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Abstract
Entity-centric question answering (ECQA) is the problem of selecting which en-1

tities from a large, predefined set are most relevant to given observations. This2

task highlights a critical challenge for robust machine learning: reliably extracting3

factual knowledge from LLMs when they are treated as imperfect, black-box infor-4

mation sources, especially with long, heterogeneous inputs. For example, given5

genes active in a disease, scientists want to identify which biological processes are6

involved, a task demanding high reliability. Current approaches attempt to achieve7

robustness through consensus ranking or iterative validation, but these methods8

incur "token explosion," where costs scale poorly, making them impractical.9

We introduce ARISE (Adaptive Residual Information Sampling Engine), a frame-10

work that reframes ECQA as a problem of sequential decision-making under11

structured, imperfect feedback. Our key insight is that each query provides a12

form of biased data: noisy side-observations about related entities. We leverage13

this insight with DUETS Bandit (DUal Experts for Turbid side-Observations with14

Stochastic feedback graph), a novel online learning algorithm designed for this15

setting. DUETS employs dual expert advisors to navigate this uncertainty: a16

GraphExpert that models prior knowledge as a stochastic feedback graph to handle17

data biases, and a NoiseExpert that strategically queries the LLM to maximize18

observation quality, while Confirmation Atoms validate outputs to update internal19

beliefs in this interactive environment. This architecture enables statistically rigor-20

ous hypothesis testing with formal p-values, creating a robust and reliable system21

that dramatically reduces query complexity. Preliminary results on synthetic data22

are promising, and we are currently evaluating ARISE on the challenge of pathway23

enrichment analysis using 180+ annotated gene expression datasets, a domain24

where robustness to distribution shift (novel experimental data) is paramount.25

1 Introduction26

Large Language Model (LLM)-based question answering has emerged as a highly active research27

area. Within this field, we investigate a constrained yet critical paradigm: prompt-only entity-centric28

question answering (ECQA). Here, the prompt is a self-contained knowledge base, and the LLM29

must classify which predefined target entities are relevant to the provided observables. This paradigm,30

however, directly confronts the challenge of learning with imperfect data, as the LLM itself acts as31

a noisy and often unreliable information oracle. Its outputs are subject to well-documented failure32

modes like hallucination and factual inconsistency Huang et al. [2024], Wang et al. [2024], which33

compromise the reliability of any downstream task.34

These challenges are amplified in scientific discovery, where queries often involve complex inputs and35

demand high-confidence answers. A scientist might query an LLM based on novel laboratory results,36
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which introduces a significant distribution shift, as the query is conditioned on out-of-distribution37

scientific data not present in the LLM’s training set. A quintessential example is Pathway Enrichment38

Analysis (PEA), a specific instance of ECQA where target entities are biological pathways and39

observables are gene lists from experiments. Scientists seek to answer: "What is the underlying40

functional meaning of these genes?" This question is central to bioinformatics, and its difficulty41

highlights the need for robust methods that can handle novel, noisy, and complex biological data.42

Existing methods attempt to bolster LLM safety and alignment with facts through several strategies:43

1) consensus aggregation from partial queries [Singhal, 2025, Wang et al., 2023a]; 2) confidence44

scoring to manage uncertainty Hüllermeier and Waegeman [2021], Zong and Huang [2025]; and 3)45

agentic, web-enabled architectures to handle out-of-distribution queries Gao et al. [2024], Xi et al.46

[2023]. Despite these advances, a harsh trade-off between robustness and computational cost remains.47

Achieving high reliability often requires iterative feedback loops that are computationally infeasible48

for large-scale problems Chen et al. [2024].49

We directly address this cost-robustness trade-off by designing a system that makes principled50

decisions under uncertainty. Our approach is built on three key insights for handling imperfect51

information from LLMs: First, each query provides biased and partial information about all entities,52

not just the one targeted. Second, prior knowledge about entity co-occurrence can be used to model53

and mitigate this bias. Third, residual information from the validation process itself can be used to54

refine future decisions.55

To this end, we introduce ARISE (Adaptive Residual Information Sampling Engine), a framework56

that provides a statistically-grounded orchestration for iterative retrieval. ARISE is built from two57

symbiotic parts: a smart sampling policy that learns to manage biased data from both prior knowledge58

and online LLM feedback, and a statistical engine that enables online validation by formulating an59

appropriate null distribution.60

At the heart of ARISE is DUETS Bandit ("DUal Experts for Turbid side-Observations with Stochastic61

feedback graph"), a novel multi-armed bandit algorithm. DUETS models the problem as an "expert"62

setting where each action (query) reveals a corrupted signal about all outcomes. It features a63

