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Abstract

Entity-centric question answering (ECQA) is the problem of selecting which en-
tities from a large, predefined set are most relevant to given observations. This
task highlights a critical challenge for robust machine learning: reliably extracting
factual knowledge from LLMs when they are treated as imperfect, black-box infor-
mation sources, especially with long, heterogeneous inputs. For example, given
genes active in a disease, scientists want to identify which biological processes are
involved, a task demanding high reliability. Current approaches attempt to achieve
robustness through consensus ranking or iterative validation, but these methods
incur "token explosion," where costs scale poorly, making them impractical.

We introduce ARISE (Adaptive Residual Information Sampling Engine), a frame-
work that reframes ECQA as a problem of sequential decision-making under
structured, imperfect feedback. Our key insight is that each query provides a
form of biased data: noisy side-observations about related entities. We leverage
this insight with DUETS Bandit (DUal Experts for Turbid side-Observations with
Stochastic feedback graph), a novel online learning algorithm designed for this
setting. DUETS employs dual expert advisors to navigate this uncertainty: a
GraphExpert that models prior knowledge as a stochastic feedback graph to handle
data biases, and a NoiseExpert that strategically queries the LLM to maximize
observation quality, while Confirmation Atoms validate outputs to update internal
beliefs in this interactive environment. This architecture enables statistically rigor-
ous hypothesis testing with formal p-values, creating a robust and reliable system
that dramatically reduces query complexity. Preliminary results on synthetic data
are promising, and we are currently evaluating ARISE on the challenge of pathway
enrichment analysis using 180+ annotated gene expression datasets, a domain
where robustness to distribution shift (novel experimental data) is paramount.

1 Introduction

Large Language Model (LLM)-based question answering has emerged as a highly active research
area. Within this field, we investigate a constrained yet critical paradigm: prompt-only entity-centric
question answering (ECQA). Here, the prompt is a self-contained knowledge base, and the LLM
must classify which predefined target entities are relevant to the provided observables. This paradigm,
however, directly confronts the challenge of learning with imperfect data, as the LLM itself acts as
a noisy and often unreliable information oracle. Its outputs are subject to well-documented failure
modes like hallucination and factual inconsistency [Huang et al.|[2024],[Wang et al.|[2024]], which
compromise the reliability of any downstream task.

These challenges are amplified in scientific discovery, where queries often involve complex inputs and
demand high-confidence answers. A scientist might query an LLM based on novel laboratory results,
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which introduces a significant distribution shift, as the query is conditioned on out-of-distribution
scientific data not present in the LLM’s training set. A quintessential example is Pathway Enrichment
Analysis (PEA), a specific instance of ECQA where target entities are biological pathways and
observables are gene lists from experiments. Scientists seek to answer: "What is the underlying
functional meaning of these genes?" This question is central to bioinformatics, and its difficulty
highlights the need for robust methods that can handle novel, noisy, and complex biological data.

Existing methods attempt to bolster LLM safety and alignment with facts through several strategies:
1) consensus aggregation from partial queries [Singhal, 2025, |Wang et al., 2023a]; 2) confidence
scoring to manage uncertainty |Hiillermeier and Waegeman| [2021]],Zong and Huang|[2025]]; and 3)
agentic, web-enabled architectures to handle out-of-distribution queries|Gao et al.|[2024], Xi et al.
[2023]]. Despite these advances, a harsh trade-off between robustness and computational cost remains.
Achieving high reliability often requires iterative feedback loops that are computationally infeasible
for large-scale problems |Chen et al.|[2024].

We directly address this cost-robustness trade-off by designing a system that makes principled
decisions under uncertainty. Our approach is built on three key insights for handling imperfect
information from LLMs: First, each query provides biased and partial information about all entities,
not just the one targeted. Second, prior knowledge about entity co-occurrence can be used to model
and mitigate this bias. Third, residual information from the validation process itself can be used to
refine future decisions.

To this end, we introduce ARISE (Adaptive Residual Information Sampling Engine), a framework
that provides a statistically-grounded orchestration for iterative retrieval. ARISE is built from two
symbiotic parts: a smart sampling policy that learns to manage biased data from both prior knowledge
and online LLM feedback, and a statistical engine that enables online validation by formulating an
appropriate null distribution.

At the heart of ARISE is DUETS Bandit ("DUal Experts for Turbid side-Observations with Stochastic
feedback graph"), a novel multi-armed bandit algorithm. DUETS models the problem as an "expert"
setting where each action (query) reveals a corrupted signal about all outcomes. It features a
GraphExpert that leverages prior knowledge as a stochastic feedback graph to counteract biased
sampling Mannor and Shamir| [2011]],/Alon et al.[[2017]], and a NoiseExpert that strategically selects
queries to maximize the quality of the LLM’s noisy feedback. By adaptively mixing their advice,
DUETS achieves a highly efficient and robust sampling scheme.

The rest of the paper is structured as follows: Section [2| positions our work relative to ECQA and
online learning for robustness. Section 3] details the ARISE framework. Finally, Section ] presents
our evaluation and discusses ongoing work.

2 Related Works and Positioning

Zero-Shot Entity-Centric Question Answering (which we refer here simply as ECQA) is characterized
by several key exclusions. It operates without Retrieval-Augmented Generation (RAG) [Lewis et al.}
2020], fine-tuning, or access to the model’s output probabilities. Consequently, the model’s weights
are frozen, its reasoning is confined to its in-context learning abilities (including MCP |Hou et al.
[2025]]), and it is treated as a black box.

A defining feature of our ECQA setup is the complexity of the input, which directly confronts a
primary architectural limitation of modern LLMs: the effective utilization of long, information-dense,
and multimodal context windows. While new models feature massive context windows, research
demonstrates a significant gap between this theoretical capacity and practical reasoning ability, effects
like "lost in the middle" [Liu et al.,2023]], hallucinations [Huang et al., 2024] , or "long-tail knowledge
collapse" [Kandpal et al.|[2023]] , are well-documented and results in sharp performance decay. This
performance decay is not merely theoretical, for a task like PEA, a long list of input genes can cause
a diagnostically critical gene to be effectively ignored if it falls into this neglected middle section [Liu
et al., [2023] |Shi et al., [2024} [Yuan et al., 2024]]. The model’s subsequent reasoning is thus based on a
flawed and incomplete representation of the input, leading to an incorrect classification. This failure
stems not from a lack of knowledge but from an architectural artifact of processing long sequences
[Shi et al.| [2024].

To overcome these constraints, prompt engineering has become a leading strategy [Liu et al., 2023].
Effective prompts often mimic domain-specific reasoning patterns, analogous to Chain-of-Thought



91
92
93
94
95

96
97
98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135

137
138

139

140
141
142
143
144
145

[Wei et al.| 2022]]. A prime example in bioinformatics is the TALISMAN method, which explicitly
instructs the model to perform a "term enrichment test" on a list of genes, forcing it to synthesize a
high-level biological concept [[Yuan et al.| 2024]. Similarly, in medical diagnosis, a two-step prompt
that first organizes clinical data before deriving a diagnosis [Singhal et al.| 2023|]. Here we address
those methods as "confirmation processes", and incorporate them into our framework.

