
Under review as a conference paper at ICLR 2023

UNCERTAINTY-BASED MULTI-TASK DATA SHARING
FOR OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline Reinforcement Learning (RL) has shown promising results in learning a
task-specific policy from a fixed dataset. However, successful offline RL often
relies heavily on the coverage and quality of the given dataset. In scenarios where
the dataset for a specific task is limited, a natural approach is to improve offline
RL with datasets from other tasks, namely, to conduct Multi-Task Data Sharing
(MTDS). Nevertheless, directly sharing datasets from other tasks exacerbates the
distribution shift in offline RL. As a remedy, previous attempts share only par-
tial data that maximizes a conservative value function. However, such attempts
are inefficient in calculating the policy constraints and abandon a large portion
of datasets, which could be potentially informative. In this paper, we propose
an uncertainty-based MTDS approach that shares the entire dataset without data
selection. We further provide theoretical analysis, which shows that the optimal-
ity gap of our method is only related to the expected data coverage of the shared
dataset, thus resolving the distribution shift issue in data sharing. Empirically,
we construct an MTDS benchmark and collect datasets from three challenging
domains. The experimental results show our algorithm outperforms the previous
state-of-the-art methods in challenging MTDS problems.

1 INTRODUCTION

Offline Reinforcement Learning (RL) (Levine et al., 2020) achieves remarkable successes in learn-
ing task-specific policies from the previously collected datasets. The most significant challenge in
offline RL is the distribution shift issue, where the offline dataset does not match the current policy
in optimization. To tackle this problem, most of the previous offline RL methods enforce policy
constraints between the learned policy and the behavior policy that collects the dataset (Fujimoto
et al., 2019). As a consequence, the performance of such methods relies heavily on the quality of the
behavior policy. Alternatively, previous methods also measure the uncertainty of state-action pairs
and utilize such uncertainty measurement to conduct conservative policy evaluation. Nevertheless,
such methods rely on the coverage of the given dataset in the state-action space (Jin et al., 2021; Xie
et al., 2021b). As a result, if the offline dataset for a specific task is of low quality or has limited data
coverage, the performance of offline RL algorithms is limited.

To this end, our research aims to develop a Multi-Task Data Sharing (MTDS) method, which en-
hances the offline RL on a specific task by utilizing datasets from other relevant tasks. The multi-
task datasets are typically accessible in practical offline RL problems. For example, one can col-
lect different datasets for various tasks with the same robot arm, where each task has a relatively
small dataset. In such a scenario, directly training individual policies for each task with the corre-
sponding dataset is insufficient for good performance since the data coverage for a single dataset
is limited. Thus, a natural idea is to utilize offline datasets from other tasks in the same domain to
help each task learn better (namely, MTDS). In particular, in learning a task Ai ∈ A from domain
A with dataset DAi , an MTDS method constructs a mixed dataset D̂Ai by relabeling experience
ej = (s, a, rAj (s, a), s

′) from task Aj ∈ A to ej→i = (s, a, rAi(s, a), s
′), where i ̸= j. The shared

tasks come from the same domain with the same dynamics; thus we only need to modify the rewards
in the data sharing. We then train the offline policy for task Ai on the mixed dataset D̂Ai

.

Though such an MTDS process is easy to implement, naively sharing data can exacerbate the dis-
tribution shift between behavior and learned policies, which degrades performance compared to

1

Under review as a conference paper at ICLR 2023

Reward
relabeling

Task A1

Individual datasets for
domain A

...

Task A1

Mixed dataset

Conservative
value function

update

policy

Task Am

e.g., CQL

Reward
relabeling

Individual datasets for
domain A

Task A1

Mixed dataset

share

policy

Uncertainty-based
Value Iteration

(a) Conservative Data Sharing (CDS) (b) Uncertainty-based Data Sharing (UTDS)

data selection
Task Ai

...

Task A1

...

Task Am

Task Ai

...
abandon data

Figure 1: The illustration of CDS and UTDS for MTDS in training task A1. (a) CDS includes a
data selection process through the learned conservative value function. The selected data is added
to the mixed dataset. (b) UTDS can share all data from other tasks without data selection. In policy
training, UTDS performs pessimistic updates based on uncertainty in the large shared dataset.

single-task training. In addition, when incorporating policy constraints, the different behavior poli-
cies of the mixed dataset drive the learned policy towards different directions, which results in con-
flicting gradient directions and instability in optimization. Previous methods propose Conservative
Data Sharing (CDS) (Yu et al., 2021a) to address this problem, which minimizes distribution shift
by defining an effective behavior policy and only sharing data relevant to the main task. However,
such a method hinges on policy constraints, while we insist policy coverage instead of the optimality
of behavioral policy suits better in MTDS. In addition, the data selection process of CDS discards a
large amount of shared data that could be potentially informative in training.

In this paper, we propose Uncertainty-based Data Sharing (UTDS) algorithm, which allows arbitrary
data sharing without data selection mechanisms. In particular, we first perform standard MTDS to
obtain a mixed dataset with other tasks, then train an ensemble of Q-functions (Osband et al., 2016)
to provide uncertainty quantification for the mixed dataset. By measuring the uncertainty, we per-
form pessimistic value iteration to utilize the uncertainty as a penalty in offline training. Such an
uncertainty quantifier considers the data coverage of the mixed dataset, which is less affected by
the deviation between the behavior policies and the learned policy. In addition, we further penalize
the out-of-distribution (OOD) actions within the support of the mixed dataset to improve the per-
formance of the learned policy in the OOD region. A key factor for our proposed UTDS is that
even if data sharing does not benefit the data coverage of the optimal policy, it does not degrade the
UTDS learning results. Such a key factor makes UTDS inherently different from CDS (Yu et al.,
2021a), which may have degraded performance without appropriate data selection. We illustrate the
difference between CDS and UTDS in Figure 1.

We summarize our main contributions as follows. (i) The proposed UTDS algorithm provides a
unified view for both single-task and multi-task offline RL learning without data selection. In par-
ticular, when the number of shared datasets is equal to one (namely m = 1), UTDS degenerates
to uncertainty-based single-task offline learning similar to EDAC (An et al., 2021) or PBRL (Bai
et al., 2022). (ii) We provide theoretical analysis in linear MDPs. The analysis shows that the op-
timality gap of UTDS is only related to the expected data coverage of the shared dataset on the
optimal policy. Thus, UTDS is less affected by the change of the behavior policy in data sharing.
(iii) Empirically, we conduct experiments on a suite of domains built on DeepMind Control Suite
(Tassa et al., 2018) and collect multi-task datasets to construct a benchmark for large-scale MTDS.
We release the collected datasets and open-source code for the data-generation, and also reproduce
several MTDS baselines for further utilization 1.

2 PRELIMINARIES

MTDS A multi-task Markov Decision Process (MDP) is defined by the tuple M =
(S,A, P, γ, {Ri, i}mi=1), where m is the number of tasks from the same domain, and we omit the
domain notation A. We remark that all tasks share the same state space, action space, and transi-

1See https://github.com/review-anon/UTDS for the datasets and code.

2

https://github.com/review-anon/UTDS

Under review as a conference paper at ICLR 2023

tion function. Meanwhile, different tasks have different reward functions {Ri} indexed by i ∈ [m].
Correspondingly, Qπi

i (a|s) is the value function of task i ∈ [m] with respect to the policy πi.

The multi-task dataset D contains m per-task dataset D = ∪mi=1Di, where Di = {s, a, ri, s′} is the
dataset for the i-th task and the reward function is returned by Ri. We denote the behavior policy
for each dataset by {πβ1 , . . . , πβm}. For the i-th task, MTDS shares the dataset Dj from the j-th
task and relabels the rewards in Dj with the reward function Ri. We denote the relabeled dataset
from task j → i by Dj→i. Then D̂i = Di ∪Dj→i denotes the shared dataset that contains all shared
data from task j, where j ̸= i. To conduct data sharing, we assume that the reward functions for all
tasks are known to us, which is commonly achievable in robotic locomotion and manipulation tasks
(Tassa et al., 2018). In special cases, if such reward functions are otherwise unknown, one can learn
a parametric reward function based on the dataset.

Conservative Data Sharing (CDS) Previous work shows that naively sharing data to construct
D̂i can degrade performance (Yu et al., 2021a). The reason is that data sharing increases the policy
divergence D(πi∥π̂βi)(s) between the learned policy and the behavior policy as the shared data
modifies π̂βi

. To this end, CDS optimizes the following objective to select the shared data, as

Jcds = max
π̂βi

Es∼D̂i

[
Ea∼πi

[Q(s, a)]− αD(πi∥π̂βi
)(s)

]
, (1)

where CDS selects data to obtain a behavior policy with small policy divergence. Theoretically, let
πcds
i and π∗

βi
be policies that maximize Eq. (1), then w.p. ≥ 1 − δ, the policy improvement bound

can be quantified as J(πcds
i) ≥ J(πβi

)− δcds, where

δcds ≈ O
(
1/(1−γ)2

)
Es

[√(
D(πcds

i

∥∥π∗
βi
)(s) + 1

) / ∣∣D̂i(s)
∣∣]−[αD(πcds

i , π∗
βi
)+J(π∗

βi
)−J(πβi

)
]
.

(2)
According to Eq. (2), the learned policy should be close to the behavior policy to reduce this bound.
We remark that such a lower bound is closely related to imitation learning rather than policy op-
timization since it only cares about the relationship to the behavior policy π∗

βi
. In contrast, our

analysis of UTDS provides the optimality gap between the learned policy and the optimal policy,
which provides useful guidance for data sharing without policy constraints.

In CDS implementation, optimizing Jcds can be approximately achieved by selecting transitions
with a conservative Q-value more than the top k-th quantiles. Nevertheless, since the shared dataset
changes with the update ofQ-function, the learning process becomes unstable with the change of the
effective behavior policy per update. Choosing a small k (e.g., 10%) may overcome such a problem,
while it drops 90% of the shared dataset that may contain helpful information for RL.

3 METHOD

In the sequel, we introduce our proposed UTDS method. In UTDS, we collect all data from
the shared dataset without data selection and measure the uncertainty through an ensemble of Q-
networks. UTDS then performs the pessimistic value update to penalize the state-action pairs with
large uncertainties in the shared dataset, which results in a pessimistic data-sharing policy.

3.1 UNCERTAINTY QUANTIFIER

Considering a shared dataset D̂i = Di ∪ Dj→i that contains data from i-th task and relabeled data
from the j-th task. We parameterize the Q-function for task i as Qi(s, a; θi), where θi denotes the
parameters. The value function can be obtained via the following target,

T̂ Qi(s, a) = ri(s, a) + γEs′∼D̂i,a′∼πi

[
Q−

i (s
′, a′)

]
, (3)

where we denote T̂ Qi as the target corresponding to the experience (s, a, r, s′) sampled from the
shared dataset D̂i, and we select a′ following the policy πi. The target-networkQ−

i is parameterized
by θ−i , which is updated by θ−i ← (1− τ)θi + τθi without gradient propagation.

To acquire the uncertainty quantification, we train N independent Q-networks {Q1
i , . . . , Q

N
i } with

different random initializations and independent target networks. We then measure the uncertainty

3

Under review as a conference paper at ICLR 2023

(a) Single Task (b) Multi Task

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

first dimension of data

se
co

nd
 d

im
en

si
on

 o
f d

at
a

first dimension of data

se
co

nd
 d

im
en

si
on

 o
f d

at
a

Figure 2: An illustration of the uncertainty quantification of UTDS in (a) single-task dataset and
(b) multi-task shared dataset. The multi-task datasets (i.e., the white, brown, and orange points) are
generated by different Gaussian distributions. The uncertainty measured by the ensemble networks
is represented by the color scales in the figures. The darker color means smaller uncertainty. As
shown in the figures, sharing more data decreases the uncertainty.

of (s, a) ∼ D̂i by the standard deviation of the ensemble-Q predictions, namely,

Γi(s, a) =

√
V[Qj

i (s, a)], j ∈ [1, . . . , N], (4)

where V is the variance calculator. The deviation among deep ensemble-Q networks trained with
independent initializations tends to be large if the corresponding state-action pair scarcely occurs in
the dataset. Such a deviation shrinks as the sample size increases with the data sharing.

