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Abstract

We formulate the continual learning problem via dynamic programming and model
the trade-off between catastrophic forgetting and generalization as a two-player
sequential game. In this approach, player 1 maximizes the cost due to lack of
generalization whereas player 2 minimizes the cost due to increased catastrophic
forgetting. We show theoretically and experimentally that a balance point between
the two players exists for each task and that this point is stable (once the balance is
achieved, the two players stay at the balance point). Next, we introduce balanced
continual learning (BCL), which is designed to attain balance between generaliza-
tion and forgetting, and we empirically demonstrate that BCL is comparable to or
better than the state of the art.

1 Introduction

In continual learning (CL), we incrementally adapt a model to learn tasks (defined according to
the problem at hand) observed sequentially. CL has two main objectives: maintain long-term
memory (remember previous tasks) and navigate new experiences continually (quickly adapt to
new tasks). An important characterization of these objectives is provided by the stability-plasticity
dilemma [9], where the primary challenge is to balance network stability (preserve past knowledge;
minimize catastrophic forgetting) and plasticity (rapidly learn from new experiences; generalize
quickly). This balance provides a natural objective for CL: balance forgetting and generalization.

Traditional CL methods either minimize catastrophic forgetting or improve quick generalization but
do not model both. For example, common solutions to the catastrophic forgetting issue include (1)
representation-driven approaches [49, 25]], (2) regularization approaches [27, 2| 134, [16, 148} 148l 24,
37,110, 43]], and (3) memory/experience replay [31} 32, [11,[12,[17]]. Solutions to the generalization
problem include representation-learning approaches (matching nets [435]], prototypical networks [42],
and metalearning approaches [[18}[19,[8,147]). More recently, several approaches [35, 16} 46l 23} 48|
15]] have been introduced that combine methods designed for quick generalization with frameworks
designed to minimize forgetting.

The aforementioned CL approaches naively minimize a loss function (combination of forgetting and
generalization loss) but do not explicitly account for the trade-off in their optimization setup. The
first work to formalize this trade-off was presented in meta-experience replay (MER) [38]], where
the forgetting-generalization trade-off was posed as a gradient alignment problem. Although MER
provides a promising methodology for CL, the balance between forgetting and generalization is
enforced with several hyperparameters. Therefore, two key challenges arise: (1) lack of theoretical
tools that study the existence (under what conditions does a balance point between generalization
and forgetting exists?) and stability (can this balance be realistically achieved?) of a balance point
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and (2) lack of a systematic approach to achieve the balance point. We address these challenges in
this paper.

We describe a framework where we first formulate CL as a sequential decision-making problem and
seek to minimize a cost function summed over the complete lifetime of the model. At any time &,
given that the future tasks are not available, the calculation of the cost function becomes intractable.
To circumvent this issue, we use Bellman’s principle of optimality [4] and recast the CL problem
to model the catastrophic forgetting cost on the previous tasks and generalization cost on the new
task. We show that equivalent performance on an infinite number of tasks is not practical (Lemma 1
and Corollary 1) and that tasks must be prioritized. To achieve a balance between forgetting and
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Figure 1: (left) Exemplary CL problem: the lifetime of the model can be split into three intervals. At k£ = 1 we
seek to recognize lions; at k = 2 we seek to recognize both lions and cats; and at kK = 3 we seek to recognize
cats, lions, and dogs. (right) Illustration of the proposed method: our methodology comprises an interplay
between two players. The first player maximizes generalization by simulating maximum discrepancy between
two tasks. The second player minimizes forgetting by adapting to maximum discrepancy .

generalization, we pose the trade-off as a saddle point problem where we designate one player for
maximizing the generalization cost (player 1) and another for minimizing the forgetting cost (player
2). We prove mathematically that there exists at least one saddle point between generalization and
forgetting for each new task (Theorem 1). Furthermore, we show that this saddle point can be attained
asymptotically (Theorem 2) when player strategies are chosen as gradient ascent-descent. We then
introduce balanced continual learning (BCL), a new algorithm to achieve this saddle point. In our
algorithm (see Fig. [T] for a description of BCL), the generalization cost is computed by training
and evaluating the model on given new task data. The catastrophic forgetting cost is computed by
evaluating the model on the task memory (previous tasks). We first maximize the generalization
cost and then minimize the catastrophic forgetting cost to achieve the balance. We compare our
approach with other methods such as elastic weight consolidation (EWC) [27], online EWC [40],
and MER [38]] on continual learning benchmark data sets [21]] to show that BCL is better than or
comparable to the state-of-the-art methods. Moreover, we also show in simulation that our theoretical
framework is appropriate for understanding the continual learning problem. The contributions of this
paper are (1) a theoretical framework to study the CL problem, (2) BCL, a method to attain balance
between forgetting and generalization, and (3) advancement of the state of the art in CL.

