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Abstract

Most existing works focus on improving robustness against adversarial attacks
bounded by a single lp norm using adversarial training (AT). However, these
AT models’ multiple-norm robustness (union accuracy) is still low, which is cru-
cial since in the real-world an adversary is not necessarily bounded by a single
norm. The tradeoffs among robustness against multiple lp perturbations and accu-
racy/robustness make obtaining good union and clean accuracy challenging. We
design a logit pairing loss to improve the union accuracy by analyzing the tradeoffs
from the lens of distribution shifts. We connect natural training (NT) with AT via
gradient projection, to incorporate useful information from NT into AT, where we
empirically and theoretically show it moderates the accuracy/robustness tradeoff.
We propose a novel training framework RAMP, to boost the robustness against
multiple lp perturbations. RAMP can be easily adapted for robust fine-tuning and
full AT. For robust fine-tuning, RAMP obtains a union accuracy up to 53.3% on
CIFAR-10, and 29.1% on ImageNet. For training from scratch, RAMP achieves a
union accuracy of 44.6% and good clean accuracy of 81.2% on ResNet-18 against
AutoAttack on CIFAR-10. Beyond multi-norm robustness RAMP-trained models
achieve superior universal robustness, effectively generalizing against a range of
unseen adversaries and natural corruptions.

1 Introduction

Though deep neural networks (DNNs) demonstrate superior performance in various vision appli-
cations, they are vulnerable against adversarial examples [Goodfellow et al., 2014, Kurakin et al.,
2018]. Adversarial training (AT) [Tramèr et al., 2017, Madry et al., 2017] which works by injecting
adversarial examples into training for enhanced robustness, is currently the most popular defense.
However, most AT methods address only a single type of perturbation [Wang et al., 2020, Wu
et al., 2020, Carmon et al., 2019, Gowal et al., 2020, Raghunathan et al., 2020, Zhang et al., 2021,
Debenedetti and Troncoso—EPFL, 2022, Peng et al., 2023, Wang et al., 2023]. An l∞ robust model
may not be robust against lp(p ̸=∞) attacks. Also, enhancing robustness against one perturbation
type can sometimes increase vulnerability to others [Engstrom et al., 2017, Schott et al., 2018]. On
the contrary, training a model to be robust against multiple lp perturbations is crucial as it reflects
real-world scenarios [Sharif et al., 2016, Eykholt et al., 2018, Song et al., 2018, Athalye et al., 2018]
where adversaries can use multiple lp perturbations. We show that multi-norm robustness is the key
to improving generalization against other threat models [Croce and Hein, 2022]. For instance, we
show it enables robustness against perturbations not easily defined mathematically, such as image
corruptions and unseen adversaries [Wong and Kolter, 2020].
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Two main challenges exist for training models robust against multiple perturbations: (i) tradeoff
among robustness against different perturbation models [Tramer and Boneh, 2019] and (ii) tradeoff
between accuracy and robustness [Zhang et al., 2019, Raghunathan et al., 2020]. Adversarial examples
induce a shift from the original distribution, causing a drop in clean accuracy with AT [Xie et al.,
2020, Benz et al., 2021]. The distinct distributions created by l1, l2, l∞ adversarial examples make
the problem even more challenging. Through a finer analysis of the distribution shifts caused by these
adversaries, we propose the RAMP framework to efficiently boost the Robustness Against Multiple
Perturbations. RAMP can be used for both fine-tuning and training from scratch. It utilizes a novel
logit pairing loss on a certain pair and connects NT with AT via gradient projection [Jiang et al.,
2023] to improve union accuracy while maintaining good clean accuracy and training efficiency.

Logit pairing loss. We visualize the changing of l1, l2, l∞ robustness when fine-tuning a l∞-AT
pre-trained model in Figure 1 using the CIFAR-10 training dataset. The DNN loses substantial
robustness against l∞ attack after only 1 epoch of fine-tuning: l1 fine-tuning and E-AT [Croce and
Hein, 2022] (red and yellow histograms under Linf category) both lose significant l∞ robustness
(compared with blue histogram under Linf category). Inspired by this observation, we devise a new
logit pairing loss for a lq − lr tradeoff pair to attain better union accuracy, which enforces the logit
distributions of lq and lr adversarial examples to be close, specifically on the correctly classified lq
subsets. In comparison, our method (green histogram under Linf and union categories) preserves
more l∞ and union robustness than others after 1 epoch. We show this technique works on larger
models and datasets (Section 5.1).

A
cc

ur
ac

y

0.2

0.4

0.6

0.8

Linf L1 L2 Union

Epoch 0 Epoch 1 - Fintune L1 Epoch 1 - EAT Epoch 1 - RAMP

Figure 1: Multiple-norm tradeoff with robust fine-
tuning: We observe that fine-tuning on l∞-AT model
using l1 examples drastically reduces l∞ robustness.
RAMP preserves more l∞ and union robustness.

Connect natural training (NT) with AT. We
explore the connections between NT and AT
to obtain a better accuracy/robustness trade-
off. We find that NT can help with adversarial
robustness: useful information in natural dis-
tribution can be extracted and leveraged to
achieve better robustness. To this end, we
compare the similarities of model updates of
NT and AT layer-wise for each epoch, where
we find and incorporate useful NT compo-
nents into AT via gradient projection (GP),
as outlined in Algorithm 2. In Figure 2 and
Section 5.1, we empirically and theoretically
show this technique strikes a better balance
between accuracy and robustness, for both sin-
gle and multiple lp perturbations. We provide
a theoretical analysis of why GP works for adversarial robustness in Theorem A.2 & 4.5.

Main contributions:

• We design a new logit pairing loss to mitigate the lq − lr tradeoff for better union accuracy, by
enforcing the logit distributions of lq and lr adversarial examples to be close.

• We empirically and theoretically show that connecting NT with AT via gradient projection better
balances the accuracy/robustness tradeoff for lp perturbations, compared with standard AT.

• RAMP achieves good union accuracy, accuracy-robustness tradeoff, and generalizes better to
diverse perturbations and corruptions (Section 5.1) achieving superior universal robustness (75.5%
for common corruption and 26.1% union accuracy against unseen adversaries). RAMP fine-tuned
DNNs achieve union accuracy up to 53.3% on CIFAR-10, and 29.1% on ImageNet. RAMP
achieves a 44.6% union accuracy and good clean accuracy on ResNet-18 against AutoAttack on
CIFAR-10. Our code is available at https://github.com/uiuc-focal-lab/RAMP.

2 Related Work

Adversarial training (AT). Adversarial Training (AT) usually employs gradient descent to discover
adversarial examples, incorporating them into training for enhanced adversarial robustness [Tramèr
et al., 2017, Madry et al., 2017]. Numerous works focus on improving robustness by exploring
the trade-off between robustness and accuracy [Zhang et al., 2019, Wang et al., 2020], instance
reweighting [Zhang et al., 2021], loss landscapes [Wu et al., 2020], wider/larger architectures [Gowal
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et al., 2020, Debenedetti and Troncoso—EPFL, 2022], data augmentation [Carmon et al., 2019,
Raghunathan et al., 2020], and using synthetic data [Peng et al., 2023, Wang et al., 2023]. However,
these methods often yield DNNs robust against a single perturbation type while remaining vulnerable
to other types.

Robustness against multiple perturbations. Tramer and Boneh [2019], Kang et al. [2019] observe
that robustness against lp attacks does not necessarily transfer to other lq attacks (q ̸= p). Previous
studies [Tramer and Boneh, 2019, Maini et al., 2020, Madaan et al., 2021, Croce and Hein, 2022]
modified Adversarial Training (AT) to enhance robustness against multiple lp attacks, employing
average-case [Tramer and Boneh, 2019], worst-case [Tramer and Boneh, 2019, Maini et al., 2020], and
random-sampled [Madaan et al., 2021, Croce and Hein, 2022] defenses. There are also works [Nandy
et al., 2020, Liu et al., 2020, Xu et al., 2021, Xiao et al., 2022, Maini et al., 2022] using preprocessing,
ensemble methods, mixture of experts, and stability analysis to solve this problem. Ensemble
models and preprocessing methods are weakened since their performance heavily relies on correctly
classifying or detecting various types of adversarial examples. In certified training, Banerjee et al.
[2024], Banerjee and Singh [2024] propose verification/certifiable training methods under different
threat models for lp universal adversarial perturbation. However, prior works are hard to scale to
larger models and datasets, e.g. ImageNet, due to the efficiency issue. Furthermore, Croce and Hein
[2022] devise Extreme norm Adversarial Training (E-AT) and fine-tune a lp robust model on another
lq perturbation to quickly make a DNN robust against multiple lp attacks. However, E-AT does not
adapt to varying epsilon values. Our work demonstrates that the suboptimal tradeoff observed in prior
studies can be improved with our proposed framework.

Logit pairing in adversarial training. Adversarial logit pairing methods encourage logits for pairs
of examples to be similar [Kannan et al., 2018, Engstrom et al., 2018]. People apply this technique to
both clean images and their adversarial counterparts, to devise a stronger form of adversarial training.
In our work, we devise a novel logit pairing loss to train a DNN originally robust against lp attack to
become robust against another lq(q ̸= p) attack on the correctly predicted lp subsets, which helps
gain better union accuracy.

Adversarial versus distributional robustness. Sinha et al. [2018] theoretically studies the AT
problem through distributional robust optimization. Mehrabi et al. [2021] establishes a pareto-optimal
tradeoff between standard and adversarial risks by perturbing the test distribution. Other works explore
the connection between natural and adversarial distribution shifts [Moayeri et al., 2022, Alhamoud
et al., 2023], assessing transferability and generalizability of adversarial robustness across datasets.
However, little research delves into distribution shifts induced by l1, l2, l∞ adversarial examples and
their interplay with the robustness-accuracy tradeoff [Zhang et al., 2019, Yang et al., 2020, Rade and
Moosavi-Dezfooli, 2021]. Our work, inspired by recent domain adaptation techniques [Jiang, 2023,
Jiang et al., 2023], designs a logit pairing loss and utilizes model updates from NT via GP to enhance
adversarial robustness. We show that GP adapts to both single and multi-norm scenarios.

