16 and Assumption 5) 432(1− ηµ)3(t−δ(t))
(
E
[∥∥xδ(t) − x⋆

∥∥4
2

]
+ ϕ4

⋆

)
+ 27ζ4⋆ +

864ησ4

µ3
,

= 432(1− ηµ)3(t−δ(t))
(
A(δ(t)) + ϕ4

⋆

)
+ 27ζ4⋆ +

864ησ4

µ3
,

which proves the second statement of the lemma.

The reason we do not use the above lemma over Lemmas 30 and 31, is that our step-size tuning in
Appendix I dictates that we anyways need to use η = O

(
1

µKR

)
to get our convergence guarantees

which puts the issue of an exploding consensus error to rest. Having said that the above lemma offers
reconciliation with the observations by Wang et al. [8] in the regime when η = θ

(
1
H

)
.

I Putting it All Together

I.1 Convergence in Iterates without Third-order Smoothness

This subsection will essentially combine the weaker blue upper bound from Lemma 20 with the
consensus error upper bound from Lemma 30. This would lead to an inequality that we can unroll
across communication rounds.
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Lemma 33. Under Assumptions 1 to 6 using η < 1/H and such that

ρ1 = (1− ηµ)
K
+
(
1− (1− ηµ)

K
) 4η2H2τ2

µ2
K2(1− ηµ)K−2 < 1

we can get the following convergence guarantee with initialization x0 = 0,

A(KR) ≤ ρR1 B
2 +

1− (1− ηµ)
K

1− ρ1
· ησ

2

µM
+

1− (1− ηµ)
K

1− ρ1
· 4η

2τ2H2K2(1− ηµ)K−2ϕ2
⋆

µ2

+
1− (1− ηµ)K

1− ρ1

(
2η2H4K2ζ2⋆

µ2
+

2η3H2τ2K2σ2

µ3
+

2η2H2σ2K (1 + ln(K))

µ2

)
.

Proof. First recall the round-wise recursion from Lemma 20 for r = R,

A(KR) ≤ (1− ηµ)
K
A(K(R− 1)) +

ηH2

µ

KR−1∑
j=K(R−1)

(1− ηµ)KR−1−jC(j)

+
(
1− (1− ηµ)

K
) ησ2

µM
,

≤(Lemma 30) (1− ηµ)
K
A(K(R− 1)) +

(
1− (1− ηµ)

K
) ησ2

µM

1− (1− ηµ)K

µ2

(
2η2H4K2ζ2⋆ +

2η3H2τ2K2σ2

µ
+ 2η2H2σ2K (1 + ln(K))

)
+

1− (1− ηµ)K

µ2
4η2τ2H2K2(1− ηµ)K−2

(
A(K(r − 1)) + ϕ2

⋆

)
,

=

(
(1− ηµ)

K
+
(
1− (1− ηµ)

K
) 4η2H2τ2

µ2
K2(1− ηµ)K−2

)
A(K(R− 1))

+
(
1− (1− ηµ)

K
) ησ2

µM
+

1− (1− ηµ)K

µ2
4η2τ2H2K2(1− ηµ)K−2ϕ2

⋆

+
1− (1− ηµ)K

µ2

(
2η2H4K2ζ2⋆ +

2η3H2τ2K2σ2

µ
+ 2η2H2σ2K (1 + ln(K))

)
,

≤ ρR1 B
2 +

1− (1− ηµ)
K

1− ρ1
· ησ

2

µM
+

1− (1− ηµ)
K

1− ρ1
· 4η

2τ2H2K2(1− ηµ)K−2ϕ2
⋆

µ2

+
1− (1− ηµ)K

1− ρ1

(
2η2H4K2ζ2⋆

µ2
+

2η3H2τ2K2σ2

µ3
+

2η2H2σ2K (1 + ln(K))

µ2

)
,

where we defined ρ1 = (1− ηµ)
K
+
(
1− (1− ηµ)

K
)

4η2H2τ2

µ2 K2(1− ηµ)K−2. This proves the
lemma.

We can tune the step-size in the above guarantee, using standard techniques while making sure that τ
is small enough and K is large enough. This gives the following result,
Lemma 34 (Strongly Convex Functions Iterate Convergence with τ, ζ⋆, ϕ⋆). Assuming

R ≥ max

{
3Hτ

µ2
ln

(
B2

ϵ

)
,
2Hτ

µ2
ln3/2

(
B2

ϵ

)}
we can get the following convergence guarantee for local SGD, initializing at x0 = 0 and optimizing
functions satisfying Assumptions 1 to 6,

A(KR) = Õ
(
e−

µKR
2H B2 +

σ2

µ2MKR
+

τ2H2ϕ2
⋆

µ4R2
+

H4ζ2⋆
µ4R2

+
H2τ2σ2

µ6KR3
+

H2σ2 (1 + ln(K))

µ4KR2

)
,

where we pick the step-size,

η = min

{
1

2H
,

1

µKR
ln

(
B2

ϵ

)}
,
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for the choice of ϵ,

ϵ := max

{
2σ2

µ2MKR
,
8τ2H2ϕ2

⋆

µ4R2
,
4H4ζ2⋆
µ4R2

,
4H2τ2σ2

µ6KR3
,
4H2σ2 (1 + ln(K))

µ4KR2
, ϵtarget

}
,

where ϵtarget is a target, which is greater than or equal to the machine precision.

Proof. We will pick our step-size as follows, where we will specify some ϵ bigger than machine-
precision in the end:

η = min

{
1

2H
,

1

µKR
ln

(
B2

ϵ

)}
.

We will now derive conditions that are enough to bound 1−(1−ηµ)K

1−ρ1
by 2. Note the following,

1− (1− ηµ)K

1− ρ1
≤ 2 ,

⇔ ρ1 ≤ 1 + (1− ηµ)K

2
,

⇔
(
1− (1− ηµ)

K
) 4η2H2τ2

µ2
K2(1− ηµ)K−2 ≤ 1− (1− ηµ)K

2
,

⇔ 4η2H2τ2

µ2
K2(1− ηµ)K−2 ≤ 1

2
,

⇐ 4H2τ2

µ4R2
ln2
(
B2

ϵ

)
≤ 1

2
,

⇐ R ≥ 3Hτ

µ2
ln

(
B2

ϵ

)
,

Hence it is sufficient to assume that R ≥ 3Hτ
µ2 ln

(
B2

ϵ

)
. This allows us to simplify the convergence

rate from the previous lemma as follows,

A(KR) ≤ ρR1 B
2 +

2ησ2

µM
+

8η2τ2H2K2(1− ηµ)K−2ϕ2
⋆

µ2

+
4η2H4K2ζ2⋆

µ2
+

4η3H2τ2K2σ2

µ3
+

4η2H2σ2K (1 + ln(K))

µ2
,

≤ ρR1 B
2 +

2ησ2

µM
+

8η2τ2H2K2ϕ2
⋆

µ2
+

4η2H4K2ζ2⋆
µ2

+
4η3H2τ2K2σ2

µ3

+
4η2H2σ2K (1 + ln(K))

µ2
.