2 Problem Formulation

We use R to denote the set of real numbers and N to denote the set of natural numbers. We use ||. |
to denote the Euclidean norm for vectors and the Frobenius norm for matrices, while using bold
symbols to illustrate matrices and vectors. We define an interval [0, K), K € N and let p(Q) be the
distribution over all the tasks observed in this interval. For any &k € [0, K), we define a parametric
model g(.) with y,, = g(x; Ok ), where 0y, is a vector comprising all parameters of the model with
x, € X. Let n be the number of samples and m be the number of dimensions. Suppose a task
at k|k € [0, K) is observed and denoted as Qy, : Qr ~ p(Q), where Q = {X, {} is a tuple
with X, € R™*™ being the input data and ¢}, quantifies the loss incurred by X’} using the model g
for the task at k. We denote a sequence of 0 as uy.x = {0, € Qp, k < 7 < K}, with Qy being
the compact (feasible) set for the parameters. We denote the optimal value with a superscript (x);

for instance, we use 0,(:) to denote the optimal value of 8, at task k. In this paper we use balance



point, equilibrium point, and saddle point to refer to the point of balance between generalization and
forgetting. We interchange between these terms whenever convenient for the discussion. We will use
V ;)i to denote the gradient of ¢ with respect to j and Ai to denote the first difference in discrete

time.

An exemplary CL problem is described in Fig. [1| where we address a total of K = 3 tasks. To
particularize the idea in Fig. [T} we define the cost (combination of catastrophic cost and generalization
cost) at any instant k as Ji(0x) = el + Zf;é v-4-, where £, is computed on task Q, with ~;
describing the contribution of @, to this sum.

To solve the problem at k, we seek 6, to minimize J(6y). Similarly, to solve the problem in the
complete interval [0, K], we seek a 6}, to minimize Ji(6) for each k € [0, K]. In other words we
seek to obtain 6, for each task such that the cost Ji(6}) is minimized. Therefore, the optimization
problem for the overall CL problem (overarching goal of CL) is provided as the minimization of the

cumulative cost Vi (ug.x) = Zf:k B+J:(0) such that Vk(*), is given as

V) = ming, Vi (ur), (1)
with 0 < 3, < 1 being the contribution of J- and uy.x being a weight sequence of length K — k.

Within this formulation, two parameters determine the contributions of tasks: ., the contribution
of each task in the past, and (,, the contribution of tasks in the future. To successfully solve the
optimization problem, Vi (u. k) must be bounded and differentiable, typically ensured by the choice
of v;, B-. Lemma 1 (full statement and proof in Appendix A) states that equivalent performance
cannot be guaranteed for an infinite number of tasks. Furthermore, Corollary 1 (full statement and
proof in Appendix A) demonstrates that if the task contributions are prioritized, the differentiability
and boundedness of J(0.) can be ensured. A similar result was proved in [28]], where a CL problem
with infinite memory was shown to be NP-hard from a set theoretic perspective. These results (both
ours and in [28]]) demonstrate that a CL methodology cannot provide perfect performance on a large
number of tasks and that tasks must be prioritized.

Despite these invaluable insights, the data corresponding to future tasks (interval [k, K]) is not
available, and therefore Vi, (uy. ) cannot be evaluated. The optimization problem in Eq. (I) naively
minimizes the cost (due to both previous tasks and new tasks) and does not provide any explicit
modeling of the trade-off between forgetting and generalization. Furthermore, uy. 5, the solution
to Eq. (I is a sequence of parameters, and it is not feasible to maintain wy. x for a large number of
tasks. Because of these three issues, the problem is theoretically intractable in its current form.

We will first recast the problem using tools from dynamic programming [29], specifically Bellman’s
principle of optimality, and derive a difference equation that summarizes the complete dynamics for
the CL problem. Then, we will formulate a two-player differential game where we seek a saddle
point solution to balance generalization and forgetting.

3 Dynamics of Continual Learning

Let Vk(*) = MiNg, Zf: w BrJ7(0+); the dynamics of CL (the behavior of optimal cost with respect
to k) is provided as

AV = —ming, co, [Bedi(0k) + (Vo Vi), A1) + (Vo Vi), Awy))]. )

The derivation is presented in Appendix A (refer to Proposition 1). Note that V;*) is the minima for
the overarching CL problem in Eq. (Z)and AVk(*) represents the change in Vk(*) upon introduction

of a new task (we hitherto refer to this as perturbations). Zero perturbations (AVk(*) = 0) implies
that the introduction of a new task does not impact our current solution; that is, the optimal solution
on all previous tasks is optimal on the new task as well. Therefore, the smaller the perturbations,
the better the performance of a model on all tasks, thus providing our main objective: minimize the
perturbations (AVk(*)). In Eq. AVkF*) is quantified by three terms: the cost contribution from
all the previous tasks and the new task Jy (0 ); the change in the optimal cost due to the change in
the parameters (Vg, Vk(*), AB}); and the change in the optimal cost due to the change in the input

(introduction of new task) (V, Vk(*), Axy).