3 AT against Multiple Perturbations

We consider a standard classification task with samples {(xi, yi)}Ni=0 from an empirical data dis-
tribution D̂n; we have input images x ∈ Rd and corresponding labels y ∈ Rk. Standard training
aims to obtain a classifier f parameterized by θ to minimize a loss function L : Rk × Rk → R on
D̂n. Adversarial training (AT) [Madry et al., 2017, Tramèr et al., 2017] aims to find a DNN robust
against adversarial examples. It is framed as a min-max problem where a DNN is optimized using
the worst-case examples within an adversarial region around each xi. Different types of adversarial
regions Bp(x, ϵp) = {x′ ∈ Rd : ∥x′ − x∥p ≤ ϵp} can be defined around a given image x using
various lp-based perturbations. Formally, we can write the optimization problem of AT against a
certain lp attack as follows:

min
θ

E(x,y)∼D̂n

[
max

x′∈Bp(x,ϵp)
L(f(x′), y)

]
The above optimization is only for certain p values and is usually vulnerable to other perturbation
types. To this end, prior works have proposed several approaches to train the network robust
against multiple perturbations (l1, l2, l∞) at the same time. We focus on the union threat model
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∆ = B1(x, ϵ1) ∪B2(x, ϵ2) ∪B∞(x, ϵ∞) which requires the DNN to be robust within the l1, l2, l∞
adversarial regions simultaneously [Croce and Hein, 2022]. Union accuracy is then defined as the
robustness against ∆(i) for each xi sampled from D. In this paper, similar to the prior works, we use
union accuracy as the main metric to evaluate the multiple-norm robustness. Apart from that, we
define universal robustness as the generalization ability against a range of unseen adversaries and
common corruptions. Specifically, we have average accuracy across five severity levels for common
corruption and union accuracy against a range of unseen adversaries used in Laidlaw et al. [2020].

Worst-case defense follows the following min-max optimization problem to train DNNs using the
worst-case example from the l1, l2, l∞ adversarial regions:

min
θ

E(x,y)∼D̂n

[
max

p∈{1,2,∞}
max

x′∈Bp(x,ϵp)
L(f(x′), y)

]
MAX [Tramer and Boneh, 2019] and MSD [Maini et al., 2020] fall into this category. Finding
worst-case examples yields a good union accuracy but results in a loss of clean accuracy as the
distribution of generated examples is different from the clean data distribution.

Average-case defense train DNNs using the average of the l1, l2, l∞ worst-case examples:

min
θ

E(x,y)∼D̂n

[
Ep∈{1,2,∞} max

x′∈Bp(x,ϵp)
L(f(x′), y)

]
AVG [Tramer and Boneh, 2019] is of this type. This method generally leads to good clean accuracy
but suboptimal union accuracy as it does not penalize worst-case behavior within the l1, l2, l∞
regions.

Random-sampled defense. The defenses mentioned above lead to a high training cost as they
compute multiple attacks for each sample. SAT [Madaan et al., 2021] and E-AT [Croce and Hein,
2022] randomly sample one attack out of each type at a time, contributing to a similar computational
cost as standard AT on a single perturbation model. They achieve a slightly better union accuracy
compared with AVG and relatively good clean accuracy. However, they are not better than worst-case
defenses for multiple-norm robustness, since they do not consider the strongest attack within the
union region all the time.

4 RAMP

There are two main tradeoffs in achieving better union accuracy while maintaining good accuracy: 1.
Among perturbations: there is a tradeoff among different attacks, e.g., a l∞ pre-trained AT DNN is
not robust against l1, l2 perturbations, which makes the union accuracy harder to attain. Also, we
observe there exists a main tradeoff pair of two attacks among the union over l1, l2, l∞ attacks. 2.
Accuracy and robustness: all defenses lead to degraded clean accuracy. To address these tradeoffs,
we study the problem from the lens of distribution shifts.

Interpreting tradeoffs from the lens of distribution shifts. The adversarial examples with respect
to an empirical data distribution D̂n, adversarial region Bp(x, ϵp), and DNN fθ generate a new
adversarial distribution D̂a with samples {(x′

i, yi)}Ni=0, that are correlated by adding certain perturba-
tions but different from the original D̂n. Because of the shifts between D̂n and D̂a, DNN decreases
performance on D̂n when we move away from it and towards D̂a. Also, the distinct distributions
created by multiple perturbations, D̂l1

a , D̂l2
a , D̂l∞

a , contribute to the tradeoff among l1, l2, l∞ attacks.
To address the tradeoff among perturbations while maintaining good efficiency, we focus on the
distributional interconnections between D̂n and D̂l1

a , D̂l2
a , D̂l∞

a . From the insights we get from above,
we propose our framework RAMP, which includes (i) logit pairing to improve tradeoffs among
multiple perturbations, and (ii) identifying and combining the useful DNN components using the
model updates from NT and AT, to obtain a better robustness/accuracy tradeoff.

Identify the Key Tradeoff Pair. We study the common case with lp norms ϵ1 = 12, ϵ2 = 0.5, ϵ∞ =
8

255 on CIFAR-10 [Tramer and Boneh, 2019]. The distributions generated by the two strongest attacks
show the largest shifts from D̂n; also, they have the largest distribution shifts between each other
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because of larger and most distinct search areas. Thus, by comparing the single norm robustness of lp
adversarially trained models, we select the two lp-AT models with the lowest lp robustness against
themselves as the key tradeoff pair. They refer to the strongest attack since their lp robustness is
low. The attack with the highest lp robustness is mostly included by the convex hull of the other two
stronger attacks [Croce and Hein, 2022]. Here we identify l∞ − l1 as the key tradeoff pair.

4.1 Logit Pairing for Multiple Perturbations

Figure 1: Finetuning a lq-AT model on lr examples reduces lq robustness. To get a finer analysis
of the l∞ − l1 tradeoff mentioned above, we visualize the changing of l1, l2, l∞ robustness of the
training dataset when we fine-tune a l∞ pre-trained model with l1 examples for 1 epochs, as shown
in Figure 1: x-axis represents the robustness against different attacks and y-axis is the accuracy.
After 1 epoch of finetuning on l1 examples or performing E-AT, we lose much l∞ robustness since
blue/yellow histograms are much lower than the red histogram under the Linf category. RAMP
preserves both l∞ and union robustness more effectively: the green histogram is higher than the
red/yellow histogram under Linf and Union categories. Specifically, RAMP maintains 14%, 28%
more union robustness than E-AT and l1 fine-tuning. The above observations indicate the necessity
of preserving more lq robustness as we adversarially fine-tune with lr adversarial examples on a
lq pre-trained AT model, with lq − lr as the key tradeoff pair, which inspires us to design our loss
design with logit pairing. We want to enforce the union predictions between lq and lr(q ̸= r) attacks:
bringing the predictions of lq and lr(q ̸= r) close to each other, specifically on the correctly predicted
lq subsets. Based on our observations, we design a new logit pairing loss to enforce a DNN robust
against one lq attack to be robust against another lr(q ̸= r) attack.

Enforcing the Union Prediction via Logit Pairing. The lq − lr(q ̸= r) tradeoff leads us to the
following principle to improve union accuracy: for a given set of images, when we have a DNN
robust against some lq examples, we want it to be robust against lr examples as well. This serves as
the main insight for our loss design: we want to enforce the logits predicted by lq and lr adversarial
examples to be close, specifically on the correctly predicted lq subsets. To accomplish this, we design
a KL-divergence (KL) loss between the predictions from lq and lr perturbations. For each batch
of data (x, y) ∼ D, we generate lq and lr adversarial examples x′

q, x
′
r and their predictions pq, pr

using APGD [Croce and Hein, 2020]. Then, we select indices γ, which part elements of pq correctly
predicts the ground truth y. We denote the size of the indices as nc, and the batch size as N . We
compute a KL-divergence loss over this set of samples using KL(pq[γ]∥pr[γ]) (Eq. 1). For the subset
indexed by γ, we want to push its lr logit distribution towards its lq logit distribution, such that we
prevent losing more lq robustness when training with lr adversarial examples.

LKL =
1

nc
·

nc∑
i=1

k∑
j=0

pq[γ[i]][j] · log
(
pq[γ[i]][j]

pr[γ[i]][j]

)
(1)

To further boost the union accuracy, apart from the KL loss, we add another loss term using a
MAX-style approach in Eq. 2: we find the worst-case example between lq and lr adversarial regions
by selecting the example with the higher loss. Lmax is a cross-entropy loss over the approximated
worst-case adversarial examples. Here, we use Lce to represent the cross-entropy loss. Our final loss
L combines LKL and Lmax, via a hyper-parameter λ in Eq. 3.

Lmax =
1

N

N∑
i=0

[
max

p∈{q,r}
max

x′
i∈Bp(x,ϵp)

Lce(f(x
′
i), yi)

]
(2) L = Lmax + λ · LKL (3)

Algorithm 1 shows the pseudocode of robust fine-tuning with RAMP that leverages logit pairing.