From the Bayesian perspective, the obtained ensemble-Q networks is a non-parametric approxima-
tion of the posterior of the Q-function (Chaudhari et al., 2019; D’Angelo & Fortuin, 2021). Here Γt

captures the radius of the confidence interval for the Q-function, which measures the uncertainty in
the shared datasets. Recent works (Ovadia et al., 2019; Jiang et al., 2022) also show that ensemble
methods with stochastic gradient descent (SGD) and independent initialization are well generalized,
thus capturing the epistemic uncertainty of the OOD data. We remark that although the ensemble-
based method has been adopted in single-task offline RL (An et al., 2021; Bai et al., 2022), we
present the first practical algorithm for uncertainty-based MTDS in offline RL.

We illustrate the uncertainty estimation with ensembles on a prediction task in R2 plane, as shown
in Figure 2. The data are drawn from the Gaussian distributions, and the response is output by a
random network. Figure 2(a) shows the uncertainty measured by the ensemble in the single-task
dataset, and we find that the uncertainty is small for the state-action pairs near the data cluster.
Nevertheless, since the single dataset has limited coverage, most areas still have large uncertainty.
In contrast, in Figure 2(b), we share other two datasets and the uncertainty distribution changes.
More areas are ‘known’ and with low uncertainty, which helps reduce the uncertainty of the state-
action pairs induced by the optimal policy. As we will discuss later, if the data sharing improves
the data coverage on the trajectory induced by the optimal policy, UTDS enjoys a tighter optimality
bound and better performance. In contrast, CDS that measures the policy divergence fails to adapt to
the dataset similarity measured in reference to estimating the optimal value function, which means
divergence quantification with trajectory distribution is inaccurate for uncertainty quantification.

3.2 UTDS ALGORITHM

Based on the uncertainty quantifier Γi in Eq. (4), UTDS learns a pessimistic value function on the
shared dataset. The Bellman target for each Q-function in the ensemble takes the following form,

T̂ UTDSQi(s, a) = ri(s, a) + γEs′∼D̂i,a′∼πi

[
Q−

i (s
′, a′)− β1Γi(s

′, a′)
]
, (5)

where β1 is a tuning parameter. Importantly, the uncertainty Γi quantifies the deviation of a datapoint
from the shared dataset, and the penalization enforces pessimism for the target-Q value.

The target in Eq. (5) only captures the uncertainty of experiences from the in-distribution data. In
addition, we also need to penalize the value function for OOD actions. In UTDS, we sample OOD
actions aood ∼ πi(s) following the learned policy, and the OOD states are still sampled from the
shared dataset as s ∼ D̂i. We quantify the uncertainty Γi(s, a

ood) of the OOD data through the

4

Under review as a conference paper at ICLR 2023

Algorithm 1 UTDS for training the i -th task.
1: Initialize: N ensemble-Q and target-Q nets with parameter θ and θ−, initialize the policy πϕi

;
2: while not coverage do
3: Sample a batch of transition (s, a, r, s′) from D̂i that contains shared data from other tasks;
4: Perform OOD sampling based on the current policy to obtain (s, aood) pairs;
5: Calculate the uncertainty Γi(s, a) and Γi(s, a

ood) based on the ensemble-Q networks;
6: Preform pessimistic update via T̂ UTDS and T̂ ood to train the critic parameters θi via Eq. (8);
7: Train the pessimistic policy to train the actor parameters ϕi via Eq. (9);
8: end while

ensemble networks and use the following loss function to enforce pessimism for the OOD data,

Lood(s) = Es∼D̂i,aood∼πi

[(
T̂ oodQi(s, a

ood)−Qi(s, a
ood)

)2]
, (6)

where T̂ oodQi(s, a
ood) is the pseudo-target for the OOD datapoints as,

T̂ oodQi(s, a
ood) := Qi(s, a

ood)− β2Γi(s, a
ood), (7)

where β2 is a tuning parameter, and we remark T̂ oodQi(s, a
ood) is the target without gradient prop-

agation. Our approach to OOD uncertanity quantification is inspired by PBRL (Bai et al., 2022),
which we extend to the MTDS settings. As illustrated in Figure 2, Γi provides well-calibrated
uncertainty for both the in-distribution data and the OOD data.

For implementation, we set β2 to be large at the beginning of the training to enforce a strong pe-
nalization. Then we decrease β2 exponentially with a factor α to prevent overly pessimism. We
remark that applying the operator for infinite times to Qi(s, a

ood) leads to (T̂ ood)∞Qi(s, a
ood),

which equals

Qi(s, a
ood)−

∑∞

k=0
αkβ2 Γi(s, a

ood) = Qi(s, a
ood)− β2/(1−α) Γi(s, a

ood).

Thus, iteratively applying the OOD operator does not lead to the negative infinity target. Meanwhile,
the operator T̂ UTDSQi(s, a) is a contraction mapping (see Appendix D.1 for a proof), which ensures
that Qi(s, a) also converges to a fixed point (Agarwal et al., 2022).

To conclude, when training the i-th task, the loss function for the n-th Q-function in the ensemble is

Ln
UTDS = Es,a,r,s′∼D̂i

[(
T̂ UTDSQn

θi(s, a)−Q
n
θi(s, a)

)2]
+ Lood(s), (8)

where T̂ UTDS and Lood are defined in Eq. (5) and Eq. (6), respectively. Each function Qn
θi

has its
own target-network, where n ∈ [N]. The policy πϕi

(s) for the i-th task is updated by minimizing
the loss function as

Lpolicy = −Es∼D̂i,a∼πϕi

[
min

n=1,...,N
Qn

θi(s, a)
]
, (9)

which takes a greedy action based on the minimum of the ensemble Q-functions. See Algorithm 1
for a summary of UTDS.

4 THEORETICAL ANALYSIS

In the sequel, we consider linear MDPs (Jin et al., 2020; 2021) as a simplification, where we have
access to a feature map of the state-action pair, ϕ(s, a) : S × A → Rd. Meanwhile, the transi-
tion kernel and the reward function are linear in ϕ(s, a). We estimate the action value function by
Qi(s, a) ≈ ŵ⊤

i ϕ(s, a). See §A for the details.

4.1 UTDS IN LINEAR MDPS

In linear MDPs, the proposed ensemble uncertainty aims to recover the lower confidence bound
(LCB) penalty, namely,

Γlcb
i (st, at) = βt

[
ϕ(st, at)

⊤Λ−1
i ϕ(st, at)

]1/2
, (10)

5

Under review as a conference paper at ICLR 2023

where Λi =
∑|Di|

k=1 ϕ(s
k
t , a

k
t)ϕ(s

k
t , a

k
t)

⊤+λ · I is the covariance matrix corresponding to the dataset
of task i. See §A for a proof. The LCB in Eq. (10) can only be applied in linear cases. In the generic
MDP settings, we estimate the uncertainty based on the non-parametric ensemble Q networks.

Let us consider a scenario where we share a dataset Dj to the i-th task and obtain Dj→i. Corre-
spondingly, we solve the offline RL with the joint dataset D̂i = Di ∪ Dj→i. The parameter of the
Q-function Qi learned from D̂i can be solved in a closed form following the least squares value
iteration algorithm (LSVI), which iteratively minimizes the following loss function,

w̃ij = min
w∈Rd

∑|D̂i|

k=1

(
ϕ(skt , a

k
t)

⊤w − r(skt , akt)− Vt+1(s
k
t+1)

)2
+

∑
Dood

i ∪Dood
j

(
ϕ(sood, aood)⊤w − yood

)2
,

(11)

where the data in the first and second terms are based on the shared dataset and the OOD data,
respectively. We useDood

i ∪Dood
j to represent the OOD data from the shared dataset for convenience.

As discussed in §3, we sample sood from D̂i, and sample aood by following the learned policy πi.
The target yood defined in Eq. (7) does not rely on the relabeled reward. The solution of w̃i,j is

w̃ij = Λ̃−1
ij

(∑|D̂i|

k=1
ϕ(skt , a

k
t)y

k
t +

∑
Dood

i ∪Dood
j

(
ϕ(sood, aood)yood

)
, (12)

where the covariance matrix Λ̃ij for the mixed data D̂i is

Λ̃ij = (Λi + Λood
i) + (Λj + Λood

j) := Λ̃i + Λ̃j , (13)

where Λi =
∑|Di|

k=1 ϕ(s
k
t , a

k
t)ϕ(s

k
t , a

k
t)

⊤ is the covariance matrix of Di, and Λj is the covariance
matrix of Dj→i. Meanwhile, Λood

i =
∑

Dood
i

ϕ(sood, aood)ϕ(sood, aood)⊤ is the covariance matrix
of OOD dataDood

i , and Λood
j is the covariance matrix ofDood

j . Based on the solution, the following
Theorem establishes the relationship between the uncertainty in single dataset and shared dataset.
Theorem 1. For a given state-action pair (s, a), we denote the uncertainty for the single-task
dataset Di and shared dataset D̂i = Di ∪ Dj→i as Γi(s, a;Di) and Γi(s, a; D̂i), respectively.
Then the following inequality holds as

Γlcb
i (s, a;Di) ≥ Γlcb

i (s, a; D̂i), and Γi(s, a;Di) ≥ Γi(s, a; D̂i), (14)
where signifies that the shared data reduce the ensemble uncertainty.

Theorem 1 shows that the uncertainty decreases with more shared data, which is also illustrated in
Figure 2. If a (s, a) pair scarcely occurs in the single-task dataset, the LCB penalty Γi(s, a) will be
high and the corresponding Qi(s, a) function is pessimistic, which makes the agent hardly choose
this action. Nevertheless, such pessimism comes from the lack of knowledge of the environment,
which does not indicate a is actually a bad choice. In UTDS, the penalty Γi(s, a) will gradually
decrease with more shared (s, a) (or similar) samples, which makes the value function becomes less
pessimistic and extends the agent’s knowledge of the environment.

4.2 OPTIMALITY GAP

Recent theoretical analysis shows that appropriate uncertainty quantification leads to provable ef-
ficiency in offline RL (Xie et al., 2021a; Bai et al., 2022). In particular, the pessimistic value it-
eration (Jin et al., 2021) with a general ξ-uncertainty quantifier as the penalty achieves provably
efficient pessimism in offline RL. In linear MDPs, the LCB-penalty defined in Eq. (10) is known
to be a ξ-uncertainty quantifier for the appropriately selected factor {βt}t∈[T]. In the following, we
show that UTDS with the shared dataset D̂i also forms a valid ξ-uncertainty quantifier. We denote
T Vt+1(st, at) = r(st, at) + γEst+1∼Pt(·|st,at)

[
Vt+1(st+1, at+1)

]
as the true Bellman target.

Theorem 2. Let Λ̃ij ⪰ λ · I, if we set the OOD target as yood = T Vt+1(s
ood, aood) for the shared

dataset D̂i = Di ∪ Dj→i, then it holds for βt = O
(
T ·
√
d · log(T/ξ)

)
that

Γlcb
i (st, at; D̂i) = βt

[
ϕ(st, at)

⊤Λ̃−1
ij ϕ(st, at)

]1/2
forms a valid ξ-uncertainty quantifier, where Λ̃ij is the covariance matrix given in Eq. (13).