The first issue with the cumulative CL problem (Eq. (I)) can be attributed to the need for information
from the future. In Eq. (2, all information from the future is approximated by using the data from
the new and the previous tasks. Therefore, the solution of the CL problem can directly be obtained

by solving Eq. (2) using all the available data. Thus, ming, cq [H(A:ck, 0k)] yields AV,C(*) ~0

for 8 > 0, with H(Axy,0r) = BrJx(0k) + (ngVk(*), ABy) + (mGVk(*),Awk). Essentially,
minimizing H (Axy, 0)) would minimize the perturbations introduced by any new task k.

In Eq. (). the first and the third term quantify generalization and the second term quantifies forgetting.
A model exhibits generalization when it successfully adapts to a new task (minimizes the first and
the third term in Eq. (Z)). The degree of generalization depends on the discrepancy between the
previous tasks and the new task (numerical value of the third term in Eq. (2)) and the worst-case
discrepancy prompts maximum generalization. Quantification of generalization is provided by Az
that summarizes the discrepancy between subsequent tasks. However, Axy = @1 — @), and 1
is unknown at k. Therefore, we simulate worst-case discrepancy by iteratively updating Az, through
gradient ascent in order to maximize H (Axy, 0}); thus maximizing generalization. However, large
discrepancy increases forgetting, and worst-case discrepancy yields maximum forgetting. Therefore,
once maximum generalization is simulated, minimizing forgetting (update 8, by gradient descent)
under maximum generalization provides the balance.

To formalize our idea, let us indicate the iteration index at k by ¢ and write Axy, as Aw,(f) and 0, as

0,(5) with H(Axy, 0},) as H(Awg), 0,@) (for simplicity of notation, we will denote H(Aw,(f), 0,(5))
as H whenever convenient). Next, we write

min [H(Awg),efj))} = min [Budi(8))) + (Vo Vi, A61)) +(V 0 Vi Aay))]

0 eq, 6V eqq

< min [Bk(0)) + (Voo Vi, A0) +  maz (V0 V), Ax)))]
0" eq, * Azlap(@) TH

< min max [H(Aw,(f)ﬁ,(f))].

00ens Az ~p(Q)
3)

In Eq. (@), we seek the solution pair (Az("” 6\”) € (2,9 where Az|”) maximizes

Amg:> ) ?
H (maximizing player, player 1) while 0,(:) minimizes H (minimizing player, player 2) where

(Q6,Q are the feasible sets for Awg) and 0,(;) respectively. The solution is attained, and

Amg:) )
(Aw,(:), 0,(:)) is said to be the equilibrium point when it satisfies the following condition:

H(Az(",0) > H(AzY,00) > H(Az,6\"). )

3.1 Theoretical Analysis

With our formulation, two key questions arise:
Does our problem setup have an equilibrium
point satisfying Eq. (@)? and how can one at-
tain this equilibrium point? We answer these
questions with Theorems 1 and 2, respectively.
Full statements and proofs are provided in Ap-
pendix A.

H(Az®,00))
~._Az®

/
T H(Az™),00) .
7 To illustrate the theory, we refer to

Fig. 2] where the initial values for the
two players are characterized by the pair
{0,(;)(blue circle), A:c,(j)(red circle)} and
Figure 2: Tllustration of the proofs. Az (player 1)isthe  the cost value at {9](;)’ Awl(ci)} is indicated
horizontal axis, and the vertical axis indicates (@) o) .
6 (player 2) where the curve indicates H. If we start from 0y H (Az;”,0,") (the grey circle on the
the red circle for player 1 (player 2 is fixed at the blue ~ COst curve (the dark blue curve)). Our
circle), H is increasing (goes from a grey circle toared proofing strategy is as follows. First, we
asterisk) with player 1 reaching the red asterisk. Next,
start from the blue circle (0 is at the red asterisk), the
cost decreases.

fix 01(5) € {2y and construct a neighborhood

4



My = {€,,6")}. Within this neighborhood
we prove in Lemmas 2 and 4 that if we search for Aw,(:) through gradient ascent, we can converge to
a local maximizer, and H is maximizing with respect to Awg). Second, we let Azl € ), be fixed,
and we search for 6,(;-) through gradient descent. Under this condition, we demonstrate two ideas in

Lemmas 3 and 5: (1) we show that H is minimizing in the neighborhood N, : N}, = {Qy, Aw,&')};
and (2) we converge to the local minimizer in the neighborhood N/. Third, in the union of the two
neighborhoods M, U Ny, (proven to be nonempty according to Lemma 6), we show that there exists
at least one local equilibrium point (Theorem 1); that is, there is at least one balance point.

Theorem 1 (Existence of an Equilibrium Point). For any k € [0, K|, let 05:) € Qg, be the minimizer
of H according to Lemma 5 and define M,(:) = {Q,, 6,(:)}. Similarly, let Awé*) € Oy, be the
maximizer of H according to Lemma 4 and define /\/}S*) = {Aw,(j), Qg}. Further, let M;C*) U J\f,g*)
be nonempty according to Lemma. 6, then (A:vl(:), 05:)) € M,(:) UN,E*) is a local equilibrium point.

We next show that this equilibrium point is stable (Theorem 2) under a sequential play. Specifically,
we show that when player 1 plays first and player 2 plays second, we asymptotically reach a saddle

point pair (A:cgc*), 05:)) for H. At this saddle point, both players have no incentive to move, and the
game converges.