Another line of work develops a more robust architectural pattern of partition-query-aggregate |Liu
et al.|[2025]]. These approaches decompose the long, heterogeneous list of observations into smaller
partitions, query the LLM on each one, and then synthesize the final result based on the framework
of Consensus Ranking from Partial Observations Kemeny and Snell|[1962]. While very effective,
these architectures come with an extremely high computational cost|Wang et al.| [2023b], Simeoni
et al.| [2024]], requiring numerous LLM calls. Hence, current research is focused on optimizing parts
of the architecture, from context-aware approaches for observation partitioning such as semantic
partitioning using feature clustering Saito et al.|[2025] , or agentic partitioning Wu et al.| [2025]], to
faster weighted Consensus Ranking algorithms Wang et al.|[2025]].

Pathway Enrichment Analysis (PEA) is a widely studied field Nguyen et al.|[2019]], Reimand et al.
[2019], Mathur et al.| [2018]] with extensive validation efforts |Geistlinger et al.| [2021]], Buzzao
et al.[[2024] , yet it faces several well-documented limitations [Lazareva et al.[[2021], [Khatri et al.
[2012], Mubeen et al.| [2022] . These limitations often arise from the difficulty of establishing
a singular, comprehensive knowledge base, as the required biological knowledge is constantly
updating, profoundly heterogeneous, and context-dependent [Kotrys et al.| [2024], Mubeen et al.
[2022]). Those challenges have led to massive collaborative efforts by dedicated human task forces to
manually curate biological information from the literature, epitomized by resources like the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database [Kanehisa and Goto| [2000], Kanehisa et al.
[2023]]. Those efforts highlights the immense promise of leveraging LLM:s for this task, given
their potential for deep biological understanding and their capacity to integrate real-time
knowledge. Unfortunately, attempting to apply LLMs directly to this problem often falls short|Hu
et al.|[2025a} [2023], as the specific difficulties of LLM-based PEA are a clear manifestation of the
general ECQA challenges previously discussed.

2.1 Online Learning with Side-Information

Our framework is a novel application within the broader field of sequential decision-making, which
evolved from the seminal frameworks of prediction with expert advice |(Cesa-Bianchi and Lugosi
[2006]], where the learner observes the loss of all possible actions at each step (also known as the
"full-information" or "expert" setting), and the classic Multi-Armed Bandit (MAB) problem Robbins
and Monro| [1951]], where the learner only observes the loss of the single action they chose (also
known as the "bandit" setting).

Here, we focus on a middle ground where side-information for every chosen action exists, meaning
choosing one action reveals partial information about others. Specifically, our work incorporates and
synthesizes two distinct fields: 1) The graph-structured feedback model, introduced by Mannor
and Shamir| [2011]] and extensively developed by |Alon et al. [2017]]. This framework formalizes
side-information using a feedback graph where an edge from action i to j means playing i reveals the
loss of j. Key distinctions in this literature include the informed setting, where the learner knows
the feedback graph before choosing an action, versus the uninformed setting. Further nuances
involve whether the graph is symmetric (reciprocal feedback) or directed, and whether it is fixed or
time-varying Alon et al.|[2017]]. The work of |L1 et al.| [2019]] extends this framework to stochastic
graphs where each edge is associated with a probability of being realized. 2) Learning with noisy
side observations [Kocak et al.| [2016]]. This framework models a different form of side partial
information. Instead of the feedback’s existence being sparse, it is assumed to be fully present but
corrupted by noise.

3 Methodological Rationale and Core Components

At the heart of ARISE is a conceptualization of the entity identification problem as a Multi-Armed
Bandit (MAB) task. Each candidate entity is formally treated as an arm of the bandit, and the action
of pulling an arm constitutes a complete, multi-stage investigative cycle. This cycle begins with
query formulation and execution, where a query is constructed by sampling a representative subset
of observables from the entity-observable joint distribution, according to the framework’s current
beliefs, and is then executed against the LLM. The LLM’s response is then subjected to a multi-stage
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Figure 1: Overview of the ARISE framework with its dual-expert online learning algorithm DUETS.
Observations O (e.g., gene expression features, colored by their weights in the observations’ vector)
are mapped to candidate entities F;. The GraphExpert leverages co-occurrence priors via a feedback
graph, while the NoiseExpert evaluates the quality of observations across all entities. Outputs from
the LLM queries (F, E5) are validated through a modular system of Confirmation Atoms (A.),
which assess different sources of uncertainty. Their residual information updates both the statistical
significance engine (p-values with confidence intervals) and the experts’ internal states, enabling an
adaptive and efficient entity-centric question answering pipeline.

validation protocol via a modular suite of Confirmation Atoms, which assess the output’s stability,
coherence, and factual grounding to return a quantitative confidence score. This validation process
also yields residual information that is immediately leveraged to perform online updates to the
framework’s internal belief structures. Subsequently, the confidence-weighted outcome is assimilated
by a Statistical Significance Engine that aggregates evidence across multiple trials against an explicit
null hypothesis, culminating in a p-value and a confidence interval to quantify the significance of
each entity’s observation. Finally, if an entity is considered “statistically enriched” (either positively
or negatively), it is masked from subsequent rounds. The intelligent orchestration of this cycle is
managed by the DUETS (DUal Experts for Turbid side-Observations with Stochastic feedback graph)
bandit algorithm. Figure [T presents a conceptual overview of the framework.

3.1 Generative Model and Statistical Components

As described before, we assume some reference corpus exists of the relation between entities and
observables, and Supplementary Section [D]discusses the case where this data is absent.

Mapping Observables to Entities We model the generation of a set of observables g, as a draw
from a mixture model, where each component corresponds to an entity F;. Each entity F; is
characterized by a categorical distribution over the universe of Ny,cx observables, O. The parameters
of this distribution, a probability vector 0: € ANux—1 are assumed to be drawn from a conjugate
Dirichlet prior, governed by a concentration parameter vector a;, and this constitutes a Dirichlet-
Multinomial (D-M) model.

The posterior Dirichlet parameters, &', are learned from a reference corpus built from a set of datasets,
each corresponding to a ranked list of all observables and a set of observed entities. The ranking is
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based on the assumption that observables with a higher rank are more strongly associated with at least
one of the entities. These ranked lists are partitioned into m quintiles, with each quintile assigned a
distinct, monotonically decreasing weight. The weights for each entity are then aggregated across the

corpus to form an empirical count vector, C;.

Modeling and Updating Entity Relationships For leveraging the relationships between entities,
which form the basis of the stochastic structured feedback graph described in[3.2] we need to ensure
the modeled relationships are relevant for propagating the residual loss and enabling updates from
the auxiliary information provided by the confirmation atoms. The stochastic feedback graph is the
graph in which entities are the nodes, and the edges are the conditional probability of observing
entity F; given the presence of entity E;, denoted P(E;|E;). While this probability can be estimated
directly from co-occurrence frequencies via the MLE, such an approach is often brittle, especially
with small sparse data. We instead employ a Bayesian methodology that provides regularization,
robustly handles unseen events, and allows for efficient, sequential updates.