GraphExpert that leverages prior knowledge as a stochastic feedback graph to counteract biased64

sampling Mannor and Shamir [2011], Alon et al. [2017], and a NoiseExpert that strategically selects65

queries to maximize the quality of the LLM’s noisy feedback. By adaptively mixing their advice,66

DUETS achieves a highly efficient and robust sampling scheme.67

The rest of the paper is structured as follows: Section 2 positions our work relative to ECQA and68

online learning for robustness. Section 3 details the ARISE framework. Finally, Section 4 presents69

our evaluation and discusses ongoing work.70

2 Related Works and Positioning71

Zero-Shot Entity-Centric Question Answering (which we refer here simply as ECQA) is characterized72

by several key exclusions. It operates without Retrieval-Augmented Generation (RAG) [Lewis et al.,73

2020], fine-tuning, or access to the model’s output probabilities. Consequently, the model’s weights74

are frozen, its reasoning is confined to its in-context learning abilities (including MCP Hou et al.75

[2025]), and it is treated as a black box.76

A defining feature of our ECQA setup is the complexity of the input, which directly confronts a77

primary architectural limitation of modern LLMs: the effective utilization of long, information-dense,78

and multimodal context windows. While new models feature massive context windows, research79

demonstrates a significant gap between this theoretical capacity and practical reasoning ability, effects80

like "lost in the middle" [Liu et al., 2023], hallucinations [Huang et al., 2024] , or "long-tail knowledge81

collapse" Kandpal et al. [2023] , are well-documented and results in sharp performance decay. This82

performance decay is not merely theoretical, for a task like PEA, a long list of input genes can cause83

a diagnostically critical gene to be effectively ignored if it falls into this neglected middle section [Liu84

et al., 2023, Shi et al., 2024, Yuan et al., 2024]. The model’s subsequent reasoning is thus based on a85

flawed and incomplete representation of the input, leading to an incorrect classification. This failure86

stems not from a lack of knowledge but from an architectural artifact of processing long sequences87

[Shi et al., 2024].88

To overcome these constraints, prompt engineering has become a leading strategy [Liu et al., 2023].89

Effective prompts often mimic domain-specific reasoning patterns, analogous to Chain-of-Thought90
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[Wei et al., 2022]. A prime example in bioinformatics is the TALISMAN method, which explicitly91

instructs the model to perform a "term enrichment test" on a list of genes, forcing it to synthesize a92

high-level biological concept [Yuan et al., 2024]. Similarly, in medical diagnosis, a two-step prompt93

that first organizes clinical data before deriving a diagnosis [Singhal et al., 2023]. Here we address94

those methods as "confirmation processes", and incorporate them into our framework.95

Another line of work develops a more robust architectural pattern of partition-query-aggregate Liu96

et al. [2025]. These approaches decompose the long, heterogeneous list of observations into smaller97

partitions, query the LLM on each one, and then synthesize the final result based on the framework98

of Consensus Ranking from Partial Observations Kemeny and Snell [1962]. While very effective,99

these architectures come with an extremely high computational cost Wang et al. [2023b], Simeoni100

et al. [2024], requiring numerous LLM calls. Hence, current research is focused on optimizing parts101

of the architecture, from context-aware approaches for observation partitioning such as semantic102

partitioning using feature clustering Saito et al. [2025] , or agentic partitioning Wu et al. [2025], to103

faster weighted Consensus Ranking algorithms Wang et al. [2025].104

Pathway Enrichment Analysis (PEA) is a widely studied field Nguyen et al. [2019], Reimand et al.105