Now, let us upper bound the exponential term more carefully. Recall that due to the choice of our
step-size, as we used this before,

ρ1 = (1− ηµ)
K
+
(
1− (1− ηµ)

K
) 4η2H2τ2

µ2
K2(1− ηµ)K−2 ,

≤(a) (1− ηµ)
K
+ ηµK

4η2H2τ2

µ2
K2(1− ηµ)K−2 ,

≤ (1− ηµ)
K
+

4H2τ2

µ4R3
ln3
(
B2

ϵ

)
(1− ηµ)K−2 ,

≤ (1− ηµ)
K−2

+
4H2τ2

µ4R3
ln3
(
B2

ϵ

)
(1− ηµ)K−2 ,

≤
(
1 +

4H2τ2

µ4R3
ln3
(
B2

ϵ

))
(1− ηµ)

K−2
,

≤ e
−ηµ(K−2)+ 4H2τ2

µ4R3 ln3
(

B2

ϵ

)
.
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where in (a) we use Bernoulli’s inequality, and the choice of the step-size which implies that ηµ < 1.
Assuming K ≥ 4, and raising the power of both sides to R gives us,

ρR1 ≤ e
− ηµKR

2 + 4H2τ2

µ4R2 ln3
(

B2

ϵ

)
,

≤(a) e−
ηµKR

2 +1 ,

where in (a) we assumed that R ≥ 2Hτ
µ2 ln3/2

(
B2

ϵ

)
. Finally, we will pick the ϵ as follows,

ϵ := max

{
2σ2

µ2MKR
,
8τ2H2ϕ2

⋆

µ4R2
,
4H4ζ2⋆
µ4R2

,
4H2τ2σ2

µ6KR3
,
4H2σ2 (1 + ln(K))

µ4KR2
, ϵtarget

}
,

where ϵtarget is a target, which is greater than or equal to the machine precision (say, floating point

precision), thus implying that ln
(

B2

ϵ

)
is a numerical constant. We note two things that justify that

choice of this step-size,

• The largest ϵ will lead to the step size we end up using, an in particular determine govern
which term dominates the convergence rate. For instance, let us assume that ϵ = 2σ2

µ2MKR .

Furthermore, let 1
2H ≥ 1

µKR ln
(

B2

ϵ

)
which implies that e−

µKR
2H ≤ 2σ2

µ2MKR . With η =

1
µKR ln

(
B2

ϵ

)
, this makes the convergence rate,

A(KR) ≤ 2σ2

µ2MKR
+

2σ2

µ2MKR
ln

(
B2

2σ2

µ2MKR

)
= Õ

(
e−

µKR
2H +

σ2

µ2MKR

)
.

• On the other hand if 1
2H ≤ 1

µKR ln
(

B2

ϵ

)
, then it implies that, e−

µKR
2H ≥ 2σ2

µ2MKR , which
makes the convergence rate,

A(KR) ≤ e−
µKR
2H +

σ2

µHM
= Õ

(
e−

µKR
2H +

σ2

µ2MKR

)
.

Using the above logic for all possible choices of ϵ (ant thus η) allows us to give the following
convergence rate,

A(KR) = Õ
(
e−

µKR
2H B2 +

σ2

µ2MKR
+

τ2H2ϕ2
⋆

µ4R2
+

H4ζ2⋆
µ4R2

+
H2τ2σ2

µ6KR3
+

H2σ2 (1 + ln(K))

µ4KR2

)
.

Furthermore, assuming the functions are quadratic we can replace some of the smoothness constants
with τ , by relying on the better red upper bound of Lemma 20, as with Q = 0 we do not need to
bound the fourth moment of consensus error. The proof more or less follows the above lemma, and
results in the following rate for quadratics.

Lemma 35. Under Assumptions 1 to 6 and 8 using η < 1/H and such that ρ2 = (1− ηµ)
K

+(
1− (1− ηµ)

K
)

4η2τ4

µ2 K2(1− ηµ)K−2 < 1 we can get the following convergence guarantee with
initialization x0 = 0,

A(KR) ≤ ρR2 B
2 +

1− (1− ηµ)
K

1− ρ2
· ησ

2

µM
+

1− (1− ηµ)
K

1− ρ2
· 4η

2τ4K2(1− ηµ)K−2ϕ2
⋆

µ2

+
1− (1− ηµ)K

1− ρ2

(
2η2H2τ2K2ζ2⋆

µ2
+

2η3τ4K2σ2

µ3
+

2η2τ2σ2K (1 + ln(K))

µ2

)
.

One notable thing is that for quadratics, when τ = 0, we can get the fast convergence guarantee for
dense mini-batch SGD, i.e., with KR communication rounds. We do not get this for non-quadratics,
which highlights the need to understand the effect of third-order smoothness. This is not surprising
because third-order smoothness is known to play a vital role in the convergence of local SGD even
in a homogeneous setting. Just like the strongly convex case we can tune the step-size to get the
following convergence rate for quadratics,
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Lemma 36 (Quadratics Iterate Convergence with τ, ζ⋆, ϕ⋆). Assuming R ≥
max

{
3τ2

µ2 ln
(

B2

ϵ

)
, 2τ2

µ2 ln3/2
(

B2

ϵ

)}
we can get the following convergence guarantee for

local SGD, initializing at x0 = 0 and optimizing functions satisfying Assumptions 1 to 6 and 8,

A(KR) = Õ
(
e−

µKR
2H B2 +

σ2

µ2MKR
+

τ4ϕ2
⋆

µ4R2
+

τ2H2ζ2⋆
µ4R2

+
τ4σ2

µ6KR3
+

τ2σ2 (1 + ln(K))

µ4KR2

)
,

where we pick the step-size,

η = min

{
1

2H
,

1

µKR
ln

(
B2

ϵ

)}
,

for the choice of ϵ,

ϵ := max

{
2σ2

µ2MKR
,
8τ4ϕ2

⋆

µ4R2
,
4τ2H2ζ2⋆
µ4R2

,
4τ4σ2

µ6KR3
,
4τ2σ2 (1 + ln(K))

µ4KR2
, ϵtarget

}
,

where ϵtarget is a target, which is greater than or equal to the machine precision.