We model the conditional probability P(E;|E;) as a latent parameter ¢;); € [0, 1]. For a given entity
E;, the presence or absence of any other entity F; in the same dataset is treated as a Bernoulli
trial. To facilitate Bayesian inference, we place a conjugate Beta prior on this parameter: 0;; ~
Beta(a;, 35);). A weakly informative prior (e.g., ajj; = 1, 3;;; = 1) is chosen to regularize the
estimate while allowing the data to drive the posterior.
Given corpus-wide counts of entity occurrences (/V;) and co-occurrences (IV; ;), the posterior dis-
tribution for the parameter is also a Beta distribution, ¢, ;|data ~ Beta(a;‘ P ﬁ;‘ ;)» with updated
parameters: a;‘i = aj|; + N;j, and ﬁ;‘i = Bjji + (Nis — Nj ;). Then, the point estimate for the
conditional probability is the mean of this posterior :

/
GGl i+ Nig

oy + By agji+ By + N

P(E;|E;) =

This Bayesian approach offers significant advantages over the MLE (P(E;|E;) = N; ;/N;). The
prior acts as a smoothing mechanism, preventing the model from assigning probabilities of exactly O or
1 based on limited observations (the "zero-frequency problem"), which ensures more robust estimates
in sparse data regimes. Furthermore, the model is inherently updatable. New data, summarized by
counts N/ and NL’ ;» can be incorporated by treating the current posterior parameters (a;.‘i7 5}\1') as
the new prior and applying the same update rules, avoiding the need to reprocess the entire corpus.

The Statistical Significance Engine For a grounded result, we need a mechanism to aggregate
iterative queries until a true signal emerges. We achieves this by formal statistical confidence,
providing p-value for each entity. For that, we explicitly build the null hypothesis (H;), which
defined as the probability of observing an entity given the prior beliefs only, position our framework as
an "enrichment over current belief" enrichment problem. As described before, Supplementary Section
discuses the case where no prior belief is given and the enrichment is defined over background
noise.

A central challenge is that our framework is built on sequential querying over sampled sub-sets,
which are intentionally biased through the prior beliefs of the played action, meaning the probability
of observing an entity changes with every trial. The correct underlying model is therefore a Poisson
Binomial distribution, where the prior beliefs probabilities are:

P(gq‘Ei) Uy
(94| Ei) - mi + P(gq|—E:) - (1 — ;)

P(E; =1]gy) = 7

Where g, is the current queried set of observables, m; = P(E; = 1) is the prior probability for each
entity being observed, and P(g,|—E;) is the observables probability for the "background". In our
current "working example" where a reference corpus exists, we can easily infer 7; and P(g,|-E;)
from the data. Supplementary Section [D|discuses the case where those not exists.

For a given entity F;, let X be the random variable for its total count across T trials, and let k be
the observed count. Under the null hypothesis, X follows a Poisson Binomial distribution defined
by the set of success probabilities {p;(gq(1)); - - -, Pi(gq(r))}- Since we are testing for enrichment,
we perform a one-tailed test. The p-value is the probability of observing a count of k or greater
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by chance :p-value = P(X > k) = Z]T:k P(X = j). Directly computing the probability mass
function P(X = j) is computationally infeasible as it requires summing over an exponential number
of combinations, but efficient methods exists Biscarri et al.|[2018]].

Our framework requires the incorporation of two origins of uncertainty for a robust confidence
assessment. The first is the sampling variance, for ensuring robustness across any number of trials.
The second is the observation variance, returned from the confirmation atoms, which reflects the
certainty associated with each individual query results. For this, we construct a confidence interval
for the empirical success probability. Given confidence interval for the p-value estimator itself
is also not analytically feasible, we leverage the duality between hypothesis tests and confidence
intervals: Rather than framing the confidence on the p-value, we construct a CI for the empirical
success probability parameter p, with this CI incorporating both the origins of uncertainty. Given it is
critical to be robust for any number of trials, we build upon the Clopper-Pearson(C-P) method for the
sampling variance CI, and MCMC with adaptive stopping for incorporating the observation variance
into this CI.

Specifically, we treat the confidence from each observation as its probability of being a true positive,
P(True observation|E; = 1), and in each iteration, we sample an "effective k" from the resulting
distribution. A C-P interval is calculated for this simulated count, generating a distribution of plausible
lower and upper bounds. To construct a single CI which accounts for both sources of uncertainty
simultaneously, we use the simulation to derive a confidence interval on the bounds themselves; the
final lower bound is taken from the lower tail of the distribution of simulated lower bounds, and the
final upper bound from the upper tail of the distribution of simulated upper bounds. An entity is
considered "enriched" only if its p-value is below a significance threshold and its prior probability,
w;, falls outside this composite confidence interval.

3.2 The Arm Selection Policy

The motivation for our arm selection policy is to intelligently reconcile two distinct beliefs about
the data, informed by prior literature and our Confirmation Atoms (CA). The first belief is the
co-occurrence probability between entities, which we model as a probabilistic feedback graph to
guide exploration. The second is the mapping between observables and entities, which dictates the
relevance of information we expect to receive from each query. Our ‘DUETS Bandit‘(or simply
"DUETS’) algorithm is designed to synthesize these two beliefs while accounting for the framework’s
inherently biased query mechanism; by using observables sampled for one entity to query the LLM
about all entities, we receive a turbid signal for each entity.

To achieve this, the core of the ‘DUETS* algorithm is its unique dual-perspective architecture. It
maintains two parallel expert advisors, each operating under a different worldview, and learns to
synthesize their advice. The ‘GraphExpert‘ is designed to enforce the co-occurrence prior. It
operates as if it were in the informed, partial-information setting of |Alon et al.| [2017]], and more
specifically under the stochastic setup of|Li et al.|[2019], treating the realized co-occurrence graph
G} as a feedback mechanism. By focusing its exploration strategy on structurally important nodes
(e.g., a dominating set), it ensures that the sampling policy take into account the known relationships
between entities.

The ‘NoiseExpert‘ acknowledges the noisy full-information reality of the problem, resamples the
noisy side-observation model of [Kocak et al.|[2016]]. Its goal is to strategically select the query
(action) that is expected to yield the highest quality information across all entities. It does this by
performing a proactive lookahead calculation, using a learned model of observation quality to identify
the most informative query to make in each round. This lookahead function is intuitively defined as:

Pg(i,7) = Eonp(.|E) [P (E;]0)] )

Which is the expected posterior probability of entity j, where the expectation is taken over all
the input observables that a query for entity i is likely to produce. Direct computation of this
expectation is analytically intractable, we therefore propose an approximation. Given that Equation|[I]
represents the confusability between entities F; and E;, an intuitive and computationally efficient
solution is to define a score based on the information-theoretic similarity of the entities’ learned
distributions. Specifically, the Kullback-Leibler (KL) divergence between their posterior Dirichlet
distributions, Dy r,(Dir(d;)|[Dir(@;)), measures the inefficiency of using the distribution of F;
to describe observables generated from F;. Supplementary Section |B| discuses the theoretical
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justifications beyond the score. We leverage this by defining a similarity score via an exponential
kernel, which serves as a principled proxy for the desired expectation:

Pg(i,5) == exp (=D (Dir(&})||Dir(&}))) )

This score provides a fast and robust measure of entity similarity, directly grounded in the information
content of their learned models, which we use in place of the intractable expectation.

