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ABSTRACT

Reinforcement learning with verifiable rewards has become the standard for train-
ing reasoning models, with Group Relative Policy Optimization (GRPO) achieving
remarkable performance across mathematical, coding, and scientific domains. How-
ever, these approaches suffer from severe sample inefficiency due to sparse binary
rewards, where even partially correct responses receive zero reward, providing
no learning signal and causing extremely slow convergence. We propose Multi-
Level Multi-Turn Reinforcement Learning (MLMT-RL), a novel framework that
addresses this limitation by leveraging textual feedback to provide dense, inter-
pretable learning signals. MLMT-RL decomposes reasoning into two synergistic
levels: a higher-level policy generates task-specific contextual feedback, while a
lower-level policy produces refined responses conditioned on this feedback. To
ensure effective coordination between guidance generation and execution, we
formulate a principled bi-level optimization framework where the higher-level
policy is regularized by the lower-level value function. Additionally, we introduce
novel metrics to evaluate feedback quality and utilization effectiveness. Our results
demonstrate superior parameter efficiency: MLMT-RL with 2B parameters outper-
forms 3B GRPO models by 3.13% on MATHS500, 5.18% on MBPP, and 4.77%
on GPQA. Similarly, our 6B model surpasses 7B GRPO models by 3.0%, 2.8%,
and 5.7% respectively. MLMT-RL thus establishes a highly efficient paradigm that
delivers superior reasoning performance with significantly fewer parameters.
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Figure 1: MLMT-RL vs GRPO convergence rate and performance comparison across reasoning bench-
marks and model scales. (Left) On MBPP benchmark, GRPO shows significantly slow learning in sparse-reward
settings, leading to sample inefficiency. By contrast, MLMT-RL’s multi-level multi-turn architecture exploits
higher-level feedback to enable quicker learning and better sample-efficiency (after 400 steps, GRPO achieves
only 23% accuracy, whereas MLMT-RL achieves 76% accuracy). (Right) MLMT-RL outperforms GRPO-based
language reasoning models across parameter scales and benchmarks, while demonstrating superior parameter
efficiency. Specifically, MLMT-RL with 2B parameters outperforms GRPO with 3B parameters and MLMT-RL
with 6B parameters outperforms GRPO with 7B parameters on all benchmarks. These consistent gains highlight

the efficacy of MLMT-RL’s hierarchical task-specific guidance over GRPO.
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1 INTRODUCTION

Recent advances in reasoning models have demonstrated remarkable performance through reinforce-
ment learning (RL) with verifiable rewards (Guo et al., 2025; Kumar et al., 2024b; Zhou et al., 2024).
These approaches leverage ground-truth solutions to provide clear training signals in the form of
sparse verifiable rewards, enabling models to solve complex mathematical, coding and scientific
reasoning tasks. Despite their success, methods like Group Preference Optimization (GRPO) face a
fundamental challenge: sample inefficiency in the presence of sparse rewards.

In GRPO, multiple candidate responses are generated for each problem and assigned binary rewards
based on correctness. This creates a critical inefficiency: even partially correct responses receive zero
reward, providing no learning signal. The core issue lies in the binary nature of verification-based
rewards as they provide good signal when correct but offer no feedback for improvement otherwise,
leading to poor sample efficiency and extremely slow convergence, as shown in Figure 1 (Left).

Prior research has shown that language models can effectively utilize natural language feedback to
refine their outputs and accelerate learning Scheurer et al. (2024; 2022); Pan et al. (2023). Thus,
a promising solution is to incorporate textual feedback into the learning process. Unlike binary
rewards, textual feedback provides dense, interpretable signals that can help models understand not
just their response correctness, but specifically how to improve. As an analogy, experienced coaches
guide athletes by providing specific, actionable feedback like "adjust your follow-through" or "keep
your eyes on target", rather than only rewarding on hitting the target or penalizing when they miss.

Based on this insight, we propose employing an auxiliary language model to generate task-specific
feedback, thus providing denser learning signals for reasoning tasks. Our framework operates through
a multi-turn interaction: a primary language model generates an initial response, an auxiliary model
provides targeted feedback based on the response, and the primary model refines its response based
on the feedback. This introduces a multi-level multi-turn approach: the higher-level model provides
task-specific feedback and the lower-level model generates refined responses based on the feedback.

However, this multi-level approach raises two critical questions: (i) how to generate optimal feedback,
and (i7) how to learn effectively from this feedback. To generate optimal feedback, we investigate
three feedback paradigms: (1) fixed, task-agnostic feedback (Kumar et al., 2024b), (2) feedback from
pre-trained models without task-specific fine-tuning, and (3) task-specific feedback from a language
model trained to maximize verifiable rewards. Our empirical analysis shows that task-specific trained
feedback significantly outperforms the alternatives across all benchmarks.

To learn effectively from feedback, we develop a principled bi-level optimization framework where
the higher-level model learns to generate effective feedback conditioned on the lower-level model’s
current capabilities, while the lower-level model learns to incorporate this feedback to generate refined
responses. In order to quantitatively measure feedback effectiveness, we introduce the following
metrics: (i) feedback optimality metric, which measures the quality of generated feedback using an
LLM as a judge, and two feedback compatibility metrics, which evaluate how well the lower-level
model incorporates feedback into refined responses by computing () accuracy increase, and (i)
increase in the percentage of correct responses due to feedback.

Remark. We emphasize that MLMT-RL is not positioned as a competitor to SOTA reasoning models
that rely on extensive multi-phase training, large-scale supervised fine-tuning, or massive teacher
distillation (Guo et al., 2025). Instead, MLMT-RL offers a complementary paradigm that achieves
efficiency and robustness through multi-level multi-turn RL with modest resources.

Our main contributions are:

1. Multi-Level Multi-Turn RL framework: We propose MLMT-RL, a novel bi-level approach that
addresses limitations of prior reasoning models by decomposing reasoning into two synergistic levels:
higher-level feedback generation and lower-level refinement based on this feedback.

2. Novel evaluation metrics for evaluating feedback We introduce multiple metrics: feedback
optimality metric to assess the quality of generated feedback, and three feedback compatibility metrics
to measure how effectively the lower-level policy is able to improve based on provided feedback.

3. Empirical analysis: We show that 2B parameter MLMT-RL models outperform larger 3B GRPO-
based models by 3.13% on MATHS500, 5.18% on MBPP, and 4.77% on GPQA, and 6B parameter
MLMT-RL models surpass larger 7B GRPO models by 3%, 2.8%, and 5.7% on the benchmarks,
showing superior reasoning performance with fewer parameters (Figure 1 (Right)).
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Figure 2: MLMT-RL Overview: (Left) In GRPO, the model generates a group of responses (e.g., group size =
4) based on the input prompt. In sparse reward scenarios, where most or all responses yield zero reward (R=0),
the advantage becomes zero, resulting in a non-existent learning signal and consequently slow learning. (Right)
In MLMT-RL, the higher-level LLM generates task-specific feedback conditioned on the input prompt and the
lower-level policy’s initial response. The lower-level policy then uses this feedback to refine its output and
produce the correct response (R=1).

2 RELATED WORK

LLM Reasoning and Self-Correction. Recent advances in language reasoning have been driven by
GRPO models (Shao et al., 2024), which show strong capabilities (Guo et al., 2025), but suffer from
slow convergence and sample inefficiency in the presence of sparse rewards. Self-correction based
variants use environmental feedback (e.g., code execution (Jain et al., 2024), tool interactions (Chen
et al., 2023)) and intrinsic approaches without external signals (Kamoi et al., 2024; Huang et al.,
2023). While zero-shot prompting often degrades performance (Huang et al., 2023; Zheng et al.,
2024), supervised methods with human corrections (Saunders et al., 2022) or model distillation (Ye
et al., 2023) show promise but require substantial supervision.

Multi-Turn Reinforcement Learning. Multi-turn RL enables efficient reasoning without external
supervision. Early methods include value-based approaches (Zhou et al., 2024; Shani et al., 2024)
for correction quality estimation and policy-based techniques (Shao et al., 2024) for direct optimiza-
tion. SCoRe by Kumar et al. (2024a) trains on self-generated trajectories, outperforming supervised
baselines. However, existing methods use static, task-agnostic guidance that lacks problem-specific
nuance for diverse tasks. MLMT-RL addresses this through multi-level optimization for dynamic,
task-specific guidance, while mitigating rank bias and enabling targeted credit assignment.
Hierarchical Reinforcement Learning (HRL). HRL improves efficiency via temporal abstrac-
tion (Nachum et al., 2019), decomposing tasks into subtasks (Sutton et al., 1999; Barto & Mahadevan,
2003). Vanilla HRL faces non-stationarity from evolving lower-level policies (Nachum et al., 2018;
Levy et al., 2018). Recent solutions include optimal behavior simulation (Levy et al., 2018), expe-
rience relabeling (Nachum et al., 2018), and bi-level formulations (Singh et al., 2024). MLMT-RL
uses bi-level optimization to manage non-stationarity and promote reasoning diversity.