6

Under review as a conference paper at ICLR 2023

Based on Theorem 2, we further characterize the optimality gap of UTDS based on the pessimistic
value iteration as follows.

Corollary 1. Under the same conditions as Theorem 2, for the uncertainty quantification
Γi(s, a;Di) and Γi(s, a; D̂i) defined in Di and D̂i = Di ∪ Dj→i respectively, we have

SubOpt(π∗
i , π̃i) ≤

∑T

t=1
Eπ∗

i

[
Γlcb
i (st, at; D̂i)

]
≤

∑T

t=1
Eπ∗

i

[
Γlcb
i (st, at;Di)

]
, (15)

where π̃i and π∗
i are the learned policy and the optimal policy in D̂i, respectively.

The first inequality can be directly obtained from Jin et al. (2021) since the covariance matrix Λ̃ij ,
the learned policy π̃i and the optimal policy π∗

i are all defined in the shared dataset D̂i. The second
upper bound follows from the fact that Γi(st, at; D̂i) ≤ Γi(st, at;Di) (Theorem 1), namely, a larger
dataset leads to tighter uncertainty. Corollary 1 shows that the optimality gap shrinks if the data
coverage of the optimal policy π∗ is better, in the sense that the expected uncertainty under the
optimal policy π∗ is smaller.

According to Corollary 1, we remark that having more data does not guarantee a strict decrease
in the optimality gap. As an example, let the i-th task and the j-th task be irrelevant in the sense
that the shared dataset Dj→i does not contain any transitions induced by the optimal policy of the
task i. Then, such data sharing does not help reduce the sub-optimality as the expected uncertainty
with respect to the optimal policy π∗

i in D̂i is the same as that in Di. Nevertheless, data sharing
does not decrease the learning outcome in such a case, which makes UTDS different from previous
methods (Yu et al., 2021a; 2022). In particular, in policy constraint-based methods, sharing data
across irrelevant tasks may exacerbate the distribution shift and hinder learning performance.

5 RELATED WORK

Offline RL Since the offline RL dataset often has limited coverage, the actions chosen by greedy
policy could be OOD actions that are not contained in the dataset, and the corresponding value
function typically suffers from a large extrapolation error. This problem is also known as the dis-
tribution shift problem (Kumar et al., 2019). To this end, previous offline RL algorithms attempt to
restrict the learned policy to be close to the behavior policy (Fujimoto & Gu, 2021; Ghasemipour
et al., 2021; Kostrikov et al., 2021; Wang et al., 2020b; Kumar et al., 2020; Yu et al., 2021b). How-
ever, directly adopting such policy constraints to MTDS is challenging due to the possibly diverse
behavioral policies from other tasks, yielding loose policy constraints. Another line of research
adopts uncertainty-based pessimism to penalize state action pairs with large uncertainty (Wu et al.,
2021; Yu et al., 2020; Bai et al., 2022; Ghasemipour et al., 2022). Our algorithm is inspired by the
uncertainty-based pessimism methods in single-task offline RL.

Data Sharing in RL Previous data sharing methods focus on solving online multi-task and multi-
goal challenges. The intuition is using experiences from relevant tasks to solve the given task,
where the relevant tasks are typically selected by human knowledge (Kalashnikov et al., 2021) or
hindsight inverse RL (Eysenbach et al., 2020; Li et al., 2020). Direct data sharing on offline RL
fails due to distribution shift. CDS (Yu et al., 2021a) designs the selection criteria and selects the
data relevant to the main task. CDS-Zero (Yu et al., 2022) removes the relabeling process by setting
the shared reward to zero to reduce the bias in the reward. The CDS-based methods discard a large
amount of data and can be computationally inefficient, since the selection changes with the update
of value functions. Other methods also study data sharing in meta-RL (Mitchell et al., 2021) and
dynamics adaptation (Liu et al., 2021; Ball et al., 2021), where the main and shared tasks have
different dynamics. On the contrary, we study the data sharing among tasks from the same domain.

6 EXPERIMENTS

In experiments, we provide a suite of domains built on DeepMind Control Suite (Tassa et al., 2018)
and collect multi-task datasets to construct a benchmark for large-scale MTDS. We do not use the
standard D4RL (Fu et al., 2020) environment since D4RL has a collection of single task datasets.

7

Under review as a conference paper at ICLR 2023

UTDS
Random

CQL UTDS
Medium

CQL UTDS
Medium-Replay

CQL UTDS
Expert

CQL UTDS
Replay

CQL
0

50

100

150

200

sc
or
e

jaco_reach_bottom_left
+jaco_reach_bottom_right
+jaco_reach_top_left
+jaco_reach_top_right

Figure 3: The comparison between UTDS and Direct Sharing in Jaco Arm. The main task is Reach-
Bottom-Left, and the shared data are replay datasets from the other three tasks (denoted as ‘+’). We
show results of 5 dataset types of the main task. The shadow bars show the single-task scores.

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

200

400

600

800

1000

sc
or
e

walker_walk
+walker_stand
+walker_run
+walker_flip

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

200

400

600

800

1000

sc
or
e

walker_flip
+walker_stand
+walker_walk
+walker_run

Figure 4: The comparison between UTDS and CDS in Walker. The main tasks are Walker-Walk
(Top) and Walker-Flip (Bottom), respectively. UTDS generally improves the performance compared
to the single-task scores (i.e., the shadow bar), especially for non-expert datasets.

6.1 TASKS AND DATASETS

The environment contains 3 domains with 4 tasks per domain, resulting in 12 tasks in total.
(i) Walker (Stand, Walk, Run, Flip) tasks aim to control a biped in a 2D vertical plane. Differ-
ent tasks learn different balancing and locomotion skills. (ii) Quadruped (Jump, Roll-Fast, Walk,
Run) tasks aim to control a quadruped within a 3D space. Quadruped learns different moving and
balancing skills in a 3D space, which is harder than Walker because of the high-dimensional state-
action space. (iii) Jaco Arm (Reach top left, Reach top right, Reach bottom left, Reach bottom right)
tasks aim to control a 6-DOF robotic arm with a three-finger gripper to move to different positions.

For each task, we run the TD3 algorithm (Fujimoto et al., 2018) to collect five types of datasets (i.e.,
random, medium, medium-replay, replay, and expert) by following the standard settings in offline
RL. Each dataset contains 103 episodes of interactions. For MTDS, we share the dataset of each task
with the other 3 tasks of the same domain. Meanwhile, since all tasks are associated with 5 different
types of data, the data sharing setup leads to a variety of combinations. To reduce the computation
burden, we only share the replay dataset for each other tasks, which ensures sufficient coverage of
the shared dataset. As a result, we have 4 ∗ 3 ∗ 5 = 60 two-task sharing settings for each domain.

Baselines We compare the proposed UTDS with several baselines, including (i) Direct Sharing
(i.e., CQL) that shares all relabeled data from Dj and trains the policy through CQL (Kumar et al.,
2020); (ii) CDS (Yu et al., 2021a) that selects transitions with conservative Q-values within the
highest 10% quantiles of Dj→i, where the conservative Q-value is learned by CQL; and (iii) CDS-
Zero (Yu et al., 2022) that conservatively sets the shared reward to zero in CDS. Since the original
work of CDS or CDS-Zero does not release the code, we implement the algorithms in our tasks and
datasets based on their original papers. See §B for implementation details of UTDS and baselines.

6.2 EXPERIMENTAL RESULTS

Directly Sharing in Jaco Figure 3 shows the result of single-task training, Direct Sharing, and
UTDS in Jaco Arm domain. Since the different tasks in Jaco Arm require moving the robot arm to-
ward different directions, the behavior policies among the tasks differs significantly. The diversity in
behavior policies exacerbate the distribution shift in policy constraints, which makes Direct Sharing
performs poor in the single-task training. In contrast, the diversity in behavior policies benefit the
performance of UTDS. As the result, we observe improved performance of UTDS with data sharing
in all settings. We defer the complete results to §C.

8

Under review as a conference paper at ICLR 2023

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

200

400

600

800

sc
or
e

quadruped_jump
+quadruped_walk
+quadruped_run
+quadruped_roll_fast

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

200

400

600

800

sc
or
e

quadruped_roll_fast
+quadruped_walk
+quadruped_run
+quadruped_jump

Figure 6: The comparison between the proposed UTDS and CDS-Zero in Quadruped. The main
tasks are Quadruped-Jump (Top) and Quadruped-Roll-Fast (Bottom), respectively.

Data Sharing in Walker We show the result of comparisons between UTDS and CDS in Walker-
Walk and Walker-Flip in Figure 4. We find that UTDS generally improves the single-task per-
formance via data sharing. The improvement is significant for non-expert datasets (i.e., random,
medium, and medium-replay) generated by sub-optimal policies, which barely cover the optimal
trajectories for the main task. As discussed in Corollary 1, since the shared data potentially con-
tains trajectories induced by the optimal policy π∗

i , UTDS achieves a tighter sub-optimality bound
Eπ∗

i
[Γi(s, a)] and attains better performance than CDS.

For expert and replay datasets that cover the optimal trajectories sufficiently well, the improvement

0.0 0.2 0.4 0.6 0.8 1.0
Gradient Steps 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
se

m
bl

e
Un

ce
rta

in
ty

walker_flip (expert)

0.0 0.2 0.4 0.6 0.8 1.0
Gradient Steps 1e6

walker_flip (replay)
+walker_stand +walker_walk +walker_run

Figure 5: The illustration of ensemble un-
certainty of UTDS calculated on training
batches. The main task is Walker Flip with
expert (left) and replay (right) datasets.

of data sharing with UTDS is marginal for most
cases since it is harder for UTDS to reduce the
expected uncertainty Eπ∗

i
[Γi(s, a)] with the shared

data. The only exception is Walker-Flip (expert and
replay) tasks, where sharing the Walker-Run dataset
improves the performance of UTDS significantly.
Intuitively, since the two tasks are closely related,
experiences from Walker-Run can potentially help
the agent in learning complex locomotion skills and
improve the learning of Walker-Flip. Figure 5 shows
that data sharing with Walker-Run leads to less un-
certainty compared to other shared tasks, which re-
sults in tighter sub-optimality bound and better performance. We defer the complete results and the
comparison of CDS-Zero in §C. We find CDS-Zero performs very similarly to CDS.

Data Sharing in Quadruped We show the comparison in Quadruped Jump and Quadruped Roll-
Fast in Figure 6. We find UTDS consistently improves the performance compared to single-task
training in random, medium, and medium-replay datasets. In contrast, CDS-Zero performs poorly
in most sharing tasks due to the significant distribution shift induced by the difference among tasks.

Nevertheless, we find that the performance of UTDS is slightly decreased when the main task is
expert or replay comparing with the single-task training. We hypothesize that such a phenomenon is
also caused by inaccurate feature representation in uncertainty estimation. In particular, our theory
requires that the feature ϕ(s, a) is accurate for uncertainty quantification, which is not the case in our
implementation since we use a deep neural network to learn the representation. Since the Quadruped
domain has high-dimensional states, the representation learning in the Quadruped domain is more
challenging. We leave this for future research. The complete results are given in §C.

7 CONCLUSION

In this paper, we propose UTDS algorithm for multi-task offline RL to resolve the distribution shift in
data sharing. We apply ensemble Q-networks for uncertainty quantification and obtain a pessimistic
value function for state-action pairs with low data coverage. Our theoretical result shows that the
suboptimality gap of UTDS is related to the expected uncertainty of the shared dataset. Experiments
on the proposed benchmark show that UTDS outperforms other data-sharing algorithms in various
scenarios. We remark that although UTDS may be slightly weaker in expert or replay dataset, it is
of less concern in practical applications as the single-task RL algorithms with uncertainty penalty or
policy constraints are sufficient to establish strong performances.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, volume 24, pp. 2312–2320,
2011.