‘DUETS" then uses a high-level ‘Meta-Expert‘ that adaptively learns how to best mix the rec-
ommendations from these two distinct advisors. By tracking the historical performance of the
‘GraphExpert‘’s structural advice and the ‘NoiseExpert‘’s quality-driven advice, the ‘Meta-Expert*
dynamically adjusts their relative influence on the final action selection. This dual-perspective ap-
proach allows our framework to achieve a near-optimal sampling strategy that minimizes queries
while maximizing confidence.

The environment is modeled with a stochastic setting where the loss for each entity j at time step ¢
is constructed from a transformed Bernoulli process. After each action Iy, the environment reveals
a binary outcome, 1, ; € {0,1}, where 7, ; = 1 signifies that entity j was returned by the LLM.
Crucially, the environment also provides two measures of uncertainty that modulate this binary
outcome: 1) A confidence score, A.(It, ), which reflects the reliability of a positive outcome

(r+,; = 1), And 2) A query relevance score, pEf‘Zise), derived from the sampled observables for the

query I; and can be seen as a realization of py(I;, j) . These components, along with a constant
hyperparameter C'yq .k, Which is the hyperparameter reflects the LLM confidence in the absent entities,
are combined to form the confirmation-weighted loss that ‘DUETS" tracks:

Ure gy ATt §), ™3 Coaer) = reg - Acllen ) + (1=7e3) - pI0™ - Crace 3

Intuitively, when an entity is present (r; ; = 1), the loss is determined solely by the confirmation
atoms’ confidence for positive predictions, penalizing unreliable positives. When the entity is absent,
this loss is attenuated by the observation relevance p4(Iy, j), ensuring that only relevant queries
contribute strongly to the framework’s statistical engine.

The complete algorithmic details of DUETS are provided in the Supplementary Material Section
Subsection provides implementation-ready pseudocode with mathematical operations.

3.3 Confirmation Atoms: A Dynamic Feedback System

As discussed before, most state-of-the-art methods for ECQA employs additional LLM queries to
validate results and assign confidence scores. We abstract these validation routines into a modular
structure of "confirmation atoms(CA)." As described previously, a central innovation of our framework
is the dual purpose these atoms serve. Their primary function is to probe the LLM’s output and
generate a confidence score for the returned results. This score is the critical signal used by our
Statistical Engine to calculate the MAB’s intrinsic loss. Their second, novel function, is to provide
the residual information necessary for the online updating of our framework’s internal beliefs about
the system. To make this process principled, each atom is designed to probe a distinct source of
uncertainty, which we explicitly separate into epistemic (model-based) and aleatoric (data-based)
types [Hillermeier and Waegeman| [2021]]. Table [[| summarizes how each atom contributes to the
confidence score and which internal components it updates.

Confirmation Atom Uncertainty Updates  Updates  Updates
Type Mapping G, S
Counterfactual Agreement Epistemic — v v
Graph Cohesion Aleatoric — v v
The Round-Trip Atom Epistemic v — v
Knowledge Grounding Epistemic v — v

Table 1: The relationship between each Confirmation Atom and the framework components it updates.
All atoms contribute to the confidence score A. (I, j) which is fed into the Statistical Engine (.5).

Here we provide a short description of the CAs. The full description of the CAs together with the
formal way they update the beliefs are in Supplementary Section [C| The Counterfactual Agreement
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Atom measures epistemic uncertainty by quantifying the stability of the LLM’s predictions when the
initial set of observables is perturbed. The Graph Cohesion Atom assesses aleatoric uncertainty by
evaluating the semantic plausibility of the returned entities, measuring their average distance within
the entity correlation graph. The Round-Trip Atom probes the LL.M’s internal coherence through
a self-consistency check: it first retrieves an entity from a set of observables, then asks the LLM
to generate observables for that entity, comparing the initial and final sets. Finally, the Knowledge
Grounding Atom provides a direct factual check by comparing the LLM-generated observables for a
given entity against a curated, external database. Together, these atoms provide a multi-faceted view
of the LLM’s output quality, which is aggregated into a single confidence score.

While each confirmation atom provides a distinct signal, a single, unified confidence score is required
to drive the updates of the statistical engine. We define the total confidence score A (I, j) for a
returned entity E; at time step ¢ as a normalized weighted aggregation of the individual atom scores.

First, we transform the Entity Neighborhood Dispersion (END) score, which measures dispersion,

into a normalized cohesion score, Cohesion; = 1— %. For each entity F;, the individual atom
. t

scores are represented by u;; = [Ua(E;), Uc(E;), Ug(E;), Cohesion,]”, and their relative impor-
tance is defined by a non-negative hyperparameter weight vector, w = [w, wrr, Wrg, wac]®.
The final confidence score is then computed as:

ALy, j) = =2t (4)

where ||w||; is the L1 norm of the weight vector, ensuring the score is a convex combination that
remains in the range [0, 1]. This normalized score A.(I3, j) serves as a single, potent signal that
encapsulates the evidence gathered in each trial. It is then fed into the statistical engine to update the
total observed count k; and total expected count ;.

4 Evaluations - Parliamentary Work.

Our evaluations are based on the hallmark problem of pathway enrichment analysis, which was
described in |1} For this, we collected a corpus of 180 datasets, spanning multiple diseases and
conditions, drawn from three related biological benchmarks [Buzzao et al.,|2024] |Geistlinger et al.|
2021, Hutter and Zenklusen, 2018]. Each dataset contains raw gene-expression measurements
(features) for control and disease groups, as well as a list of known biological pathways that serve as
ground-truth labels associated with diseases. This structure allows us to fully validate our results, and
it also used as the prior knowledge required in our framework.

Our evaluations are designed to test three overarching goals: 1) Showing the effectiveness of results
aggregating over partial queries. Although it has been shown before, we believe we are the first to
use such a comprehensive benchmark. 2) Demonstrating the ARISE effectiveness through token
efficiency. 3) Performing a deep ablation study investigating the different parts of ARISE and DUETS,
including the "no prior-knowledge" case.

Replicating the work of [Hu et al.|[2025b]] on our datasets. Our first evaluation aims to demon-
strate the need for a sophisticated query mechanism such as partition-and-aggregate. We used the
annotated corpus described above to perform a large-scale real-data study following the work of |Hu
et al|[2025b]. As shown in Figure [3|in Supplementary Materiel Section[A] even the most advanced
models like GPT-4 (more specifically, gpt-4-1106-preview), which was used in the replication of the
work of |[Hu et al.[[2025b] on our benchmarks, did not achieve sufficient accuracy. On our corpus of
data, a weak association was observed between the model’s self-reported confidence and semantic
similarity (r=0.22 for Pearson correlation) between the pathways’ original names and the names
generated by the model, along with a substantial tail of low-similarity predictions.