3 PRELIMINARIES

Group Relative Policy Optimization.

GRPO trains reasoning models by generating groups of candidate responses, and optimizing over
the corresponding binary verifiable rewards. For input problem z, the model generates GG responses
{y: Y&, ~ ma(-|x) and receives rewards R(y;, y}) returning 1 for correct solutions and 0 otherwise.
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MATH Arithmetic Example

Prompt: If the domain of the function log x2isx < aorx > b, for some a and b, find a + b.

Response 1 (Incorrect):
... Apply the rule log(z?) = 2log(z) to all z, so domain is (—o0, c0).
Response 2 (Incorrect):

... Treat log(2?) as valid for all real z, giving a = —00,b = co.
Response 3 (Incorrect):
... Restrict to negative side, soa = —oo,b=0and a + b = —oo0.

Response 4 (Incorrect):
... Approximate solution by guessinga = 1,b=2soa+b = 3.

MLMT-RL

First Response (Incorrect):
In this attempt, the solver again applies the power rule, restricts > 0, assigns a = 0 and b = oo, and
reports a + b = oo.

Task-Specific Feedback

Rewrite the function using the power rule and ensure its argument is positive. Consider all real x
satisfying 22 > 0, including negatives. Express the domain as < a or = > b and compute the
sum of those endpoints.

Improved Response (Correct):

By noting that z2 > 0 for all  # 0, the domain splits into (—oo,0) U (0, 00), so a = 0 and b = 0,
givinga + b = 0.

N J

Figure 3: Arithmetic Illustrative Example: MLMT-RL vs GRPO Comparison. For the arithmetic example,
GRPO generates G = 4 responses but each of them fail to solve this arithmetic problem, leading to sparse
rewards R; = 0 Vi € [1,4]. In contrast, MLMT-RL’s higher-level policy generates task-specific, context-aware
feedback that enables the lower-level policy to successfully generate correct response and solve the task, thereby
demonstrating superior reasoning refinement and overall performance.

Objective. The GRPO objective can be formulated as Jorpo(6) = Eyr,(.|2)[R(2,y) — R]. where

R(x,y) is the final task reward and Risa group-normalized baseline computed by R= é Zle R;.

The group-normalized advantage for each sequence is computed as A; = f;;]j, where o is the

standard deviation of rewards within the group and e is the numerical stability constant.

Limitation. GRPO’s reliance on binary verification rewards creates a fundamental bottleneck: when
all responses in a group are incorrect, the resulting zero advantages eliminate learning signals entirely.
This advantage collapse occurs because GRPO computes relative rewards within each group: if every

response receives R; = 0, then reward R =0and advantage A; = 0V, providing no learning signal.
We demonstrate this limitation through comprehensive empirical analysis:

1. Learning stagnation. Figure 1 (Left) shows that on MBPP task using LLAMA-3.2-1B backbone,
GRPO shows minimal performance improvement for around 600 steps, achieving only 23% accuracy
compared to MLMT-RL’s 79% at 600 step count. This learning stagnation occurs because GRPO’s
updates become increasingly sparse as training progresses, due to sparse reward signals.

2. Advantage collapse Analysis. We empirically measure the Advantage Collapse frequency by
finding the percentage of groups during training that lead to advantage A = 0. On the MBPP task, we
observe the advantage collapse frequency to be 74%, which implies that 74% of the training groups
experience complete advantage collapse, leading to most training steps providing no gradient updates.
3. Zero reward frequency. We also measure the Reward Collapse frequency, by measuring the
percentage of responses across training that lead to rewards R = 0. We observe that on MBPP task,
the reward collapse frequency is 83%, implying that 83% of the trajectories lead to O rewards, further
confirming the prevalence of extremely sparse learning signals in GRPO.

4. Ilustrative failure case. We provide an illustrative example in Figure 3. With group size
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G = 4, GRPO generates four responses that all fail to solve the task, and thus each receive sparse
reward of R; = 0, implying advantage A = 0. In contrast, although MLMT-RL fails to solve the
task in the first response, the model is able to successfully leverage the higher-level LLM targeted
feedback to generate the correct response in the second turn. We provide more illustrative examples
in Appendix 7.9.

The above limitations and empirical analysis demonstrates the need for denser, task-specific feedback
signals, unlike binary rewards that provide only sparse feedback. Based on prior research, we note
that textual feedback can be a richer alternative that can identify specific errors in prior attempts and
suggest denser and task-specific correction feedback.

4  PROPOSED METHODOLOGY

We propose Multi-Level Multi-Turn Reinforcement Learning (MLMT-RL), a hierarchical framework
that addresses GRPO’s sparse reward limitation by leveraging textual feedback to provide dense,
interpretable learning signals. MLMT-RL decomposes reasoning into two synergistic levels: a higher-
level policy that generates task-specific feedback and a lower-level policy that produces refined
responses conditioned on this feedback. We now explain our framework in detail.

4.1 MULTI-LEVEL MULTI-TURN FRAMEWORK

Given an input problem z, the lower-level policy 770L first generates an initial attempt z ~ 7T0L(~ | ) in
the first turn. This stage resembles prior RL-based approaches that rely on verifiable sparse rewards.
However, during initial training stages when models are untrained, most responses are incorrect,
leading to zero rewards (R = 0). Specifically, in the GRPO approach, when all responses in the group
are incorrect (R; = 0,Vi € [1, G]), the advantage A = 0 (Figure 2 (Left)), resulting in non-existent
learning signals and extremely slow learning.

Our framework deals with this issue by leveraging a higher-level policy model ﬂf (- | ) to generate
context-aware feedback as follows: the higher-level policy conditioned on the input prompt x and the
initial attempt z, generates a feedback g ~ wf (- | x, z) that acts as a denser feedback signal describing
how to generate corrected response based on the initial attempt 2 (Figure 2 (Right)). Consequently,
the lower-level policy leverages this feedback to generate a refined response § ~ 7} (- | z, 2, g) in

the second turn, thereby addressing the limitations of prior approaches.

In order to efficiently solve the above multi-level multi-turn problem, we design a hierarchical MDP
formulation that formalizes the reasoning process as a hierarchical Markov Decision Process (MDP).

4.2 HIERARCHICAL MDP FORMULATION

Given an input dataset D = {(z;,y;)},, where x; are input problems and y} are target responses,
we formalize the reasoning process as a hierarchical MDP. In this framework, a policy iteratively
refines its responses over multiple turns in a multi-turn setting with L turns (we use L = 2 in our case,
although it can be extended to larger L values). We now define the hierarchical MDPs as follows.

Higher-Level MDP. We represent the higher-level MDP as M7 = (S# AH pH RH) where SH
is the state space, A is the action space, P is the state transition probability function, and R* is
the reward function. The higher-level policy is denoted as wg with parameters ¢, which generates

feedback g ~ ﬂg (- | @, z) conditioned on the input x and the previous attempt z.

Lower-Level MDP. We represent the lower-level MDP as M* = (S, AF PL RE), where ST
is the state space, A" is the action space, P’ is the state transition probability function, and R*
is the reward function (typically a sparse binary reward R(¢,y*) € {0, 1} based on correctness
verification). The lower-level policy is denoted as w(,L with parameters 6, which generates outputs
g~ 7r6.L (- | x, z, g) conditioned on the input z, the previous attempt z, and the higher-level feedback g.
The lower-level policy’s value function represents the expected cumulative reward from a given state
conditioned on the higher-level feedback g: VWLg (,9) = Egonr [erg (7,9,7)], where QﬁsL (r,9,9)

is the action-value function estimating the expected reward after following policy 779L .
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In MLMT-RL, the overall objective is to maximize the expected final rewards, which is:

T(0,9) = E 4y )b, snml (o), gromll (fo,2), gk Clayzg) H(G 6] M

This objective maximizes the expected task reward R(y,y*) based on the second-turn predicted
response ¢ and target response y*. The expectation is over: (i) the input = and target response y*
sampled from the dataset D, (ii) the first response z sampled from the lower-level policy 7r9L (-] )
conditioned on the input z, (iii) the feedback g sampled from the higher-level policy Wg (] =z, 2)
conditioned on the input x and first-turn attempt z, and (iv) the final response ¢y sampled from the
lower-level policy 74 (- | z,z,g) in the second turn. Both the hierarchical policies leverage this
objective to learn their parameters ¢ and 0 via RL (e.g., REINFORCE Williams (1992)).