It can be noted in the above convergence rate than when τ = 0 we recover the fast convergence rate
of dense mini-batch SGD.

I.2 Convergence in Function Value without Third-order Smoothness

Lemma 37 (Strongly Convex Function Convergence with τ, ζ⋆, ϕ⋆). Assuming

R ≥ 4τ
√
κ

µ
max

{
ln

(
µB2

ϵ

)
,

√
2 ln3

(
µB2

ϵ

)}
,

KR ≥ 4κ we can get the following convergence guarantee for local SGD, initializing at x0 = 0 and
optimizing functions satisfying Assumptions 1 to 6,

E [F (x̂)]− F (x⋆) = Õ
(
e−

µKR
2H µB2 +

H3ζ2⋆
µ2R2

+
Hτ2σ2

µ4KR3
+

Hσ2 (1 + ln(K))

µ2KR2
+

Hτ2ϕ2
⋆

µ2R2
+

σ2

µMKR

)
,

where we define x̂ =
∑T−1

t=0 wtxt for the choice of weights

wt :=
ρ
R−1−δ(t)/K
4 (1− ηµ)δ(t)+K−1−t

W

for W =
1−ρR

4

1−ρ4
· 1−(1−ηµ)K

ηµ and ρ4 = (1− ηµ)
K
+
(
1− (1− ηµ)K

)
8η2Hτ2K2

µ (1− ηµ)K−2. And
we pick the step-size as,

η = min

{
1

2H
,

1

µKR
ln

(
µB2

ϵ

)}
,

for the choice of ϵ,

ϵ = min

{
max

{
4H3ζ2⋆
µ2R2

,
4Hτ2σ2

µ4KR3
,
4Hσ2 (1 + ln(K))

µ2KR2
,
8Hτ2ϕ2

⋆

µ2R2
,

3σ2

µMKR
, ϵtarget

}
,
µB2

6

}
,

where ϵtarget is a target, which is greater than or equal to the machine precision.

Proof. The main task in this subsection is to combine Lemmas 25 and 30. Recall Lemma 25 implies
for all t ∈ [0, T − 1],

A(t+ 1) ≤ (1− ηµ)A(t)− ηE(t) + 2ηHC(t) +
3η2σ2

M
. (⋆)

Also recall the upper bound on the consensus error from Lemma 30 for all t ∈ [0, T ],

C(t) ≤ 2η2H2K2ζ2⋆ +
2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K))
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+ 4η2τ2 (t− δ(t))
2
(1− ηµ)2(t−1−δ(t))

(
A(δ(t)) + ϕ2

⋆

)
.

Plugging this upper bound into (⋆) gives us,

A(t+ 1) ≤ (1− ηµ)A(t)− ηE(t) + 4η3H3K2ζ2⋆ +
4η4Hτ2K2σ2

µ
+ 4η3Hσ2K (1 + ln(K))

+ 8η3Hτ2K2(1− ηµ)2(t−1−δ(t))
(
A(δ(t)) + ϕ2

⋆

)
+

3η2σ2

M
.

Unrolling the above recursion for over an arbitrary round r ∈ [0, R−1] gives us (c.f., the calculations
in Lemma 30),

A(K(r + 1)) ≤ (1− ηµ)
K
A(Kr)− η

Kr+K−1∑
t=Kr

(1− ηµ)Kr+K−1−tE(t)

+
(
1− (1− ηµ)K

) 8η2Hτ2K2

µ
(1− ηµ)K−2A(Kr) +

1− (1− ηµ)K

ηµ
C1 .

Where C1 is the sum of constant terms in the upper bound which do not depend on t and is defined as,

C1 := 4η3H3K2ζ2⋆ +
4η4Hτ2K2σ2

µ
+ 4η3Hσ2K (1 + ln(K)) + 8η3Hτ2K2ϕ2

⋆ +
3η2σ2

M
.

We also define the following constant,

ρ4 := (1− ηµ)
K
+
(
1− (1− ηµ)K

) 8η2Hτ2K2

µ
(1− ηµ)K−2 .

These notations allows us to re-write the above recursion as follows for r ∈ [0, R− 1],

A(K(r + 1)) ≤ ρ4A(Kr)− η

Kr+K−1∑
t=Kr

(1− ηµ)Kr+K−1−tE(t) +
1− (1− ηµ)K

ηµ
C1 .

Now unrolling the recursion over R rounds gives us,

A(KR) ≤ ρR4 A(0)− η

R−1∑
r=0

ρR−1−r
4

Kr+K−1∑
t=Kr

(1− ηµ)Kr+K−1−tE(t)

+
1− (1− ηµ)K

ηµ

R−1∑
r=0

ρR−1−r
4 C1 ,

≤ ρR4 A(0)− η
R−1∑
r=0

ρR−1−r
4

Kr+K−1∑
t=Kr

(1− ηµ)Kr+K−1−tE(t)

+
1− (1− ηµ)K

ηµ
· 1− ρR4
1− ρ4

· C1 .

We will now define the following sum of weights,

W :=

R−1∑
r=0

ρR−1−r
4

Kr+K−1∑
t=Kr

(1− ηµ)Kr+K−1−t ,

=

R−1∑
r=0

ρR−1−r
4 · 1− (1− ηµ)K

ηµ
,

=
1− ρR4
1− ρ4

· 1− (1− ηµ)K

ηµ
.

Dividing by ηW in the above recursion and re-arranging gives us the following,

1

W

R−1∑
r=0

ρR−1−r
4

Kr+K−1∑
t=Kr

(1− ηµ)Kr+K−1−tE(t)
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≤ ρR4
ηW

A(0)− A(KR)

ηW
+

1

ηW
· 1− (1− ηµ)K

ηµ
· 1− ρR4
1− ρ4

· C1 ,

≤ ρR4
1− ρR4

· 1− ρ4
1− (1− ηµ)K

µB2 +
C1

η
,

=
ρR4

1− ρR4

(
1− 8η2Hτ2K2

µ
(1− ηµ)K−2

)
µB2 + 4η2H3K2ζ2⋆ +

4η3Hτ2K2σ2

µ

+ 4η2Hσ2K (1 + ln(K)) + 8η2Hτ2K2ϕ2
⋆ +

3ησ2

M
.