Synthetic evaluation of DUETS. For evaluating DUETS, we used a controlled synthetic envi-
ronment that simulates real-world conditions with noisy, graph-structured side observations. This
setup allows us to measure DUETS’s sample efficiency and its ability to navigate complex depen-
dencies. We created an environment with K = 60 actions divided into C'= 3 clusters, with m* =2
relevant actions per cluster, and a hubbed feedback graph that controls which side observations are
revealed when an action is played (see Supplementary Material Section[A). Query quality follows
a cluster-aware matrix, so playing an action gives high-quality evidence for nearby entities and
low-quality evidence for entities in other clusters. Because hubs reveal more neighbors, we evaluate
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rankings using inverse propensity weighting (IPW) to correct for bias. We compare three methods:
GraphOnly, which explores the feedback graph structure; NoiseOnly, which focuses on quality-aware
lookahead; and DUETS, our approach that mixes both strategies online. As shown in Figure@]in
Supplementary Materiel Section[A] DUETS accelerates discovery by combining both sources of
information, reaching 80% recall in 375 rounds (median) compared to 390 for NoiseOnly and 428 for
GraphOnly. These results show that DUETS learns faster and is more sample-efficient. Its advantage
holds compared to the two other methods.

5 Conclusions

Our work addresses the critical trade-off between reliability and computational cost in entity-centric
question answering (ECQA) from long, complex contexts. Current methods, while effective, often
lead to a "token explosion” that renders them impractical for large-scale scientific discovery. To
overcome this, we introduced ARISE, a novel framework that reframes ECQA as a multi-armed bandit
problem with side observations. ARISE’s core innovation is the DUETS Bandit, a dual-expert online
learning algorithm that intelligently synthesizes prior structural knowledge (‘GraphExpert‘) with
expected observation quality (‘NoiseExpert‘) to guide an efficient query policy. This is complemented
by a modular system of Confirmation Atoms for robust, multi-faceted validation and a Statistical
Engine that moves beyond opaque self-reported scores to provide rigorous, entity-wise p-values
under an explicit null hypothesis. Our preliminary results are promising. On synthetic data, DUETS
demonstrates superior sample efficiency compared to single-expert policies, confirming the value
of its adaptive mixing strategy. Furthermore, our baseline replication on over 180 real-world gene
expression datasets highlights the limitations of current single-query approaches.

Limitations and Future Work. While ARISE presents a promising direction, we acknowledge
several limitations that offer avenues for future research. First, ARISE relays on the availability of a
relevant prior knowledge corpus. Although we have outlined a robust "uninformed initialization"
protocol, its performance relative to a well-initialized model needs to be thoroughly benchmarked.
Second, while ARISE is designed for efficiency, its scalability to extremely large sets of entities
(e.g., tens of thousands) has not yet been tested. Finally, our framework assumes that the underlying
LLM behaves as a consistent, stateless oracle. The performance of ARISE could be impacted by
significant stochasticity in LLM responses or by unannounced updates to proprietary models, which
could introduce non-stationarity into the learning environment.
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Technical Appendices and Supplementary Material

A Evaluation

We evaluate along two complementary axes. First, a controlled synthetic study that isolates the
contribution of the online policy (DUETS) under graph-structured, noisy side-observations. Second,
an ongoing real-data study that follows the work of Hu et al|Hu et al.|[2025b]] to benchmark ARISE
against contemporary LLM-based baselines on annotated gene-expression datasets.

A.0.1 Synthetic evaluation: DUETS sample efficiency under graph-structured
side-observations

To isolate the contribution of the online policy itself, we benchmark DUETS on a controlled synthetic

environment that mirrors the setting in Section 3} actions correspond to entities (pathways), pulling

one action reveals noisy side-observations about many others, and which observations are revealed is

governed by a feedback graph.

Environment. We simulate K = 60 actions partitioned into C' = 3 clusters of equal size. A small
subset of actions are truly relevant: we draw m* = 2 per cluster (6 in total) and set their Bernoulli
success probabilities to §; = 0y; = 0.75; the remaining actions have 6; = 6, = 0.10. Querying
action i produces a revealed/hidden mask according to a directed feedback matrix P € [0, 1]5K* &
(row ¢ gives the probability that j is revealed when i is played), and qguality weights according to
S € [0,1]5*K (row i gives the observation quality for all j). We instantiate a clustered, hubbed
feedback graph. In each cluster we designate 25% of actions as hubs—actions whose feedback
rows have high out-coverage (large » j P;;), meaning that playing a hub 7 tends to reveal many
neighbors. Concretely, for same-cluster j we set P;; = 0.95if 4is a hub and P;; = 0.12if i is a
non-hub; cross-cluster reveals are rare with P;; = 0.01. Observation quality is high within clusters
and low across clusters (S;; = 0.90 within, S;; = 0.12 across), with small Gaussian jitter (clipped to
[0,1]). A single round proceeds as follows: after playing %, each j is revealed with probability P;;; if
revealed, we draw r; ; ~ Bernoulli(¢;) and record a reward 7 ; S;;; otherwise the reward for j is
zero. We use the loss ¢, j = 1 — 1, ;5;;.

Unbiased ranking via inverse propensity weighting (IPW). Because hubs reveal more neighbors,
a naive cumulative-reward ranking is biased. We therefore build, for each policy, a per-arm /PW
estimator of the latent relevance r;:

. _obsr; .
r : obs, ; = 1{j revealed} - r, ; St_;,
129 Z pITJ S +e . {Jj }oreSL

with a small e for numerical stability. This estimator is unbiased for E[r;]. At round ¢ we rank actions
by 7 ; and report Recall@m* (the fraction of the m* ground-truth actions appearing in the top-m*
estimated list).

Policies. We compare three policies; all hyperparameters are identical to the code used to produce
Fig.[2|

¢ GraphOnly. An Exp3-style learner (following the Exp3 algorithm of Alon et al|Alon et al.

[2017]) that uses the known feedback graph P to enforce exploration on a dominating set

D, of the current graph. The sampling distribution is p&*"" = (1 — \) Toar T 151 D 1p,

with A\ = 0.35 and learning rate ng = 0.25. We update weights using an importance-

weighted estimator computed only on revealed coordinates: Eg”ph = min{¢;;/(Pr,; +

10712), cap} 1{j revealed}, with a cap of 50 to control variance.
* NoiseOnly. A quality-aware look-ahead policy that chooses actions expected to yield the
most informative side-observations. It maintains an exponential moving average of per-arm

rewards, 7 < (1 — )7+ (1 —¢;) with 5 = 0.05, and samples from a softmax over utilities
Ui(i) = >2;(S © P);; 7 (temperature 1/ny, with nx = 1.0).

* DUETS. Our meta-learner mixes the two advisers: p; = (1 — o) ptgraph + ay phoise,
During a short warm-up of 40 rounds we use a fixed a; = Qwarm = 0.20 to en-

sure coverage. Thereafter, o, is learned online by Hedge with meta-rate 7etn = 1.5:
W+1 = Wf eXP(—"meta * (P graph ), thj-l = WtN exp(—TNmeta - (P, 4r)), and
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DUETS converges faster under graph-structured, noisy observations
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Figure 2: Synthetic evaluation with a hubbed feedback graph. Shaded bands are 95% CIs over
40 seeds. We report recall of the true top arms using inverse-propensity weighting (IPW) to debias
coverage. DUETS attains 80% recall in 375 rounds (median) versus 390 for NoiseOnly and 428 for
GraphOnly, reflecting faster sample-efficient discovery while maintaining competitive late-round
performance.

ap = WN/(WE + W), with on-the-fly normalization to prevent numeric undet/overflow.
DUETS uses the same graph and noise sub-learners as above (A = 0.35, ng = 0.25,
ny = 1.0, 5 = 0.05).