4.3 BI-LEVEL FORMULATION

Although we have outlined the multi-level training objectives using the hierarchical MDP formulation,
there exists an inherent inter-dependency between the two hierarchical levels. The higher-level policy
wf generates feedback g which is provided to the lower-level policy 770L to condition its generation
of the refined output ¢. In turn, the lower-level policy’s output determines the final reward, which is
used to train the higher-level policy. This inter-dependency calls for a principled formulation which
should enable: (i) feedback optimality: where the higher level should generate optimal feedback
according to the capabilities of the lower level policy, and (ii) feedback compatibility: where the
lower-level policy should be able to effectively leverage this feedback to generate refined responses.

To develop a principled approach that resolves this inter-dependency, we formalize the problem as
a bi-level optimization problem following Singh et al. (2024). Let Jg (7 7E(7H)) represent the
higher-level objective and J, (7% |7f) represent the lower-level objective (we drop the parameters ¢
and 0 for ease of representation). The bi-level formulation can be represented as:

max T (@, 7l(x®)) st wl(xf) = arg max Jp, (7l|nH) = arg max VE(rH), )
where 7L (7H) represents the optimal lower-level policy given the higher-level policy w7, and
VL (7H) is the lower level value function, and the optimal lower policy maximizes the lower level
value function. Thus, the higher-level objective is constrained by lower-level policy optimality. Using
the recent advancements in the optimization literature (Liu et al., 2022), we can show that Equation 2

can be utilized to derive the following objective for the higher-level policy:

H ~ * L L
T5' = Ble gy, sk (), gt (.2, ok (J,2g) LR Y7) + AV (2,9) = ViE (2, 9)], (3)

)

where V (s, z) and VX (s, z) are the current and optimal lower-level value functions conditioned on
2 and z, and ) is the regularization parameter that controls the trade-off between immediate reward
maximization and value function regularization. The first term, R(y, y*), rewards the higher-level
for selecting feedback ¢ that enables the lower-level to produce outcomes ¢ matching the targets
y*. The regularization term, A\(V'(z,g) — V.F(x, g)) (where A > 0), encourages the higher-level
to generate feedback that steers the lower-level policy toward near-optimal behavior, thereby both
preventing degenerate solutions (such as the lower-level ignoring the feedback) and facilitating
effective alignment between the two levels. We provide the complete derivation of Equation 3 in
Appendix 7.1. This formulation ensures that the higher-level policy generates optimal feedback that
is well-aligned with the lower-level policy’s current capabilities.

Higher-Level Gradient. The gradient of our upper-level objective 7, f with respect to ¢ is:
vquf = Er,y*,z,g,z} [VC/D lOg’]Tf(g | z, Z) ' (R(ga y*) + )‘(VL(‘ng) - V*L(lvg)))} ) (4)

where the expectation is over (z,y*) ~ D,z ~ (- | 2),g ~ 7/ (- | 2, 2),§ ~ 7j (- | x, 2, 9). The
full derivation is provided in Appendix 7.2.

Lower-Level Gradient. The gradient of our lower-level objective J f with respect to 6 is:
V(;Jf =Eyy* 2,09 [Vg logml(z | ) - R+ Volognh (i |z, 2,9) - R] +

AEq y 2, g By [VG log 71—0L(g/ ‘ r,2,9) R(:l}/7y*)] )
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Figure 4: (Left) Comparison of MLMT-RL and GRPO on the MBPP benchmark. GRPO exhibits extremely
slow learning in sparse-reward environments, resulting in sample inefficiency. In contrast, MLMT-RL’s multi-
level multi-turn framework leverages higher-level feedback for rapid learning and faster, more sample-efficient
convergence. (Right) MLMT-RL versus GRPO performance comparison across scales. MLMT-RL with
2B parameters (LLaMA-3.2-1B at each higher and lower level) outperforms GRPO-trained models with 3B
parameters, while MLMT-RL with 6B parameters (LLaMA-3.2-3B at each higher and lower level) exceeds those
with 7B parameters, demonstrating superior parameter efficiency and overall performance.

where the expectation (g, ;.. q.5) is over (z,y*) ~ D,z ~ (| @) g ~ Tl (| w29 ~
7b(- | 2,2,9), and R = R(§,y*) + A (Vi(x,g) — Vi (x,9)). The full derivation is provided in
Appendix 7.3. This is estimated by Monte-Carlo sampling and used to update parameters ¢ and 6
using standard policy gradient. The gradients are computed via automatic differentiation.

Practical Approximation. The objective in Equation 3 requires computing the optimal value function
V.F(7H) which is often intractable. To enable practical implementation, we approximate the optimal
value function V> (71 with the value function V;*(7#7), which we get by taking k gradient steps to
learn the parameters of V,f (wH) for every higher-level policy gradient step. We empirically found
that this approximation results in efficient implementation and is well justified in practice for even
modest values of k. We provide the detailed algorithm in Appendix 7.4.

5 EXPERIMENTS

Our empirical analysis addresses the following core research questions to validate our contributions:
1. Does MLMT-RL outperform GRPO-based reasoning models in terms of performance, parameter
efficiency, and sample efficiency?

2. How does MLMT-RL compare to state-of-the-art reasoning methods across various model scales?
3. In MLMT-RL, does the higher-level policy generate optimal feedback, and can the lower-level
policy effectively utilize this feedback?

4. Can use a single model for both feedback generation and response refinement in MLMT-RL?

Benchmarks. We evaluate on three domains:

1. MATH-500: a 500-problem subset of the MATH corpus for mathematical reasoning.

2. MBPP: on 974 Python tasks scored with HumanEval for code generation.

3. GPQA: using 3000 graduate-level questions from PHYSICS dataset for scientific reasoning.

The experiments are performed on LLaMA-3.2 (1B, 3B, and 8B) and Qwen-2 (1.5B, 7B) models. We
provide the training efficiency details for MLMT-RL and the baselines in Appendix 7.5 and rigorous
details on experiments and evaluations prompts in the Appendix 7.6. The correction instruction
prompt templates for the datasets are provided in Appendix 7.7.

1. Does MLMT-RL outperform GRPO-based reasoning models in terms of performance,
parameter efficiency, and sample efficiency?

Convergence speed. In Figure 4, we show that MLMT-RL outperforms larger GRPO models with
superior sample efficiency, parameter efficiency, and faster convergence. As shown in the left panel,
GRPO improves minimally until around 600 steps on the MBPP benchmark, reaching only 22%
accuracy before gradual gains. In contrast, MLMT-RL achieves 75% accuracy in just 400 steps due
to its task-specific feedback, providing dense signals for faster learning and better sample efficiency.
Performance across model scales. To assess parameter efficiency, we compare smaller MLMT-RL
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Model 1B (LLaMA-3.2-1B) 3B (LLaMA-3.2-3B) 8B (LLaMA-3.1-8B)
Method |MATH MBPP GPQA|MATH MBPP GPQA |MATH MBPP GPQA

BC 26.20 50.00 30.20 | 4240 6850 37.10 | 53.0 745 39.0
ZSCoT | 25.80 41.29 26.80 | 41.30 60.98 3270 | 509 72.8 342
ArCHer | 30.60 52.44 33.60 | 43.60 69.50 4090 | 555 76.0 43.0
SCoRe 3480 5732 34.40 | 4520 70.73 42.60 | 56.8 773 44.6

MLMT-RL | 44.56 66.73 41.20 | 51.40 75.00 49.30 | 60.2 798 56.3

Table 1: In this table, we compare MLMT-RL against various SOTA baselines across model sizes (1B, 3B and
8B). MLMT-RL consistently outperforms single-turn (ZSCoT, BC) and multi-turn (ArCHer, SCoRe) methods
on MATH, MBPP, and GPQA across LLLaMA backbones of 1B, 3B and 8B size models.

models against larger GRPO models (2B MLMT-RL vs 3B GRPO, and 6B MLMT-RL vs 7B GRPO).
In both cases, MLMT-RL outperforms GRPO, highlighting its parameter efficiency. As shown in the
right panel of Figure 4, the 2B MLMT-RL beats the 3B GRPO by 3.13 points on MATH, 5.18 on
MBPP, and 4.77 on GPQA. The 6B MLMT-RL exceeds the 7B GRPO by 3.0, 2.8, and 5.7 points
respectively. These results show MLMT-RL exhibits stronger reasoning performance with fewer
parameters and faster convergence, making it a more efficient alternative to GRPO.

2. How does MLMT-RL compare to state-of-the-art (SOTA) reasoning approaches across
different model scales?

We compare MLMT-RL to prior reasoning methods to assess its design efficacy.