Now similar to the proof in the previous section we will pick the step-size as follows,

η := min

{
1

2H
,

1

µKR
ln

(
µB2

ϵ

)}
,

where we will define ϵ later in the proof. Our goal now is to bound the term
ρR
4

1−ρR
4

(
1− 8η2Hτ2K2

µ (1− ηµ)K−2
)

so that it looks more like the exponential decay in usual con-
vergence analyses. We first note the following,

8Hτ2

µ3R2
ln2
(
µB2

ϵ

)
≤ 1

2
,

by assuming R ≥ 4τ
µ

√
κ ln

(
µB2

ϵ

)
. This allows us to upper bound

(
1− 8η2Hτ2K2

µ (1− ηµ)K−2
)

by 1. Now we will upper bound ρR
4

1−ρR
4

. To do this we first note the following,

ρR4 = (1− ηµ)KR

(
1 +

(
1− (1− ηµ)K

) 8η2Hτ2K2

µ(1− ηµ)

)R

,

≤(a) e−ηµKR

(
1 + ηµK

8η2Hτ2K2

µ(1− ηµ)2

)R

,

≤ e−ηµKR

(
1 +

1

R3
ln3
(
µB2

ϵ

)
8Hτ2

µ3(1− µ/2H)2

)R

,

≤ e
−ηµKR+ 1

R2 ln3
(

µB2

ϵ

)
8Hτ2

µ3(1−1/(2κ)2) ,

≤(κ ≥ 1) e
−ηµKR+ 1

R2 ln3
(

µB2

ϵ

)
32Hτ2

µ3 ,

≤(b) e−ηµKR+1 ,

where in (a) we use the Bernoulli’s inequality after noting that ηµ < 1 for our choice of step-size;

and in (b) we used R ≥ τ
µ

√
ln3
(

µB2

ϵ

)
32κ. Now using this upper bound we get,

ρR4
1− ρR4

≤ e−ηµKR+1

1− e−ηµKR+1
,

≤(a) 2e−ηµKR+1 ≤ 6e−ηµKR ,

where in (a) we assume that e−ηµKR+1 ≤ 1
2 which can be verified to be true for both choices of

step-sizes as follows,

(i) e−
µKR
2H +1 ≤ 1

2
⇐ 2e ≤ e

µKR
2H ⇐ 4κ ≤ KR ;

(ii) e− ln(µB2/ϵ)+1 ≤ 1

2
⇐ eϵ

µB2
≤ 1

2
⇐ ϵ ≤ µB2

6
.

We are almost done, but we still need to choose an ϵ. We do this the same way as in the previous
section: we pick ϵ as the maximum of the target accuracy ϵtarget and the value of the convergence
rate terms which are an increasing function of η, at η′ = 1

µKR . In particular we pick ϵ as,

ϵ = min

{
max

{
4H3ζ2⋆
µ2R2

,
4Hτ2σ2

µ4KR3
,
4Hσ2 (1 + ln(K))

µ2KR2
,
8Hτ2ϕ2

⋆

µ2R2
,

3σ2

µMKR
, ϵtarget

}
,
µB2

6

}
.
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Finally, note that the we have essentially used the weights on the models {x0, . . . , xKR−1} defined
by the blue term. Rigorously for time step t ∈ [0, T − 1] we use the following weight,

wt =
ρ
R−1−δ(t)/K
4 (1− ηµ)δ(t)+K−1−t

W
,

and we bound the function sub-optimality of the point
∑T−1

t=0 wtxt by using Jensen’s inequality as
follows,

E

[
F

(
T−1∑
t=0

wtxt

)]
− F (x⋆) ≤

T−1∑
t=0

wt (E [F (xt)]− F (x⋆)) .

Thus, our choice of ϵ, η, and averaging weights proves the lemma statement, assuming the highlighted
required conditions.

In the following lemma, we state the result for strongly convex quadratics, by noting that in the proof
of the above lemma, we simply replace the usage of Lemma 25 by Lemma 24 and note that Q = 0 for
quadratics, which allows us to replace several smoothness constants H in the convergence rate by τ .
Lemma 38 (Strongly Convex Function Convergence with τ, ζ⋆, ϕ⋆ for Quadratics). Assuming

R ≥ 4τ2

µ2 max

{
ln
(

µB2

ϵ

)
,

√
2 ln3

(
µB2

ϵ

)}
, KR ≥ 4κ we can get the following convergence

guarantee for local SGD, initializing at x0 = 0 and optimizing functions satisfying Assumptions 1
to 6,

E [F (x̂)]− F (x⋆) = Õ
(
e−

µKR
2H µB2 +

τ2H2ζ2⋆
µ3R2

+
τ4σ2

µ5KR3
+

τ2σ2 (1 + ln(K))

µ3KR2
+

τ4ϕ2
⋆

µ3R2
+

σ2

µMKR

)
,

where we define x̂ =
∑T−1

t=0 wtxt for the choice of weights

wt :=
ρ
R−1−δ(t)/K
4 (1− ηµ)δ(t)+K−1−t

W

for W =
1−ρR

4

1−ρ4
· 1−(1−ηµ)K

ηµ and ρ4 = (1− ηµ)
K

+
(
1− (1− ηµ)K

)
8η2τ4K2

µ2 (1− ηµ)K−2. And
we pick the step-size as,

η = min

{
1

2H
,

1

µKR
ln

(
µB2

ϵ

)}
,

for the choice of ϵ,

ϵ = min

{
max

{
4τ2H2ζ2⋆
µ3R2

,
4τ4σ2

µ5KR3
,
4τ2σ2 (1 + ln(K))

µ3KR2
,
8τ4ϕ2

⋆

µ3R2
,

3σ2

µMKR
, ϵtarget

}
,
µB2

6

}
,

where ϵtarget is a target, which is greater than or equal to the machine precision.

I.3 Convergence in Iterates with Third-order Smoothness

The main technical challenge in incorporating third-order smoothness (c.f., Assumption 1) in our
upper bounds lies in bounding the sequence D(·) while working with the upper bound in Lemma 20.
One natural approach is to mirror the analysis in the previous section: unroll the consensus error
recursion back to the previous communication round, substitute that into the upper bound for A(·),
and then iterate across rounds. However, this strategy quickly encounters difficulties. We need to
control the fourth moment of the iterate error, B(·), and we lack a uniform upper bound for it.