[2019], Mathur et al. [2018] with extensive validation efforts Geistlinger et al. [2021], Buzzao106

et al. [2024] , yet it faces several well-documented limitations Lazareva et al. [2021], Khatri et al.107

[2012], Mubeen et al. [2022] . These limitations often arise from the difficulty of establishing108

a singular, comprehensive knowledge base, as the required biological knowledge is constantly109

updating, profoundly heterogeneous, and context-dependent Kotrys et al. [2024], Mubeen et al.110

[2022]. Those challenges have led to massive collaborative efforts by dedicated human task forces to111

manually curate biological information from the literature, epitomized by resources like the Kyoto112

Encyclopedia of Genes and Genomes (KEGG) database Kanehisa and Goto [2000], Kanehisa et al.113

[2023]. Those efforts highlights the immense promise of leveraging LLMs for this task, given114

their potential for deep biological understanding and their capacity to integrate real-time115

knowledge. Unfortunately, attempting to apply LLMs directly to this problem often falls short Hu116

et al. [2025a, 2023], as the specific difficulties of LLM-based PEA are a clear manifestation of the117

general ECQA challenges previously discussed.118

2.1 Online Learning with Side-Information119

Our framework is a novel application within the broader field of sequential decision-making, which120

evolved from the seminal frameworks of prediction with expert advice Cesa-Bianchi and Lugosi121

[2006], where the learner observes the loss of all possible actions at each step (also known as the122

"full-information" or "expert" setting), and the classic Multi-Armed Bandit (MAB) problem Robbins123

and Monro [1951], where the learner only observes the loss of the single action they chose (also124

known as the "bandit" setting).125

Here, we focus on a middle ground where side-information for every chosen action exists, meaning126

choosing one action reveals partial information about others. Specifically, our work incorporates and127

synthesizes two distinct fields: 1) The graph-structured feedback model, introduced by Mannor128

and Shamir [2011] and extensively developed by Alon et al. [2017]. This framework formalizes129

side-information using a feedback graph where an edge from action i to j means playing i reveals the130

loss of j. Key distinctions in this literature include the informed setting, where the learner knows131

the feedback graph before choosing an action, versus the uninformed setting. Further nuances132

involve whether the graph is symmetric (reciprocal feedback) or directed, and whether it is fixed or133

time-varying Alon et al. [2017]. The work of Li et al. [2019] extends this framework to stochastic134

graphs where each edge is associated with a probability of being realized. 2) Learning with noisy135

side observations Kocák et al. [2016]. This framework models a different form of side partial136

information. Instead of the feedback’s existence being sparse, it is assumed to be fully present but137

corrupted by noise.138

3 Methodological Rationale and Core Components139

At the heart of ARISE is a conceptualization of the entity identification problem as a Multi-Armed140

Bandit (MAB) task. Each candidate entity is formally treated as an arm of the bandit, and the action141

of pulling an arm constitutes a complete, multi-stage investigative cycle. This cycle begins with142

query formulation and execution, where a query is constructed by sampling a representative subset143

of observables from the entity-observable joint distribution, according to the framework’s current144

beliefs, and is then executed against the LLM. The LLM’s response is then subjected to a multi-stage145
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Figure 1: Overview of the ARISE framework with its dual-expert online learning algorithm DUETS.
Observations O (e.g., gene expression features, colored by their weights in the observations’ vector)
are mapped to candidate entities Ei. The GraphExpert leverages co-occurrence priors via a feedback
graph, while the NoiseExpert evaluates the quality of observations across all entities. Outputs from
the LLM queries (E1, E2) are validated through a modular system of Confirmation Atoms (Ac),
which assess different sources of uncertainty. Their residual information updates both the statistical
significance engine (p-values with confidence intervals) and the experts’ internal states, enabling an
adaptive and efficient entity-centric question answering pipeline.