Baselines. To isolate the specific contributions of MLMT-RL’s multi-level multi-turn structure and
task-specific learned guidance, we compare against baselines that vary in these elements, allowing
us to quantify the performance gains from each component. These include: (i) Behavioral Cloning
(BC) (Torabi et al., 2018), a supervised fine-tuning method using expert trajectories without RL or
multi-turn elements, which allows us to highlight the benefits of using reinforcement learning training
with verifiable rewards; (ii) Zero-Shot Chain-of-Thought (ZSCoT), a two-turn multi-level approach
that we implemented using a pretrained LLM without fine-tuning at each level, where the higher-level
model provides feedback not optimized using verifiable rewards, thus allowing us to evaluate the
impact of multi-level reward-based fine-tuning; (iii) ArCHer (Zhou et al., 2024), a single-turn RL
approach with separate critic and actor networks but no multi-turn feedback, to assess the value added
by our multi-turn interaction; and (iv) SCoRe (Kumar et al., 2024a), a multi-turn RL method that
fine-tunes the lower-level policy using verifiable rewards but relies on fixed, task-agnostic feedback,
to demonstrate the advantages of learning task-specific feedback over fixed guidance.

Analysis. Table 1 shows results across 1B, 3B, and 8B model scales on MATH, MBPP, and
GPQA benchmarks. Although single-turn approach BC outperforms the ZSCoT baseline, ArCHer
outperforms BC, demonstrating that this RL-based method leverages reward signals for more efficient
task solving than BC and ZSCoT across all benchmarks and scales. SCoRe surpasses BC, ZSCoT, and
ArCHer, validating the effectiveness of its multi-turn approach. However, MLMT-RL consistently
outperforms all baselines, including SCoRe across model scales, including a substantial advance on
the challenging GPQA dataset at 8B scale (from 44.6% to 56.3%). As model capacity increases, all
methods improve due to greater base capabilities, but MLMT-RL gains more from its multi-level
structure. These results show that across domains, MLMT-RL is an effective alternative, particularly
in resource-constrained settings where parameter and sample efficiency are critical.

3. In MLMT-RL, does the higher-level policy generate optimal feedback, and can the lower-level
policy effectively utilize this feedback?

Our proposed MLMT-RL framework relies on higher-level feedback to refine lower-level responses,
where the performance depends on two key factors: the higher-level policy’s ability to generate
high-quality, task-relevant feedback, and the lower-level policy’s capacity to incorporate this feedback
for improved accuracy. To critically evaluate this, we introduce targeted metrics to quantify feedback
optimality and compatibility, and compare MLMT-RL against carefully designed baselines that ablate
whether higher-level and lower-level policies are fine-tuned on verifiable rewards.

Feedback optimality and feedback compatibility metrics. We define novel metrics to quantitatively
assess feedback generation and utilization in MLMT-RL.: (%) in the feedback optimality (FO) metric,
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Method Hérglgifu fggl L;Ijgufevgl \ Accuracy \ FO \ Dace(tr, t2) | Aisse(ts, t2)
ZSCoT No No 3540 % |2.1 +9.60 % +12.20 %
SCORE-FF No Yes 39.60 % |2.1 +7.40 % +17.80 %
TF-LBM Yes No 38.00% |3.0] +8.80 % +16.00 %
MLMT-RL w/0 Vg Yes Yes 41.80% (3.6 +9.60 % +19.20 %
MLMT-RL Yes Yes 44.20 % |4.2| +11.40 % +21.20 %

Table 2: Feedback optimality and compatibility analysis We conduct evaluations on MATH-500 with LLAMA-
3.2-1B for various baselines that differ by whether the hierarchical levels are RL-fine-tuned. We report the
accuracy, feedback optimality metric (FO), and two feedback compatibility metrics: (¢) accuracy increase from
turn 1 to turn 2 Ay (t1,t2), and (4¢) the fraction flipped from incorrect to correct A (1, t2). MLMT-RL
achieves higher accuracy and superior feedback optimality and feedback compatibility against baselines.

an LLM judge scores the feedback on a 1-5 scale based on its precision, relevance, and actionability
with respect to the input query and first-turn response. Here, the outputs of all methods are passed
together to enforce relative grading (see Appendix 7.7 for the full evaluation prompt). We also
define two feedback compatibility metrics, where we compare via: (i¢) accuracy increase from turn 1
(initial response) to turn 2 (refined response) (Agye.(t1, t2)), and (i4i) increase in fraction of incorrect
— correct responses (A;_.(t1,t2)). These metrics evaluate whether a method is able to generate
high-quality feedback and leverage it effectively to refine its responses.

Baselines. We compare MLMT-RL against multiple baselines that differ by whether higher and lower
level policies are RL fine-tuned on verifiable rewards: (i) HZCoT (Hierarchical Zero-Shot CoT),
where both levels are pre-trained models without RL fine-tuning; (i¢) SCoRe-FF, a multi-turn baseline
with an RL-fine-tuned lower level but fixed, task-agnostic and generic feedback (e.g., "Please think
carefully and generate a correct output."); (i7¢) TF-LBM (Fine-tuned feedback Lower-Base Model),
where the higher-level policy is RL-trained as in MLMT-RL but the lower level is a pre-trained model;
and (iv) MLMT-RL w/0 Vg, which omits value function regularization from the bi-level objective.
We use this baseline to analyze the importance of bi-level optimization in our framework.
Analysis. In Table 2, we compare accuracy, feedback optimality (FO), and feedback compatibility
metrics for all baselines. As seen from the table, MLMT-RL consistently achieves the highest
accuracies, outperforming baselines and demonstrates superior feedback generation and utilization
for refinement. The baselines without higher-level RL fine-tuning, like HZCoT and SCoRe-FF, show
low FO scores, indicating that pre-trained or fixed feedback lacks the task-specific precision needed
for optimal feedback, leading to modest compatibility gains. In contrast, TF-LBM with fine-tuned
higher-level but pre-trained lower-level policies improves FO but still shows limited compatibility
metric values, emphasizing the need for lower-level as well fine-tuning for effective feedback
compatibility. Our variant without value regularization (MLMT-RL w/o V..) outperforms earlier
baselines but lags behind full MLMT-RL, underscoring the importance of our bi-level optimization in
coordinating inter-level dependencies. These results confirm that fine-tuning both levels using our
bi-level framework enables MLMT-RL to overcome sparse-reward limitations via dense, actionable
feedback, yielding consistent improvements. We also analyze convergence in Figure 4, showing
MLMT-RL’s faster learning rate and superior sample efficiency among these baselines.

4. Can MLMT-RL use a single model for both feedback generation and response refinement?

So far, we have discussed MLMT-RL that employs two sep-
arate models: one for generating task-specific feedback and
another for refining responses conditioned on feedback. Now,
we ask the question: can a single model can handle both tasks? MLMT-RL 2M)| 44.56 ‘ 66.73
This effectively creates a self-critiquing framework that gen- MLMT-RL (IM)| ~ 44.84 | 65.24
erates an initial response, generates feedback on it, and then

refines its response based on the feedback. Note that this is Table 3: Comparing MLMT-RL variants:
different from prior thinking tokens or single-level multi-turn ~ (2M) two models vs. (IM) single model.
based approaches, which do not include a feedback generation

step on prior responses for targeted improvements. This single-level variant also minimizes the
computational costs compared to two models framework. We implemented and tested a single-model
variant of MLMT-RL using the LLaMA-3.2-1B backbone on MATH-500 and MBPP benchmarks.
Table 3 shows that the single-model (1M) variant achieves performance comparable to the original

Method ‘ MATH-500 ‘ MBPP
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two-model (2M) variant, which shows that a single model can effectively generate self-feedback and
refine responses, opening future avenues for self-critiquing models. This variant reduces compute
costs and simplifies deployment without any performance loss, enhancing MLMT-RL’s practicality.
Heterogeneous Model Pairing Analysis. We also examine whether MLMT-RL’s performance gains
stem primarily from using same-family models for the hierarchical policies, or from the framework’s
multi-turn multi-level interaction that addresses sparse reward issues, in Appendix 7.8.

6 DISCUSSION

Limitations. MLMT-RL’s bi-level optimization requires accurate value estimation at both levels,
where approximations may lead to bias. While current experiments focus on mathematical reasoning,
code generation, and scientific reasoning, we would also like to test adaptability to open-ended
language or multimodal tasks in future, while improving computational efficiency.

Conclusion. In this work, we introduced MLMT-RL, a hierarchical framework that enhances
reasoning capabilities in language models, and addresses the sample inefficiency issue of existing
methods like GRPO in sparse reward scenarios. By proposing a bi-level framework for efficiently
decomposing the reasoning process into synergistic higher-level feedback generation and lower-level
response refinement, MLMT-RL provides dense, task-specific learning signals that enable faster
convergence and superior performance across mathematical, coding, and scientific domains. Our
empirical results demonstrate that MLMT-RL achieves remarkable parameter efficiency, with smaller
models outperforming larger GRPO counterparts by substantial margins. Furthermore, novel metrics
for feedback optimality and compatibility validate the framework’s effectiveness in generating and
utilizing guidance. This work opens promising directions for multi-level multi-turn approaches to
language model reasoning, with future extensions to broader domains and enhanced interpretability.