Theorem 2 (Stability of the Equilibrium Point). For any k € [0,K], A:c,(f) €
Q, and OS) € Qg be the initial values for Aw,(j) and 9,(? respectively.  Define
My = {Q4,Q0} with H(A:c,(f),gl(f)) given by Proposition 2. Let Am,(jﬂ) — Aa:,(f)

ol x (vAw?H(Am;j),9;~>))/||VM?H(M,@,9,§~>)|\2) and 60D — 0 = ol «
VGEC,-)H(Amé) 9,(;)). Let the existence of an equilibrium point be given by Theorem I, then, as

a consequence of Lemmas 2 and 3, (AJ:,(:), 9,(:)) € My, is a stable equilibrium point for H given .

In this game, the interplay between these two opposing players (representative of generalization
and forgetting, respectively) introduces the dynamics required to play the game. Furthermore, the
results presented in this section are local to the task. In other words, we prove that we can achieve a
balance between generalization and forgetting for each task & (neighborhoods are task dependent,
and we achieve a local solution given a task k). Furthermore, our game is sequential; that is, there is

a leader (player 1) and a follower (player 2). The leader (Amg)) plays first, and the follower (0,(;))
plays second with complete knowledge of the leader’s play. The game is directed by Amg), and

any changes in the task (reflected in Amg)) will shift the input and thus the equilibrium point.
Consequently, the equilibrium point varies with respect to a task, and one will need to attain a new
equilibrium point for each shift in a task. Without complete knowledge of the tasks (not available in a
CL scenario), only a local result is possible. This highlights one of the key limitations of this work.
Ideally, we would like a balance between forgetting and generalization that is independent of tasks.
However, this would require learning a trajectory of the equilibrium point (How does the equilibrium
point change with the change in the tasks?) and is beyond the scope of this paper. One work that
attempts to do this is [39]], where the authors learn a parameter per task. For a large number of tasks,
however, such an approach is computationally prohibitive.

These results are valid only under certain assumptions: (1) the Frobenius norm of the gradient is
bounded, always positive; (2) the cost function is bounded and differentiable; and (3) the learning
rate goes to zero as ¢ tends to infinity. The first assumption is reasonable in practice, and gradient
clipping or perturbation strategies can be used to ensure it. The boundedness of the cost (second
assumption) can be ensured by prioritizing the contributions of the task (Lemma 1 and Corollary 1).
The third assumption assumes a decaying learning rate. Learning rate decay is a common strategy
and is employed widely. Therefore, all assumptions are practical and reasonable.

3.2 Balanced Continual Learning

Equipped with the theory, we develop a new CL method to achieve a balance between forgetting
and generalization. By Proposition 2, the cost function can be upper bounded as H (Aa:,(;), 0,(;)) <



Bede(0) + (Je (V) — J1(6)) + (Jiic (8 — 11, (81)), where J ¢ indicates ¢ updates

on player 1 and 0,(6”0 indicates  updates on player 2.

The strategies for the two players Axy, 8, are chosen in
Eq. () with F being the expected value operator. We can
approximate the required terms in our update rule (player
strategies) using data samples (batches). Note that the ap-

AV p E[H (A2, 60))]
IV A, H (A, 0172

proximation is performed largely through one-sided finite Player 1 o)
difference, which may introduce an error and is another po- () | 0, E[H( Ax'® g(i)))]
tential drawback. The pseudo code of the BCL is shown in k L k2 kD
Algorithm We define a new task array D y (k) and a task Player 2

memory array Dp (k) C Uf;é Q. (samples from all previous tasks). For each batch by € Dy (k),
we sample bp from Dp(k), combine to create bpy (k) = bp(k) U by (k), and perform a sequential
play. Specifically, for each task the first player initializes £ = bpy (k) and performs ¢ updates on
xkp N through gradient ascent. The second player, with complete knowledge of the first player’s strat-
egy, chooses the best play to reduce H (Awg), 0,?)). To estimate player 2’s play, we must estimate
different terms in H (Awg), 0,(;)). This procedure involves three steps. First, we use the first player’s
play and approximate (JkJrC(OEJ)) - Jk(BS))). Second, to approximate (Jk(0§:+<)) - Jk(B,(f))) :
(a), we copy 6 into O (a temporary network) and perform ¢ updates on 65; and (b) we compute
Jk(H,(:H)) using O (k + ¢) and evaluate (Jk(GECHO) - Jk(H,(f))). Third, equipped with these ap-

proximations, we compute H (Aa:,(j), OS)) and obtain the play for the second player. Both these

players perform the steps repetitively for each piece of information (batch of data). Once all the data
from the new task is exhausted, we move to the next task.