To overcome this, we adopt a different strategy. As the following lemma shows, we analyze the
pair (A(·), B(·)) together in terms of the pair (C(·), D(·)), treating them as components of a two-
dimensional recursion. Once we do this, we can more or less use ideas similar to those before.
Lemma 39. Under Assumptions 1 to 6 using η < 1/H and defining

ρ3 := (1− ηµ)K +

((
1− (1− ηµ)

K
)
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×
(
2τ2

µ2
+

2Q2B2

µ2
+

16η2σ2τ2

µ2MB2
+

H4

µ4
+

16η2σ2Q2

µ2M

)(
4η2τ2K2 + 64η4τ4K4

))
,

Ψ := 4η2τ2K2ϕ2
⋆ +

128η5τ4K4σ2

µB2
ϕ2
⋆ +

320η4σ2τ2K3

B2
ϕ2
⋆ +

64η4τ4K4

B2
ϕ4
⋆

+ 2η2H2K2ζ2⋆ +
2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K)) +

8η3K3H4ζ4⋆
µB2

+
88η5K3τ4σ4

µ3B2

+
160η4K4σ2H2ζ2⋆

B2
+

160η5τ2K4σ4

µB2
+

112η4K3σ4 (1 + ln(K))

B2
.

we can get the following convergence guarantee with initialization x0 = 0,

max

{
A(KR),

B(KR)

B2

}
≤ 2ρR3 B

2 +
1− (1− ηµ)

K

1− ρ3

(
ησ2

µM
+

9η3σ4

µM2B2

)
+

1− (1− ηµ)
K

1− ρ3

(
2τ2

µ2
+

2Q2B2

µ2
+

16η2σ2τ2

µ2MB2
+

H4

µ4
+

16η2σ2Q2

µ2M

)
Ψ .

Proof. We will denote the following vectors for all t ∈ [0, T ],

A(t) :=
[

A(t)
B(t)/B2

]
and C(t) :=

[
C(t)

D(t)/B2

]
,

where note that B comes from Assumption 3 and we divide the sequences B(t), C(t) by B2 to make
them “dimensionally consistent" or similarly scale-variant as the sequences A(t), C(t). Based on
the recursions we have developed in Lemmas 20 and 22 we get the following vector recursion,

A(t+ 1) ≤ (1− ηµ)

[
1 0

8η2σ2

MB2 1

]
A(t) +

[
2ητ2

µ
2ηQ2B2

µ
16η3σ2τ2

µMB2
ηH4

µ3 + 16η3σ2Q2

µM

]
C(t) +

[
η2σ2

M
9η4σ4

M2B2

]
,

=: PA(t) +QC(t) +N ,

≤ P t+1−δ(t)A(δ(t)) +
t∑

j=δ(t)

P t−j (QC(j) +N) ,

where we define P,Q ∈ R2×2 and N ∈ R2 to simplify the calculations. Let us also recall the
recursion we get for the consensus error terms based on Lemmas 30 and 31,

C(t) ≤

[
4η2τ2K2 0

128η5τ4K4σ2

µB2 + 320η4σ2τ2K3

B2 64η4τ4K4

]
A(δ(t))

+

[
4η2τ2K2ϕ2

⋆
128η5τ4K4σ2

µB2 ϕ2
⋆ +

320η4σ2τ2K3

B2 ϕ2
⋆ +

64η4τ4K4

B2 ϕ4
⋆

]

+

[
2η2H2K2ζ2⋆ + 2η3τ2K2σ2

µ + 2η2σ2K (1 + ln(K))
8η3K3H4ζ4

⋆

µB2 + 88η5K3τ4σ4

µ3B2 +
160η4K4σ2H2ζ2

⋆

B2 + 160η5τ2K4σ4

µB2 + 112η4K3σ4(1+ln(K))
B2

]
,

=: UA(δ(t)) + V ,

where we define U ∈ R2×2 and V ∈ R2. Now we can plug in this upper bound in the inequality
above, which gives us,

A(t+ 1) ≤ P t+1−δ(t)A(δ(t)) +
t∑

j=δ(t)

P t−j (QUA(δ(t)) +QV +N) .

Now, let us denote t = KR− 1 and unroll across communication rounds to get the following,

A(KR) ≤ PKA(K(R− 1)) +

KR−1∑
j=K(R−1)

PKR−1−j (QUA(K(R− 1)) +QV +N) ,
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=: PKA(K(R− 1)) + P̄ (QUA(K(R− 1)) +QV +N) ,

=
(
PK + P̄QU

)
A(K(R− 1)) + P̄ (QV +N) ,

where we define P̄ =
∑KR−1

j=K(R−1) P
KR−1−j ∈ R2×2. Taking the norm on both sides and using the

triangle inequality, we get,

∥A(KR)∥2 ≤
∥∥(PK + P̄QU

)∥∥
2
∥A(K(R− 1))∥2 +

∥∥P̄Q
∥∥
2
∥V ∥2 +

∥∥P̄∥∥
2
∥N∥2 ,

≤
(∥∥PK

∥∥
2
+
∥∥P̄∥∥

2
∥Q∥2 ∥U∥2

)
∥A(K(R− 1))∥2 +

∥∥P̄∥∥
2
∥Q∥2 ∥V ∥2 +

∥∥P̄∥∥
2
∥N∥2 .

We will not individually upper bound these spectral norms. First note that due to P being a lower
triangular matrix,

PK = (1− ηµ)K
[

1 0
8η2σ2K
MB2 1

]
.

Since PK is a lower triangular matrix, its eigenvalues can be read off its diagonal. In particular, we
note that

∥∥PK
∥∥
2
= (1− ηµ)K . We can use a similar idea to upper bound

∥∥P̄∥∥
2

as follows,

P̄ =

[ ∑K−1
i=0 (1− ηµ)i 0

8η2σ2

MB2

∑K−1
i=0 i(1− ηµ)i

∑K−1
i=0 (1− ηµ)i

]
.

This implies
∥∥P̄∥∥

2
= 1−(1−ηµ)K

ηµ . We also note the following about Q, noting that the spectral norm
is upper-bounded by the Frobenius norm,

∥Q∥2 ≤ 2ητ2

µ
+

2ηQ2B2

µ
+

16η3σ2τ2

µMB2
+

ηH4

µ3
+

16η3σ2Q2

µM
.

Finally, noting that U is also lower diagonal, we note that,

∥U∥2 = max
{
4η2τ2K2, 64η4τ4K4

}
,

≤ 4η2τ2K2 + 64η4τ4K4 .