ETHICS STATEMENT

This work introduces MLMT-RL, a multi-level multi-turn framework for improving reasoning
capabilities in language models. We acknowledge several ethical considerations. First, enhanced
reasoning capabilities in language models could potentially be misused for generating misleading
or harmful content, though our focus on mathematical, coding, and scientific reasoning tasks limits
immediate risks. Second, our training methodology requires computational resources (16.5 hours
of training time as reported), contributing to environmental impact through energy consumption.
We encourage responsible use of computational resources and consideration of energy-efficient
alternatives where possible. Third, our evaluation relies on existing datasets (MATH-500, MBPP,
GPQA) and we respect their original licensing and usage terms. The hierarchical feedback mechanism
in our approach does not introduce new privacy concerns beyond standard language model training.
We emphasize that our work aims to improve sample efficiency and parameter efficiency in reasoning
tasks, potentially reducing overall computational requirements for achieving similar performance
levels. Users of this technology should consider potential downstream applications and ensure
responsible deployment in accordance with ethical Al principles.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and
experimental specifications. Complete hyperparameter settings for all experiments, including learning
rates, batch sizes, regularization parameters (), and training configurations are detailed in Table 5
and Appendix 7.5. Our experimental setup, including model architectures (LLaMA-3.2 and Qwen-2
variants), dataset preprocessing steps, and evaluation protocols are described in Appendix 7.6, with
specific prompt templates provided in Appendix 7.7. The algorithm pseudo-code is outlined in
Appendix 7.4, including the practical approximation method for computing value functions. We plan
to release our complete codebase, training scripts, and evaluation code upon publication to facilitate
reproduction of all reported results. All baseline implementations and experimental conditions
are specified to enable fair comparison. The novel metrics we introduce (feedback optimality,
compatibility metrics) include detailed computation procedures in the appendix. Our statistical
analysis methodology and computational infrastructure specifications are documented to support
replication across different hardware configurations.
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7 APPENDIX

7.1 DERIVATION OF EQUATION 3

Here, we provide the derivation of Equation 3. Using Equation 2, the bi-level formulation can be
represented as:
)

m%XjH(ﬂ'H,ﬂ'f(ﬂ'H)) st. 7l zargm%XjL(ﬂLhrH), (6)

where 71 (7H) represents the optimal lower-level policy given the higher-level policy 7. We can
re-write this formulation as the following equivalent formulation:

L L H)

m%xjH(ﬂH,w* (#f)) st wl(x =)

’ (N
where VI (7)) is the lower level value function. This formulation explicitly captures the higher-level
policy’s dependency on the optimal lower-level policy’s response to its feedback, and also implies
that the optimal lower level policy is the one that maximizes the lower level value function.

= argmax V(rx
nl

We can further use Equation 7 to derive the following formulation:
max Ta(nf 7l@x®)) st VE@H) - vEET) >0, ®)

*
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where V.F(7nH) = max,. VI (7). Notably, since the left-hand side of the inequality constraint
is always non-positive due to the fact that VX (7#) — V.E(7H) < 0, the constraint is satisfied only
when VI (7)) = VI (7)), which implies that the condition in satisfied when the lower-level policy
is optimal.

Now, we can represent Equation § as the following approximate Lagrangian objective with multiplier
A>0:

max Jy (77, 7L (xf)) + \VE(xH) — VE(x)). )

ol 7L

By replacing the objective Jg (7, 7L (7)) from Equation 1, and writing the expected form of

lower-level value function, we can get the final formulation of Equation 3:

A~ % L L
E(z,y*)ND, anmk (la), gorl (Ja,z), gamk (la,z,g) [R(y,y )+ AV (z,9) =V, (x,g)] : (10)

O
7.2 DERIVATION OF EQUATION 4
Here, we provide the derivation of Equation 4. Using 3, the objective is:
I8 = Eland [Eemnt (1o Eguntt (o) Bt (1,2.g) (BE.57) + MVi (2, 9) = Vi (. 9)]) |
1D

This objective can be represented as:
Jgl = Baye g9 [R(,y7) + AVi(z,9) = Vi (x,9)) ] (12)
where z,y* ~ D, z ~ (- | 2), g ~ wif (- | x,2), § ~ 7§ (- | @, 2,9). The joint density is:

pla,y ) mg (2 | ) gl (g | @, 2) 7 (§ | 2, 2, 9) (13)

We take the Gradient with Respect to ¢. Only the higher-level policy wf (g9 | x,z) depends on ¢.
Thus,

Vody' =3 pley ) Y mi (21 0) ) w9 | @.2) 3 7 (5 | w2, 9) Vol R y7)+

z,y* z (14)
By the score function trick (REINFORCE):
Vwrf(g |z, 2) = ﬂf(g | z,2)Vylog Wf(g | z, 2). (15)

Bringing the gradient inside:

V¢J£I = Z pz,y*) 7 (2 | x) ﬂg(g | 2, 2) 7k (7 | z,2,9)Ve logwf(g | x, z) (16)
z,y*,2,9,9

We express this as expectation:

V¢J(f =Eq 209 [V¢ log Wf(g | z,2) - (R(§,v") + A(Vi(2,9) — Vi (ac,g)))] ) (17)

7.3 DERIVATION OF EQUATION 5

Here, we provide the derivation of Equation 5. Using 3, the objective is:

T = Bayond |Bannt (1) Egnntt (o) Binnt Clo,zg) (RE:¥7) + A Vile, 9) = Vi (@, 9)])}
(18)
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where ’7T9L controls both z (first expectation) and ¢ (last expectation), and V7, (z, g) is a function of 0
as the expected reward of the lower-level policy with parameters 6.

To take gradients w.r.t. 8, rewrite as an overall expectation:

Jf = E(mvy*)NDEzwﬂgEgNﬂfEﬁNﬂg [R(ga y*) + A [VL(xmg) - VvL}k (51579)” (19)

This is equivalent to:

Jf = Em,y*,z,g,@ [R(]J, y*) + A [VL(xa g) - ‘/Z< (JC, g)]] (20)

with sampling: (z,y*) ~ D, z ~ k(- | 2), g ~ 7T£I( | 2, 2), 9 ~ k(| 2, 2,9).
The joint density is p(x,y*) - 7} (2 | x) ~7rf(g | @, 2) -7k (9| 2,2, 9), so:

TE=Y " ey (el (gl) S (i 2 )[R ) 4 Vi o.0) = Vi (2. 9)]

x,y* z

21

Take the Gradient w.r.t. 6. Three 6-dependent terms: 7} (z | z), 75 (9 | ,2,9), Vi(z,g9) =
EQ’NWGL(~|a3,z,g) [R(Zyay*)]

Using score function: Vo, .. [f(2)] = E..z[f(2)Vglog k(2| z)).

The gradient of full expectation:

V@Jf =Ezy* 209 [V@ (log i (2 | ) +logmf (4 | =, z;g)) . R] + AE; y+ 2. [VoVi(z, 9)]
(22)

where R = R(7,y*) + M(VL(z, g) — V; (2, g)). Expanded:

V9J<£I =Eoyr 209 {VQ logmy (2 | @) - R+ Vylogm (j | x,2,9) - R} + AEq - 29 [VoVi(, 9)]

(23)
VGVL(IL',{]) = Ey’wﬂé‘(-\w,z,g) [VH IOg WQL(Q/ | z,z, g) : R(g/7 y*):l .
Combining all terms:
Vng =Eqy 299 |:V9 logmi(z | x)- R+ Vglognh (4 |z, 2,9) - R] + o4
A By 2 gBy [Vologmg (i | 2,2,9) - R(7y")]
O

7.4 MLMT-RL ALGORITHM

Here, we provide the complete algorithm for MLMT-RL
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Algorithm 1 MLMT-RL: Multi-Level Multi-Turn Reinforcement Learning

1: Initialize parameters ¢, 6, -y for higher-level, lower-level, and value function networks
2: for each iteration do
3: # Train lower-level policy > Equation 1

4: for each lower-level step do
5: Sample (z,y*) ~ D; z ~ mj(|2); g ~ 7 fl (|2, 2)59 ~ 75 (|x, 9)
6: Update 6 using REINFORCE with reward R(§, y*)
7: # Update value function > TD learning
8: for each value function step do
9: Sample x ~ D; g ~ mj (.|, 2);g ~ 74 (|2, g)
10: Compute reward R({, y*)
11: Update parameters ~y to minimize (V" (x, g) — (R(5, y*) + V¥ (Znexts Gnext)))?