3.3 Related Work

Algorithm 1: BCL
Traditional solutions to the CL focus on either the for- Initialize 8, Dp, Dy
getting issue [39} 149, 47,17, 127,150, 12, (31, 132, [11]] or while k = 1,2,3,...K do
the generalization issue [45} 142} [18},19, [8]. Common j=0
solutions to the forgetting problem involve dynamic ar- while j < p do

chitectures and flexible knowledge representation such Getby € D,iv
as 39,149, 47, [7]], regularization approaches including Getbp € lej
[27,150L 2]] and memory/experience replay [3 1,132} [11]]. Getbpy = bp Uby

Similarly, quick generalization to a new task has been
addressed through few-shot and one-shot learning ap-
proaches such as matching nets [45] and prototypical
network [42]. More recently, the field of metalearning
has approached the generalization problem by design-
ing a metalearner that can perform quick generaliza-
tion from very little data [[18,[19] 8]

In the past few years, metalearners for quick gener-
alization have been combined with methodologies
specifically designed for reduced forgetting [22} 3]].
For instance, the approaches in [22, 3] adapt the model-
agnostic metalearning (MAML) framework in [18]]
with robust representation to minimize forgetting and
provide impressive results on CL. However, both these
approaches require a pretraining phase for learning

Copy bpy into 22V

i=0whilei +1 <= (do

Update Y with J,(6y,)
using gradient ascent

i=i+l

Calculate Ji (') — Ji(6\")

Copy 9,(;) into 67

i=0whilei +1 <= (do
Update 87 with J;,(87)
=i+l

Calculate (J,(8F) — Jx(6\"))

Calculate H(Aa},(;), BS))

Update OS) using gradient

descent

representation. Simultaneously, Gupta et al. [20] intro-
duced LA-MAML—a metalearning approach where
the impact of learning rates on the CL problem is re-
duced through the use of per-parameter learning rates.
LA-MAML [20] also introduced episodic memory to address the forgetting issue. Other approaches
also have attempted to model both generalization and forgetting. In [16]], the gradients from new
tasks are projected onto a subspace that is orthogonal to the older tasks, and forgetting is mini-
mized. Similarly, Joseph and Balasubramanian [23]] utilized a Bayesian framework to consolidate
learning across previous and current tasks, and Yin et al. [48] provided a framework for approx-

L j=J+1
Update Dp with Dy




imating loss function to summarize the forgetting in the CL setting. Furthermore, Abolfathi et
al. [[1] focused on sampling episodes in the reinforcement learning setting, and Elrahimi et al. [[15]]
introduced a generative adversarial network-type structure to progressively learn shared features
assisting reduced forgetting and improved generalization. Despite significant progress, however, these
methods [22} 3] 20, [16} 23] 48, [1, [15]] are still inherently tilted toward maximizing generalization or
minimizing forgetting because they naively minimize the loss function. Therefore, the contribution
of different terms in the loss function becomes important. For instance, if the generalization cost
is given more weight, a method would generalize better. Similarly, if forgetting cost is given more
weight, a method would forget less. Therefore, the resolution of the trade-off inherently depends on
an hyperparameter.

The first work to formalize the trade-off in CL was MER, where the trade-off was formalized as a
gradient alignment problem. Similar to MER, Doan et al. ([13]]) studied forgetting as an alignment
problem. In MER, the angle between the gradients was approximated by using Reptile [36], which
promotes gradient alignment by reducing weight changes. On the other hand, [[13]] formalized the
alignment as an eigenvalue problem and introduced a PCA-driven method to ensure alignment. Our
approach models this balance as a saddle point problem achieved through stochastic gradient such
that the saddle point (balance point or equilibrium point) resolves the trade-off.

Our approach is the first in the CL literature to prove the existence of the saddle point (the balance
point) between generalization and forgetting given a task in a CL problem. Furthermore, we are the
first to theoretically demonstrate that the saddle point can be achieved reasonably under a gradient
ascent-descent game. The work closest to ours is [[15]], where an adversarial framework is described
to minimize forgetting in CL by generating task-invariant representation. However, [[15]] is not model
agnostic (the architecture of the network is important) and requires a considerable amount of data at
the start of the learning procedure. Because of these issues, [[15] is not suitable for learning in the
sequential scenario.

Several attempts have been reported in the literature to theoretically analyze different aspects of
CL. For instance, Benzing [6] attempted to unify regularization methods such as [27} 50} 2} [31]].
On the other hand, Benamin et al. [5]] provided generalization (in the context of training to test
data generalization) guarantees with orthogonal gradient descent, and Yin et al. [48] provided
generalization (in the context of training to test data generalization) analysis while regularizing
with a second-order approximation of the loss functions. Although these works provide important
results, they focus on quantifying catastrophic forgetting or generalization but do attempt to model
the trade-off in any manner.

4 Experiments

We use the CL benchmark [21]] for our experiments and retain the experimental settings (hyperparame-
ters) from [21} 44]]. For comparison, we use the split-MNIST, permuted-MNIST, and split-CiFAR100
data sets while considering three scenarios: incremental domain learning (IDL), incremental task
learning (ITL), and incremental class learning (ICL). The splitting and permutation strategies when
applied to the MNIST or CiFAR100 data set can generate task sequences for all three scenarios (il-
lustrated in Figure 1 and Appendix: Figure 2 of [21]). For comparing our approach, we use three
baseline strategies—standard neural network with Adam [26], Adagrad [[14]], and SG—and use
Ly-regularization and naive rehearsal (which is similar to experience replay). For CL approaches, we
use EWC [27], online EWC [40]], SI [50]], LwF [30], DGR [41], RtF [44]], MAS [2], MER [38]], and
GEM [33]]. We utilize data preprocessing as provided by [21]]. Additional details on experiments can
be found in Appendix B and [21}44]. All experiments are conducted in Python 3.4 using the pytorch
1.7.1 library with the NVIDIA-A100 GPU for our simulations.