validation protocol via a modular suite of Confirmation Atoms, which assess the output’s stability,146

coherence, and factual grounding to return a quantitative confidence score. This validation process147

also yields residual information that is immediately leveraged to perform online updates to the148

framework’s internal belief structures. Subsequently, the confidence-weighted outcome is assimilated149

by a Statistical Significance Engine that aggregates evidence across multiple trials against an explicit150

null hypothesis, culminating in a p-value and a confidence interval to quantify the significance of151

each entity’s observation. Finally, if an entity is considered “statistically enriched” (either positively152

or negatively), it is masked from subsequent rounds. The intelligent orchestration of this cycle is153

managed by the DUETS (DUal Experts for Turbid side-Observations with Stochastic feedback graph)154

bandit algorithm. Figure 1 presents a conceptual overview of the framework.155

3.1 Generative Model and Statistical Components156

As described before, we assume some reference corpus exists of the relation between entities and157

observables, and Supplementary Section D discusses the case where this data is absent.158

Mapping Observables to Entities We model the generation of a set of observables gq as a draw159

from a mixture model, where each component corresponds to an entity Ei. Each entity Ei is160

characterized by a categorical distribution over the universe of Nback observables, O. The parameters161

of this distribution, a probability vector θ⃗i ∈ ∆Nback−1, are assumed to be drawn from a conjugate162

Dirichlet prior, governed by a concentration parameter vector α⃗i, and this constitutes a Dirichlet-163

Multinomial (D-M) model.164

The posterior Dirichlet parameters, α⃗′, are learned from a reference corpus built from a set of datasets,165

each corresponding to a ranked list of all observables and a set of observed entities. The ranking is166
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based on the assumption that observables with a higher rank are more strongly associated with at least167

one of the entities. These ranked lists are partitioned into m quintiles, with each quintile assigned a168

distinct, monotonically decreasing weight. The weights for each entity are then aggregated across the169

corpus to form an empirical count vector, C⃗i.170

Modeling and Updating Entity Relationships For leveraging the relationships between entities,171

which form the basis of the stochastic structured feedback graph described in 3.2, we need to ensure172

the modeled relationships are relevant for propagating the residual loss and enabling updates from173

the auxiliary information provided by the confirmation atoms. The stochastic feedback graph is the174

graph in which entities are the nodes, and the edges are the conditional probability of observing175

entity Ej given the presence of entity Ei, denoted P (Ej |Ei). While this probability can be estimated176

directly from co-occurrence frequencies via the MLE, such an approach is often brittle, especially177

with small sparse data. We instead employ a Bayesian methodology that provides regularization,178

robustly handles unseen events, and allows for efficient, sequential updates.179

We model the conditional probability P (Ej |Ei) as a latent parameter θj|i ∈ [0, 1]. For a given entity180

Ei, the presence or absence of any other entity Ej in the same dataset is treated as a Bernoulli181

trial. To facilitate Bayesian inference, we place a conjugate Beta prior on this parameter: θj|i ∼182

Beta(αj|i, βj|i). A weakly informative prior (e.g., αj|i = 1, βj|i = 1) is chosen to regularize the183

estimate while allowing the data to drive the posterior.184

Given corpus-wide counts of entity occurrences (Ni) and co-occurrences (Ni,j), the posterior dis-
tribution for the parameter is also a Beta distribution, θj|i|data ∼ Beta(α′

j|i, β
′
j|i), with updated

parameters: α′
j|i = αj|i + Ni,j , and β′

j|i = βj|i + (Ni − Ni,j). Then, the point estimate for the
conditional probability is the mean of this posterior :

P (Ej |Ei) =
α′
j|i

α′
j|i + β′

j|i
=

αj|i +Ni,j

αj|i + βj|i +Ni

This Bayesian approach offers significant advantages over the MLE (P (Ej |Ei) = Ni,j/Ni). The185

prior acts as a smoothing mechanism, preventing the model from assigning probabilities of exactly 0 or186

1 based on limited observations (the "zero-frequency problem"), which ensures more robust estimates187

in sparse data regimes. Furthermore, the model is inherently updatable. New data, summarized by188

counts N ′
i and N ′

i,j , can be incorporated by treating the current posterior parameters (α′
j|i, β