Combining the upper bounds for PK , P̄ , Q, U we get,∥∥PK
∥∥
2
+
∥∥P̄∥∥

2
∥Q∥2 ∥U∥2

≤ (1− ηµ)K

+
(
1− (1− ηµ)

K
)(2τ2

µ2
+

2Q2B2

µ2
+

16η2σ2τ2

µ2MB2
+

H4

µ4
+

16η2σ2Q2

µ2M

)(
4η2τ2K2 + 64η4τ4K4

)
,

=: ρ3 .

Note that when τ = 0, then ρ3 = (1− ηµ)K , which will lead to the fast exponential decay we do get
in the homogeneous setting. Using the above calculation, we can also conclude that,∥∥P̄∥∥

2
∥Q∥2 ∥V ∥2 ≤

(
1− (1− ηµ)

K
)(2τ2

µ2
+

2Q2B2

µ2
+

16η2σ2τ2

µ2MB2
+

H4

µ4
+

16η2σ2Q2

µ2M

)
∥V ∥2 ,

∥∥P̄∥∥
2
∥N∥2 ≤

(
1− (1− ηµ)

K
)( ησ2

µM
+

9η3σ4

µM2B2

)
.

Plugging this back into the red inequality and then unrolling the recursion, we get,

∥A(KR)∥2 ≤ ρR3 ∥A(K(R− 1))∥2

+
1− (1− ηµ)

K

1− ρ3

(
2τ2

µ2
+

2Q2B2

µ2
+

16η2σ2τ2

µ2MB2
+

H4

µ4
+

16η2σ2Q2

µ2M

)
∥V ∥2

+
1− (1− ηµ)

K

1− ρ3

(
ησ2

µM
+

9η3σ4

µM2B2

)
,

which proves our convergence rate upon applying the triangle inequality to note that,

∥V ∥2 ≤ 4η2τ2K2ϕ2
⋆ +

128η5τ4K4σ2

µB2
ϕ2
⋆ +

320η4σ2τ2K3

B2
ϕ2
⋆ +

64η4τ4K4

B2
ϕ4
⋆
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+ 2η2H2K2ζ2⋆ +
2η3τ2K2σ2

µ
+ 2η2σ2K (1 + ln(K)) +

8η3K3H4ζ4⋆
µB2

+
88η5K3τ4σ4

µ3B2

+
160η4K4σ2H2ζ2⋆

B2
+

160η5τ2K4σ4

µB2
+

112η4K3σ4 (1 + ln(K))

B2
.

This proves the lemma.

We will now tune the step-size following a similar idea to the previous section to achieve the following
convergence rate.
Lemma 40. Assuming sufficiently many communication rounds,

R ≥ 8τ

µ
max

{
ln2
(
B2

ϵ

)
·
(
4QB

µ
+

5H2

µ2

)
, ln3/2

(
B2

ϵ

)(
1 +

√
QB

µ
+

H

µ

)
,

ln(B2/ϵ)

ln(ln(B2/ϵ))

}
,

B2 > eϵ, and KR ≥ 8σ
µ2

√
M

ln
(

B2

ϵ

)
·max

{
τ
B , Q

}
we can get the following convergence guarantee

for local SGD, initializing at x0 = 0 and optimizing functions satisfying Assumptions 1 to 6,

∥A(KR)∥2 = Õ

(
e−ηµKRB2 +

σ2

µ2MKR
+

σ4

µ4K3R3M2B2
+ κ′

(
τ2ϕ2

⋆

µ2R2
+

τ4σ2

µ6KR5B2
ϕ2
⋆

)
+ κ′

(
σ2τ2

µ4KR4B2
ϕ2
⋆ +

τ4

µ4B2R4
ϕ4
⋆ +

H2ζ2⋆
µ2R2

+
τ2σ2

µ4KR3
+

σ2 (1 + ln(K))

µ2KR2

)
+ κ′

(
H4ζ4⋆

µ4R3B2
+

τ4σ4

µ8K2R5B2
+

σ2H2ζ2⋆
µ4B2R4

+
τ2σ4

µ6KR5B2
+

σ4 (1 + ln(K))

µ4KB2R4

))
,

where we define κ′ := 2 + 4Q2B2

µ2 + 6H4

µ4 and we pick the step-size,

η = min

{
1

2H
,

1

µKR
ln

(
B2

ϵ

)}
,

with the choice of ϵ is given by

ϵ := max

{
σ2

µ2MKR
,

σ4

µ4K3R3M2B2
,
τ2ϕ2

⋆κ
′

µ2R2
,
τ4σ2κ′ϕ2

⋆

µ6KR5B2
,
σ2τ2κ′ϕ2

⋆

µ4KR4B2
,
τ4κ′ϕ4

⋆

µ4B2R4
,

H2ζ2⋆κ
′

µ2R2
+

τ2σ2

µ4KR3
+

σ2 (1 + ln(K))

µ2KR2
,
H4ζ4⋆κ

′

µ4R3B2
,

τ4σ4κ′

µ8K2R5B2
,
σ2H2ζ2⋆κ

′

µ4B2R4
,

τ2σ4κ′

µ6KR5B2
,
σ4 (1 + ln(K))κ′

µ4KB2R4
, ϵtarget

}
where ϵtarget is the target accuracy, greater than or equal to the machine precision.

Proof. We will pick the following step-size,

η = min

{
1

2H
,

1

µKR
ln

(
B2

ϵ

)}
,

where the choice of ϵ > 0 will be made explicit later. We will first identify the requirements on
problem parameters to guarantee that,

1− (1− ηµ)K

1− ρ3
≤ 2 ,

⇔ 1− (1− ηµ)K

2
≤ (1− ρ3) ,

⇔ 1

2
≤ 1−

(
2τ2

µ2
+

2Q2B2

µ2
+

16η2σ2τ2

µ2MB2
+

H4

µ4
+

16η2σ2Q2

µ2M

)(
4η2τ2K2 + 64η4τ4K4

)
,
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⇔
(
2τ2

µ2
+

2Q2B2

µ2
+

16η2σ2τ2

µ2MB2
+

H4

µ4
+

16η2σ2Q2

µ2M

)(
4η2τ2K2 + 64η4τ4K4

)
≤ 1

2
,

⇐(a)
(
2Q2B2

µ2
+

16σ2τ2

µ4K2R2MB2
ln2
(
B2

ϵ

)
+

3H4

µ4
+

16σ2Q2

µ4K2R2M
ln2
(
B2

ϵ

))
×
(

4τ2

µ2R2
ln2
(
B2

ϵ

)
+

64τ4

µ4R4
ln4
(
B2

ϵ

))
≤ 1

2
,

⇐ (i)