Comparison with the state of the art: The results for our method are summarized in Table[T] and [2]
The efficiency for any method is calculated by observing the average accuracy (retained accuracy
(RA) [38]]) at the end of each repetition and then evaluating the mean and standard deviation of RA
across different repetitions. For each method, we report the mean and standard deviation of RA
over five repetitions of each experiment. In each column, we indicate the best-performing method
in bold. For the split-MNIST data set, we obtain 99.52 &+ 0.07 for ITL, 98.71 4 0.06 for IDL, and
97.32 £ 0.17 for ICL. Similarly, with the permuted-MNIST data set, we obtain 97.41 + 0.01 for
ITL, 97.51 + 0.05 for IDL, and 97.61 4 0.01 for ICL. Furthermore, with the split-CiFAR100 data



Table 1: Performance of our approach compared with other methods in the literature. We record the mean and
standard deviation of the retained accuracy for the different methods. The best scores are in bold.

split-MNIST permuted-MNIST
Method Incremental Incremental Incremental Incremental Incremental Incremental
task learning domain learning class learning task learning domain learning class learning
[ITL] [IDL] [ICL] [ITL] [IDL] [ICL]

Adam 95.52 + 2.14 54.75 + 2.06 19.72 £ 0.03 93.42 + 0.56 77.87 £ 1.27 14.02 £1.25
SGD 97.65 £ 0.28 62.80 + 0.34 19.36 £+ 0.02 90.95 £ 0.20 78.17 +1.16 12.82 4+ 0.95
Adagrad 98.37 £ 0.29 57.59 + 2.54 19.59 £ 0.17 92.45 + 0.16 91.59 + 0.46 29.09 + 1.48
Lo 97.62 £ 0.69 66.84 + 3.91. 22.92 +1.90 94.87 £+ 0.38 92.81 + 0.32 13.92 £ 1.79
Naive rehearsal 99.32 £ 0.10 94.85 + 0.80 90.88 £+ 0.70 96.23 + 0.04 95.84 + 0.06 96.25 + 0.10
Naive rehearsal-C 99.41 + 0.04 97.13 + 0.37 94.92 + 0.63 97.13 + 0.03 96.75 + 0.03 97.24 + 0.05
EWC 96.59 + 0.99 57.31 + 1.07 19.70 £ 0.14 95.38 £ 0.33 89.54 + 0.52 26.32 + 4.32
Online EWC 99.01 £ 0.12 58.25 + 1.23 19.68 £ 0.05 95.15 + 0.49 93.47 + 0.01 42.58 £ 6.50
SI 99.10 £ 0.16 64.63 + 1.67 19.67 £ 0.25 94.35 £ 0.51 91.12 + 0.93 58.52 + 4.20
MAS 98.88 £ 0.14 61.98 + 7.17 19.70 £ 0.34 94.74 + 0.52 93.22 + 0.80 50.81 + 2.92
GEM 98.32 + 0.08 97.37 £ 0.22 93.04 £ 0.05 95.44 + 0.96 96.86 + 0.02 96.72 + 0.03
DGR 99.47 £ 0.03 95.74 £+ 0.23 91.24 £ 0.33 92.52 + 0.08 95.09 + 0.04 92.19 + 0.09
RtF 99.66 + 0.03 97.31 £ 0.11 92.56 + 0.21 97.31 £ 0.01 97.06 + 0.02 96.23 + 0.04
MER 97.12 £ 0.10 92.16 + 0.35 93.20 £ 0.12 97.15 £ 0.08 96.11 + 0.31 91.71 + 0.03

BCL (With Game) 99.52 £ 0.07 98.71 £ 0.06 97.32 £ 0.17 97.41 £ 0.01 97.51 £ 0.05 97.61 £ 0.01
BCL (Without Game) 97.73 £+ 0.03 96.43 + 0.29 91.88 + 0.55 96.16 + 0.03 96.08 + 0.06 95.96 + 0.06

set, we obtain 81.82 + 0.17 for ITL, 62.11 &+ 0.00 for IDL, and 69.27 &+ 0.03 for ICL. BCL is the
best-performing methodology for all cases (across both data sets) except RtF for ITL (0.14% drop)
with the split-MNIST data set.