′
j|i) as189

the new prior and applying the same update rules, avoiding the need to reprocess the entire corpus.190

The Statistical Significance Engine For a grounded result, we need a mechanism to aggregate191

iterative queries until a true signal emerges. We achieves this by formal statistical confidence,192

providing p-value for each entity. For that, we explicitly build the null hypothesis (H0), which193

defined as the probability of observing an entity given the prior beliefs only, position our framework as194

an "enrichment over current belief" enrichment problem. As described before, Supplementary Section195

D discuses the case where no prior belief is given and the enrichment is defined over background196

noise.197

A central challenge is that our framework is built on sequential querying over sampled sub-sets,
which are intentionally biased through the prior beliefs of the played action, meaning the probability
of observing an entity changes with every trial. The correct underlying model is therefore a Poisson
Binomial distribution, where the prior beliefs probabilities are:

P (Ei = 1|gq) =
P (gq|Ei) · πi

P (gq|Ei) · πi + P (gq|¬Ei) · (1− πi)

Where gq is the current queried set of observables, πi = P (Ei = 1) is the prior probability for each198

entity being observed, and P (gq|¬Ei) is the observables probability for the "background". In our199

current "working example" where a reference corpus exists, we can easily infer πi and P (gq|¬Ei)200

from the data. Supplementary Section D discuses the case where those not exists.201

For a given entity Ei, let X be the random variable for its total count across T trials, and let k be202

the observed count. Under the null hypothesis, X follows a Poisson Binomial distribution defined203

by the set of success probabilities {pi(gq(1)), . . . , pi(gq(T ))}. Since we are testing for enrichment,204

we perform a one-tailed test. The p-value is the probability of observing a count of k or greater205
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by chance :p-value = P (X ≥ k) =
∑T

j=k P (X = j). Directly computing the probability mass206

function P (X = j) is computationally infeasible as it requires summing over an exponential number207

of combinations, but efficient methods exists Biscarri et al. [2018].208

Our framework requires the incorporation of two origins of uncertainty for a robust confidence209

assessment. The first is the sampling variance, for ensuring robustness across any number of trials.210

The second is the observation variance, returned from the confirmation atoms, which reflects the211

certainty associated with each individual query results. For this, we construct a confidence interval212

for the empirical success probability. Given confidence interval for the p-value estimator itself213

is also not analytically feasible, we leverage the duality between hypothesis tests and confidence214

intervals: Rather than framing the confidence on the p-value, we construct a CI for the empirical215

success probability parameter p̂, with this CI incorporating both the origins of uncertainty. Given it is216

critical to be robust for any number of trials, we build upon the Clopper-Pearson(C-P) method for the217

sampling variance CI, and MCMC with adaptive stopping for incorporating the observation variance218

into this CI.219

Specifically, we treat the confidence from each observation as its probability of being a true positive,220

P (True observation|Ei = 1), and in each iteration, we sample an "effective k" from the resulting221

distribution. A C-P interval is calculated for this simulated count, generating a distribution of plausible222

lower and upper bounds. To construct a single CI which accounts for both sources of uncertainty223

simultaneously, we use the simulation to derive a confidence interval on the bounds themselves; the224

final lower bound is taken from the lower tail of the distribution of simulated lower bounds, and the225

final upper bound from the upper tail of the distribution of simulated upper bounds. An entity is226

considered "enriched" only if its p-value is below a significance threshold and its prior probability,227

πi, falls outside this composite confidence interval.228

3.2 The Arm Selection Policy229

The motivation for our arm selection policy is to intelligently reconcile two distinct beliefs about230

the data, informed by prior literature and our Confirmation Atoms (CA). The first belief is the231

co-occurrence probability between entities, which we model as a probabilistic feedback graph to232

guide exploration. The second is the mapping between observables and entities, which dictates the233

relevance of information we expect to receive from each query. Our ‘DUETS Bandit‘(or simply234