Protocol and metric. We run each policy for T = 500 rounds on independent environments
(40 random seeds) and report the mean recall curve with 95% confidence bands. For a compact
sample-complexity summary we also report, for each policy, the median number of rounds needed to
reach > 80% Recall@m*.

Results. Figure shows mean recall with 95% Cls over 40 runs (evaluation by inverse-propensity
weighting). The hubbed feedback makes graph structure consequential, and IPW removes the
coverage bias induced by hubs. In this regime, DUETS accelerates early discovery by combining (i)
structural coverage from the GraphOnly dominating-set exploration and (ii) quality-aware look-ahead
from NoiseOnly. After a short warm-up, the Hedge meta-update shifts weight toward the stronger
adviser online. Quantitatively, DUETS reaches 80% recall in 375 rounds (median), compared to 390
for NoiseOnly and 428 for GraphOnly; end-of-horizon recall remains competitive across methods.

A.0.2 Real-data evaluation: Planned ARISE comparison

To assess the performance of ARISE on real data, we compare to recent benchmarks established
by Hu et al. [Hu et al.|[2025b]], who evaluated five large language models on the task of assigning
functional names to gene sets. In their study, LLMs such as GPT-4 and Gemini Pro were prompted
with full lists of genes and tasked with producing a descriptive pathway name together with a self-
reported confidence score. GPT-4 was found to generate names similar to curated Gene Ontology
(GO) terms in over 70% of cases, with its confidence estimates predictive of correctness; it also
showed the strongest ability to decline naming incoherent or random sets, a crucial property for
scientific reliability.
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Figure 3: Baseline replication on our 180+ datasets using the Hu et al. pipeline: GPT-4’s self-reported
confidence versus semantic similarity between the LLM-produced pathway name and the ground-truth
pathway name. Points in the lower-right (high confidence, low semantic similarity) indicate likely
evaluation mismatches or model overconfidence.

Our Dataset. To enable systematic evaluation of ARISE, we assembled a large corpus of more than
180 annotated gene expression datasets, spanning multiple diseases and experimental conditions.
This corpus provides a diverse and challenging benchmark for entity-centric question answering in
biology.

Reproducing the Baseline. As a first step, we re-implemented the evaluation pipeline from Hu et
al., running their published code on our 180+ datasets. This produced baseline results consisting
of (i) the pathway names assigned by the LLM to each dataset, and (ii) the model’s self-reported
confidence scores. These outputs form a direct replication of the Hu et al benchmark, but on a broader
and more heterogeneous testbed. As shown in Figure [3] the Pearson correlation between model
confidence and the semantic similarity of generated versus ground-truth names is = 0.22 (weak
association); moreover, a substantial fraction of generated names have similarity < 0.5.

Planned Comparison with ARISE. Our next step is to run the ARISE framework incorporating
Confirmation Atoms, the DUETS bandit policy, and the statistical significance engine on the same
datasets. This will allow a direct, head-to-head comparison between ARISE and the baseline pipeline.
We hypothesize that ARISE will outperform the baseline by achieving higher accuracy at substantially
lower query cost, while also providing calibrated, interpretable significance estimates rather than
opaque self-reported confidence scores.

B The DUETS Algorithm: An Adaptive Dual-Perspective Solution

B.0.1 Motivation: Reconciling Disparate Priors in a Concrete Setting

Our problem is motivated by a concrete scenario: learning which entities are most likely to be
returned by a query to a Large Language Model (LLM). In this setting, the true reward r, ; € {0, 1}
for an entity j is determined by its absence or presence in the LLM’s response. For this we leverage
two distinct, independent sources of prior knowledge that an effective learning agent use:
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1. A Graph-Based Co-occurrence Prior: The literature provides data on the co-occurrence
probabilities of different entities. This knowledge is best represented as a directed graph
G}, realized from a known probability matrix P = {p;; }, where an edge suggests a likely
co-occurrence. To leverage this, an agent should behave as if it is exploring a sparse, partial-
information landscape, where observing one entity provides a strong signal to observe its
neighbors. This perspective is directly inspired by the feedback graph model of Mannor and
Shamir|Mannor and Shamir [2011]).

2. An Observation Quality Prior: The query mechanism itself introduces another layer
of complexity. A query for entity 7 is performed using a specific set of its "observables”
(features). While this provides the best possible observation for entity ¢, the same set of
observables also provides a noisy signal about all other entities j. The quality of these
observations, represented by py (I, j), is stochastic but drawn from a known distribution.
This implies a noisy full-information setting, where the agent’s action [; determines the
observation quality for the entire system. This setup shares conceptual similarities with the
noisy side-observation models explored by Kocdk et al. [Kocak et al.| [2016].

These two priors suggest fundamentally different algorithmic strategies. The DUal Experts for
Turbid side-Observations with Stochastic feedback graph (DUETS) algorithm is designed to
resolve this tension. It creates a single agent that maintains two parallel worldviews—one partial-
information and one full-information—and learns online how to best combine their advice.

B.0.2 Algorithmic Framework: Adaptive Mixing of Two Expert Perspectives

The ‘DUETS® algorithm consists of three core components, each justified by the need to handle a
specific aspect of the problem:

* A GraphExpert, which operates under the assumption that feedback is sparse and deter-
mined by the graph G;. Its purpose is to enforce a robust exploration strategy that respects
the co-occurrence prior. Its design is heavily influenced by the ‘Exp3.G* family of algorithms
from Alon et al. ?, which demonstrate that leveraging graph structure (e.g., dominating sets)
is critical for efficient exploration in partial-information settings.

* A NoiseExpert, which acknowledges the noisy full-information reality. Its purpose is
to strategically choose an action that maximizes the overall quality of the observations it
receives. Unlike the reactive model in Kocak et al. Kocdk et al.|[2016], where noise quality
is unknown and adversarial, our ‘NoiseExpert can be proactive because the statistics of the
noise (pg (1, §)) are known. It performs a lookahead calculation to find the most informative
action.

* A high-level Meta-Expert, which acts as an adaptive mixer. This is a standard and powerful
technique from the "learning from expert advice" literature. Its purpose is to learn the
optimal blending of the two sub-experts’ advice by tracking their historical performance,
thus freeing the user from having to manually set a fixed mixing parameter.

Consulting the Experts. The two experts generate their advice independently, based on their
distinct worldviews.

* The ‘GraphExpert*’s distribution, p"*™", must ensure exploration. Following Alon et al.

Alon et al.|[2015]], an effective strategy is to guarantee a minimum level of exploration on a
dominating set D; of the current graph G;. This ensures that all nodes are observed (in the
hypothetical partial-information world) with high probability.

* The ‘NoiseExpert‘’s utility function, Uy(%), is a proactive, one-step lookahead. It estimates
the total "information reward" from playing action ¢, weighting the expected quality of each
observation py (I, j) by the current estimated reward of action j. This prioritizes choosing
queries that yield high-quality information about promising entities.

The Dual Update and its Estimators. This is the core of the algorithm’s dual nature. After
observing the outcome, both experts update their internal state, but they interpret the information
differently.