4.2 Connecting Natural Training with AT

To improve the robustness and accuracy tradeoff against multiple perturbations, we explore the
connections between AT and NT. Since extracting valuable information in NT aids in improving
robustness (Section 4.2), we use gradient projection [Jiang et al., 2023] to compare and integrate
natural and adversarial model updates, which yields an improved tradeoff between robustness and
accuracy.
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NT can help adversarial robustness. Let us consider two models f1 and f2, where f1 is randomly
initialized and f2 undergoes NT on D̂n for k epochs: f2 results in a better decision boundary and
higher clean accuracy. Performing AT on f1 and f2 subsequently, intuitively, f2 becomes more robust
than f1 due to its improved decision boundary, leading to fewer misclassifications of adversarial
examples. This effect is empirically shown in Figure 2. For AT (blue), standard AT against l∞
attack [Madry et al., 2017] is performed, while for AT-pre (red), 50 epochs of pre-training precede
the standard AT procedure. AT-pre shows superior clean and robust accuracy on CIFAR-10 against
l∞ PGD-20 attack with ϵ∞ = 0.031. Despite D̂n and D̂a are different, Figure 2 suggests valuable
information in D̂n that potentially enhances performance on D̂a.

AT with Gradient Projection. To connect NT with AT more effectively, we analyze the training
procedures on D̂n and D̂a. We consider model updates over all samples from D̂n and D̂a, with
the initial model f (r) at epoch r, and models f (r)

n and f
(r)
a after 1 epoch of natural and adversarial

training from the same starting point f (r), respectively. Here, we compare the natural updates
ĝn = f

(r)
n − f (r) and adversarial updates ĝa = f

(r)
a − f (r). Due to distribution shift, an angle exists

between them. Our goal is to identify useful components from gn and incorporate them into ga for
increased robustness in D̂a while maintaining accuracy in D̂n. Inspired by Jiang et al. [2023], we
layer-wisely compute the cosine similarity between ĝn and ĝa. For a specific layer l of ĝln and ĝla, we
preserve a portion of ĝln based on their cosine similarity score (Eq.4). Negative scores indicate that
ĝln is not beneficial for robustness in D̂a. Therefore, we filter components with similarity score ≤ 0.
We define the GP (Gradient Projection) operation in Eq.5 by projecting ĝla towards ĝln.

cos(ĝln, ĝ
l
a) =

ĝln · ĝla
∥ĝln∥∥ĝla∥

(4) GP(ĝln, ĝ
l
a) =

{
cos(ĝln, ĝ

l
a) · ĝln, cos(ĝln, ĝ

l
a) > 0

0, cos(ĝln, ĝ
l
a) ≤ 0

(5)

Therefore, the total projected (useful) model updates gp coming from ĝn could be computed as Eq. 6.
We useM to denote all layers of the current model update. Note that

⋃
l∈M concatenates all layers’

useful natural model update components. A hyper-parameter β is used to balance the contributions
of gGP and ĝa, as shown in Eq. 7. By finding a proper β (0.5 as in Figure 4c), we can obtain better
robustness on D̂a, as shown in Figure 2 and Figure 3. In Figure 2, with β = 0.5, AT-GP refers to AT
with GP; for AT-GP-pre, we perform 50 epochs of NT before doing AT-GP. We see AT-GP obtains
a better accuracy/robustness tradeoff than AT. We observe a similar trend for AT-GP-pre vs. AT-pre.
Further, in Figure 3, RN-18 l∞-GP achieves good clean accuracy and better robustness than RN-18
l∞ against AutoAttack [Croce and Hein, 2020].

gp =
⋃
l∈M

GP(ĝln, ĝ
l
a) (6)

f (r+1) = f (r) + β · gp + (1− β) · ĝa (7)

Algorithm 1 Fine-tuning via Logit Pairing

1: Input: model f , input samples (x, y)

from distribution D̂n, fine-tuning rounds
R, hyper-parameter λ, adversarial regions
Bq, Br with size ϵq and ϵr, APGD attack.

2: for r = 1, 2, ..., R do
3: for (x, y) ∼ training set D do
4: x′

q, pq ← APGD(Bq(x, ϵq), y)
5: x′

r, pr ← APGD(Br(x, ϵr), y)
6: γ ← where(argmax pq = y)
7: nc ← γ.size()
8: calculate L using Eq. 3 and update f
9: end for

10: end for
11: Output: model f .

Algorithm 2 Connect AT with NT via GP

1: Input: model f , input images with distri-
bution D̂n, training rounds R, adversarial
region Bp and its size ϵp, β, natural train-
ing NT and adversarial training AT.

2: for r = 1, 2, ..., R do
3: fn ← NT(f (r),D)
4: fa ← AT(f (r), Bp, ϵp,D)
5: compute ĝn ← fn − f (r), ĝa ← fa −

f (r)

6: compute gp using Eq. 6
7: update f (r+1) using Eq. 7 with β and

ĝa
8: end for
9: Output: model f .
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4.3 Theoretical Analysis of GP for Adversarial Robustness

We define Dn = {(xi, yi)}∞i=0 as the ideal data distribution with an infinite cardinality. Here, we con-
sider a classifier fθ at epoch t. We defineDa as the distribution created by {(xi+ϵ(fθ, xi, yi), yi)}∞i=0
where (xi, yi) ∼ Dn. xi + ϵ(fθ, xi, yi) denotes the perturbed image, which could be both single and
multiple perturbations based on fθ itself.

Assumption 4.1. We assume D̂n consists of N i.i.d. samples from the ideal distribution Dn and
D̂a = {(xi + ϵ(fθ, xi, yi), yi)}Ni=0 where (xi, yi) ∼ D̂n consists of N i.i.d. samples from Da.

We define the population loss as LD(θ) := E(x,y)∼DL(f(x), y), and let gD(θ) := ∇LD(θ). For
simplification, we use ga := ∇LDa(θ), ĝa := ∇LD̂a

(θ), and ĝn := ∇LD̂n
(θ). gGP = β · gp +(1−

β) · ĝa (Definition A.3) is the aggregation using GP. We define the following optimization problem.
Definition 4.2 (Aggregation for NT and AT). fθ is trained by iteratively updating the parameter

θ ← θ − µ · Aggr(ĝa, ĝn),

where µ is the step size. We seek an aggregation rule Aggr(·) = ĝAggr such that after training, fθ
minimizes the population loss function LDa

(θ).

We need ĝAggr to be close to ga for each iteration, since ga is the optimal update on Da. Thus, we
define Lπ-Norm and delta error to indicate the performance of different aggregation rules.
Definition 4.3 (Lπ-Norm [Enyi Jiang, 2024]). Given a distribution π on the parameter space θ, we
define an inner product ⟨gD, gD′⟩π = Eθ∼π[⟨gD(θ), gD′(θ)⟩]. The inner product induces the Lπ-
norm on gD as ∥gD∥π :=

√
Eθ∼π∥gD(θ)∥2. We use Lπ-norm to measure the gradient differences

under certain D.
Definition 4.4 (Delta Error of an aggregation rule Aggr(·)). We define the following squared error
term to measure the closeness between ĝAggr and ga under D̂t

a (distribution at time step t), i.e.,

∆2
Aggr := ED̂t

a
∥ga − ĝAggr∥2π.

Delta errors ∆2
AT and ∆2

GP measure the closesness of gGP , ĝa from ga in D̂a at each iteration.
Theorem 4.5 (Error Analysis of GP). When the model dimension m→∞, for an epoch t, we have
an approximation of the error difference ∆2

AT −∆2
GP as follows

∆2
AT −∆2

GP ≈ β(2− β)ED̂t
a
∥ga − ĝa∥2π − β2τ̄2∥ga − ĝn∥2π

τ̄2 = Eπ[τ
2] ∈ [0, 1], where τ(θ) is the sin(·) value of the angle between ĝn and ga − ĝn.

Theorem 4.5 shows ∆2
GP is generally smaller than ∆2

AT for a large model dimension during each
iteration, as is the case for the models in our evaluation, with β = 0.5, since β(1− β) > β2(0.75 >
0.25) and the small value of τ̄ in practice (see Interpretation of Theorem A.2 in Appendix A, where we
show the order of difference is between 1e−8 and 1e−12). Thus, GP achieves better robust accuracy
than AT by achieving a smaller delta error; GP also obtains good clean accuracy by combining parts
of the model updates from the clean distribution D̂n. Further, we provide an error analysis of a single
gradient step in Theorem A.1 and convergence analysis in Theorem A.2, showing that a smaller Delta
error results in better convergence. The full proof of all theorems is in Appendix A.

We outline the AT-GP method in Algorithm 2 and it can be extended to the multiple-norm scenario.
The overhead of this algorithm comes from natural training and GP operation. Their costs are small,
and we discuss this more in Section 5.2. Combining logit pairing and gradient projection methods,
we provide the RAMP framework which is similar to Algorithm 2, except that we replace line 4 of
Algorithm 2 as Algorithm 1 line 3-9.

5 Experiment

Datasets, baselines, and models. CIFAR-10 [Krizhevsky et al., 2009] includes 60K images with
50K and 10K images for training and testing respectively. ImageNet has ≈ 14.2M images and 1K
classes, containing ≈ 1.3M training, 50K validation, and 100K test images [Russakovsky et al.,
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Figure 2: l∞ AT-GP with PGD [Madry et al., 2017] with ϵ =
0.031 on CIFAR-10 improves accuracy and robustness. Pre-
training on D̂n for 50 epochs further boosts the performance.

Clean l∞
RN-18 l∞ 84.2 47.4

RN-18 l∞-GP 84.5 48.3
RN-18 l∞-GP-pre 84.9 48.3

Figure 3: l∞ AT-GP with
APGD [Croce and Hein, 2020]
improves robustness against l∞
AutoAttack [Croce and Hein, 2020]
with ϵ = 8

255 . RN-18 l∞-GP uses
AT-GP; RN-18 l∞-GP-pre pre-trains
40 epochs on D̂n before AT-GP is
applied.