Alekh Agarwal, Nan Jiang, Sham M. Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms, 2022.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural Infor-
mation Processing Systems, 2021.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline rein-
forcement learning with diversified q-ensemble. In Advances in Neural Information Processing
Systems, 2021.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International Conference on Machine Learning, 2017.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhao-
ran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In
International Conference on Learning Representations, 2022.

Philip J Ball, Cong Lu, Jack Parker-Holder, and Stephen Roberts. Augmented world models fa-
cilitate zero-shot dynamics generalization from a single offline environment. In International
Conference on Machine Learning, pp. 619–629. PMLR, 2021.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient
descent into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):
124018, 2019.

Francesco D’Angelo and Vincent Fortuin. Repulsive deep ensembles are bayesian. Advances in
Neural Information Processing Systems, 34:3451–3465, 2021.

Ben Eysenbach, Xinyang Geng, Sergey Levine, and Russ R Salakhutdinov. Rewriting history with
inverse rl: Hindsight inference for policy improvement. Advances in Neural Information Process-
ing Systems, 33:14783–14795, 2020.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. In International Conference
on Machine Learning, pp. 3682–3691. PMLR, 2021.

Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic?
estimating uncertainties for offline rl through ensembles, and why their independence matters.
arXiv preprint arXiv:2205.13703, 2022.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J Zico Kolter. Assessing generalization of
SGD via disagreement. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=WvOGCEAQhxl.

10

https://openreview.net/forum?id=WvOGCEAQhxl

Under review as a conference paper at ICLR 2023

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143.
PMLR, 2020.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-
inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774–5783. PMLR, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, volume 32, pp. 11784–11794, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 1179–1191, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Alexander Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning.
Advances in Neural Information Processing Systems, 33:7754–7767, 2020.

Jinxin Liu, Zhang Hongyin, and Donglin Wang. Dara: Dynamics-aware reward augmentation in
offline reinforcement learning. In International Conference on Learning Representations, 2021.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in Neural Information Processing Systems, volume 29, pp. 4026–
4034, 2016.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. Advances in Neural Information Processing Systems,
32:13991–14002, 2019.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Ruosong Wang, Simon S Du, Lin F Yang, and Ruslan Salakhutdinov. On reward-free reinforce-
ment learning with linear function approximation. In Advances in Neural Information Processing
Systems, 2020a.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33, 2020b.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M. Susskind, Jian Zhang, Ruslan Salakhutdi-
nov, and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. In
International Conference on Machine Learning, volume 139, pp. 11319–11328, 2021.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. In Advances in Neural Information Processing
Systems, 2021a.

11

Under review as a conference paper at ICLR 2023

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. arXiv preprint arXiv:2106.04895,
2021b.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In Advances in Neural
Information Processing Systems, volume 33, pp. 14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.
Conservative data sharing for multi-task offline reinforcement learning. Advances in Neural In-
formation Processing Systems, 34:11501–11516, 2021a.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. In Advances in Neural Informa-
tion Processing Systems, 2021b.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. In International Conference on
Machine Learning. PMLR, 2022.

12

Under review as a conference paper at ICLR 2023

A THEORETICAL ANALYSIS

In this section, we give a detailed theoretical analysis of UTDS in linear MDPs (Jin et al., 2020).

A.1 UTDS FOR SINGLE-TASK LINEAR MDPS

In linear MDPs, we assume that the transition dynamics and reward function are linear to the state-
action feature embedding ϕ : S ×A 7→ Rd, as

Pt(st+1 | st, at) = ⟨ψ(st+1), ϕ(st, at)⟩, r(st, at) = θ⊤ϕ(st, at), ∀(st+1, at, st) ∈ S ×A×S,
(16)

where we assume the feature is bounded by ∥ϕ∥2 ≤ 1, and the reward function r : S × A 7→ [0, 1]
is also bounded. Since the transition function and reward function are linear to ϕ, the state-action
value function for any policy π is also linear in ϕ, asQt(st, at) = w⊤

t ϕ(st, at). In the following, we
omit the notation of time step t in the Q-function and the uncertainty. Our discussion is applicable
to the solution for arbitrary time step.

For training a specific task i with a single dataset Di in offline RL, we perform Least-Squares
Value Iteration (LSVI) to obtain the Q-function. The parameter wi of Qi-function can be solved by
minimizing the following loss function as

ŵi = min
w∈Rd

|Di|∑
k=1

(
ϕ(skt , a

k
t)

⊤w − r(skt , akt)− Vt+1(s
k
t+1)

)2
+ λ · ∥w∥22, (17)

where the experience (skt , a
k
t , r

k
t , s

k
t+1) is sampled fromDi, and Vt+1 is the estimated value function

in the (t + 1)-th step. We denote ykt = r(skt , a
k
t) + Vt+1(s

k
t+1) as the target of LSVI, then the

parameter ŵi can be solved in a closed-form as

ŵi = Λ−1
i

|Di|∑
k=1

ϕ(skt , a
k
t)y

k
t , Λi =

|Di|∑
k=1

ϕ(skt , a
k
t)ϕ(s

k
t , a

k
t)

⊤ + λ · I, (18)

where the covariance matrix Λi accumulates the state-action features from the single-task dataset
|Di|. The L2-norm of wi provides regularizations to ensure that Λi is positive definite. Based on the
solution of wi, the action-value function can be estimated by Qi(s, a) ≈ ŵ⊤

i ϕ(s, a).

In offline RL with linear function assumption, a Lower-Confidence-Bound (LCB) measures the
confidence interval of Q-function learned by the given dataset. When we learn value functions from
the single Di, the LCB-penalty for a specific (s, a) pair is given as

Γlcb
i (s, a) =

[
ϕ(s, a)⊤Λ−1

i ϕ(s, a)
]1/2

, (19)

which forms an uncertainty quantification with the covariance matrix Λ−1
i given the dataset Di

(Abbasi-Yadkori et al., 2011; Jin et al., 2020; 2021). Intuitively, Γlcb
i (s, a) can be considered as a

reciprocal pseudo-count of the state-action pair in the representation space.

Without loss of generality, we assume that wi has a Gaussian prior as wi ∼ N (0, I/λ), and denote
the noise in regression as ϵkt = ykt − w⊤

i ϕ(s
k
t , a

k
t). Recall that the uncertainty quantification used

in UTDS for a specific task i is defined as Eq. (4) as Γi(s, a) =
√
V[Qj

i (s, a)], j ∈ [1, . . . , N],
then the following Lemma established the connection between Γi(s, a) and the provable efficient
LCB-penalty defined in Eq. (19).
Lemma 1 (Equivalence between LCB-penalty and Ensemble Uncertainty). We assume that ϵ follows
the standard Gaussian as N (0, 1) given the state-action pair (s, a). It then holds for the posterior
of wi given Di that

Vŵi
[Qi(s, a)] = Vŵi

(
ϕ(s, a)⊤ŵi

)
= ϕ(s, a)⊤Λ−1

i ϕ(s, a), ∀(s, a) ∈ S ×A. (20)

Proof. This lemma is similar to Lemma 1 in Bai et al. (2022), and the proof follows standard
Bayesian linear regression. Under the assumptions, we have that y | (s, a), ŵi ∼ N (ŵ⊤

i ϕ(s, a), 1).

13

Under review as a conference paper at ICLR 2023

Since the prior distribution wi ∼ N (0, I/λ). The posterior distribution of ŵi can be obtained fol-
lowing the Bayesian rule as

log p(ŵi | Di) = log p(ŵi) + log p(Di | ŵi) + Const., (21)

Plugging the prior and likelihood distribution into Eq. (21) yields

log p(ŵi | Di) = −∥ŵi∥2/2−
|Di|∑
k=1

∥ŵ⊤
i ϕ(s

k
t , a

k
t)− ykt ∥2/2 + Const.

= −(ŵi − µi)
⊤Λ−1

i (ŵi − µi)/2 + Const.,

(22)

where we define µi = Λ−1
i

∑|Di|
k=1 ϕ(s

k
t , a

k
t)y

k
t , and Λi =

∑|Di|
k=1 ϕ(s

k
t , a

k
t)ϕ(s

k
t , a

k
t)

⊤ + λ · I. Then
we obtain that ŵi = w | Di ∼ N (µi,Λ

−1
i). It then holds for all (s, a) ∈ Di that

Vŵi

(
Qi(s, a)

)
= Vŵi

(
ϕ(s, a)⊤ŵi

)
= ϕ(s, a)⊤Λ−1

i ϕ(s, a). (23)

Then we have Γi =
√
V[Qi(s, a)] =

[
ϕ(s, a)⊤Λ−1

i ϕ(s, a)
]1/2

= Γlcb
i , which concludes our proof.

In Lemma 1, we show that the uncertainty estimated by the standard deviation of the Q-posterior
is equivalent to the LCB-penalty. LCB can only be applied in linear cases, while the ensemble
uncertainty is more general with non-parametric ensemble Q-networks to handle problems with
high-dimensional states and actions.

In UTDS, we further include an OOD sampling process in T̂ ood. Then the optimization objective
becomes

w̃i = min
w∈Rd

|Di|∑
k=1

(
ϕ(skt , a

k
t)

⊤w−r(skt , akt)−Vt+1(s
k
t+1)

)2
+

∑
sood,aood∼Dood

i

(
ϕ(sood, aood)⊤w−yood

)2
,

(24)
where we denote Dood

i as an OOD dataset for Di for simplicity. In practice, we sample sood from
the original dataset Di, and sample aood by following the learned policy π. Such an OOD sampling
process is easy to implement since it only relies on the current policy. In Eq. (24), we remove the L2

regularization λ∥w∥22 since it is only suitable for linear cases. For deep offline RL, we find the OOD
sampling process provides sufficient regularization for the extrapolation behavior of OOD data. The
explicit solution of Eq. (24) in LSVI is given as

w̃i = Λ̃−1
i

(|Di|∑
k=1

ϕ(skt , a
k
t)y

k
t +

∑
Dood

i

ϕ(sood, aood)yood
)
, (25)

where the covariance matrix is

Λ̃i =

|Di|∑
k=1

ϕ(skt , a
k
t)ϕ(s

k
t , a

k
t)

⊤ +
∑
Dood

i

ϕ(sood, aood)ϕ(sood, aood)⊤ := Λi + Λood
i , (26)

where we denote the second term that accumulates the OOD features as Λood
i .

A.2 UTDS FOR MULTI-TASK DATA SHARING

In MTDS, considering we share a dataset Dj to task i as Dj→i, then we have D̂i = Di ∪ Dj→i in
training. We denote the parameter of Q-function learned in D̂i = Di ∪ Dj→i as wij , then we have

w̃ij = min
w∈Rd

|Di|∑
k1=1

(
ϕ(sk1

t , a
k1
t)⊤w − r(sk1

t , a
k1
t)− Vt+1(s

k1
t+1)

)2
+

|Dj→i|∑
k2=1

(
ϕ(sk2

t , a
k2
t)⊤w − r(sk2

t , a
k2
t)− Vt+1(s

k2
t+1)

)2
+

∑
Dood

i ∪Dood
j

(
ϕ(sood, aood)⊤w − yood

)2
,

(27)

14

Under review as a conference paper at ICLR 2023

where the transitions in the first summation are sampled from the original dataset of task i, the
transitions in the second summation are sampled from the relabeled dataset Dj→i from task j, and
the last term are sampled from the OOD data Dood

i and Dood
j . In addition, we remark that we do not

need relabeled rewards for (sood, aood) ∼ Dood
j since the target yood defined in Eq. (7) is a pseudo-

target that enforces pessimism based on the current value function and the uncertainty quantification.
The calculation of yood does not rely on the reward function.