’DUETS’) algorithm is designed to synthesize these two beliefs while accounting for the framework’s235

inherently biased query mechanism; by using observables sampled for one entity to query the LLM236

about all entities, we receive a turbid signal for each entity.237

To achieve this, the core of the ‘DUETS‘ algorithm is its unique dual-perspective architecture. It238

maintains two parallel expert advisors, each operating under a different worldview, and learns to239

synthesize their advice. The ‘GraphExpert‘ is designed to enforce the co-occurrence prior. It240

operates as if it were in the informed, partial-information setting of Alon et al. [2017], and more241

specifically under the stochastic setup of Li et al. [2019], treating the realized co-occurrence graph242

Gt as a feedback mechanism. By focusing its exploration strategy on structurally important nodes243

(e.g., a dominating set), it ensures that the sampling policy take into account the known relationships244

between entities.245

The ‘NoiseExpert‘ acknowledges the noisy full-information reality of the problem, resamples the246

noisy side-observation model of Kocák et al. [2016]. Its goal is to strategically select the query247

(action) that is expected to yield the highest quality information across all entities. It does this by248

performing a proactive lookahead calculation, using a learned model of observation quality to identify249

the most informative query to make in each round. This lookahead function is intuitively defined as:250

p̂g(i, j) = Eo∼P (·|Ei)[P (Ej |o)] (1)

Which is the expected posterior probability of entity j, where the expectation is taken over all251

the input observables that a query for entity i is likely to produce. Direct computation of this252

expectation is analytically intractable, we therefore propose an approximation. Given that Equation 1253

represents the confusability between entities Ei and Ej , an intuitive and computationally efficient254

solution is to define a score based on the information-theoretic similarity of the entities’ learned255

distributions. Specifically, the Kullback-Leibler (KL) divergence between their posterior Dirichlet256

distributions, DKL(Dir(α⃗′
i)||Dir(α⃗′

j)), measures the inefficiency of using the distribution of Ej257

to describe observables generated from Ei. Supplementary Section B discuses the theoretical258
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justifications beyond the score. We leverage this by defining a similarity score via an exponential259

kernel, which serves as a principled proxy for the desired expectation:260

p̂g(i, j) := exp
(
−DKL(Dir(α⃗′

i)||Dir(α⃗′
j))

)
(2)

This score provides a fast and robust measure of entity similarity, directly grounded in the information261

content of their learned models, which we use in place of the intractable expectation.262

‘DUETS‘ then uses a high-level ‘Meta-Expert‘ that adaptively learns how to best mix the rec-263

ommendations from these two distinct advisors. By tracking the historical performance of the264

‘GraphExpert‘’s structural advice and the ‘NoiseExpert‘’s quality-driven advice, the ‘Meta-Expert‘265

dynamically adjusts their relative influence on the final action selection. This dual-perspective ap-266

proach allows our framework to achieve a near-optimal sampling strategy that minimizes queries267

while maximizing confidence.268

The environment is modeled with a stochastic setting where the loss for each entity j at time step t269

is constructed from a transformed Bernoulli process. After each action It, the environment reveals270

a binary outcome, rt,j ∈ {0, 1}, where rt,j = 1 signifies that entity j was returned by the LLM.271

Crucially, the environment also provides two measures of uncertainty that modulate this binary272

outcome: 1) A confidence score, Ac(It, j), which reflects the reliability of a positive outcome273

(rt,j = 1), And 2) A query relevance score, p(noise)
t,k , derived from the sampled observables for the274

query It and can be seen as a realization of pg(It, j) . These components, along with a constant275

hyperparameter Cback, which is the hyperparameter reflects the LLM confidence in the absent entities,276

are combined to form the confirmation-weighted loss that ‘DUETS‘ tracks:277

ℓ(rt,j , Ac(It, j), p
(noise)
t,k ;Cback) = rt,j ·Ac(It, j) + (1− rt,j) · p(noise)

t,k · Cback (3)

Intuitively, when an entity is present (rt,j = 1), the loss is determined solely by the confirmation278

atoms’ confidence for positive predictions, penalizing unreliable positives. When the entity is absent,279

this loss is attenuated by the observation relevance pg(It, j), ensuring that only relevant queries280

contribute strongly to the framework’s statistical engine.281

The complete algorithmic details of DUETS are provided in the Supplementary Material Section B.282