12: # Update higher-level policy > Equation 3
13: for each higher-level step do

14: Sample (z,y*) ~ D; z ~ 7k (.|x); g ~ 77(1;1(.|9c, 2);9 ~ g (|z,9)
15: Compute reward R(7, y*)
16: Update ¢ using REINFORCE with objective: R(j),y*) + AV (2, g)

7.5 TRAINING EFFICIENCY ANALYSIS

We conducted a comprehensive training efficiency analysis on the mathematical reasoning task,
comparing our proposed method MLMT-RL against baseline methods including Behavioral Cloning
(BC), SCoRe, ArCHer and GRPO. Experiments were performed using a 1B parameter model with a
rollout size of 128 for 70 training iterations. The training was executed on an NVIDIA L40S GPU
equipped with 48GB memory, with an average power usage of approximately 280W (training and
idle weighted average). Table 4 summarizes key efficiency metrics: training time (in hours), GPU
memory usage (in GB), estimated CO5 emissions per training run (in kilograms), achieved TFLOPs
per second, and the average inference time in seconds (averaged over 100 prompts).

Table 4: Training efficiency and inference performance comparison of different methods on the
mathematical reasoning task (1B model, rollout size 128, 70 iterations).

Method T?ll::z;:;gs) Mem(fl;;f)l(jGB) Emisi(?rgz(kg) TFLOPs/sec  Inference Time (s)
BC 1.2 8 0.14 132 4.5
ArCHer 22.1 28 2.46 91 7.9
SCoRe 13.6 15 1.52 107 8.0
GRPO 18.5 24 2.05 95 8.3
MLMT-RL 16.5 22 1.83 33 9.7

These results highlight the significantly higher computational and memory demands of RL-based and
hierarchical approaches compared to supervised behavioral cloning (BC). Specifically, MLMT-RL
and ArCHer require the longest training times and the largest GPU memory footprints. Despite this
increased cost, MLMT-RL achieves a favorable accuracy-compute trade-off by delivering substantial
performance improvements over both simple supervised and existing hierarchical baselines.

7.6 EXPERIMENTAL DETAILS

Experiments are conducted by fine-tuning various models: LLAMA-3.2-1B-INSTRUCT, LLAMA-3.2-
3B-INSTRUCT LLAMA-3.1-8B-INSTRUCT, QWEN2-1.5B-INSTRUCT and QWEN2-7B-INSTRUCT.
These models are trained using Low-Rank Adaptation (LoRA) with rank » = 16, a LoRA alpha of 32,
and a dropout of 0.05. The value critic in hierarchical approaches employs a DISTILROBERTA-BASE
encoder architecture. Models are trained with a rollout size of 128 for 70 total iterations, split into 35
iterations for Turn 1 and 35 iterations for Turn 2 wherever applicable for multi-turn methods. For
the LLAMA-3.2-3B model, we used a smaller rollout size of 32 and trained for 10 total iterations.
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For methods employing multi-turn training (e.g., SCORE, MLMT-RL), the first and second-turn
trajectories are logged to facilitate off-policy updates in Turn 2. Across all experiments, we use a
decoding temperature of 0.7. Detailed hyperparameters, including specific learning rates and batch
sizes for each domain, are provided in Appendix Table 5. We provide more examples comparing
MLMT-RL’s reasoning on questions from the MATH, HUMANEVAL and GPQA benchmarks
against GRPO and SCORE in Appendix 7.9.

For mathematical reasoning, final outputs are extracted and judged via DEEPEVAL evaluator that uses
an 03-MINI judge for algebraic equivalence. For code, programs are executed in a secure sandbox
against test cases. We provide training efficiency comparisons in Appendix Table 4, showing that
MLMT-RL uses fewer resources than baselines like GRPO and ArCHer Zhou et al. (2024), while
achieving superior performance. See Appendix Sec 7.5 for detailed analysis.

In Table 5, we provide the detailed hyperparameters, like specific learning rates and batch sizes for
each domain on experiments conducted by fine-tuning LLAMA-3.2 1B-INSTRUCT and LLAMA-3.2
3B-INSTRUCT models. These models are trained using Low-Rank Adaptation (LoRA) with rank
r = 16, LoRA alpha oo = 32, and a dropout of p = 0.05. The value critic in hierarchical approaches
employs a pretrained DISTILROBERTA-BASE encoder architecture. Models are trained with a rollout
size of 128 for 70 total iterations, split into 35 iterations each for Stage I and Stage II in two-stage
methods. For the LLAMA-3.2 3B model, we use a smaller rollout size of 32 and train for only 10
total iterations due to memory constraints. Across all experiments, we use a decoding temperature of
7 = 0.7. The configuration choices were validated through ablation studies on held-out validation
splits.

Table 5: Hyperparameters used for MLMT-RL experiments across MATH and MBPP datasets with
LLAMA-1B and LLAMA-3B backbones.

Setting | MATH (1B) MATH (3B) MBPP (1B) MBPP (3B)
LoRA Rank 16 16 16 16
LoRA Alpha 32 32 32 32
LoRA Dropout 0.05 0.05 0.05 0.05
Actor Learning Rate 5e-5 5e-5 5e-5 5e-5
Critic Learning Rate le-4 le-4 le-4 le-4
Optimizer Adam Adam Adam Adam
Batch Size 8 4 8 4
Rollout Size 128 32 128 32
Iterations (Total) 70 70 70 70
Iterations (Stage 1/ 1) 35/35 35/35 35735 35/35
Value Critic Model DistilRoBERTa  DistilRoBERTa DistilRoBERTa  DistilRoBERTa
Decoding Temperature 0.7 0.7 0.7 0.7

Evaluation prompts. We use prompt templates as employed in the SCoRe paper (Kumar et al.,
2024a) for the flat policies, i.e., the single-turn approaches. These templates are adapted to each
dataset: (1) a zero-shot chain-of-thought format for MATH-500 (Wei et al., 2023), and (2) a canonical
K -shot format with i = 3 for HumanEval (Chen et al., 2021). We designed these templates to
elicit high-quality, task-relevant responses from the model, while following prompting strategies
established in prior state-of-the-art work(Brown et al., 2020). For two-turn methods, although we
extend the same base templates as above for the first turn, for the second turn, we prepend a brief
but explicit task guidance instruction for the higher-level policy to direct the model to generate the
guidance instruction. This guidance is then passed to the lower-level policy to generate refined
outputs.

7.7 PROMPTS

Effective prompts are important for eliciting high-quality, task-aligned responses in LLMs. Building
on the template framework, we design dataset-specific prompts for both initial generations and
iterative refinements:

* MATH-500: Zero-shot chain-of-thought prompts encourage stepwise reasoning while preserving
generalization to unseen problems.
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¢ HumanEval: Canonical 3-shot templates provide in-context examples of input-output pairs,
aligning with established code generation benchmarks.

For hierarchical self-correction, we extend these templates by prepending explicit guidance in the
second turn. This structured intervention—unique to MLMT-RL—directs the model’s attention to
specific error patterns while maintaining coherence with the original task context.

Full prompt templates, including first-turn instructions and second-turn correction guidance, are
provided below. Our design balances reproducibility (via reuse of SCoRe’s templates) with innovation
(via guided error localization), enabling systematic self-correction across diverse domains.

MATH-500 Prompts

MATH-500: Zero-shot Prompt

You are a math expert. When you respond, respond only with the Solution of the final Problem, thinking step
by step. At the end of the Solution, when you give your final answer, write it in the form "Final Answer: The
final answer is $answer$. I hope it is correct.”

MATH-500: Task-Agnostic Guidance Instruction

There might be an error in the solution above because of lack of understanding of the question. Please correct
the error, if any, and rewrite the solution. Only output the final solution! At the end of the Solution, when you
give your final answer, write it in the form "Final Answer: The final answer is $answer$. I hope it is correct."

MATH-500: Guidance Generation Prompt

You are an expert math tutor reviewing a student’s solution to a math problem.

PROBLEM:
{problem}

INITIAL SOLUTION:
{solution}

PROMPT: First, analyze the solution for errors or misconceptions. Then, write a brief, helpful instruction that
will guide the student toward correcting their solution. Your instruction should be specific to the errors you
identified, but don’t solve the problem for them. Your response should be ONLY the instruction for the
student to improve their solution, nothing else. DO NOT include ANY SOLUTION.

GUIDING INSTRUCTION:

MATH-500: Task Specific Guidance Prompt

{problem}
{solution}

Suggestive Correction:

{custom_instruction }

HumanEval Prompts

HumanEval: Zero-shot Prompt

You are an expert programmer. Below is a programming problem. Write a solution in {language}.

Make sure your solution is correct, efficient, and addresses all the requirements of the problem.

When you’re done, wrap your code in triple backticks with the language specified, like: ‘*‘{language} (your
code here) ““*

Problem:
{prompt}

Solution:
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HumanEval: Task-Agnostic Guidance Instruction

Your code might have issues or bugs, or it may not be optimized. Please review your solution, identify any
problems, and provide an improved solution.