Generally, ITL is the easiest learn-

ing scenario [21]], and all methods  Table 2: Performance of BCL for the split-CiFAR100 data set. We
therefore perform well on ITL (the record the retained accuracy for the different methods. We obtained

performance is close). For the ITL RA scores for all methods except BCL from [21]].
scenario with the split-MNIST data
set, BCL is better than most methods; split-CiFAR100
b 1 h d h . Method Incremental Incremental Incremental
ut several metho §, such as naive re- task learning domain learning class learning
hearsal, naive rehearsal-C. RIF, and Ty [ Wmmios Dhaioi Taiio
DGR, attain close RA values (less Adagrad 36.27+0.43  19.06 +0.14  15.83 + 0.20
than 1% from BCL). Note that both Naiverpersal | 7000 £ 0.7  35.04 %035 3433 % 0.19
DGR and RtF involve a generative Naive rehearsal-C_ | 78.41 4 0.37  51.814+0.18  51.28 + 0.17
model pretrained with data from all EWC 61.11 £ 1.43  19.76 £ 0.12  19.70 £ 0.14
. . Online EWC 63.22+0.97  20.03+£0.10  17.16 & 0.09
the tas.ks. Ina Sequentla.ll learnlqg SI 64.81 £1.00  20.26 +£0.09  17.26 +0.11
scenario, one cannot efﬁc]ently train MAS 64.77 £ 0.78 19.99 + 0.16 17.07 4+ 0.12
. BCL(With Game) 81.82 £ 0.17 62.11 £ 0.00 6927 £ 0.03
generative models because data cor- BCL(Without Game) | 69.17 £0.12  51.82+£0.19  52.82 £ 0.01

responding to all the tasks is not
available beforehand. Although RtF provides improved performance for split-MNIST (ITL), the
improvement is less than 1% (not significant). In fact, RtF performance is poorer for BCL in ICL by
4.76% (a significant drop in performance) and in IDL by 1.4%.

Two additional observations can be made about the split-MNIST data set. First, Adagrad, SGD,
and L2 achieve better performance than does Adam. Therefore, in our analysis Adagrad appears
more appropriate although Adam is popularly used for this task. Second, naive rehearsal (both naive
rehearsal and naive rehearsal-C approaches) achieves performance equivalent to the state-of-the-art
methods with similar memory overhead. Furthermore, naive rehearsal performs much better than
online EWC and SI, especially in the ICL scenario. These limitations indicate that regularization-
driven approaches are not much better than baseline models and in fact perform poorer than methods
involving memory (naive rehearsals, MER, BCL, etc.). In [28]], it was shown theoretically that
memory-based approaches typically do better than regularization-driven approaches, as is empirically
observed in this paper, too. Another interesting observation is that EWC and online EWC require
significant hyperparameter tuning, which would be difficult to do in real-world scenarios. Other
regularization-based methods, such as SI and MAS, also suffer from the same issue.

The observations from the split-MNIST carry forward to the permuted-MNIST data set. Moreover,
RA values for the permutation MNIST data set are better for the split-MNIST data set across the
board, indicating that the permutation MNIST data set presents an easier learning problem. Similar
to the observations made with the split-MNIST data set, BCL is better than all methods for the
permuted-MNIST dataset, with naive rehearsal and RtF providing RA values that are close (less than
1%). The only methodology in the literature that attempts to model the balance between forgetting and
generalization is MER, an extension of GEM. From our results, we observe that BCL is better than



MER in all cases (Split-MNIST-2.4% improvement for ITL, 6.55% improvement for IDL, 4.12%
improvement for ICL and Permuted-MNIST-0.26% improvement for ITL, 1.4% improvement for
IDL and 5.9% improvement for ICL).

The substantial improvements obtained by BCL are more evident in Table 2] where the results on
the split-CiFAR 100 data set are summarized. BCL is clearly the best-performing method. The next
best-performing method is naive rehearsal-C, where BCL improves performance by 3.41% for ITL,
10.3% for IDL, and 17.99% for ICL. Other observations about the regularization methods and the
rest of the baseline methods carry forward from Table [I] However, one key difference is that while
AdaGrad is observed to be better than Adam for the MNIST data set, Adam is comparable to SGD
and Adagrad for split-CiFAR100. In summary, BCL is comparable to or better than the state of the
art in the literature for both the MNIST and CiFAR100 data sets.

Do we need a game to achieve this perfor-
mance? To provide additional insights into the
benefits of the game, we compare RA values

— (Vo7 50, B0)+ (Vo Ary)  — IV

20 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 . . (2)
1s with and without the game. In our setup, Ax,,
10 aims at increasing the cost, and 0,(;) aims at re-

5 ducing the cost. If we hold the play for Aw,(f),
then the dynamics required to play the game
do not exist, thus providing a method that can
-3 perform CL without the game. Therefore, we

“1% 200 400 600 800 1000 1200 1400 1600 induce the absence of a game by fixing A:L'ECZ)
i (update iteration at each task ) and perform each of the nine experiments for
(a) five repetitions (ICL, IDL, and ITL for split-
MNIST, permuted-MNIST, and split-CiFAR100).