(
2Q2B2

µ2
+

3H4

µ4

)(
4τ2

µ2R2
ln2
(
B2

ϵ

)
+

64τ4

µ4R4
ln4
(
B2

ϵ

))
≤ 1

4
; and

(ii)

(
16σ2τ2

µ4K2R2MB2
ln2
(
B2

ϵ

)
+

16σ2Q2

µ4K2R2M
ln2
(
B2

ϵ

))
×
(

4τ2

µ2R2
ln2
(
B2

ϵ

)
+

64τ4

µ4R4
ln4
(
B2

ϵ

))
≤ 1

4
,

⇐ (i)

√
16Q2B2

µ2
+

24H4

µ4
· 2τ
µ

ln

(
B2

ϵ

)
≤ R ;

(ii) 4

√
16Q2B2

µ2
+

24H4

µ4
·

4
√
64τ

µ
ln

(
B2

ϵ

)
≤ R ;

(iii)
8στ

µ2
√
MB

ln

(
B2

ϵ

)
≤ KR ;

(iv)
8σQ

µ2
√
M

ln

(
B2

ϵ

)
≤ KR ; and

(v)
4τ

µ
ln

(
B2

ϵ

)
≤ R ,

⇐ (i)KR ≥ 8σ

µ2
√
M

ln

(
B2

ϵ

)
·max

{ τ

B
,Q
}

; and

(ii) R ≥ 3τ

µ
ln

(
B2

ϵ

)
·
(
4QB

µ
+

5H2

µ2

)
.

where in (a) we used that τ2/µ2 ≤ H2/µ2. Now we will upper bound ρ3 as follows,

ρ3

≤(a) (1− ηµ)K

+
1

R
ln

(
B2

ϵ

)(
2Q2B2

µ2
+

16σ2

µ4K2R2M
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where in (a) we use Bernoulli’s Inequality and the choice of step-size, which implies ηµ < 1 as well
as the fact that τ2/µ2 ≤ H4/µ4; and in (b) we assumed that the conditions derived above to ensure
1−(1−ηµ)K

2 ≤ 1 − ρ3 are true, which allows us to conclude 16σ2

µ4K2R2M

(
τ2

B2 + 1
)
ln2
(

B2

ϵ

)
≤ 1.

Raising both sides to the power R gives us,

ρR3

≤ e−ηµKR exp

((
B2

ϵ

)1/R

ln

(
B2

ϵ

)(
2Q2B2

µ2
+ 1 +

3H4

µ4

)(
4τ2

µ2R2
ln2
(
B2

ϵ

)
+

64τ4

µ4R4
ln4
(
B2

ϵ

)))
,

≤(a) e−ηµKR exp

(
ln2
(
B2

ϵ

)(
2Q2B2

µ2
+ 1 +

3H4

µ4

)(
4τ2

µ2R2
ln2
(
B2

ϵ

)
+

64τ4

µ4R4
ln4
(
B2

ϵ

)))
,

≤(b) e−ηµKR+1 ,

where in (a) we assume that R ≥ ln(B2/ϵ)
ln(ln(B2/ϵ)) ; and in (b) we assume

R ≥ 8τ
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µ + H

µ

)
. These

observations, along with the conditions derived so far allow us to simplify the convergence rate as
follows,

∥A(KR)∥2

≤ e−ηµKR+1
√
2B2 +

2ησ2

µM
+

18η3σ4

µM2B2
+

(
2 +

4Q2B2

µ2
+

6H4

µ4

)
∥V ∥2 ,

≤ 4e−ηµKRB2 +
2σ2

µ2MKR
ln

(
B2

ϵ

)
+

18σ4

µ4K3R3M2B2
ln3
(
B2

ϵ

)
+ κ′

(
4τ2ϕ2

⋆

µ2R2
ln2
(
B2

ϵ

))
+ κ′

(
128τ4σ2

µ6KR5B2
ϕ2
⋆ ln

5

(
B2

ϵ

)
+

320σ2τ2

µ4KR4B2
ϕ2
⋆ ln

4

(
B2

ϵ

)
+

64τ4

µ4B2R4
ϕ4
⋆ ln

4

(
B2

ϵ

))
+ κ′

(
2H2ζ2⋆
µ2R2

ln2
(
B2

ϵ

)
+

2τ2σ2

µ4KR3
ln3
(
B2

ϵ

)
+

2σ2 (1 + ln(K))

µ2KR2
ln2
(
B2

ϵ

))
+ κ′

(
8H4ζ4⋆
µ4R3B2

ln3
(
B2

ϵ

)
+

88τ4σ4

µ8K2R5B2
ln5
(
B2

ϵ

)
+

160σ2H2ζ2⋆
µ4B2R4

ln4
(
B2

ϵ

))
+ κ′

(
160τ2σ4

µ6KR5B2
ln5
(
B2

ϵ

)
+

112σ4 (1 + ln(K))

µ4KB2R4
ln4
(
B2

ϵ

))
,

where we define κ′ :=
(
2 + 4Q2B2

µ2 + 6H4

µ4

)
. We are almost done, but we need to define ϵ. Our

choice of ϵ is simply the maximum of all the terms (after removing the logarithmic factors) in the
above convergence bound, except for the first exponential term and the target accuracy ϵtarget, which
is an input to the algorithm. Like in the previous lemmas’ proofs, we recall that the term dominating in
ϵ also dominates the final convergence rate. This choice of ϵ and η, proves the lemma statement.

J More Details on the Experiments

In this appendix we describe in full detail how we generated the synthetic data for each client and
how we controlled first- and second-order heterogeneity without altering the inherent difficulty of the
individual optimization problems (e.g. their condition numbers or solution norms) for the experiments
in Section 6.

J.1 Data generation for each client

We consider a linear regression problem with parameter dimension d. There are M clients, indexed
by m = 1, . . . ,M . For each client m, we generate i.i.d. data (βm, ym) ∼ Dm with

βm ∼ N (µm, Id), ym = ⟨x⋆
m, βm⟩+ ε, ε ∼ N (0, σ2

noise).
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The corresponding per-sample squared loss is

f(x; (βm, ym)) = 1
2

(
ym − ⟨x, βm⟩

)2
,

and the population objective on client m is

Fm(x) = E(β,y)∼Dm

[
f(x; (β, y))

]
= 1

2 (x− x⋆
m)⊤

(
µmµ⊤

m + Id
)
(x− x⋆

m) + 1
2 σ

2
noise.