Following LSVI, the solution of parameter w̃ij in Eq. (27) is

w̃ij = Λ̃−1
ij

 |Di|∑
k1=1

ϕ(sk1
t , a

k1
t)yk1

t +

|Dj→i|∑
k2=1

ϕ(sk2
t , a

k2
t)yk2

t +
∑

Dood
i ∪Dood

j

(
ϕ(sood, aood)yood

 ,

(28)
where we accumulate all OOD data from Dood

i and Dood
j in the last term. The covariance matrix

Λ̃ij for the mixed data D̂i becomes

Λ̃ij =

|Di|∑
k1=1

ϕ(sk1
t , a

k1
t)ϕ(sk1

t , a
k1
t)⊤ +

∑
Dood

i

ϕ(sood, aood)ϕ(sood, aood)⊤

+

|Dj→i|∑
k2=1

ϕ(sk2
t , a

k2
t)ϕ(sk2

t , a
k2
t)⊤ +

∑
Dood

j

ϕ(sood, aood)ϕ(sood, aood)⊤

= Λi + Λood
i + Λj + Λood

j = Λ̃i + Λ̃j ,

(29)

which contains the feature covariance matrix from both task i and task j. The definition of Λi and
Λood
i are give in Eq. (26).

Based on the covariance matrix given in Eq. (26) and Eq. (29), the following theorem establishes
the relationship between the uncertainty estimation in the single dataset Di and the shared dataset
D̂i = Di ∪ Dj→i.

Theorem (Theorem 1 restate). For a given state-action pair (s, a), we denote the uncertainty for
the single-task dataset Di and shared dataset D̂i = Di ∪ Dj→i as Γi(s, a;Di) and Γi(s, a; D̂i),
respectively. Then the following inequality holds as

Γlcb
i (s, a;Di) ≥ Γlcb

i (s, a; D̂i), and Γi(s, a;Di) ≥ Γi(s, a; D̂i), (30)

where signifies that the shared data reduces the uncertainty.

Proof. In the following, we prove that Γlcb
i (s, a;Di) ≥ Γlcb

i (s, a; D̂i). The original relationship
can be obtained by following Lemma 1 that Γi(s, a;Di) = Γlcb

i (s, a;Di) and Γi(s, a; D̂i) =

Γlcb
i (s, a; D̂i).

For UTDS in the shared dataset D̂i, according to the solution of wij and covariance matrix given in
Eq. (28) and Eq. (29), we have

Λ̃ij = Λ̃i + Λ̃j , (31)

where Λ̃j denotes the feature covariance matrix from shared task j with OOD sampling, as Λ̃j =

Λj +Λood
j . Since both Λ̃ij and Λ̃i are positive semi-definite, by following the generalized Rayleigh

quotient, we have

ϕ⊤Λ̃−1
i ϕ

ϕ⊤(Λ̃i + Λ̃j)−1ϕ
≥ λmin

(
(Λ̃i + Λ̃j)Λ̃

−1
i

)
= λmin

(
I + Λ̃jΛ̃

−1
i

)
= 1 + λmin

(
Λ̃jΛ̃

−1
i

)
, (32)

where λmin(·) is the minimum eigenvalue of a matrix. Since Λ̃j and Λ̃−1
i are positive semi-definite

matrices, the eigenvalues of Λ̃jΛ̃
−1
i are non-negative and λmin

(
Λ̃jΛ̃

−1
i

)
≥ 0. Then we have

ϕ(s, a)⊤Λ̃−1
i ϕ(s, a) ≥ ϕ(s, a)⊤(Λ̃i + Λ̃j)

−1ϕ(s, a) = ϕ(s, a)⊤Λ̃−1
ij ϕ(s, a). (33)

15

Under review as a conference paper at ICLR 2023

Then according to the definition of LCB-penalty as Γlcb
i (s, a;Di) =

[
ϕ(s, a)⊤Λ̃−1

i ϕ(s, a)
]1/2

, we
have

Γlcb
i (s, a;Di) ≥ Γlcb

i (s, a; D̂i). (34)

Further, if we additionally share dataset Dk→i from task k to task i, then the covariance matrix
becomes Λ̃ijk = Λ̃i + Λ̃j + Λ̃k, then we have

Λ̃ijk ⪰ Λ̃ij ⪰ Λ̃i, (35)

and the corresponding LCB-penalties have the following relationship, as

ϕ(s, a)⊤Λ̃−1
i ϕ(s, a) ≥ ϕ(s, a)⊤Λ̃−1

ij ϕ(s, a) ≥ ϕ(s, a)⊤Λ̃−1
ijkϕ(s, a). (36)

Then we have

Γlcb
i (s, a;Di) ≥ Γlcb

i (s, a;Di ∪ Dj→i) ≥ Γlcb
i (s, a;Di ∪ Dj→i ∪ Dk→i), (37)

and thus
Γi(s, a;Di) ≥ Γi(s, a;Di ∪ Dj→i) ≥ Γi(s, a;Di ∪ Dj→i ∪ Dk→i) (38)

by Lemma 1, which concludes our proof.

Theorem 1 shows that the uncertainty for a specific (s, a) pair will decrease with more shared data,
which has also been illustrated in Figure 2. For example, if a (s, a) pair is scarcely occurred in the
original dataset Di, the uncertainty-based penalty will be high and the agent will hardly choose this
action since the corresponding Qi(s, a) function is pessimistic. However, such pessimism comes
from the insufficient knowledge of the environment (i.e., epistemic uncertainty), which does not
represents a is actually a bad choice in state s. In MTDS, the uncertainty Γi(s, a) will gradually
decrease with more (s, a) pairs shared in D̂i, and the value function may become less pessimistic.
Such a property is important since the agent will extend its knowledge in the state-action space with
data sharing. In addition, since the neural network has generalization ability around near the input,
Γi(s, a) also decreases when we share similar state-action pairs of (s, a).

In extreme cases, if the shared data contains sufficient transitions in the whole state-action space,
the covariance matrix Λ̃i is full rank and λmin(Λi) → ∞. Then the uncertainty quantification
ϕ(s, a)⊤Λ̃−1

i ϕ(s, a)→ 0. This case is similar to online RL with sufficient exploratory data, and the
agent will choose actions based on the estimated value function without uncertainty penalty.

A.3 ξ-UNCERTAINTY QUANTIFIER

For offline RL, we learn a pessimistic value function Q̂i(st, at) by penalizing the Qi-function with
the uncertainty quantification Γlcb

i (st, at), as

Q̂i(st, at) = Qi(st, at)− Γlcb
i (st, at) = w̃⊤ϕ(st, at)− Γlcb

i (st, at), (39)

where the weight w̃ can be w̃i or w̃ij based on different datasets. Under the linear MDP setting,
such pessimistic value iteration is known to be information-theoretically optimal (Jin et al., 2021).
In UTDS, we implement this pessimistic value function via uncertainty penalty in T̂UTDS and T̂ood.

From the theoretical perspective, an appropriate uncertainty quantification is essential to provable
efficiency in offline RL (Xie et al., 2021a;b; Bai et al., 2022). Jin et al. (2021) defines a general
ξ-uncertainty quantifier pessimistic value iteration as a penalty in Eq. (39) and achieves provable
efficient pessimism in offline RL. We recall the definition of a ξ-uncertainty quantifier as follows.

Definition 1 (ξ-Uncertainty Quantifier (Jin et al., 2021)). The set of penalization {Γt}t∈[T] forms a
ξ-Uncertainty Quantifier if it holds with probability at least 1− ξ that

|T̂ Vt+1(s, a)− T Vt+1(s, a)| ≤ Γt(s, a)

for all (s, a) ∈ S × A, where T is the Bellman equation and T̂ is the empirical Bellman equation
that estimates T based on the offline data.

16

Under review as a conference paper at ICLR 2023

In linear MDPs, the LCB-penalty defined in Eq. (19) is known to be a ξ-uncertainty quantifier
for appropriately selected {βt}t∈[T], as βt[ϕ(st, at)⊤Λ−1

t ϕ(st, at)]
1/2. In the following theorem,

we show that the proposed UTDS with the shared dataset D̂i = Di ∪ Dj→i also forms a valid
ξ-uncertainty quantifier with the covariance matrix Λ̃ij given in Eq. (29).

Theorem. (Theorem 2 restate) Let Λ̃ij ⪰ λ · I, if we set the OOD target as yood =

T Vt+1(s
ood, aood) for shared dataset D̂i = Di∪Dj→i, then it holds for βt = O

(
T ·
√
d · log(T/ξ)

)
that

Γlcb
i (st, at; D̂i) = βt

[
ϕ(st, at)

⊤Λ̃−1
ij ϕ(st, at)

]1/2
forms a valid ξ-uncertainty quantifier, where Λ̃ij is the with the covariance matrix given in Eq. (29).

Proof. The proof follows that of the analysis of PBRL (Bai et al., 2022) in linear MDPs (Jin et al.,
2021). We define the empirical Bellman operator of UTDS learned in D̂i as T̃ , then

T̃ Vt+1(st, at) = ϕ(st, at)
⊤w̃ij ,

where the parameters w̃ij follows the solution in Eq. (28). Following the ξ-uncertainty quantifier
defined in Definition 1, we upper bound the difference between the empirical Bellman operator of
UTDS and the true Bellman operator as

T Vt+1(s, a)− T̃ Vt+1(s, a) = ϕ(s, a)⊤(wt − w̃ij).

Here we define wt as follows

wt = θ +

∫
S
Vt+1(st+1)ψ(st+1)dst+1, (40)

where θ and ψ are defined in Eq. (16). It then holds that

T Vt+1(s, a)−T̃ Vt+1(s, a) = ϕ(s, a)⊤(wt − w̃ij)

=ϕ(s, a)⊤wt − ϕ(s, a)⊤Λ̃−1
ij

|Di|∑
k1=1

ϕ(sk1
t , a

k1
t)

(
r(sk1

t , a
k1
t) + V i

t+1(s
k1
t+1)

)
− ϕ(s, a)⊤Λ̃−1

ij

|Dj→i|∑
k2=1

ϕ(sk2
t , a

k2
t)

(
r(sk2

t , a
k2
t) + V i

t+1(s
k2
t+1)

)
− ϕ(s, a)⊤Λ̃−1

ij

∑
Dood

i ∪Dood
j

ϕ(sood, aood)yood,

(41)

where we use the solution of w̃ij in Eq. (28). By the definitions of Λ̃t andwt in Eq. (29) and Eq. (40),
respectively, we have

ϕ(s, a)⊤wt = ϕ(s, a)⊤Λ̃−1
ij Λ̃ijwt = ϕ(s, a)⊤Λ̃−1

ij

(|Di|∑
k1=1

ϕ(sk1
t , a

k1
t)T Vt+1(s

k1
t , a

k1
t)

+

|Dj→i|∑
k2=1

ϕ(sk2
t , a

k2
t)T Vt+1(s

k2
t , a

k2
t) +

∑
Dood

i ∪Dood
j

ϕ(sood, aood)T Vt+1(ϕ(s
ood, aood))

)
.