We summarize these results in the last two rows

of Tables[T]and 2] Consequently, we make two

10- observations. First: even without the game, we
achieve RA values comparable to the state of

> K_\ the art. This is true for both the MNIST and Ci-
FAR100 data sets. Second, with the introduction

15-

of the game, we observe improved RA values
—5- across the board (at least by 1% with MNIST).
‘ ‘ ‘ ‘ ‘ ‘ The difference is clearer with the CiFAR100 data

0 50 100 150 200 250 300 L
i (update iteration at task k—3) set where we observe a substantial improvement

in RA values (at least 10%).

b

®) Does the theory appropriately model the con-
Figure 3: (Top) Progression of different terms in Eq. ~ tinual learning problem? In Fig. 3a we plot the
(@) with respect to update iterations, where the index progression of .J| k(g k) + <V - Vk(*)7 Ax k-> (blue

on the x axis is calculated as k x 300. The tasks (%)
boundaries (at what ¢ the tasks are introduced) are curve), (Vg, V™", ABy) (red curve), and the

illustrated through shades of grey. (down) Illustration ~ sum, namely, AVk(*) (green curve). A total of

of the costat k = 3. six tasks, sampled from the permutation MNIST
data set within the ICL setting, are illustrated in Fig. These tasks are introduced every 300 update
steps. From Fig. @]we make two important observations. First, as soon as tasks 1, 3, 4, and 6 are
introduced, all three curves (red, blue, and green) indicate a bump. Second, when tasks 2 and 5
are introduced, there is no change. On a closer look at task 3 in Fig.[3b] we observe that when the
task 3 is introduced, the blue curve exhibits a large positive bump (the introduction of the new tasks
increases the first and the third terms in Eq. (2))). The increase implies that task 3 forced the model to
generalize and increased forgetting on tasks 1 and 2 (observed by the increase in the green curve). To
compensate for this increase, we require the model 6, to behave adversarially and introduce a large

enough negative value in (Vg, Vk(*), ABy) (red curve) to cancel out the increase in the blue curve. In
Fig.[Bbthe red curve demonstrates a large negative value (expected behavior) and eventually (as
increases) forces the blue curve (by consequence, green: the sum of red and blue) to move toward
zero (the model compensates for the increase in forgetting). As observed, the blue and the red curves
behave opposite to each other and introduce a push-pull behavior that stops only when the two cancel
each other and the sum (green) is zero. Once the sum has reached zero, there is no incentive for the



red and green to be nonzero, and therefore they remain at zero; thus, all three curves (green, red,
and blue) remain at zero once converged until a task 4 is introduced (when there is another bump,
as seen in Fig. [3a). However, this increase in the blue curve is not observed when tasks 2 and 5

are introduced. When new tasks are similar to the older tasks, it is expected that AVk(*) =0, as is
observed in Fig. [3a

All of these observations are fully explained by Eq. [2] which illustrates that the solution to the CL
problem is obtained optimally only when AV,C(*) = 0 (observed in Figs. and . The term

AV is quantified by J(0), (Ve, V™), ABL) and (Va, Vi), Ay). Our theory suggests that
there exists an inherent trade-off between different terms in Eq. [2] Therefore every time a new task is

observed, it is expected that Jj (01) + (Vaz, Vk(*)7 Azy;) increases (increase in blue curve when tasks

1, 3, 4, and 6 are introduced) and (Vg, Vk*), AB;;) compensates to cancel this increase (red curve
exhibits a negative jump). In Theorems 1 and 2 we demonstrate the existence of this balance point (for

each task, as 7 increases, AV,C(*) tends to zero, as observed in Fig. and AV,C(*) remains zero (the
balance point is stable, proved in Theorem 2) until a new task increases forgetting. Furthermore,
our theory claims the existence of a solution with respect to each task. This is also observed in
Fig.[3a]as, for each task, there is an increase in cost, and BCL quickly facilitates convergence. These
observations indicate that our dynamical system in Eq. [2|accurately describes the dynamics of the
continual learning problem. Furthermore, the assumptions under which the theory is developed are
practical and are satisfied by performing continual learning on the permuted MNIST problem.

5 Conclusion

We developed a dynamic programming-based framework to enable the methodical study of key
challenges in CL. We show that an inherent trade-off between generalization and forgetting exists
and must be modeled for optimal performance. To this end, we introduce a two-player sequential
game that models the trade-off. We show in theory and simulation that there is an equilibrium
point that resolves this trade-off (Theorem 1) and that this saddle point can be attained (Theorem 2).
However, we observe that any change in the task modifies the equilibrium point. Therefore, a global
equilibrium point between generalization and forgetting is not possible, and our results are valid
only in a neighborhood (defined given a task). To attain this equilibrium point, we develop BCL and
demonstrate state-of-the-art performance on a CL benchmark [21]]. In the future, we will extend our
framework for nonEuclidean tasks.

6 Broader Impact

Positive Impacts: CL has a wide range of applicability. It helps avoids retraining, and it improves
the learning efficiency of learning methods. Therefore, in science applications where the data is
generated sequentially but the data distribution varies with time, our theoretically grounded method
provides the potential for improved performance. Negative Impacts: Our theoretical framework does
not have direct adverse impacts. However, the potential advantages of our approach can improve the
efficiency of adverse ML systems such as fake news, surveillance, and cybersecurity attacks.
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