2015]. We compare RAMP with following baselines: 1. SAT [Madaan et al., 2021]: randomly
sample one of the l1, l2, l∞ attacks. 2. AVG [Tramer and Boneh, 2019]: take the average of l1, l2, l∞
examples. 3. MAX [Tramer and Boneh, 2019]: take the worst of l1, l2, l∞ attacks. 4. MSD [Maini
et al., 2020]: find the worst-case examples over l1, l2, l∞ steepest descent directions during each step
of inner maximization. 5. E-AT [Croce and Hein, 2022]: randomly sample between l1, l∞ attacks.
For models, we use PreAct-ResNet-18, ResNet-50, WideResNet-34-20, and WideResNet-70-16 for
CIFAR-10, as well as ResNet-50 and XCiT-S transformer for ImageNet.

Implementations and Evaluation. For AT from scratch for CIFAR-10, we train PreAct ResNet-
18 [He et al., 2016] with a lr = 0.05 for 70 epochs and 0.005 for 10 more epochs. We set λ = 2,
β = 0.5 for training from scratch, and λ = 0.5 for robust fine-tuning. For all methods, we use 10
steps for the inner maximization in AT. For ImageNet, we perform 1 epoch of fine-tuning and use
a learning rate lr = 0.005, λ = 0.5 for ResNet-50 and lr = 1e−4, λ = 0.5 for XCiT-S models.
We reduce the rate by a factor of 10 every 1

3 of the training epoch and set the weight decay to
1e−4. We use APGD with 5 steps for l∞ and l2, 15 steps for l1. Settings are similar to [Croce
and Hein, 2022]. We use the standard values of ϵ1 = 12, ϵ2 = 0.5, ϵ∞ = 8

255 for CIFAR-10 and
ϵ1 = 255, ϵ2 = 2, ϵ∞ = 4

255 for ImageNet. We focus on l∞-AT models for fine-tuning, as Croce and
Hein [2022] shows their higher union accuracy for the ϵ values in our evaluation. We report the clean
accuracy, robust accuracy against {l1, l2, l∞} attacks, union accuracy, universal robustness against
common corruptions and unseen adversaries, as well as runtime for RAMP. The robust accuracy is
evaluated using Autoattack [Croce and Hein, 2020]. More implementation details are in Appendix B.

5.1 Main Results

Table 1: Different epsilon values: RAMP consistently outperforms E-AT and MAX for both training
from scratch and robust fine-tuning when the key tradeoff pair changes.

(12, 0.5, 2
255 ) (12, 1.5, 8

255 )
Clean l∞ l2 l1 Union Clean l∞ l2 l1 Union

Training from Scratch E-AT 87.2 73.3 64.1 55.4 55.4 83.5 41.0 25.5 52.9 25.5
MAX 85.6 72.1 63.6 56.4 56.4 74.6 42.9 35.7 50.3 35.6
RAMP 86.3 73.3 64.9 59.1 59.1 74.4 43.4 37.2 51.1 37.1

Robust Fine-tuning E-AT 86.5 74.8 66.7 57.9 57.9 80.2 42.8 31.5 52.4 31.5
MAX 85.7 74.0 66.2 60.0 60.0 74.8 43.8 36.7 50.2 36.6
RAMP 85.8 74.0 66.2 60.1 60.1 74.9 43.7 37.0 50.2 36.9

Robust fine-tuning. In Table 2, we apply RAMP to larger models and datasets (ImageNet). However,
the implementation of other baselines is not publicly available and Croce and Hein [2022] do not
report other baseline results except E-AT on larger models and datasets, so we only compare against
E-AT in Table 2, which shows RAMP consistently obtains better union accuracy and accuracy-
robustness tradeoff than E-AT. We observe that RAMP improves the performance more as the
model becomes larger. We obtain the SOTA union accuracy of 53.3% on CIFAR-10 and 29.1% on
ImageNet.

RAMP with varying ϵ1, ϵ2, ϵ∞ values. We provide results with 1. (ϵ1 = 12, ϵ2 = 0.5, ϵ∞ = 2
255 )

where ϵ∞ size is small and 2. (ϵ1 = 12, ϵ2 = 1.5, ϵ∞ = 8
255 ) where ϵ2 size is large, using

PreAct ResNet-18 model for CIFAR-10 dataset: these cases have different tradeoff pair compared to
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Table 2: Robust fine-tuning on larger models and datasets (* uses extra data for pre-training). We
evaluate all CIFAR-10 and Imagenet test points. RAMP consistently achieves better union accuracy
with significant margins and good accuracy-robustness tradeoff.

Models Methods Clean l∞ l2 l1 Union
WRN-70-16-l∞(*) [Gowal et al., 2020] E-AT 89.6 54.4 76.7 58.0 51.6

RAMP 90.6 54.7 74.6 57.9 53.3
WRN-34-20-l∞ [Gowal et al., 2020] E-AT 87.8 49.0 71.6 49.8 45.1

RAMP 87.1 49.7 70.8 50.4 46.9
WRN-28-10-l∞(*) [Carmon et al., 2019] E-AT 89.3 51.8 74.6 53.3 47.9

CIFAR-10 RAMP 89.2 55.9 74.7 55.7 52.7
WRN-28-10-l∞(*) [Gowal et al., 2020] E-AT 89.8 54.4 76.1 56.0 50.5

RAMP 89.4 55.9 74.7 56.0 52.9
RN-50-l∞ [Engstrom et al., 2019] E-AT 85.3 46.5 68.3 45.3 41.6

RAMP 84.3 47.0 67.7 46.5 43.3
XCiT-S-l∞ [Debenedetti and Troncoso—EPFL, 2022] E-AT 68.4 38.1 51.8 23.8 23.4

ImageNet RAMP 66.0 35.7 50.2 30.0 29.1
RN-50-l∞ [Engstrom et al., 2019] E-AT 58.2 26.9 39.5 18.8 17.8

RAMP 55.6 25.1 38.3 22.4 20.9

Figure 1. The pair identified using our heuristic are l1 - l2 and l2 - l∞. In Table 1, we observe that
RAMP consistently outperforms E-AT and MAX with significant margins in union accuracy, when
training from scratch and performing robust fine-tuning. In Table 1, when l2 is the bottleneck, E-AT
obtains a lower union accuracy as it does not leverage l2 examples. Similar observations are made
across various epsilon values, with RAMP consistently outperforming other baselines, as detailed in
Appendix B.4. Appendix B includes more training details/results, and ablation studies. Results for
applying the trades loss to RAMP outperforming E-AT are detailed in Appendix B.6. Appendix B.7
presents robust fine-tuning using ResNet-18, where RAMP achieves the highest union accuracy.

Table 3: RN-18 model trained from random initialization
on CIFAR-10 over 5 trials: RAMP achieves the best union
robustness and good clean accuracy compared with other
baselines. Baseline results are from Croce and Hein [2022].

Methods Clean l∞ l2 l1 Union
SAT 83.9±0.8 40.7±0.7 68.0±0.4 54.0±1.2 40.4±0.7
AVG 84.6±0.3 40.8±0.7 68.4±0.7 52.1±0.4 40.1±0.8
MAX 80.4±0.5 45.7±0.9 66.0±0.4 48.6±0.8 44.0±0.7
MSD 81.1±1.1 44.9±0.6 65.9±0.6 49.5±1.2 43.9±0.8
E-AT 82.2±1.8 42.7±0.7 67.5±0.5 53.6±0.1 42.4±0.6
RAMP (λ=5) 81.2±0.3 46.0±0.5 65.8±0.2 48.3±0.6 44.6±0.6
RAMP (λ=2) 82.1±0.3 45.5±0.3 66.6±0.3 48.4±0.2 44.0±0.2

Adversarial training from random
initialization. Table 3 presents the re-
sults of AT from random initialization
on CIFAR-10 with PreAct ResNet-18.
RAMP has the highest union accu-
racy with good clean accuracy, which
indicates that RAMP can mitigate the
tradeoffs among perturbations and ro-
bustness/accuracy in this setting. The
results for all baselines are from Croce
and Hein [2022].

Table 4: Individual, average, and union accuracy against common corruptions (averaged across five
levels) and unseen adversaries using WideResNet-28-10 on CIFAR-10 dataset.

Models Common Corruptions l0 fog snow gabor elastic jpeginf Avg Union
l1-AT 78.2 79.0 41.4 22.9 40.5 48.9 48.4 46.9 12.8
l2-AT 77.2 67.5 48.7 26.1 44.1 53.2 45.4 47.5 16.2
l∞-AT 73.4 55.5 44.7 32.9 53.8 56.6 33.4 46.2 19.1
Winninghand [Diffenderfer et al., 2021] 91.1 74.1 74.5 18.3 76.5 12.6 0.0 42.7 0.0
E-AT 71.5 58.5 35.9 35.3 50.7 55.7 60.3 49.4 21.9
MAX 71.0 56.2 42.9 35.4 49.8 57.8 55.7 49.6 24.4
RAMP 75.5 55.5 40.5 40.2 52.9 60.3 56.1 50.9 26.1

Universal Robustness. In Table 4, we report average accuracy against common corruptions and
union accuracy against unseen adversaries from Laidlaw et al. [2020] (implementation details are in
Appendix B.3). We compare against lp pretrained models, E-AT, MAX, winninghand [Diffenderfer
et al., 2021] (a SOTA method for natural corruptions) using WideResNet-28-10 architecture on
the CIFAR-10 dataset. Compared to E-AT and MAX, RAMP achieves 4% higher accuracy for
common corruptions with five severity levels and 2-4% better union accuracy against multiple unseen
adversaries. Winninghand has high corruption robustness but no adversarial robustness. The results
show that RAMP obtains a better robustness and accuracy tradeoff with stronger universal robustness.
In Appendix B.3, we evaluate on ResNet-18 to support this fact further.

5.2 Ablation Study and Discussion

Sensitivities of λ. We perform experiments with different λ values in [0.1, 0.5, 1.0, 1.5, 2, 3, 4, 5]
for robust fine-tuning and [1.5, 2, 3, 4, 5, 6] for AT from scratch using PreAct-ResNet-18 model for
CIFAR-10 dataset. In Figure 4, we observe a decreased clean accuracy when λ becomes larger. We
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Figure 4: Alabtion studies on λ and β hyper-parameters.

pick λ = 2.0 for training from scratch (Figure 4a) and λ = 0.5 for robust fine-tuning (Figure 4b) in
our main experiments, as these values of λ yield both good clean and union accuracy.