(42)

Plugging Eq. (42) into Eq. (41) yields

T Vt+1(s, a)− T̃ Vt+1(s, a) = (i) + (ii) + (iii), (43)

17

Under review as a conference paper at ICLR 2023

where we define

(i) = ϕ(s, a)⊤Λ̃−1
ij

|Di|∑
k1=1

ϕ(sk1
t , a

k1
t)

(
T Vt+1(s

k1
t , a

k1
t)− r(sk1

t , a
k1
t)− V i

t+1(s
k1
t+1)

)
,

(ii) = ϕ(s, a)⊤Λ̃−1
ij

|Dj→i|∑
k2=1

ϕ(sk2
t , a

k2
t)

(
T Vt+1(s

k2
t , a

k2
t)− r(sk2

t , a
k2
t)− V i

t+1(s
k2
t+1)

)
,

(iii) = ϕ(s, a)⊤Λ̃−1
ij

∑
Dood

i ∪Dood
j

ϕ(sood, aood)
(
T Vt+1(s

ood, aood)− yood
)
.

Following the standard analysis based on the concentration of self-normalized process (Abbasi-
Yadkori et al., 2011; Azar et al., 2017; Wang et al., 2020a; Jin et al., 2020; 2021) and the fact that
Λ̃ij ⪰ λ · I, it holds that

|(i)| ≤ βi ·
[
ϕ(s, a)⊤Λ̃−1

i ϕ(s, a)
]1/2

, |(ii)| ≤ βj ·
[
ϕ(s, a)⊤Λ̃−1

j ϕ(s, a)
]1/2

, (44)

with probability at least 1− ξ, where βi(j) = O
(
T ·
√
d · log(T/ξ)

)
. By following Eq. (36), we have

|(i)|+ |(ii)| ≤ 2max{βi, βj} ·
[
ϕ(s, a)⊤Λ̃−1

ij ϕ(s, a)
]1/2

= βt ·
[
ϕ(s, a)⊤Λ̃−1

ij ϕ(s, a)
]1/2

.
(45)

where we denote βt = 2max{βi, βj}. Meanwhile, by setting yood = T Vt+1(s
ood, aood), it holds

that (iii) = 0. Thus, we obtain from Eq. (43) that

|T Vt+1(s, a)− T̃ Vt+1(s, a)| ≤ βt ·
[
ϕ(st, at)

⊤Λ−1
ij ϕ(st, at)

]1/2
(46)

with probability at least 1− ξ, which concludes our proof.

Theorem 2 shows that the disagreement among ensemble Q-networks is a valid ξ-uncertainty quan-
tifier with data sharing, while it needs the covariance matrix Λ̃ij is lower bounded. In practice, such
an assumption can be achieved through (i) sharing more data to D̂i since we have Λ̃ij ⪰ Λ̃i ac-
cording to Eq. (35), and (ii) randomly generating OOD actions to make the embeddings of the OOD
sample isotropic, which ensures the eigenvalues of the covariate matrix Λood are lower bounded.

In addition, since the transition function is unknown for OOD samples, the OOD target T Vt+1 is
impossible to obtain in practice as it requires knowing the transition at the OOD datapoint. In prac-
tice, if TD error is sufficiently minimized, then Qt+1(s, a) should well estimate the target T Vt+1.
Thus, in practice, the targets of OOD data are set to be yoodi = Qi(s

ood, aood)− Γi(s
ood, aood) by

assuming the TD-error is sufficiently minimized.

A.4 SUBOPTIMALITY GAP

Theorem 2 allows us to further characterize the optimality gap based on the pessimistic value itera-
tion (Jin et al., 2021). In particular, the following corollary holds,
Corollary (Corollary 1 restate). Under the same conditions as Theorem 2, for the uncertainty quan-
tification Γi(s, a;Di) and Γi(s, a; D̂i) defined in Di and D̂i = Di ∪ Dj→i respectively, we have

SubOpt(π∗
i , π̃i) ≤

∑T

t=1
Eπ∗

i

[
Γlcb
i (st, at; D̂i)

]
≤

∑T

t=1
Eπ∗

i

[
Γlcb
i (st, at;Di)

]
, (47)

where π̃i and π∗
i are the learned policy and the optimal policy in D̂i, respectively.

Proof. The first inequality holds since Γlcb
i (st, at; D̂i) forms a valid ξ-uncertainty quantifier by

following Theorem 2. We refer to Jin et al. (2021) for detailed proof.

The second inequality is induced by Γi(st, at; D̂i) < Γi(st, at;Di) in Theorem 1 with the fixed
optimal policy π∗

i . The optimality gap is information-theoretically optimal under the linear MDP
setup with finite horizon.

18

Under review as a conference paper at ICLR 2023

Consider an extreme case in tabular MDPs, where the state action feature ϕ(s, a) is a one-hot vector.
Then we have Γlcb(s, a) = 1/

√
N(s, a) + λ, where N(s, a) is the pseudo-count of the (s, a) pair.

In this case, even if we share data that are totally different from the main task, the optimality gap
Eπ∗ [Γlcb(s, a)] does not increase since the pseudo-count N(s, a) cannot decrease with data sharing.
As a result, even if data sharing does not benefit the data coverage of the optimal policy, it does not
degrade performance. Such a key factor makes UTDS inherently different from the policy constraint
methods that need appropriate data selection to select similar samples compared to the main task.

A.5 SUPPLEMENTARY LEMMA

According to Lemma 1 in our manuscript, the uncertainty term is equivalent to Γlcb(s, a) in linear
MDPs. The value of Γlcb(s, a) = [ϕ(s, a)⊤Λ−1ϕ(s, a)]

1
2 only relies on the state-action embedding

in the offline datasets. Then we have the following lemma.

Lemma 2 (contraction mapping). For state-action pairs from the offline dataset, the UTDS operator
T̂UTDS is a γ-contraction operator in the L∞-norm.

Proof. Let Q1 and Q2 be two arbitrary Q functions. Since a ∈ Support(µ(·|s)), then we have

∥T̂ UTDSQ1 − T̂ UTDSQ2∥∞

= max
s,a

∣∣∣(r(s, a) + γEs′∼P,a′∼π[Q1(s
′, a′)− Γlcb(s′, a′)]

)
−
(
r(s, a) + γEs′∼P,a′∼π[Q2(s

′, a′)− Γlcb(s′, a′)
)
]
∣∣∣

= γmax
s,a
|Es′∼P,a′∼π [Q1(s

′, a′)−Q2(s
′, a′)]|

≤ γmax
s,a
∥Q1 −Q2∥∞

= γ∥Q1 −Q2∥∞.

Hence, for some arbitrarily initialized Q-function, it is guaranteed to converge to a unique fixed
point by repeatedly applying T̂ UTDS.

B IMPLEMENTATION DETAILS

In this section, we provide the hyper-parameters and experimental settings. We refer to https://
github.com/review-anon/UTDS for the open-source implementation and the released multi-
task datasets.

B.1 UTDS

The implementation of ensemble-Q networks in UTDS is based on PBRL and EDAC, while we use
much fewer ensemble networks (i.e., with 5 networks) compared to PBRL (with 10 networks) and
EDAC (with 10-50 networks). We use the same hyper-parameter settings for data-sharing tasks in
all domains. The hyper-parameters are listed in Table 1.

For the critic training, we use different factors (i.e., β1 and β2) for the offline data and the OOD data.
The update of theQ-function in offline data relies on an ordinary Bellman target with a constant fac-
tor for uncertainty penalty. In contrast, since the OOD data does not have the reward and transition
function, the pseudo-target is used for uncertainty penalty based on the current value estimation.
According to our analysis, β2 should exponentially decay to ensure Q(sood, aood) converges to a
fixed point.

For the actor training, we follow SAC-N (An et al., 2021) by using the minimum of ensemble Q-
function minn=1,...,N Qn as the target, which is approximately equivalent to usingQn−β0·Std(Qn)
with a fixed β0.

19

https://github.com/review-anon/UTDS
https://github.com/review-anon/UTDS

Under review as a conference paper at ICLR 2023

Table 1: Hyper-parameters of UTDS
Hyper-parameters Value

The number of bootstrapped networks N 5
Policy network FC(256,256,256,action dim) with ReLU ac-

tivations
Q-network FC(256,256,256,1) with ReLU activations
Target network smoothing coefficient 5e− 3
Discount factor γ 0.99
Learning rate (policy) 1e− 4
Learning rate (Q-networks) 1e− 4
Optimizer Adam
Batch size 1024
Number of OOD samples for each state 3
Factor β1 for uncertainty penalty in offline data 0.001
Factor β2 for uncertainty penalty in OOD data 3.0→ 0.1 (first half), 0.1 (other)
Factor α for exponentially decay of β2 with training steps 0.99995
Training steps 1M

B.2 BASELINES

Direct Sharing For the shared dataset, we relabel the reward function based on the Mujoco
‘Physics’ class of DeepMind Control Suite. Then we combine the relabeled data with the origi-
nal data to construct a mixed dataset for training. For direct sharing, we use CQL (Kumar et al.,
2020) to train a policy based on the mixed dataset.

CDS and CDS-Zero (Yu et al., 2021a; 2022) These two methods are implemented based on CQL.
For each training step, we sample experiences ten times the size of the batch size, and calculate the
conservative value function for each state-action pair. Then we choose examples with conservative
Q-values within the top 10% of the sampled batch in training. For CDS-Zero, we do not perform
reward relabeling and set the shared reward to be zero. We remark that we additional use layer-
normalization for the actor-critic network in CDS-based methods since we find it helps CDS perform
more stable. In contrast, we do not use layer-normalization for the proposed UTDS algorithm.

B.3 EXPERIMENTAL SETTINGS

Environments and Training We use 12 tasks from Walker, Quadruped, and Jaco Arm domains
in experiments, as shown in Figure 7. For Walker domain, the observation space has 24 dimensions,
and the action space has 6 dimensions. For Quadruped domain, the observation space has much
higher dimensions (i.e., 78), which contains egocentric state, torso velocity, torso upright, IMU, and
force torque. The action space of Quadruped has 12 dimensions. For Jaco Arm, the observation
space has 42 dimensions, which contains information of the arm, hand, and target. The action space
has 9 dimensions.

According to the default settings of DeepMind Control Suite, the episode lengths for Walker and
Quadruped domains are set to 1000, and the episode length for Joco domain is set to 250. As a
result, the maximum episodic reward for Walker and Quadruped domains are 1000, and for Joco
domain is 250. In experiments, we run each algorithm for 1M training steps with 3 random seeds.
We evaluate the algorithm for 10 episodes every 1K training steps.

Computation Cost Comparison We compare the computational cost of UTDS, CDS, and CDS-
Zero based on the average cost among Walker domain. We report the number of parameters, GPU
memory, and runtime per sharing task in training. The experiment is conducted on a single RTX-
2080Ti GPU. We give the result in Table 2. The result shows that (i) UTDS requires extra parameters
to handle the ensemble of Q-networks, while (ii) CDS and CDS-Zero need more training time to
perform conservative Q-value calculation and data-selection per epoch. CDS-Zero is slightly faster
since it does not perform reward relabeling. (iii) The GPU memories for the two methods are similar
since CDS and CDS-Zero need much larger training batches to first perform data selection and then
perform RL training.

20

Under review as a conference paper at ICLR 2023

Reach Bottom Left Reach Bottom Right

Reach Top Left Reach Top Right

Jaco Arm

Roll FastJump

Walk Run

QuadrupedWalker

Run Flip

Stand Walk

Figure 7: The illustration of 12 continuous control tasks from 3 domains in our experiments.