» The ‘NoiseExpert* uses the simple, low-variance estimator gt’k. This is possible because it
operates in the full-information world and has access to the signal for every action.
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* The ‘GraphExpert‘ must use the high-variance, importance-weighted estimator @ffzph. The
term I{(I;, k) € &} enforces its worldview that it only "sees" feedback along realized edges.
The denominator g ;, is the probability of this event occurring. Dividing by g,  is essential
to correct for the selection bias and ensure that the estimator is unbiased in expectation
E [éffzp " = ¢4 ). This importance weighting is a cornerstone of modern bandit algorithms,
essential for handling partial feedback as seen in works from Li et al. ? to Esposito et al. 2.

Updating the Meta-Expert. The ‘Meta-Expert* learns by evaluating the advice of its sub-experts
in hindsight. The meta-loss, L?e‘a’G, represents the expected loss the agent would have suffered if it
had followed the ‘GraphExpert*’s recommendation p£™™ precisely. By updating its weights based
on these meta-losses, the ‘Meta-Expert learns to increase the influence () of the sub-expert that

provides consistently better recommendations for the given environment.

B.0.3 The DUETS Algorithm: Implementation-Level Pseudo-code

This section provides a highly detailed pseudocode for the DUETS algorithm, intended to serve as
a direct guide for implementation. Each step is broken down into its constituent mathematical and
logical operations.

The Loss Model The algorithm operates in a full-information setting where, after each round, the

true binary outcome r; ; € {0, 1} and the parameters A.(t) and py(I¢, j) are revealed for all entities
7. The algorithm then constructs the loss for the round using the following function:

E(Tt,ﬁ Ac(Itaj)a pg?;gise); Cback) =Tt Ac(Itaj) + (1 - Tt,j) 'pi?;(:ise) : Chack (5)

This constructed loss, which incorporates various measures of uncertainty, is then used to update all
expert components.

Helper Functions For clarity, we first define two helper functions that will be used within the main
algorithm.

Algorithm 1 *
Function GreedyDominatingSet(G = (V,§))
1: Input: A directed graph G = (V, ).

Initialize: Dominating set D < (), Uncovered nodes U + V.

while U is not empty do
Let Noyi(v) < {v}U{j eV | (v,j) € &}
Select node v* € V' that maximizes | Nyy:(v) N U|.
D < Du{v*}.
U < U\ Ny (v7).

end while

Return D.

WRedaaunhww

Algorithm 2 *
Function NormalizeWeights(w)

1: Inmput: A vector of non-negative weights w = {wy, ..., wx}.
2: W« Zi-(zl Wk .

3: if W = 0 then return uniform distribution {1/K,...,1/K}.
4: elsereturn {wy/W,... , wg/W}.

5: end if

Main Algorithm The main loop of the DUETS algorithm integrates the advice from its three expert
components to make decisions and learn from feedback.
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Algorithm 3 The DUETS Algorithm (Detailed)

Require: Set of actions (entities) V, |V| = K; Number of rounds 7.
Require: Learning rates: 1g, NN, Mmeta > 0; Regularization parameter v > 0.
Require: GraphExpert exploration parameter A\ € [0, 1].

Require: Known co-occurrence probability matrix P € [0, 1]

KXK, where Pij = Pij-

Require: Known constant hyperparameter a.p.
1: Initialize Data Structures:

2:  GraphExpert weights: w&*" « {1,...,1} € R,
3:  NoiseExpert weights: wi°¢ < {1,...,1} € RX,
4:  Meta-Expert weights: Wlmem’G — 1, WpreeN
5. Cumulative losses for NoiseExpert’s model: L2 < {0,...,0} € RE.
6 Running sum for A.: S4. < 0; Running count for A.: N, < 0.
7:fort=1,...,T do
8: Observe Context An external process provides the realized graph G; = (V, &).
9: — Consult GraphExpert —
10: Compute dominating set D; < GreedyDominatingSet(Gy).
11:  Normalize weights: p)"*™" < NormalizeWeights(wf™™).
12: Form GraphExpert’s mixed distribution for all k € V:
PR = (1= Xa) - piE™ + s - I{k € Dy}
13: — Consult NoiseExpert —
14: For each pair (i,j), compute the estimated quality: Dg(%,7)
CalculateExpectedPg(i, j).
15: Let est_reward; ; < 1 — L' 1 L T{t > 1}
16: Compute lookahead utilitles for alli € V: Uy(i) ZK_l est_reward, ; - Pg(i, j).
17: Compute unnormalized weights: w;"); noise o exp(nn - Up(k)).
18: Normalize to form distribution: p“‘”Se + NormalizeWeights(w"").
19: — Consult Meta-Expert and Mix Advice —
20:  Compute dynamic mixing parameter: c; < WeN /(ymenG  pymetaNy
21: Form the final action distribution for all k € V: pyp < (1 — o) - pfrzph + oy p;“"se.
22: — Act and Observe Feedback —
23: Draw action to play: I; ~ p;.
24:  An external process reveals the true binary outcomes: {r; ;};cv.
25: An external process reveals the scalar loss parameter: A, (1, j).
26: An external process reveals the vector of loss parameters: {pg(I,j)}jev.
27: — Perform Dual Update —
28: For each j € V, construct the loss for the rqund:
lej = Aol g) - (re) + (1 =703) P  Chaer.
29: Update NoiseExpert:
30: Update cumulative losses: L“"‘se — L"O‘“’k + 4 forallk e V.
31: Update weights: w't“f’ﬁfk — w't“};” exp(—nn - by ) forallk € V.
32: Update GraphExpert:
33: Compute observation probabilities for all k € V: ¢, 5, < Zfil Dt * Dik-
34: Form importance-weighted estimators for all k € V:
seraph [
P e (1,8 € 50). A
35: Update weights: wff‘;hk — wfrzph exp(—ng - Eirzph) forallk € V.
36: Update Online Learning Model for A (1, j):
37: SAC%SACJrAC(It,j); Nye <+ Ny + 1.
38: — Update Meta-Expert —
39: Compute meta-loss for GraphExpert’s advice: LM™®6 « K = pgraph s k-
40: Compute meta-loss for NoiseExpert’s advice: LM®N « S5 P - Lo
41: Update meta-weights:
Wgrfia,G — thela,G . eXp(_nmeta . Lrtneta,G)'
Wgn_:ia,N « theta,N . eXp(_nmeta . Lrtneta,N)'
42: end for
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B.0.4 Estimating the Quality Score p, (i, j)

The core motivation is to quantify the relationship between the query action ¢ and the observed entity
7. Specifically, we want to answer the question: "If we query the LLM using a set of observables
sampled for entity i, how much evidence should we expect to see for entity ;?''. We define this
quality score, py (i, ), as the expected posterior probability of entity j, where the expectation is taken
over all the evidence (sets of observables) that a query for entity ¢ is likely to produce. Formally, we
want to calculate the expectation:

Pg(i,5) = Eompoja,) [P(J ] 0)] (6)

The direct computation of this expectation is intractable due to the combinatorial explosion in the
number of possible observable sets 0. We therefore turn to an information-theoretic analytical
approximation, grounded in Large Deviation Theory(LD-T), for this value.