Choices of β. Figure 4c shows the performance of RAMP with varying β values on CIFAR-10
ResNet-18 experiments. We pick β = 0.5 for combining natural training and AT via GP, which
achieves comparatively good robustness and clean accuracy. This choice is also based on Theorem 4.5
when β(2− β) has the largest difference from β2 (0.75 vs 0.25).

Clean l∞ l2 l1 Union
RN-18 l∞-AT 81.5 45.5 66.4 47.0 42.9
RN-18 l1-AT 81.0 42.6 66.0 48.1 41.5
RN-18 l2-AT 84.1 41.6 69.1 45.4 39.4

Table 5: RAMP with l∞, l1, l2-RN-18-AT
models on CIFAR-10 with standard epsilons.

Fine-tune lp AT models with RAMP. Table 5 shows
the robust fine-tuning results using RAMP with l∞-
AT (q = ∞, r = 1), l1-AT (q = 1, r = ∞), l2-AT
(q =∞, r = 1) RN-18 models for CIFAR-10 dataset.
For l∞ − l1 tradeoffs, RAMP on l∞-AT pre-trained
model achieves the best union accuracy.

Computational analysis and Limitations. The extra
training costs of AT-GP are small, e.g. for each epoch
on ResNet-18, the extra NT takes 6 seconds and the
standard AT takes 78 seconds using a single NVIDIA A100 GPU, and the GP operation only takes
0.04 seconds on average. RAMP is more expensive than E-AT and less expensive than MAX. We
have a complete runtime analysis in Appendix B.2. We notice occasional drops in clean accuracy
during fine-tuning with RAMP. In some cases, union accuracy improves slightly but clean accuracy
and single lp robustness reduce. Further, we find no negative societal impact from this work.

6 Conclusion

We introduce RAMP, a framework enhancing multiple-norm robustness and achieving superior
universal robustness against corruptions and perturbations by addressing tradeoffs among lp perturba-
tions and accuracy/robustness. We apply a new logit pairing loss and use gradient projection to obtain
SOTA union accuracy with favorable accuracy/robustness tradeoffs against common corruptions
and other unseen adversaries. Results demonstrate that RAMP surpasses SOTA methods in union
accuracy across model architectures on CIFAR-10 and ImageNet.
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A Proof of Theorems

A.1 Proof of Theorem A.2

We first show what happens during one step of optimization, where we highlight the importance of
analyzing delta error.
Theorem A.1. Consider model parameter θ ∼ π and an aggregation rule Aggr(·) with step size
µ > 0. Define the updated parameter as

θ+ := θ − µĝAggr(θ).

Assuming the gradient ∇L(θ) is γ-Lipschitz in θ for any input, and let the step size µ ≤ 1
γ , we have

ED̂a,θ
[LDa

(θ+)− LDa
(θ)] ≤ −µ

2 (∥ga∥
2
π −∆2

Aggr).

Proof. The proof is the same as Theorem A.1 in [Enyi Jiang, 2024].

Theorem A.2 (Convergence of Aggr(·)). For any probability measure π over the parameter space,
and an aggregation rule Aggr(·) with step size µ > 0. We update the parameter for T steps
by θt+1 := θt − µĝAggr(θ

t). Assume the gradient ∇L(θ) and ĝAggr(θ) are γ
2 -Lipschitz in θ such

that θt → θ̂Aggr. ∆Aggr_max is the Delta error at time t′ when ∥ĝAggr(θ̂Aggr) − ∇LDt′
a
(θ̂Aggr)∥2 is

maximized. Then, given step size µ ≤ 1
γ and a small enough ϵ > 0, with probability at least 1− δ we

have

∥∇LDT
a
(θT )∥2 ≤ 1

δ2

(√
Cϵ ·∆2

Aggr_max +O(ϵ)
)2

+O
(
1

T

)
+O(ϵ),

where Cϵ = ED̂t′
a
[1/π(Bϵ(θ̂Aggr))]

2 and Bϵ(θ̂Aggr) ⊂ Rm is the ball with radius ϵ centered at θ̂Aggr.
The Cϵ measures how well π covers where the optimization goes.

Proof. Denote random function f̂ : Rm → R+ as

f̂(θ) = ∥ĝAggr(θ)−∇LDa(θ)∥, (8)

where the randomness comes from D̂a. Note that f̂ is γ-Lipschitz by assumption. Now we consider
Bϵ(θ̂Aggr) ⊂ Rm, i.e., the ball with radius ϵ centered at θ̂Aggr. Then, by γ-Lipschitzness we have

Eθ∼π f̂(θ) =

∫
f̂(θ) dπ(θ)

≥
∫
Bϵ(θ̂Aggr)

(f̂(θ̂Aggr)− γϵ) dπ(θ)

= (f̂(θ̂Aggr)− γϵ)π(Bϵ(θ̂Aggr))

Therefore,

f̂(θ̂Aggr) ≤
1

π(Bϵ(θ̂Aggr))
· Eθ∼π f̂(θ) +O(ϵ).

Taking expectation w.r.t. D̂a on both sides, we have

ED̂a
f̂(θ̂Aggr) ≤ ED̂a

[
1

π(Bϵ(θ̂Aggr))
· Eθ∼π f̂(θ)

]
+O(ϵ)

≤

√√√√ED̂a

[
1

π(Bϵ(θ̂Aggr))

]2
· ED̂a

[
Eθ∼π f̂(θ)

]2
+O(ϵ) (Cauchy-Schwarz)

=

√
Cϵ · ED̂a

[
Eθ∼π f̂(θ)

]2
+O(ϵ) (by definition of Cϵ)

≤
√
Cϵ · ED̂a

Eθ∼π

[
f̂(θ)

]2
+O(ϵ) (Jensen’s inequality)

=
√
Cϵ ·∆2

Aggr +O(ϵ)
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By Markov’s inequality, with probability at least 1− δ we have a sampled dataset D̂a such that

f̂(θ̂Aggr) ≤
1

δ
ED̂a

f̂(θ̂Aggr) ≤
1

δ

√
Cϵ ·∆2

Aggr +O(ϵ/δ) (9)

Conditioned on such event, we proceed on to the optimization part.

Note that Theorem A.1 characterizes how the optimization works for one gradient update. We denote
Dt

a as the data distribution Da at time step t. Therefore, for any time step t = 0, . . . , T − 1, we can
apply Theorem A.1 which only requires the Lipschitz assumption:

LDt
a
(θt+1)− LDt

a
(θt) ≤ −µ

2

(
∥∇LDt

a
(θt)∥2 − ∥ĝAggr(θt)−∇LDt

a
(θt)∥2

)
.

We notice that Dt
a changes based on θs of different time steps. On both sides, to sum over t =

0, . . . , T − 1, we first consider two terms:

(LDt
a
(θt+1)− LDt

a
(θt)) + (LDt−1

a
(θt)− LDt−1

a
(θt−1))

To compare LDt
a
(θt) and LDt−1

a
(θt), since Dt

a optimizes one more step than Dt−1
a , we assume

LDt
a
(θt) ≤ LDt−1

a
(θt) for ∀t. Therefore, we have:

(LDt
a
(θt+1)− LDt

a
(θt)) + (LDt−1

a
(θt)− LDt−1

a
(θt−1)) ≥ (LDt

a
(θt+1)− LDt−1

a
(θt)) + (LDt−1

a
(θt)− LDt−1

a
(θt−1))

Summing up all time steps,

LDt
a
(θt+1)− LD0

a
(θ0) ≤ LDt

a
(θt+1)− LDt−1

a
(θt) + LDt−1

a
(θt)− LDt−2

a
(θt−1) + ...− LD0

a
(θ0)

≤ −µ

2

(
T−1∑
t=0

∥∇LDt−1
a

(θt)∥2 −
T−1∑
t=0

∥ĝAggr(θt)−∇LDt
a
(θt)∥2

)
.

Dividing both sides by T , and with regular algebraic manipulation we derive

1

T

T−1∑
t=0

∥∇LDt−1
a

(θt)∥2 ≤ 2

µT
(LD0

a
(θ0)− LDT−1

a
(θT )) +

1

T

T−1∑
t=0

∥ĝAggr(θt)−∇LDt
a
(θt)∥2.