Table 2: Comparison of computational costs.
Runtime (hours / 1M steps) GPU memory Number of parameters

CDS 15.75 1.31G 0.37M
CDS-Zero 15.68 1.31G 0.37M
UTDS 6.56 1.34G 0.81M

Discount Factor Our implementation uses an discounted setting rather than the episodic setting
in the theoretical analysis (without discounting). We use a discount setting (with γ = 0.99) for
several empirical considerations. (1) Using γ < 1 is a standard setup in the implementation of
deep RL algorithms to ensure empirical performances, even for episodic MDPs. For example, the
value-based methods such as DQN (Mnih et al., 2015, Pages 6), bootstrapped DQN (Osband et al.,
2016, Appendix D.2), IDS (Nikolov et al., 2019, Appendix A) all set γ = 0.99. The policy-gradient
methods such as DDPG (Lillicrap et al., 2016, section 7), TD3 (Fujimoto et al., 2018, Table 3),
and PPO (Schulman et al., 2017, Appendix A) also set γ = 0.99 in Mujoco tasks. (2) Although
Deepmind Control Suite is an episodic task in our experiment, the episodic length is relatively long,
typically with 1000 steps. Using γ < 1 ensures that the value functions are bounded, which improves
the empirical performance of the algorithms.

To the best of my knowledge, there is currently less paper studying linear MDP in the discounted
setting from the theoretical perspective (Jin et al., 2020; 2021). Meanwhile, it is hard to conduct
experiments in episodic setting (In that case, the algorithm needs to learn the value function of all
the possible horizon). Moreover, we can reduce an MDP with discounted rewards to episodic MDP
by setting the effective horizon H = 1/γ. This means that the theorem for episodic MDP can hold
in the discounted setting.

21

Under review as a conference paper at ICLR 2023

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report the complete results of data sharing in Walker, Quadruped, and Jaco Arm
domains. For each domain, we report

• the single-task training score without data sharing.
• the direct data-sharing score with relabeled rewards, and the policy is trained by CQL.
• the result comparison between the proposed UTDS and CDS (Yu et al., 2021a) that per-

forms conservative data selection.
• the result comparison between the proposed UTDS and CDS-Zero (Yu et al., 2022) that

performs conservative data selection with zero relabeled reward.

C.1 SINGLE-TASK RESULTS

UTDS provides a unified view for single-task and multi-task training, as shown in Fig. 1. Thus,
UTDS can be directly used for training in single-task datasets. For CDS and CDS-Zero, performing
single-task training degenerates into the CQL algorithm (Kumar et al., 2020) that does not perform
data selection. Figure 8, Figure 9, and Figure 10 show the single-task training result for the Walker,
Quadruped, and Jaco Arm domains, respectively.

0

250

500

750

1000
stand (random) stand (medium) stand (medium-replay) stand (expert) stand (replay)

0

250

500

750

1000
walk (random) walk (medium) walk (medium-replay) walk (expert) walk (replay)

0

250

500

750

1000
run (random) run (medium) run (medium-replay) run (expert) run (replay)

0 0.5M 1M
0

250

500

750

1000
flip (random)

0 0.5M 1M

flip (medium)

0 0.5M 1M

flip (medium-replay)

0 0.5M 1M

flip (expert)

0 0.5M 1M

flip (replay)

Gradient Steps

Ev
al

ua
tio

n
Sc

or
es

behavior policy UTDS CQL

Figure 8: Result comparison of single-task training in the Walker domain. UTDS outperforms CQL
in most tasks, especially for medium, medium-replay, and expert datasets. Both methods perform
poorly in random datasets.

22

Under review as a conference paper at ICLR 2023

0

250

500

750

1000
walk (random) walk (medium) walk (medium-replay) walk (expert) walk (replay)

0

250

500

750

1000
run (random) run (medium) run (medium-replay) run (expert) run (replay)

0

250

500

750

1000
jump (random) jump (medium) jump (medium-replay) jump (expert) jump (replay)

0 0.5M 1M
0

250

500

750

1000
roll_fast (random)

0 0.5M 1M

roll_fast (medium)

0 0.5M 1M

roll_fast (medium-replay)

0 0.5M 1M

roll_fast (expert)

0 0.5M 1M

roll_fast (replay)

Gradient Steps

Ev
al

ua
tio

n
Sc

or
es

behavior policy UTDS CQL

Figure 9: Result comparison of single task training in Quadruped domain. UTDS outperforms CQL
in most tasks, except for the Roll-Fast expert dataset. Both methods perform poorly in random
datasets.

0

100

200

reach_bottom_left (random) reach_bottom_left (medium) reach_bottom_left (medium-replay) reach_bottom_left (expert) reach_bottom_left (replay)

0

100

200

reach_bottom_right (random) reach_bottom_right (medium)reach_bottom_right (medium-replay)reach_bottom_right (expert) reach_bottom_right (replay)

0

100

200

reach_top_left (random) reach_top_left (medium) reach_top_left (medium-replay) reach_top_left (expert) reach_top_left (replay)

0 0.5M 1M
0

100

200

reach_top_right (random)

0 0.5M 1M

reach_top_right (medium)

0 0.5M 1M

reach_top_right (medium-replay)

0 0.5M 1M

reach_top_right (expert)

0 0.5M 1M

reach_top_right (replay)

Gradient Steps

Ev
al

ua
tio

n
Sc

or
es

behavior policy UTDS CQL

Figure 10: Result comparison of single-task training in Jaco Arm domain. We find CQL outperforms
UTDS in expert dataset. The policy constraints direct imitate the expert policies, which make CQL
converge faster with optimal trajectories.

23

Under review as a conference paper at ICLR 2023

C.2 DIRECT DATA-SHARING RESULTS

For offline RL, direct sharing with policy constraint methods can exacerbate the distribution shift
when the sharing tasks are very different from the main task. Figure 11, Figure 12, and Figure 13
show the result of the direct sharing for the Walker, Quadruped, and Jaco Arm domains, respectively.
In each figure, we also show the single-task training results for the main task in the leftmost bar (i.e.,
the shadow bar).

1. In Walker domain, direct data sharing slightly improves the performance, the reason is
the four tasks in Walker is closely related. For example, the agent should first Stand and
then Walk, Run and Flip, which makes the dataset of Walk, Run and Flip also contain the
experiences of Stand. As a result, sharing data from other three tasks often improves the
performance of Stand.

2. In Quadruped domain, Jump task can benefit from data sharing from other tasks since first
Walk, Run or Roll make it easier for the agent to Jump. Since the behavior policies of
Jump and other tasks are related, performing direct data sharing also helps learning. For
other sharing tasks, direct sharing data degenerates the performance compared to single-
task training in most cases.

3. In Jaco Arm domain, since the different tasks drive agents to different directions, the be-
havior policies between tasks can be very different. Direct data sharing significantly exac-
erbates the distribution shift in offline RL and deteriorates performance.

We summarize the mean and medium scores for single-task training (with CQL (Kumar et al., 2020)
and PBRL (Bai et al., 2022)), and direct data sharing with CQL (i.e., CQL-share) in each domain.
The results are shown in Table 3. The result shows direct sharing data degenerates the performance
compared to single-task training in most cases. Meanwhile, PBRL outperforms the behavior policy
in all domains.

Table 3: Comparison of single-task training and direct sharing in three domains. The maximum
scores of the Walker and Quadruped domains are 1000, and for Jaco Arm is 250.

Walker Quadruped Jaco Arm
Mean Median Mean Median Mean Median

Behavior policy 497.96 450.745 515.33 526.98 123.46 97.7
Single-task training (CQL) 363.57 267.13 437.10 411.88 106.66 128.94

Single-task training (PBRL) 522.17 542.33 561.75 599.58 125.43 141.37
Direct share (CQL) 419.35 357.97 435.96 357.97 54.64 20.47

24

Under review as a conference paper at ICLR 2023

random medium medium-replay expert replay
0

250

500

750

1000
sc
or
e

walker_stand
+walker_walk
+walker_run
+walker_flip

random medium medium-replay expert replay
0

250

500

750

1000

sc
or
e

walker_walk
+walker_stand
+walker_run
+walker_flip

random medium medium-replay expert replay
0

250

500

750

1000

sc
or
e

walker_run
+walker_stand
+walker_walk
+walker_flip

random medium medium-replay expert replay
0

250

500

750

1000

sc
or
e

walker_flip
+walker_stand
+walker_walk
+walker_run

Figure 11: Result comparison of single-task training and direct sharing with CQL in Walker domain.

random medium medium-replay expert replay
0

200

400

600

800

sc
or
e

quadruped_walk
+quadruped_run
+quadruped_jump
+quadruped_roll_fast

random medium medium-replay expert replay
0

200

400

600

800

sc
or
e

quadruped_run
+quadruped_walk
+quadruped_jump
+quadruped_roll_fast

random medium medium-replay expert replay
0

200

400

600

800

sc
or
e

quadruped_jump
+quadruped_walk
+quadruped_run
+quadruped_roll_fast

random medium medium-replay expert replay
0

200

400

600

800

sc
or
e

quadruped_roll_fast
+quadruped_walk
+quadruped_run
+quadruped_jump

Figure 12: Result comparison of single-task training and direct sharing with CQL in Quadruped
domain.

25

Under review as a conference paper at ICLR 2023

random medium medium-replay expert replay
0

50

100

150

200

sc
or
e

jaco_reach_bottom_left
+jaco_reach_bottom_right
+jaco_reach_top_left
+jaco_reach_top_right

random medium medium-replay expert replay
0

50

100

150

200

sc
or
e

jaco_reach_bottom_right
+jaco_reach_bottom_left
+jaco_reach_top_left
+jaco_reach_top_right

random medium medium-replay expert replay
0

50

100

150

200

sc
or
e

jaco_reach_top_left
+jaco_reach_bottom_left
+jaco_reach_bottom_right
+jaco_reach_top_right

random medium medium-replay expert replay
0

50

100

150

200

sc
or
e

jaco_reach_top_right
+jaco_reach_bottom_left
+jaco_reach_bottom_right
+jaco_reach_top_left

Figure 13: Result comparison of single-task training and direct sharing with CQL in Jaco Arm
domain. Performing direct data sharing with policy constraints methods degrades the performance
in most sharing settings.

26

Under review as a conference paper at ICLR 2023

C.3 RESULT COMPARISON BETWEEN UTDS AND CDS

We compare the performance of UTDS and CDS in three domains, and the results are shown in
Figure 14, Figure 15, and Figure 16. In each figure, we show the single-task training results for the
main task in the shadow bar.

1. In Walker domain, we find that UTDS generally improves performance through data shar-
ing in the Stand, Walk, and Flip tasks. An exception is the Run task, where data sharing
does not significantly improve performance. We hypothesize that the Run task is the most
difficult task in the Walker domain, thus the shared data do not contain state-action pairs of
the optimal trajectories in the Run task. As a result, sharing data in Run task does not bring
tighter optimality bound but makes the feature representation learn slower.

2. In Quadruped domain, we find that UTDS generally improves performance in the Stand,
Jump, and Roll fast tasks, especially for non-expert datasets. Similar to Walker domain,
since Run task is more difficult than other tasks, data sharing cannot help reduce the ex-
pected uncertainty of trajectories induced by the optimal policy. Compared to UTDS, CDS
cannot obtain significant improvement compared to single-task training.

3. In Jaco Arm domain, the behavior policies between tasks can be very different since dif-
ferent tasks drive agents to different directions. CDS based on policy constraints cannot
obtain improvements in most cases. In contrast, we find that UTDS improves performance
compared to single-task training in most sharing tasks.

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

250

500

750

1000

sc
or
e

walker_stand
+walker_walk
+walker_run
+walker_flip

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

250

500

750

1000

sc
or
e

walker_walk
+walker_stand
+walker_run
+walker_flip

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

250

500

750

1000

sc
or
e

walker_run
+walker_stand
+walker_walk
+walker_flip

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

250

500

750

1000

sc
or
e

walker_flip
+walker_stand
+walker_walk
+walker_run

Figure 14: Result comparison of the proposed UTDS and CDS in Walker domain.