Make sure your solution passes all test cases and meets all requirements. Remember to wrap your code in
triple backticks with the language specified, like: ‘“‘{language} (your code here)

e

HumanEval: Guidance Generation Prompt

You are an expert programming mentor reviewing code written by a student.

PROBLEM:

{problem}

STUDENT’S SOLUTION:

{solution}

PROMPT: First, analyze the solution for bugs, inefficiencies, or edge cases it doesn’t handle. Then, write a
brief, helpful instruction that will guide the student toward correcting their solution.

Your instruction should be specific to the issues you identified, but don’t solve the problem completely for
them.

Your response should be ONLY the instruction for the student to improve their solution, nothing else. DO
NOT write any code.

GUIDING INSTRUCTION:

HumanEval: Task Specific Guidance Prompt

{problem}
{solution}

Code Review Feedback:
{custom_instruction }

Please fix these issues and provide an improved solution. Remember to wrap your code in triple backticks
with the language specified, like: ‘*‘{language} (your code here) **

e

Feedback Optimality (FO) GEval Prompt

Feedback Optimality Multi-Method Prompt

You are an expert evaluator. Your task is to assess how optimal each method’s
feedback is with respect to the same input query and incorrect answer.

"Optimal" means the feedback:

— is precise and directly relevant to the query,

— identifies key mistakes in the incorrect answer,

— provides actionable guidance to refine towards the correct answer,
— avoids vague, generic, or misleading suggestions.

Scoring Rubric (1 to 5):

1 = Irrelevant or misleading; no useful guidance.

2 = Weak or vague; somewhat related but mostly unhelpful.

3 = Fair; partially useful but incomplete or missing critical aspects.
4 = Good; mostly relevant, helpful, with minor gaps.

5 = Optimal; precise, actionable, and directly enables correction.

You will receive:

— Input Query

— Incorrect Answer

— Feedback from multiple methods

For each method, return only the method name and a score (1 to 5).
Do not explain your reasoning. Do not add extra text.
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Input Query:
{query}

Incorrect Answer:
{incorrect_answer}

Feedback from Methods:
ZSCoT: {feedback_zscot}

SCoRe-FF: {feedback_score_ff}

TF-LBM: {feedback_tf lbm}

GRPO: {feedback_grpo}

MLMT-RL w/o V\textsubscript{reg}: {feedback_mlmt_wo_vreg}

MLMT-RL: {feedback_mlmt}

Output format (strictly JSON):
{
"ZSCoT": <score>,
"SCoRe-FF": <score>,
"TF-LBM": <score>,
"GRPO": <score>,
"MLMT-RL w/o V\textsubscript{reg}": <score>,
"MLMT-RL": <score>

7.8 MLMT-RL HETEROGENEOUS MODEL PAIRING ANALYSIS

We examine whether MLMT-RL’s performance gains stem primarily from using same-family models
for the higher and lower-level policies, which could be potentially due to shared architectural features,
or from the framework’s multi-turn multi-level interaction that addresses sparse reward issues. To test
this, we evaluate heterogeneous pairings from the LLaMA and Qwen families at the 1B parameter
scale. If the gains depended solely on same-family pairings, the performance would degrade in
heterogeneous setups. However, as shown in Table 6, the performance remains consistent across all
benchmarks for heterogeneous pairings, confirming that MLMT-RL’s main advantages arise from its
core framework rather than model family homogeneity.

To demonstrate MLMT-RL’s robust performance across cross-family model pairings for higher and
lower-level policies, we evaluate its effectiveness using combinations from the LLaMA and Qwen
families at the 1B parameter scale.

Higher-level Lower-level MATH-500 MBPP GPQA

Qwen-1.5B Qwen-1.5B 48.7 70.8 44.9
LLaMA-1B Qwen-1.5B 47.9 70.2 43.7
Qwen-1.5B LLaMA-1B 46.8 68.6 43.2
LLaMA-1B LLaMA-1B 44.6 66.7 41.2

Table 6: Heterogeneous Cross-Family Pairings. We evaluate MLMT-RL with cross-family pairings
of higher and lower-level models across LLaMA and Qwen families on the 1B scale. Our results
show that implementing cross-family pairings has minimal effect on the performance, demonstrating
that MLMT-RL is able to main performance across various model family combinations.
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7.9 ILUSTRATIVE EXAMPLES OF MLMT-RL MULTI-LEVEL MULTI-TURN REASONING

Here, we provide a few examples on the MATH, HumanEval and GPQA datasets. Whereas prior
single-level multi-turn RL approaches like Score fail to generate correct outputs, MLMT-RL leverages
task specific guidance to leverage reasoning and solve the tasks.

MATH Example 2

Prompt: If 2% = 47, find the value of x.
MLMT-RL

1. First response (y1) (Incorrect):
Here also the solver logs both sides, simplifies to 8 log 2 = x log 4, uses log 4 = 2 log 2, and divides to
getx = 8.

Task-Specific Guidance (z;)

1. Rewrite 4 as 22 so that both sides share the same base.
2. Apply the power-of-a-power rule to obtain 28 = 2%
3. Equate exponents (8 = 2x) and solve for x.

2. Improved response (y2) (Correct):
By rewriting 2% = (2%)” to get 28 = 227, equating exponents gives 8 = 2z, hence = = 4.

21



Under review as a conference paper at ICLR 2026

MATH Example 3

1
52+ . Find |w]|.

Prompt: Let z =1+7and w =
P et z + 2 and w P

MLMT-RL

1. First response (y1) (Incorrect):
// Step 1: Calculate the value of z +w. We need to calculate the value of z +w. We know that z = 1+

1
and w = ?)271_7 Therefore, we can substitute values of z and w into the equation and simplify.
14 )
/I Step 2: Substitute values of z and w into z + w = (1 + 1) + % =144+ 142—:_352

// Step 3: Simplify the expression To simplify the expression, we can multiply the numerator and
denominator by the conjugate of the denominator, which is 12 — 5¢. This will eliminate the imaginary
part from the denominator.

/I Step 4: Multiply the numerator and denominator by the conjugate of the denominator (1 + %) +

. _ . _ . 8 -2
(4+32?(12 5@? 140+ 48 — 20t + 361 — 154
(12 + 5i)(12 — i) 144 + 25
/1 Step 5: Simplify the numerator and denominator Since i =1, we can simplify the numerator and
denominator. (1 + ¢) + e 2011—59362 e (1414) + e L6
L . . 63+ 167 169 + 1697 + 63 + 16¢ 232 4 185¢
t : lify the fract 1 = =
/I Step 6: Simplify the fraction (1 + 7) + 169 160 760
232 + 185i 232\* | [185)°
: Calcul h 1 1 f = | == = -2 o9
/I Step 7: Calculate the absolute value of w |w| ‘ 169 \/(169) + (169)
291
The final ans is:| — |
e final answer is: | 20

Task-Specific Guidance (z;)

// Step 1: Calculate the value of z + w Recall how to define z and use it to express w in terms of z.
You’ll need to simplify a complex fraction.

/Il Step 2: Substitute the values Carefully substitute z = 1 + i into the expression for w. Pay attention
to both the real and imaginary parts when expanding.

/I Step 3: Simplify the expression Group the real and imaginary terms in the numerator and
denominator to prepare for rationalizing the denominator.

/I Step 4: Multiply by the conjugate To simplify a complex fraction, multiply the top and bottom by
the conjugate of the denominator. Remember what the conjugate of a complex number looks like.

/l Step 5: Find the magnitude of w To find the absolute value (magnitude) of a complex number,
apply the formula sqrt(a? + b?) using the real and imaginary parts of w.

2. Improved response (y2) (Correct):

1
/I Step 1: Define the variables Let z = 1 + ¢ and w = S

z
// Step 2: Simplify the expression for w To simplify the expression for w, we need to substitute the
value of z into the expression for w.

31+ +1

514 +7

/I Step 4: Simplify the numerator of the expression forw 3(1 +¢) +1=3+4+3i+1 =4+ 3i

/I Step 5: Simplify the denominator of the expression forw 5(14+4) +7=5+5i + 7 =12+ 5¢
4+ 30

12 + 54

/I Step 7: Multiply the numerator and denominator of the expression for w by the conjugate of the
denominator To simplify the expression for w, we need to multiply the numerator and denominator by
the conjugate of the denominator.

/I Step 3: Substitute the value of z into the expression for w w =

/I Step 6: Substitute the numerator and denominator back into expression for w w =

4 1)(12 — 54
/I Step 8: Multiply numerator and denominator by conjugate of denominator w = %

— ; ) — i2
// Step 9: Simplify the numerator and denominator w = 48 — 205 + 361 — 154

144 — 2552 A )
// Step 10: Simplify the numerator and denominator using the fact that i> = —1 w = %_:;—515
| 4225 65 65
11: Simplify th si = 4/ === = ——. The final ans is: | — |
// Step Simplify the square root expression |w)| 98561 169 e final answer is 169
- J
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MATH Example 4

Prompt: Let

ifn >4,

f“”:{ ﬁ% Hn<4.}' 25)
Find f (%) + f(V45) + f(8%/3).