Note that we assume the loss function LD(θ) := E(x,y)∼DL(f(x), y), is non-negative. Thus, we
have

1

T

T−1∑
t=0

∥∇LDt−1
a

(θt)∥2 ≤
2LD0

a
(θ0)

µT
+

1

T

T−1∑
t=0

∥ĝAggr(θt)−∇LDt
a
(θt)∥2. (10)

Note that we assume given D̂a we have θt → θ̂Aggr. Therefore, for any ϵ > 0 there exist Tϵ such that

∀t > Tϵ : ∥θt − θ̂Aggr∥ < ϵ. (11)

This implies that ∀t > Tϵ:

µ∥ĝAggr(θt)∥ = ∥θt+1 − θ̂Aggr + θ̂Aggr − θt∥ ≤ ∥θt+1 − θ̂Aggr∥+ ∥θ̂Aggr − θt∥ < 2ϵ. (12)

Moreover, (11) also implies ∀t1, t2 > Tϵ:

∥∇LDt1
a
(θt1)−∇LDt2

a
(θt2)∥ ≤ γ∥θt1 − θt2∥ (γ-Lipschitzness)

< 2ϵ. (13)
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Now, let’s get back to (10). For ∀T > Tϵ we have

1

T

T−1∑
t=0

∥∇LDt−1
a

(θt)∥2 ≤
2LD0

a
(θ0)

µT
+

1

T

Tϵ−1∑
t=0

∥ĝAggr(θt)−∇LDt
a
(θt)∥2 + 1

T

T−1∑
t=Tϵ

∥ĝAggr(θt)−∇LDt
a
(θt)∥2

= O
(
1

T

)
+

1

T

T−1∑
t=Tϵ

∥ĝAggr(θt)−∇LDt
a
(θt)∥2

= O
(
1

T

)
+

1

T

T−1∑
t=Tϵ

∥ĝAggr(θt)− ĝAggr(θ̂Aggr) + ĝAggr(θ̂Aggr)−∇LDt
a
(θt)∥2

≤ O
(
1

T

)
+

1

T

T−1∑
t=Tϵ

(
∥ĝAggr(θt)− ĝAggr(θ̂Aggr)∥+ ∥ĝAggr(θ̂Aggr)−∇LDt

a
(θt)∥

)2
(triangle inequality)

= O
(
1

T

)
+

1

T

T−1∑
t=Tϵ

(
O(ϵ) + ∥ĝAggr(θ̂Aggr)−∇LDt

a
(θt)∥

)2
(by (12))

= O
(
1

T

)
+O(ϵ) + 1

T

T−1∑
t=Tϵ

(
∥ĝAggr(θ̂Aggr)−∇LDt

a
(θ̂Aggr) +∇LDt

a
(θ̂Aggr)−∇LDt

a
(θt)∥

)2
≤ O

(
1

T

)
+O(ϵ) + 1

T

T−1∑
t=Tϵ

(
∥ĝAggr(θ̂Aggr)−∇LDt

a
(θ̂Aggr)∥+O(ϵ)

)2
(by (13))

≤ O
(
1

T

)
+O(ϵ) + ∥ĝAggr(θ̂Aggr)−∇LDt′

a
(θ̂Aggr)∥2 (14)

Equation 14 bounds the left hand side with the maximum ∥ĝAggr(θ̂Aggr)−∇LDt
a
(θ̂Aggr)∥2 one can

get during the optimization steps. Here, we assume at time t′, the largest value is attained. We denote
∆2

Aggr_max as the delta error at time step t′.

Then, we can continue with what we have done at the beginning of the proof of this theorem:

(14) = O
(
1

T

)
+O(ϵ) + f(θ̂Aggr)

2 (by (8))

≤ O
(
1

T

)
+O(ϵ) +

(
1

δ

√
Cϵ ·∆2

Aggr_max +O(ϵ/δ)
)2

(by (9))

Therefore, combining the above we finally have: for ∀T > Tϵ with probability at least 1− δ,

1

T

T−1∑
t=0

∥∇LDt−1
a

(θt)∥2 ≤ O
(
1

T

)
+O(ϵ) + 1

δ2

(√
Cϵ ·∆2

Aggr_max +O(ϵ)
)2

(15)
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To complete the proof, let us investigate the left-hand side.

1

T

T−1∑
t=0

∥∇LDt−1
a

(θt)∥2 =
1

T

Tϵ−1∑
t=0

∥∇LDt
a
(θt)∥2 + 1

T

T−1∑
t=Tϵ

∥∇LDt
a
(θt)∥2

= O
(
1

T

)
+

1

T

T−1∑
t=Tϵ

∥∇LDt
a
(θt)∥2

≥ O
(
1

T

)
+

1

T

T−1∑
t=Tϵ

(
∥∇LDt

a
(θt)−∇LDT

a
(θT )∥ − ∥∇LDT

a
(θT )∥

)2
(triangle inequality)

= O
(
1

T

)
+

1

T

T−1∑
t=Tϵ

(
O(ϵ) + ∥∇LDT

a
(θT )∥2

)
(by (13))

= O
(
1

T

)
+O(ϵ) + ∥∇LDT

a
(θT )∥2. (16)

Combining (15) and (16), we finally have

∥∇LDT
a
(θT )∥2 ≤ O

(
1

T

)
+O(ϵ) + 1

δ2

(√
Cϵ ·∆2

Aggr_max +O(ϵ)
)2

,

which completes the proof.

A.2 Proof of Theorem 4.5

To prove Theorem 4.5, we first use the following definitions and lemmas from [Enyi Jiang, 2024], to
get the delta errors of Gradient Projection (GP) and standard adversarial training (AT):

Definition A.3 (GP Aggregation). Let β ∈ [0, 1] be the weight that balances between ĝa and ĝn. The
GP aggregation operation is

GP (ĝa, ĝn) =
(
(1− β)ĝa + βProj+(ĝa|ĝn)

)
.

where Proj+(ĝa|ĝn) = max{⟨ĝa, ĝn⟩, 0}ĝn/∥ĝn∥2 is the operation that projects ĝa to the positive
direction of ĝn.

Definition A.4 (AT Aggregation). The AT aggregation operation is

AT (ĝa) = ĝa.

standard AT only leverages the gradient update on D̂a.

Lemma A.5 (Delta Error of GP). Given distributions D̂a, Da and D̂n, as well as the model updates
ĝa, ga, ĝn on these distributions per epoch, we have ∆2

GP as follows

∆2
GP ≈

(
(1− β)2 +

2β − β2

m

)
ED̂a
∥ga − ĝa∥2π + β2τ̄2∥ga − ĝn∥2π,

In the above equation, m is the model dimension and τ̄2 = Eπ[τ
2] ∈ [0, 1] where τ(θ) is the sin(·)

value of the angle between ĝn and ga − ĝn. ∥ · ∥π is the π-norm over the model parameter space.

Proof. The proof is the same as Theorem 4.4 in Enyi Jiang [2024].

Lemma A.6 (Delta Error of AT). Given distributions D̂a, Da and D̂n, as well as the model updates
ĝa, ga, ĝn on these distributions per epoch, we have ∆2

AT as follows

∆2
AT = ED̂a

∥ga − ĝa∥2π,

where ∥ · ∥π is the π-norm over the model parameter space.
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Then, we prove Theorem 4.5.

Theorem A.7 (Error Analysis of GP). When the model dimension is large (m→∞) at time step t,
we have

∆2
AT −∆2

GP ≈ β(2− β)ED̂t
a
∥ga − ĝa∥2π − β2τ̄2∥ga − ĝn∥2π.

τ̄2 = Eπ[τ
2] ∈ [0, 1] where τ is the sin(·) value of the angle between ĝn and ga − ĝn, ∥ · ∥π is the

π-norm over the model parameter space.

Proof. ∆2
AT −∆2

GP

≈ ED̂t
a
∥ga − ĝa∥2π −

(
(1− β)2 + 2β−β2

m

)
ED̂a
∥ga − ĝa∥2π − β2τ̄2∥ga − ĝn∥2π

=
(
1− ((1− β)2 + 2β−β2

m )
)
ED̂t

a
∥ga − ĝa∥2π − β2τ̄2∥ga − ĝn∥2π

= (1 + 1
m )β(2− β)ED̂t

a
∥ga − ĝa∥2π − β2τ̄2∥ga − ĝn∥2π

When m→∞, we have a simplified version of the error difference as follows

∆2
AT −∆2

GP ≈ β(2− β)ED̂t
a
∥ga − ĝa∥2π − β2τ̄2∥ga − ĝn∥2π

Interpretation. When β = 0.5, we can usually show ∆2
AT > ∆2

GP , because β(2 − β) >
β2τ̄2(0.75 > 0.25) for the coefficients of two terms. We estimate the actual values of terms
ED̂at

∥ga − ĝa∥2π (variance), ∥ga − ĝn∥2π (bias), and τ̄ using the estimation methods in Enyi Jiang
[2024]. Table 6 displays the values of those terms as well as the error differences on ResNet18 exper-
iments at epoch 5, 10, 15, 20, 60. We plot the changing of these terms on the ResNet18 experiment in
Figure 5. The order of difference is always positive and usually smaller than 1e−08 and approaches
the order of 1e−12 in the end.

Table 6: Estimations the actual values of terms E
D̂at
∥ga − ĝa∥2π (variance), ∥ga − ĝn∥2π (bias), τ̄ ,

and ∆2
AT −∆2

GP (error differences) across different epochs.
Terms / epochs 5 10 15 20 60
ED̂at

∥ga − ĝa∥2π 4.6017e-08 2.0448e-09 6.9623e-10 6.4329e-10 2.3849e-11
∥ga − ĝn∥2π 0.0007 9.9098e-05 4.4932e-05 3.7930e-05 2.8391e-06
τ̄ 0.0071 0.0052 0.0036 0.0038 0.0030
∆2

AT −∆2
GP 2.5335e-08 8.5709e-10 3.7609e-10 3.4487e-10 1.1574e-11

B Additional Experiment Information

In this section, we provide more training details, additional experiment results on the universal
robustness of RAMP to common corruptions and unseen adversaries, runtime analysis of RAMP,
additional ablation studies on different logit pairing losses, and AT from random initialization results
on CIFAR-10 using WideResNet-28-10.

B.1 More Training Details

We set the batch size to 128 for the experiments on ResNet-18 and WideResNet-28-10 architectures.
We use an SGD optimizer with 0.9 momentum and 5e−4 weight decay. For other experiments on
ImageNet, we use a batch size of 64 to fit into the GPU memory for larger models. For all training
procedures, we select the last checkpoint for the comparison. When the pre-trained model was
originally trained with extra data beyond the CIFAR-10 dataset, similar to Croce and Hein [2022],
we use the extra 500k images introduced by Carmon et al. [2019] for fine-tuning, and each batch
contains the same amount of standard and extra images. An epoch is completed when the whole
standard training set has been used.
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Figure 5: Plot of values of terms ED̂at
∥ga− ĝa∥2π (variance), ∥ga− ĝn∥2π (bias), τ̄ , and ∆2
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(error differences).