27

Under review as a conference paper at ICLR 2023

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

200

400

600

800

sc
or
e

quadruped_walk
+quadruped_run
+quadruped_jump
+quadruped_roll_fast

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

200

400

600

800

sc
or
e

quadruped_run
+quadruped_walk
+quadruped_jump
+quadruped_roll_fast

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

200

400

600

800

sc
or
e

quadruped_jump
+quadruped_walk
+quadruped_run
+quadruped_roll_fast

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

200

400

600

800

sc
or
e

quadruped_roll_fast
+quadruped_walk
+quadruped_run
+quadruped_jump

Figure 15: Result comparison of the proposed UTDS and CDS in Quadruped domain.

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

50

100

150

200

sc
or
e

jaco_reach_bottom_left
+jaco_reach_bottom_right
+jaco_reach_top_left
+jaco_reach_top_right

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

50

100

150

200

sc
or
e

jaco_reach_bottom_right
+jaco_reach_bottom_left
+jaco_reach_top_left
+jaco_reach_top_right

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

50

100

150

200

sc
or
e

jaco_reach_top_left
+jaco_reach_bottom_left
+jaco_reach_bottom_right
+jaco_reach_top_right

UTDS
Random

CDS UTDS
Medium

CDS UTDS
Medium-Replay

CDS UTDS
Expert

CDS UTDS
Replay

CDS
0

50

100

150

200

sc
or
e

jaco_reach_top_right
+jaco_reach_bottom_left
+jaco_reach_bottom_right
+jaco_reach_top_left

Figure 16: Result comparison of the proposed UTDS and CDS in Jaco Arm domain.

28

Under review as a conference paper at ICLR 2023

C.4 RESULT COMPARISON BETWEEN UTDS AND CDS-ZERO

We compare the performance of UTDS and CDS-Zero in three domains, and the results are shown
in Figure 17, Figure 18, and Figure 19. The performance of CDS and CDS-Zero in data sharing are
similar. We refer to §C.3 for the analysis.

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

250

500

750

1000

sc
or
e

walker_stand
+walker_walk
+walker_run
+walker_flip

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

250

500

750

1000

sc
or
e

walker_walk
+walker_stand
+walker_run
+walker_flip

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

250

500

750

1000

sc
or
e

walker_run
+walker_stand
+walker_walk
+walker_flip

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

250

500

750

1000

sc
or
e

walker_flip
+walker_stand
+walker_walk
+walker_run

Figure 17: Result comparison of the proposed UTDS and CDS-Zero in Walker domain.

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

200

400

600

800

sc
or
e

quadruped_walk
+quadruped_run
+quadruped_jump
+quadruped_roll_fast

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

200

400

600

800

sc
or
e

quadruped_run
+quadruped_walk
+quadruped_jump
+quadruped_roll_fast

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

200

400

600

800

sc
or
e

quadruped_jump
+quadruped_walk
+quadruped_run
+quadruped_roll_fast

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

200

400

600

800

sc
or
e

quadruped_roll_fast
+quadruped_walk
+quadruped_run
+quadruped_jump

Figure 18: Result comparison of the proposed UTDS and CDS-Zero in Quadruped domain.

29

Under review as a conference paper at ICLR 2023

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

50

100

150

200

sc
or
e

jaco_reach_bottom_left
+jaco_reach_bottom_right
+jaco_reach_top_left
+jaco_reach_top_right

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

50

100

150

200

sc
or
e

jaco_reach_bottom_right
+jaco_reach_bottom_left
+jaco_reach_top_left
+jaco_reach_top_right

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

50

100

150

200

sc
or
e

jaco_reach_top_left
+jaco_reach_bottom_left
+jaco_reach_bottom_right
+jaco_reach_top_right

UTDS
Random

CDS-Zero UTDS
Medium

CDS-Zero UTDS
Medium-Replay

CDS-Zero UTDS
Expert

CDS-Zero UTDS
Replay

CDS-Zero
0

50

100

150

200

sc
or
e

jaco_reach_top_right
+jaco_reach_bottom_left
+jaco_reach_bottom_right
+jaco_reach_top_left

Figure 19: Result comparison of the proposed UTDS and CDS-Zero in Jaco Arm domain.

C.5 VISUALIZATION OF THE UNCERTAINTY

In this section, we visualize the change of uncertainty with data sharing in Walker and Quadruped
domains, as shown in Fig. 20 and Fig. 21, respectively. We use PCA to project the state-action pairs
to two-dimensional space. In both figures, the white dots denote data samples from the main task,
and the orange dots denote data sampled from the shared task. We use the ensemble Q-networks
trained by UTDS on the main task and shared dataset to illustrate the change of uncertainty in
data sharing. According to the result, we find (i) in single-task results, the shared data can be
considered as OOD data and have large uncertainty; (ii) in shared-task results, the uncertainty of
the main task data slightly increases with data sharing, and the uncertainties of the shared data are
significantly decreased. According to our analysis, the reduced uncertainty makes the value function
less pessimistic and also shrinks the sub-optimality bound, thus extending the agent’s knowledge of
the environment.

We remark that although the uncertainties quantifier Γlcb(s, a) =
[
ϕ(s, a)⊤Λ−1ϕ(s, a)

]1/2
for any

(s, a) pair is guaranteed to reduce with data sharing in linear and tabular MDPs, we find it is some-
what defective. According to the visualization, the uncertainties for some data points from the main
task slightly increase. Such effect occurs for several reasons. (i) The linear and tabular MDP settings
assume that ϕ(s, a) is known and fixed in learning. In contrast, for with high-dimensional problem,
ϕ(s, a) is randomly initialized by a neural network and is often learned with the value function,
which makes the uncertainty estimation inaccurate. (ii) We use ensemble Q-networks to estimate
the uncertainty and prove that the LCB-penalty and ensemble uncertainty are equivalent under mild
conditions. In practice, the ensemble uncertainty is accurate with infinite networks, while it is un-
achievable and we only use 5 ensembles in our experiments. The empirical result shows 5 ensembles
are sufficient to provide strong performance.

30

Under review as a conference paper at ICLR 2023

100 50 0 50
first dimension (PCA)

100

50

0

50

se
co

nd
 d

im
en

sio
n

(P
CA

)

(a) Uncertainty learned by single task data
main task data
share task data

0.00

2.21

4.42

6.63

8.84

11.05

13.26

15.47

17.68

19.89

100 50 0 50
first dimension (PCA)

100

50

0

50

se
co

nd
 d

im
en

sio
n

(P
CA

)

(b) Uncertainty learned by data sharing
main task data
share task data

0.00

2.21

4.42

6.63

8.84

11.05

13.26

15.47

17.68

19.89

Figure 20: Visualization of the uncertainty in data sharing for Walker domain. We share data from
Walker-Run (replay) to Walker-Flip (medium-replay) task. (a) The ensembleQ-networks are trained
in single-task data. Then we evaluate the uncertainty for both the main task data and the shared data.
(b) The ensemble Q-networks are trained in the shared dataset, and we find the uncertainties in for
many areas are largely reduced.

100 50 0 50
first dimension (PCA)

100

50

0

50

se
co

nd
 d

im
en

sio
n

(P
CA

)

(a) Uncertainty learned by single task data
main task data
share task data

0.00

2.21

4.42

6.63

8.84

11.05

13.26

15.47

17.68

19.89

100 50 0 50
first dimension (PCA)

100

50

0

50

se
co

nd
 d

im
en

sio
n

(P
CA

)

(b) Uncertainty learned by data sharing
main task data
share task data

0.00

2.21

4.42

6.63

8.84

11.05

13.26

15.47

17.68

19.89

Figure 21: Visualization of the uncertainty in data sharing for Quadruped domain. We share
data from Quadruped Roll-Fast (replay) to Quadruped Jump (medium) task. (a) The ensemble Q-
networks are trained in single-task data. Then we evaluate the uncertainty for both the main task
data and the shared data. (b) The ensemble Q-networks are trained in the shared dataset, and we
find the uncertainties in for many areas are largely reduced.

31

Under review as a conference paper at ICLR 2023

C.6 AGGREGATE EVALUATION

We follow the reliable principles (Agarwal et al., 2021) to evaluation the statistical performance.
Since the ordinary aggregate measures like mean can be easily dominated by a few outlier scores,
Agarwal et al. (2021) presents several robust alternatives that are not unduly affected by outliers and
have small uncertainty even with a handful of runs. Based on bootstrap Confidence Intervals (CIs),
we can extract aggregate metrics from score distributions, including median, mean, interquartile
mean (IQM), and optimality gap. IQM discards the bottom and top 25% of the runs and calculates
the mean score of the remaining 50% runs. Optimality gap calculates the amount of runs that fail
to meet a minimum score of η = 50.0. We also give performance profiles that reveal performance
variability through score distributions. A score distribution shows the fraction of runs above a certain
score and is given by F̂ (τ) = F̂ (τ ;x1:M,1:N) = 1

M

∑M
m=1

1
N

∑N
n=1 1[xm,n ≥ τ]. The aggregated

results and performance profiles for three domains are given in Fig. 22 and Fig. 23, respectively.

300 450 600
CQL
CDS

CDS-Zero
UTDS

Median

300 450 600

IQM

300 450 600

Mean

80 160 240

Optimality Gap

Normalized Score(a) Walker domain

40 80 120 160
CQL
CDS

CDS-Zero
UTDS

Median

50 100 150

IQM

40 80 120 160

Mean

8 16 24 32

Optimality Gap

Normalized Score(b) Quadruped domain

300 400 500 600
CQL
CDS

CDS-Zero
UTDS

Median

300 400 500 600

IQM

300 400 500 600

Mean

60 120 180 240

Optimality Gap

Normalized Score(c) Jaco Arm domain

Figure 22: Aggregate metrics with 95% CIs based on 12 shared tasks among 5 dataset types for
each task. Higher mean, median and IQM scores, and lower optimality gap are better. The CIs are
estimated using the percentile bootstrap with stratified sampling.

32

Under review as a conference paper at ICLR 2023

0 200 400 600 800 1000
Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 ru
ns

 w
ith

 s
co

re
 >

τ

0 200 400 600 800 1000
Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ta

sk
s

w
ith

 s
co

re
 >

 τ

CQL CDS CDS-Zero UTDS

(a) Walker domain

0 50 100 150 200 250
Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 s

co
re

 >
τ

0 50 100 150 200 250
Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 ta
sk

s
w

ith
 s

co
re

 >
 τ

CQL CDS CDS-Zero UTDS

(b) Quadruped domain

0 200 400 600 800 1000
Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 s

co
re

 >
τ

0 200 400 600 800 1000
Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ta

sk
s

w
ith

 s
co

re
 >

 τ

CQL CDS CDS-Zero UTDS

(c) Jaco Arm domain

Figure 23: Performance profiles based on score distributions (left), and average score distributions
(right). Shaded regions show pointwise 95% confidence bands based on percentile bootstrap with
stratified sampling. The τ value where the profiles intersect y = 0.5 shows the median, and the area
under the performance profile corresponds to the mean.

33

	Introduction
	Preliminaries
	Method
	Uncertainty Quantifier
	UTDS algorithm

	Theoretical Analysis
	UTDS in Linear MDPs
	Optimality Gap

	Related Work
	Experiments
	Tasks and Datasets
	Experimental Results

	Conclusion
	Theoretical Analysis
	UTDS for Single-Task Linear MDPs
	UTDS for Multi-Task Data Sharing
	-Uncertainty Quantifier
	Suboptimality Gap
	brownSupplementary lemma

	Implementation Details
	UTDS
	Baselines
	Experimental Settings

	Additional Experimental Results
	Single-task results
	Direct data-sharing results
	Result comparison between UTDS and CDS
	Result comparison between UTDS and CDS-Zero
	brownVisualization of the Uncertainty
	brownAggregate Evaluation