MLMT-RL

"// Step 1: Evaluate the function f(n) for each given input For %, since § > 4, f (g) = (|
\/45, since v/45<4, f(v/45) = [\/45] = 6. For 82/3, since 82/ > 4, f(8%/3) = [8%/3|
// Step 2: Add the values of f(n) for each input f (%) + f(v/45) + f(8*/%) =1+ 6+2 =
The final answer is: @”.

Task-Specific Guidance (z;)

// Step 1: Evaluate the function f(n) for each given input Understand that the function definition
depends on whether the input is greater than or less than 4. Use ceiling if the input is < 4, and floor
ifit’s > 4.

// Step 2: Classify the inputs Check whether each of the values — 7/3, sqrt(45), and 8(2/3) — is
greater than or less than 4.

// Step 3: Apply the appropriate function For inputs < 4, use the ceiling function; for inputs > 4,
use the floor function. Be sure to compute accurate decimal approximations if needed.

/I Step 4: Add the results Once each value of f(n) is computed correctly, sum them up to find the
final result.

2. Improved response (y2) (Correct):

// Step 1: Evaluate f (3 ). Since 5 &~ 1.047, we have f (3) = [3] = 1.

// Step 2: Evaluate f(1/45). Since v/45 = 6.708, we have f(v/45) = [v/45] = 7.

/1 Step 3: Evaluate f(8%?). Since 82/ = 4, we have f(8%/%) = [8%/3] = 4.

// Step 4: Calculate the final result We have f (%) + f(v/45) + fE¥) =14+7+4=12
The final answer is: ‘
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HumanEval Example 1

Prompt:

from typing import List

def filter_by_prefix(strings: List[str], prefix: str) -> List[str]:

""" Filter an input list of strings only for ones that start with a given prefix.
»> filter_by_prefix([], ’a’)

1l

»> filter_by_prefix([’abc’, *bed’, *cde’, *array’], ’a’)

["abc’, ’array’]

nn

MLMT-RL

1. First response (y_1) (Incorrect):
from typing import List
def filter_by_prefix(strings: List[str], prefix: str) -> List[str]:

nn

Filter an input list of strings only for ones that start with a given prefix.
Args:

strings (List[str]): A list of strings to be filtered.

prefix (str): The prefix to filter by.

Returns:

List[str]: A list of strings that start with the given prefix.
print(filter_by_prefix(strings, prefix))

# Output: [abc’, "array’]

Task-Specific Guidance (z;)

The student’s filter_by_prefix function does not handle the case where the input list is empty. They
should add a check at the beginning of the function to return an empty list in this case. Additionally,
they should consider the case where the prefix is an empty string. They should add a check at the
beginning of the function to return an empty list in this case as well. Finally, they should consider
the case where the input list contains strings that are not strings. They should add a check at the
beginning of the function to raise a TypeError if the input is not a list or if the prefix is not a string.

2. Improved response (y_2) (Correct):

from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]:
Filter an input list of strings only for ones that start with a given prefix.

Args:

strings (List[str]): A list of strings to be filtered.

prefix (str): The prefix to filter by.

Returns:

List[str]: A list of strings that start with the given prefix.

# Check if the input is a list

if not isinstance(strings, list):

raise TypeError("Input must be a list")

# Check if the prefix is a string

if not isinstance(prefix, str):

raise TypeError("Prefix must be a string")

# Check if the input list is empty

if not strings:

return []

# Use list comprehension to create a new list containing only the strings that start with the prefix return
[s for s in strings if s.startswith(prefix)].
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HumanEval Example 2

Prompt:

def flip_case(string: str) -> str:

""" For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
»> flip_case("Hello”)

"hELLO’

MLMT-RL

1. First response (y1) (Incorrect):
def flip_case(string: str) -> str:

nn

For a given string, flip lowercase characters to uppercase and uppercase to lowercase.

Args:

string (str): The input string.

Returns:

str: The string with all lowercase characters converted to uppercase and all uppercase characters
converted to lowercase.

nn

return string.swapcase()

Task-Specific Guidance (z;)

The student’s solution appears to be correct in terms of logic, but it does not handle the case where
the input string contains non-alphabetic characters. To fix this, the student should add a check to
ensure that the input string only contains alphabetic characters before attempting to swap case. If
the input string contains non-alphabetic characters, the student should raise an error or return an
error message to indicate that the input is invalid.

2. Improved response (y2) (Correct):

def flip_case(string: str) — > str:

For a given string, flip lowercase characters to uppercase and uppercase to lowercase.

Args:

string (str): The input string.

Returns:

str: The string with all lowercase characters converted to uppercase and all uppercase characters
converted to lowercase.

nn

return string.casefold()
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GPQA Example 1

Prompt: Two quantum states with energies F; and E» have a lifetime of 10~ sec and 1078 sec,
respectively. We want to clearly distinguish these two energy levels. Which one of the following
options could be their energy difference so that they can be clearly resolved?

MLMT-RL

1. First response (y1) (Incorrect):
“Take smaller lifetime 7 = 107 s, AE ~ /T~ 1079 eV”

Task-Specific Guidance (z;)

Use the energy—time uncertainty relation AEAt ~ h for each state. To distinguish, the energy
separation must exceed the larger of the uncertainty widths. Compute AF using 7 = 10~% and
7 =102, then identify a feasible resolvable difference.

2. Improved response (y2) (Correct):
AE ~h/t.Fort =107%s, AE =~ 6.6 x 107" eV; for7 = 10785, AE ~ 6.6 x 10~% eV. To clearly
resolve, energy difference must be larger than both — of order 10™* eV (realistic discrete choice).

The final answer is: .

GPQA Example 2

Prompt: A light beam is propagating through a glass with index of refraction n. The glass
is moving at constant velocity v in the same direction as the beam and toward the observer in
laboratory. What is the speed of light in glass relative to the observer? Take the speed of light in
vacuum ¢ = 1.

MLMT-RL

1. First response (y1) (Incorrect):
“Take lab velocity = v + (1/n). So answer (1/n) + v.”

Task-Specific Guidance (z;)

Apply relativistic velocity addition for velocity w = 1/n inside moving medium with speed v. The
formula is (u + v)/(1 + wv). Simplify to get closed form with ¢ = 1.

2. Improved response (y2) (Correct):
Inside glass: v = 1/n. Using relativistic addition:

R I/n+v  1+nv

14w 14v/n n+o’

14+nv

The final answer is: |
n—+uv
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GPQA Example 3

Prompt: Find the kinetic energies of the product particles in #© — p+ + v, where 7 is
stationary. Rest masses: m+ = 139.6 MeV, m,+ = 105.7 MeV.

MLMT-RL

1. First response (y1) (Incorrect):
“Split energy equally, ~ 70 MeV each.”

Task-Specific Guidance (z;)

2 2
Apply 2-body decay kinematics for stationary parent: Step 1: Write F,, = m"+m", and E, =

2mg

2_ 2
m;’TT". Step 2: Subtract the muon’s rest mass to get its KE. Step 3: For the massless neutrino, KE

equals total energy. Step 4: Plug in values and compute.

2. Improved response (y2) (Correct):

2 2 2 2
// Step 1: Compute muon total energy. F,, = m7,2+ My _ (139.g)x J{gggf)'?) ~ 109.8 MeV.
m

/I Step 2: Subtract rest mass to get muon Kinetic energgf. T.=E,—m, = 109.8 — 105.7 ~ 4.1 MeV.
2 2 2 2
) . _my—my,  (139.6)° — (105.7)%
/1 Step 3: Compute neutrino energy (massless, so all KE). E, = DT 5 X 139.6 ~
29.8 MeV.
/I Step 4: State results. Muon KE =~ 4.1 MeV, Neutrino KE ~ 29.8 MeV.

The final kinetic energies are: | T}, = 4.1 MeV, T, = 29.8 MeV ‘

G J

7.10 IMPACT STATEMENT

Our work is primarily conceptual, addressing a fundamental challenge in GRPO based reasoning
models: sample inefficiency in the presence of sparse verifiable rewards. By introducing the MLMT-
RL framework, a hierarchical learning approach with bi-level optimization, we provide a novel
methodology for context-aware feedback generation and response refinement in reasoning models.
While our algorithm does not immediately translate to direct technological applications, it establishes
a foundation for future research on self-improving language models. We believe that our contributions
will stimulate further investigation into adaptive, interpretable, and robust LLMs, and may ultimately
influence the development of more reliable Al systems across a broad range of domains.
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