Under suitable bounds on ∥µm∥, σnoise, and ∥x⋆
m∥, these objectives satisfy Assumptions 1 to 3 for

all x in a bounded region.

J.2 Controlling first-order (concept) heterogeneity

We fix the norm of each true optimizer to ∥x⋆
m∥ = R⋆. To vary the maximum pairwise distance

maxm,n∥x⋆
m − x⋆

n∥ = ζ⋆, we sample each

x⋆
m = R⋆ vm with vm ∈ Rd, ∥vm∥ = 1,

where vm is drawn uniformly from the spherical cap of half-angle

ϕ(ζ⋆) = arcsin

(
ζ⋆
2R⋆

)
around a fixed “central” random unit vector v0. This ensures ∥x⋆

m∥ = R⋆ for all m, and
maxm,n ∥x⋆

m − x⋆
n∥ = ζ⋆, so that larger ζ⋆ increases concept heterogeneity purely by angular

dispersion, without changing the optimizer norms. This process is illustrated in Figure 4. In our
experiments we fix R⋆ = 1.

Figure 4: Illustration of sampling unit vectors from a spherical cap. We draw a cross-section of the
unit sphere (circle), mark the central axis v0, and show the cap of half-angle ϕ(ζ⋆) (shaded blue).

J.3 Controlling second-order (covariate) heterogeneity

Likewise, we fix each covariance matrix to Id and fix the norm of the feature mean to ∥µm∥ = µ0.
To vary the maximum pairwise mean distance maxm,n ∥µm − µn∥ = τ , we sample

µm = µ0 um, um ∈ Rd, ∥um∥ = 1,

with um drawn uniformly from the spherical cap of half-angle

θ(τ) = arcsin
(
τ/(2µ0)

)
around the same central direction v0. Again, this rotates the means without altering ∥µm∥ or the
eigenvalues of the Hessians ∇2Fm = µmµ⊤

m + Id, whose condition number remains 1 + µ2
0. In our

experiments we fix µ0 = 5.
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Figure 5: Same experiment as in Figure 2a but with R = 10, i.e., more communication rounds. Note
that the heatmap colors scale changes.

J.4 Hyper-parameter tuning and metrics

For every experimental setting (τ, ζ⋆) (or every τ in the communication-complexity study) we first
sample v0 and sample {x⋆

m}, then we perform 20 independent trials with fresh draws of {µm}. In
each trial we search over a logarithmic grid of step-sizes η ∈ [10−3, 10−1] and record either:

• The final ℓ2 error ∥xR − x̄⋆∥ after R rounds (for the heatmap in Figure 2a), or
• The minimum number of rounds r ≤ Rmax needed to reach ∥xr − x̄⋆∥ ≤ ϵ (for the

communication plot in Figure 2b).

We then average these quantities over the n
runs trials to obtain the plotted heatmaps and curves.

J.5 Ensuring fixed problem difficulty

By sampling {x⋆
m} and {µm} on fixed-radius spheres and using identity covariances, we keep every

client’s Hessian condition number and solution norm constant, so that any change in convergence or
communication cost is attributable purely to the angular dispersion (i.e. heterogeneity) parameters τ
and ζ, not to changes in problem conditioning or scale.

J.6 Experiments with More Machines and Communication Rounds

We include additional experiments in Figures 5 to 7 illustrating the effect of having more machines
and communication rounds in the experiments of Figure 2. We note that as suspected increasing the
number of communication rounds, makes the effect of data heterogeneity less drastic as we can see
even at higher data heterogeneity, we are able to attain a better final error in Figure 5. On the other
hand, we see that increasing the number of machines while keeping the communication rounds has a
mixed effect as perhaps at this level of parallelization the SGD noise is still dominating as can be
seen in Figure 6. Having said that we again see the benefit of increasing communication rounds at
increased parallelization going from Figure 6 to Figure 7. We also run the analogue of Figure 2b with
M = 50 in Figure 8.
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Figure 6: Same experiment as in Figure 2a but with M = 50, i.e., more number of machines.Note
that the heatmap colors scale changes.

Figure 7: Same experiment as in Figure 2a but with M = 50 and R = 10. i.e., with more number of
machines as well as communication rounds.Note that the heatmap colors scale changes.
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Figure 8: Same experiment as in Figure 2b but with M = 50.

86


	The Unreasonable Effectiveness of Local SGD
	Setting and Preliminaries
	A New General Convex Lower Bound with Second-order Heterogeneity
	Breaking Down the Consensus Error and New Upper Bounds
	Incorporating Third-order Smoothness
	Case Study: Distributed Linear Regression
	More Discussion on Heterogeneity Assumptions
	Construction for rem:zetastarvsphistar
	Proof of rem:zetastartauvsphistar

	More Discussion on the Fixed Point Perspective
	Fast Convergence to Fixed-point in the Quadratic Setting
	Improved Fixed-point Discrepancy Upper Bound for Quadratics
	On the Nature of Local SGD's Fixed Point for Quadratics
	Implicit Regularization due to Local SGD
	Extension to Non-quadratics?

	Proof of the Lower Bound in thm:newlowerbound
	Notation and Outline of the Upper Bounds' Proofs
	Useful Technical Lemmas
	Useful Facts about Stochastic Noise
	Other Analytical Lemmas

	Deriving Round-wise Recursions for Errors
	Second Moment of the Error in Iterates
	Fourth Moment of the Error in Iterates
	Function Value Error

	Uniform Control over the Consensus Error and Analysis using ass:zeta
	Upper Bound on Second Moment of Consensus Error
	Upper Bound on Fourth Moment of Consensus Error
	Convergence in Iterates
	Tuning the Step-size

	Double Recursions for Consensus Error
	Second Moment of the Consensus Error
	Fourth Moment of the Consensus Error
	Should Consensus Error Explode for a Large Step-size?

	Putting it All Together
	Convergence in Iterates without Third-order Smoothness
	Convergence in Function Value without Third-order Smoothness
	Convergence in Iterates with Third-order Smoothness

	More Details on the Experiments
	Data generation for each client
	Controlling first-order (concept) heterogeneity
	Controlling second-order (covariate) heterogeneity
	Hyper-parameter tuning and metrics
	Ensuring fixed problem difficulty
	Experiments with More Machines and Communication Rounds