The core of the approximation is to replace the true expectation over all observable sets,
Eo~p(.j6,)[P(jlo)], with the posterior evaluated at the mean set of observables, P(j|E[o]). The
mean observables from entity i, E[o], is a count vector whose empirical distribution is precisely the

mean probability vector 6;.

A key result from Large Deviation Theory (Sanov| [[1957]] Sanov’s Theorem states that the probability
of observing an empirical distribution 6§’ from a source k is asymptotically given by P(...) =
exp(—n - Dk, (0'||0x)), where n is the number of observables.

C Confirmation Atoms

Our framework leverages a set of "confirmation atoms" to assign per-entity confidence scores based
on LLM output behavior. Each atom is designed to probe a distinct source of uncertainty, which we
explicitly separate into two types: epistemic uncertainty and aleatoric uncertainty. The results from
these atoms are aggregated into a single confidence score, A.(I;, ), for each returned entity E; at
time step ¢.

Here we provide an full description of the CAs.

1. Counterfactual Agreement Atom This atom measures epistemic uncertainty by quantifying
the stability of the LLM’s predictions under input perturbations. Given an initial observations subset
Oguery» We generate n perturbed queries {Oy, }}'_; from neighbored entities from the graph G and
observe the resulting LLM responses { Eiesponse,k } 1 - The Counterfactual Agreement Score A(E);)
for a returned entity £; is defined as the proportion of perturbed queries that still include £ in their

top predictions:
n

1
A(Ej) = E ; H[Ej € Eresponse,k}
A low score indicates instability in the prediction, suggesting that the LLM lacks consistent internal

knowledge.

2. Graph Cohesion Atom This atom measures aleatoric uncertainty by evaluating the domain
plausibility of the LLM’s output. It computes an Entity Neighborhood Dispersion (END) score based
on the shortest-path distances between the entities returned by the LLM in our a-priori correlation
graph G;. Let {E, ..., Ej} be the set of entities returned in a trial. The END score is defined as the
average pairwise shortest-path distance:

1 .

END = —— Z distg, (E;, Ep)
(2) j<m

A low END score indicates a dense, localized cluster of entities, reflecting aleatoric uncer-

tainty—multiple plausible domain interpretations of the same observations subset.

3. The Round-Trip Atom This atom provides a powerful measure of the LLM’s internal knowledge
coherence. It performs a round-trip verification by first retrieving an entity from a given observations
set and then immediately asking the LLM to generate observations for that retrieved entity.

1. Forward Pass: A query with an observations set Oqyery yields a primary response entity £;.
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2. Reverse Pass: A second query, "Given entity F;, what are its top N observations?", yields
a new observations set Opeyerse-

The Self-Consistency Score Uc(E;) is defined as the Jaccard similarity between the initial and
reverse-pass observations sets:

_ 1Oquery 0 Oreverse|

Uc(E;) =
C( j) |Oquery U Oreverse|

A high Uc(Ej;) indicates robust, self-consistent knowledge.

4. Knowledge Grounding Atom This atom directly addresses factual inconsistency by comparing
the LLM’s knowledge to an authoritative, external source. It builds upon the Round-Trip Atom, using
the observations list Ojeyerse produced by the LLM. An external query is issued to a curated database
to obtain a "ground truth" observations list, Oexernal, for entity E;. The Grounding Score Ug(E);) is
the Jaccard similarity between the two lists:

o ‘Oreverse N Oexternal‘
‘Oreverse U Oextemal‘

Uc(Ej)

A high Ug(E;) provides a strong signal of factual accuracy, contributing to the confidence score.
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D Framework Robustness: Uninformed Initialization

A key strength of the ARISE framework is its robustness and adaptability, allowing it to function
effectively even in the absence of a pre-existing, curated corpus for generating prior knowledge. We
address this uninformed initialization scenario through three complementary mechanisms.

First, in a practical application where no corpus is available, the framework can use the LLM itself
to generate a preliminary set of priors. By prompting the LLM with randomly sampled sets of
observables, we can build an initial, albeit noisy, estimate of entity co-occurrence probabilities and
observable-to-entity mappings. This serves as a functional starting point for the framework.

More fundamentally, the framework is designed to learn and refine these priors online as a core
part of its operation. The residual information gathered by the Confirmation Atoms is not only
used for scoring but also for updating ARISE’s internal beliefs. For instance, the Graph Cohesion
Atom provides direct evidence for updating the stochastic feedback graph, allowing the framework
to bootstrap and continuously improve its own knowledge base from the LLM’s responses.

Finally, ARISE remains viable even in the most extreme case, assuming no initial priors are provided
and the Confirmation Atom updates are disabled.

1. A feedback graph is inherently constructed from the very first query. Each list of entities
returned by the LLM is a direct observation of their co-occurrence, providing an immediate,
dynamically updated graph for the ‘GraphExpert® to leverage.

2. The statistical engine remains well-defined. The success probabilities {p; } used to parame-
terize the Poisson Binomial distribution for the null hypothesis would default to a uniform
distribution over all entities. While uninformative, this is not a misspecification but rather
the correct assumption when no relationship between observables and entities is known a
priori.

3. The DUETS bandit is designed to adapt to this uncertainty. Initially, the ‘NoiseExpert*
(which relies on observable-entity mappings) will provide poor advice. However, the
‘MetaExpert® will quickly learn to down-weight its recommendations and rely more heavily
on the ‘GraphExpert‘, which learns from the dynamically observed co-occurrence graph.
This results in a less sample-efficient "warm-up" period, but the system is designed to
converge and find the correct signal.

To validate these claims, we will include a dedicated ablation study in our final evaluation to em-
pirically demonstrate the framework’s performance under this challenging uninformed initialization
scenario.

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
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proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:
* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main framework and ongoing evaluations are clearly stated in the abstract
and demonstrated in the paper. They reflect the paper’s contributions and scope.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We are discussing the limitations in section 5]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions underlying our online algorithm DUETS are stated in Section[3.2]
and Supplementary.

Guidelines:
* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of our experimental procedures in the Sup-
plementary sub section [A.0.T]

Guidelines:
* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We don’t have any available code to share at the moment, the work is still in
progress.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: in the Supplementary section [B] all the details of the DUETS algorithm are
specified, including initial parameters, hyperparameters, etc.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [TODO]
Guidelines:
» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: After careful review of the NeurIPS Code of Ethics, our research conforms
with the Code of Ethics, as seen in all sections.

Guidelines:
e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is primarily theoretical and methodological, and we do not anticipate
any immediate societal impact. That said, we recognize that large-scale deployment of our
algorithm could inherit the same societal biases present in other generative models.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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11.

12.

13.

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper presents a framework that utilizes an online learning algorithm. We
don’t present any data or models that have a high risk for misuse.

Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of the data and code used for creating a baseline for future
comparison are mentioned in the Evaluation section [4}

Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [TODO]
Justification: [TODO]
Guidelines:
» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve human subjects or crowdsourced data.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

. Institutional review board (IRB) approvals or equivalent for research with human

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve human subjects or crowdsourced data.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper clearly describes the use of LLMs for confirmation atoms, querying,
etc. in Section[3

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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