B.2 Runtime Analysis of RAMP

We present runtime analysis results demonstrating the fact that RAMP is more expensive than E-AT
and less expensive than MAX in Table 7. These results, recorded in seconds per epoch, were obtained
using a single A100 40GB GPU. RAMP consistently supports that fact in all experiments.

Table 7: Analysis of time per epoch for RAMP and related baselines. RAMP is more expensive than
E-AT and less expensive than MAX.

Models \Methods E-AT [Croce and Hein, 2022] MAX RAMP
CIFAR-10 RN-18 scratch 78 219 157
CIFAR-10 WRN-28-10 scratch 334 1048 660
CIFAR-10 RN-50 188 510 388
CIFAR-10 WRN-34-20 1094 2986 2264
CIFAR-10 WRN-28-10 carmon 546 1420 1110
CIFAR-10 WRN-28-10 gowal 698 1895 1456
CIFAR-10 WRN-70-16 3486 10330 7258
ImageNet ResNet50 15656 41689 35038
ImageNet Transformer 38003 101646 81279

B.3 Additional Results on RAMP Generalizing to Common Corruptions and Unseen
Adversaries for Universal Robustness

In this section, we show RAMP can generalize better to other corruptions and unseen adversaries on
union accuracy for stronger universal robustness.

Implementations. For the l0 attack, we use Croce et al. [2022] with an epsilon of 9 pixels and 5k
query points. For common corruptions, we directly use the implementation of RobustBench [Croce
et al., 2020] for evaluation across 5 severity levels on all corruption types used in Hendrycks and
Dietterich [2019]. For other unseen adversaries, we follow the implementation of Laidlaw et al.
[2020], where we set eps = 12 for the fog attack, eps = 0.5 for the snow attack, eps = 60 for the
gabor attack, eps = 0.125 for the elastic attack, and eps = 0.125 for the jpeglinf attack with 100
iterations. For ResNet-18 experiments, we do not compare with Winninghand [Diffenderfer et al.,
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2021] since it uses a Wide-ResNet architecture. Also, we select the strongest baselines (E-AT and
MAX) from the Wide-ResNet experiment results to compare for ResNet-18 experiments on universal
robustness.

Results. For the ResNet-18 training from scratch experiment on CIFAR-10, in Table 8 and 9, we
also show RAMP generally outperforms by 0.5% on common corruptions and 7% on union accuracy
against unseen adversaries compared with E-AT.

Table 8: Accuracy against common corruptions using ResNet-18 on CIFAR-10 dataset.
Models common corruptions
E-AT 73.8
MAX 75.1
RAMP 74.3

Table 9: Individual, average, and union accuracy against unseen adversaries using ResNet-18 on
CIFAR-10 dataset.

Models l0 fog snow gabor elastic jpeglinf Avg Union
E-AT 58.5 41.8 30.8 45.9 55.0 59.1 48.5 18.8
MAX 70.8 40.0 34.4 45.1 54.8 56.8 50.3 20.6
RAMP 56.8 40.5 40.5 50.0 59.2 56.2 50.5 25.9

B.4 Additional Experiments with Different Epsilon Values

In this section, we provide additional results with different ϵ1, ϵ2, ϵ∞ values. We select ϵ∞ =
[ 2
255 ,

4
255 ,

12
255 ,

16
255 ], ϵ1 = [6, 9, 12, 15], and ϵ2 = [0.25, 0.75, 1.0, 1.5]. We provide additional RAMP

results compared with related baselines with training from scratch and performing robust fine-tuning
in Section B.4.1 and Section B.4.2, respectively. We observe that RAMP can surpass E-AT with
significant margins as well as a better accuracy-robustness tradeoff for both training from scratch and
robust fine-tuning with λ = 2.0 for training from scratch and λ = 0.5 for robust fine-tuning in most
cases.

B.4.1 Additional Results with Training from Scratch

Changing l∞ perturbations with ϵ∞ = [ 2
255 ,

4
255 ,

12
255 ,

16
255 ]. Table 10 and Table 11 show that

RAMP consistently outperforms E-AT [Croce and Hein, 2022] on union accuracy when training
from scratch.

Table 10: (ϵ∞ = 2
255 , ϵ1 = 12, ϵ2 = 0.5) and (ϵ∞ = 4

255 , ϵ1 = 12, ϵ2 = 0.5) with random
initializations.

Clean l∞ l2 l1 Union
E-AT 87.2 73.3 64.1 55.4 55.4
RAMP 86.3 73.3 64.9 59.1 59.1

Clean l∞ l2 l1 Union
E-AT 86.8 58.9 66.4 54.6 53.7
RAMP 86.1 60.0 67.4 58.5 57.4

Table 11: (ϵ∞ = 12
255 , ϵ1 = 12, ϵ2 = 0.5) and (ϵ∞ = 16

255 , ϵ1 = 12, ϵ2 = 0.5) with random
initializations.

Clean l∞ l2 l1 Union
E-AT 77.5 28.8 64.0 50.1 28.7
RAMP 73.7 34.6 59.1 38.9 33.3

Clean l∞ l2 l1 Union
E-AT 69.4 18.8 58.7 47.7 18.7
RAMP 65.0 25.7 49.8 32.6 25.0

Changing l1 perturbations with ϵ1 = [6, 9, 12, 15]. Table 12 and Table 13 show that RAMP
consistently outperforms E-AT [Croce and Hein, 2022] on union accuracy when training from scratch.

Changing l2 perturbations with ϵ2 = [0.25, 0.75, 1.0, 1.5]. Table 14 and Table 15 show that RAMP
consistently outperforms E-AT [Croce and Hein, 2022] on union accuracy when training from scratch.
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Table 12: (ϵ∞ = 8
255 , ϵ1 = 6, ϵ2 = 0.5) and (ϵ∞ = 8

255 , ϵ1 = 9, ϵ2 = 0.5) with random initializa-
tions.

Clean l∞ l2 l1 Union
E-AT 85.5 43.1 67.9 63.9 42.8
RAMP 83.8 48.1 63.0 51.2 46.0

Clean l∞ l2 l1 Union
E-AT 84.6 41.8 67.7 57.6 41.4
RAMP 82.6 47.5 65.7 50.8 45.9

Table 13: (ϵ∞ = 8
255 , ϵ1 = 15, ϵ2 = 0.5) and (ϵ∞ = 8

255 , ϵ1 = 18, ϵ2 = 0.5) with random
initializations.

Clean l∞ l2 l1 Union
E-AT 81.9 40.2 66.9 48.7 39.2
RAMP 80.9 45.0 66.4 46.7 43.3

Clean l∞ l2 l1 Union
E-AT 81.0 39.8 65.8 44.3 38.0
RAMP 79.9 43.5 65.7 45.0 41.9

Table 14: (ϵ∞ = 8
255 , ϵ1 = 12, ϵ2 = 0.25) and (ϵ∞ = 8

255 , ϵ1 = 12, ϵ2 = 0.75) with random
initializations.

Clean l∞ l2 l1 Union
E-AT 82.8 41.3 75.6 52.9 40.5
RAMP 81.8 46.0 74.7 48.8 44.5

Clean l∞ l2 l1 Union
E-AT 83.0 41.2 57.6 53.0 40.5
RAMP 81.9 46.1 56.9 48.7 44.5

Table 15: (ϵ∞ = 8
255 , ϵ1 = 12, ϵ2 = 1.0) and (ϵ∞ = 8

255 , ϵ1 = 12, ϵ2 = 1.5) with random
initializations.

Clean l∞ l2 l1 Union
E-AT 83.4 41.0 47.3 52.8 40.3
RAMP
(λ=5) 81.5 46.0 46.5 48.1 44.1

Clean l∞ l2 l1 Union
E-AT 83.5 41.0 25.5 52.9 25.5
RAMP 74.4 43.4 37.2 51.1 37.1

B.4.2 Additional Results with Robust Fine-tuning

Changing l∞ perturbations with ϵ∞ = [ 2
255 ,

4
255 ,

12
255 ,

16
255 ]. Table 16 and Table 17 show that

RAMP consistently outperforms E-AT [Croce and Hein, 2022] on union accuracy when performing
robust fine-tuning.

Table 16: (ϵ∞ = 2
255 , ϵ1 = 12, ϵ2 = 0.5) and (ϵ∞ = 4

255 , ϵ1 = 12, ϵ2 = 0.5) with robust
fine-tuning.

Clean l∞ l2 l1 Union
E-AT 86.5 74.8 66.7 57.9 57.9
RAMP 85.8 74.0 66.2 60.1 60.1

Clean l∞ l2 l1 Union
E-AT 85.9 61.4 67.9 57.6 56.8
RAMP 85.7 60.9 67.6 59.3 58.1

Table 17: (ϵ∞ = 12
255 , ϵ1 = 12, ϵ2 = 0.5) and (ϵ∞ = 16

255 , ϵ1 = 12, ϵ2 = 0.5) with robust
fine-tuning.

Clean l∞ l2 l1 Union
E-AT 75.5 30.8 62.4 44.6 30.0
RAMP 74.0 33.6 59.7 38.5 31.9

Clean l∞ l2 l1 Union
E-AT 68.7 20.7 56.1 42.1 20.5
RAMP 65.6 25.0 51.5 31.2 23.8

Changing l1 perturbations with ϵ1 = [6, 9, 12, 15]. Table 12 and Table 13 show that RAMP
consistently outperforms E-AT [Croce and Hein, 2022] on union accuracy when performing robust
fine-tuning.

Changing l2 perturbations with ϵ2 = [0.25, 0.75, 1.0, 1.5]. Table 14 and Table 15 show that RAMP
consistently outperforms E-AT [Croce and Hein, 2022] on union accuracy when performing robust
fine-tuning.
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Table 18: (ϵ∞ = 8
255 , ϵ1 = 6, ϵ2 = 0.5) and (ϵ∞ = 8

255 , ϵ1 = 9, ϵ2 = 0.5) with robust fine-tuning.

Clean l∞ l2 l1 Union
E-AT 84.2 45.8 66.8 59.0 45.0
RAMP
(λ=1.5) 83.0 48.7 63.5 51.7 46.4

Clean l∞ l2 l1 Union
E-AT 83.1 44.9 67.2 52.6 43.2
RAMP 82.5 47.1 66.0 49.9 44.8

Table 19: (ϵ∞ = 8
255 , ϵ1 = 15, ϵ2 = 0.5) and (ϵ∞ = 8

255 , ϵ1 = 18, ϵ2 = 0.5) with robust fine-
tuning.

Clean l∞ l2 l1 Union
E-AT 81.3 43.5 66.6 42.8 39.0
RAMP 80.4 44.2 66.1 44.4 41.2

Clean l∞ l2 l1 Union
E-AT 81.3 38.9 66.6 45.0 37.5
RAMP 80.7 40.6 66.3 43.5 38.8

Table 20: (ϵ∞ = 8
255 , ϵ1 = 12, ϵ2 = 0.25) and (ϵ∞ = 8

255 , ϵ1 = 12, ϵ2 = 0.75) with robust
fine-tuning.

Clean l∞ l2 l1 Union
E-AT 82.3 44.2 75.3 47.2 41.4
RAMP 81.5 45.6 74.4 47.1 43.1

Clean l∞ l2 l1 Union
E-AT 83.0 43.5 58.1 46.5 40.4
RAMP 81.4 45.6 57.4 47.2 42.9

Table 21: (ϵ∞ = 8
255 , ϵ1 = 12, ϵ2 = 1.0) and (ϵ∞ = 8

255 , ϵ1 = 12, ϵ2 = 1.5) with robust fine-
tuning.

Clean l∞ l2 l1 Union
E-AT 82.3 41.0 49.0 51.6 40.2
RAMP 81.4 45.6 47.8 47.1 42.9

Clean l∞ l2 l1 Union
E-AT 80.2 42.8 31.5 52.4 31.5
RAMP 74.9 43.7 37.0 50.2 36.9

B.5 Different Logit Pairing Methods

In this section, we test RAMP with robust fine-tuning using two more different logit pairing losses:
(1) Mean Squared Error Loss (Lmse) (Eq. 17), (2) Cosine-Similarity Loss (Lcos) (Eq. 18). We replace
the KL loss we used in the paper using the following losses. We use the same lambda value λ = 1.5
for both cases.

Lmse =
1

nc
·

nc∑
i=0

1

2
(pq[γ[i]]− pr[γ[i]])

2 (17)

Lcos =
1

nc
·

nc∑
i=0

(1− cos(pq[γ[i]], pr[γ[i]])) (18)

Table 22 displays RAMP robust fine-tuning results of different logit pairing losses using PreAct-
ResNet-18 on CIFAR-10 with λ = 1.5. We see those losses generally improve union accuracy
compared with baselines in Table 24. Lcos has a better clean accuracy yet slightly worsened union
accuracy. Lmse has the best union accuracy and the worst clean accuracy. LKL is in the middle of
the two others. However, we acknowledge the possibility that each logit pairing loss may have its
own best-tuned λ value.

Table 22: RAMP fine-tuning results of different logit pairing losses using PreAct-ResNet-18 on
CIFAR-10.

Losses Clean l∞ l2 l1 Union
KL 80.9 45.5 66.2 47.3 43.1
MSE 80.4 45.6 65.8 47.6 43.5
Cosine 81.6 45.4 66.7 47.0 42.9
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B.6 AT from Scratch Using WideResNet-28-10

Implementations. We use a cyclic learning rate with a maximum rate of 0.1 for 30 epochs and
adopt the outer minimization trades loss from Zhang et al. [2019] with the default hyperparameters,
same as Croce and Hein [2022]; also, we set λ = 2.0 and β = 0.5 for training RAMP. Additionally,
we use the WideResNet-28-10 architecture same as Zagoruyko and Komodakis [2016] for our
reimplementations on CIFAR-10.

Results. Since the implementation of experiments on WideResNet-28-10 in Croce and Hein [2022]
paper is not public at present, we report our implementation results on E-AT, where our results show
that RAMP outperforms E-AT in union accuracy with a significant margin, as shown in Table 23.
Also, we experiment with using the trade loss (RAMP w trades) for the outer minimization, we
observe that RAMP w trades achieves a better union accuracy at the loss of some clean accuracy.

Table 23: WideResNet-28-10 trained from random initialization on CIFAR-10. RAMP outper-
forms E-AT on union accuracy with our implementation.

Methods Clean l∞ l2 l1 Union
E-AT w trades (reported in Croce and Hein [2022]) 79.9 46.6 66.2 56.0 46.4
E-AT w trades (ours) 79.2 44.2 64.9 54.9 44.0
RAMP w/o trades (ours) 81.1 46.6 65.9 48.1 44.6
RAMP w trades (ours) 79.9 47.1 65.1 49.0 45.8

B.7 Robust Fine-tuning Using PreAct-ResNet-18

Implementations. For robust fine-tuning with ResNet-18, we perform 3 epochs on CIFAR-10. We
set the learning rate as 0.05 for PreAct-ResNet-18 and 0.01 for other models. We set λ = 0.5 in this
case. Also, we reduce the learning rate by a factor of 10 after completing each epoch.

Result. Table 24 shows the robust fine-tuning results using PreAct ResNet-18 model on the CIFAR-10
dataset with different methods. The results for all baselines are directly from the E-AT paper [Croce
and Hein, 2022] where the authors reimplemented other baselines (e.g., MSD, MAX) to achieve
better union accuracy than presented in the original works. RAMP surpasses all other methods on
union accuracy.

Table 24: RN-18 l∞-AT model fine-tuned for 3 epochs (repeated for 5 seeds). RAMP has the
highest union accuracy. Baseline results are from Croce and Hein [2022].

Methods Clean l∞ l2 l1 Union
RN-18- l∞-AT 83.7 48.1 59.8 7.7 38.5
+ SAT 83.5± 0.2 43.5± 0.2 68.0± 0.4 47.4± 0.5 41.0± 0.3
+ AVG 84.2± 0.4 43.3± 0.4 68.4± 0.6 46.9± 0.6 40.6± 0.4
+ MAX 82.2± 0.3 45.2± 0.4 67.0± 0.7 46.1± 0.4 42.2± 0.6
+ MSD 82.2± 0.4 44.9± 0.3 67.1± 0.6 47.2± 0.6 42.6± 0.2
+ E-AT 82.7± 0.4 44.3± 0.6 68.1± 0.5 48.7± 0.5 42.2± 0.8
+ RAMP (λ=1.5) 81.1± 0.2 45.4± 0.3 66.1± 0.2 47.2± 0.1 43.1± 0.2
+ RAMP (λ = 0.5) 81.5± 0.1 45.5± 0.2 66.4± 0.2 47.0± 0.1 42.9± 0.2

B.8 Robust Fine-tuning with More Epochs

In Table 25, we apply robust fine-tuning on the PreAct ResNet-18 model for the CIFAR-10 dataset
with 5, 7, 10, 15 epochs, and compare it with E-AT. RAMP consistently outperforms the baseline on
union accuracy, with a larger improvement when we increase the number of epochs.

C Additional Visualization Results

In this section, we provide additional t-SNE visualizations of the multiple-norm tradeoff and robust
fine-tuning procedures using different methods.

24



Table 25: Fine-tuning with more epochs: RAMP consistently outperforms E-AT on union accuracy.
E-AT results are from Croce and Hein [2022].

5 epochs 7 epochs 10 epochs 15 epochs
Clean Union Clean Union Clean Union Clean Union

E-AT 83.0 43.1 83.1 42.6 84.0 42.8 84.6 43.2
RAMP 81.7 43.6 82.1 43.8 82.5 44.6 83.0 44.9

C.1 Pre-trained l1, l2, l∞ AT models

Figure 6 shows the robust accuracy of l1, l2, l∞ AT models against their respect l1, l2, l∞ perturba-
tions, on CIFAR-10 using PreAct-ResNet-18 architecture. Similar to Figure ??, l∞-AT model has a
low l1 robustness and vice versa. In this common choice of epsilons, we further confirm that l∞ − l1
is the key trade-off pair.

C.2 Robust Fine-tuning for all Epochs

We provide the complete visualizations of robust fine-tuning for 3 epochs on CIFAR-10 using l1
examples, E-AT, and RAMP. Rows in l1 fine-tuning (Figure 7), E-AT fine-tuning (Figure 8), and
RAMP fine-tuning (Figure 9) show the robust accuracy against l∞, l1, l2 attacks individually, of
epoch 0, 1, 2, 3, respectively. We observe that throughout the procedure, RAMP manages to maintain
more l∞ robustness during the fine-tuning with more points colored in cyan, in comparison with two
other methods. This visualization confirms that after we identify a lp − lr(p ̸= r) key tradeoff pair,
RAMP successfully preserves more lp robustness when training with some lr examples via enforcing
union predictions with the logit pairing loss.

Figure 6: l1, l2, l∞ pre-trained RN18 l∞-AT models with correct/incorrect predictions against
l1, l2, l∞ attacks. Correct predictions are colored with cyan and incorrect with magenta. Each row
represents l∞, l1, l2 AT models, respectively. Each column shows the accuracy concerning a certain
lp attack.
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Figure 7: Finetune RN18 l∞-AT model on l1 examples for 3 epochs. Each row represents the
prediction results of epoch 0, 1, 2, 3 respectively.

Figure 8: Finetune RN18 l∞-AT model with E-AT for 3 epochs. Each row represents the prediction
results of epoch 0, 1, 2, 3 respectively.
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Figure 9: Finetune RN18 l∞-AT model with RAMP for 3 epochs. Each row represents the
prediction results of epoch 0, 1, 2, 3 respectively.
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