Subsection B.0.3 provides implementation-ready pseudocode with mathematical operations.283

3.3 Confirmation Atoms: A Dynamic Feedback System284

As discussed before, most state-of-the-art methods for ECQA employs additional LLM queries to285

validate results and assign confidence scores. We abstract these validation routines into a modular286

structure of "confirmation atoms(CA)." As described previously, a central innovation of our framework287

is the dual purpose these atoms serve. Their primary function is to probe the LLM’s output and288

generate a confidence score for the returned results. This score is the critical signal used by our289

Statistical Engine to calculate the MAB’s intrinsic loss. Their second, novel function, is to provide290

the residual information necessary for the online updating of our framework’s internal beliefs about291

the system. To make this process principled, each atom is designed to probe a distinct source of292

uncertainty, which we explicitly separate into epistemic (model-based) and aleatoric (data-based)293

types [Hüllermeier and Waegeman, 2021]. Table 1 summarizes how each atom contributes to the294

confidence score and which internal components it updates.295

Confirmation Atom Uncertainty
Type

Updates
Mapping

Updates
Gt

Updates
S

Counterfactual Agreement Epistemic — ✓ ✓
Graph Cohesion Aleatoric — ✓ ✓
The Round-Trip Atom Epistemic ✓ — ✓
Knowledge Grounding Epistemic ✓ — ✓

Table 1: The relationship between each Confirmation Atom and the framework components it updates.
All atoms contribute to the confidence score Ac(It, j) which is fed into the Statistical Engine (S).

Here we provide a short description of the CAs. The full description of the CAs together with the296

formal way they update the beliefs are in Supplementary Section C. The Counterfactual Agreement297
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Atom measures epistemic uncertainty by quantifying the stability of the LLM’s predictions when the298

initial set of observables is perturbed. The Graph Cohesion Atom assesses aleatoric uncertainty by299

evaluating the semantic plausibility of the returned entities, measuring their average distance within300

the entity correlation graph. The Round-Trip Atom probes the LLM’s internal coherence through301

a self-consistency check: it first retrieves an entity from a set of observables, then asks the LLM302

to generate observables for that entity, comparing the initial and final sets. Finally, the Knowledge303

Grounding Atom provides a direct factual check by comparing the LLM-generated observables for a304

given entity against a curated, external database. Together, these atoms provide a multi-faceted view305

of the LLM’s output quality, which is aggregated into a single confidence score.306

While each confirmation atom provides a distinct signal, a single, unified confidence score is required307

to drive the updates of the statistical engine. We define the total confidence score Ac(It, j) for a308

returned entity Ej at time step t as a normalized weighted aggregation of the individual atom scores.309

First, we transform the Entity Neighborhood Dispersion (END) score, which measures dispersion,310

into a normalized cohesion score, Cohesiont = 1− ENDt

max(distGt )
. For each entity Ej , the individual atom311

scores are represented by uj,t = [UA(Ej), UC(Ej), UG(Ej),Cohesiont]
T , and their relative impor-312

tance is defined by a non-negative hyperparameter weight vector, w = [wA, wRT , wKG, wGC ]
T .313

The final confidence score is then computed as:314

Ac(It, j) =
w · uj,t

∥w∥1
(4)

where ∥w∥1 is the L1 norm of the weight vector, ensuring the score is a convex combination that315

remains in the range [0, 1]. This normalized score Ac(It, j) serves as a single, potent signal that316

encapsulates the evidence gathered in each trial. It is then fed into the statistical engine to update the317

total observed count kj and total expected count λj .318

4 Evaluations - Parliamentary Work.319

Our evaluations are based on the hallmark problem of pathway enrichment analysis, which was320

described in 1. For this, we collected a corpus of 180 datasets, spanning multiple diseases and321

conditions, drawn from three related biological benchmarks [Buzzao et al., 2024, Geistlinger et al.,322

2021, Hutter and Zenklusen, 2018]. Each dataset contains raw gene-expression measurements323

(features) for control and disease groups, as well as a list of known biological pathways that serve as324

ground-truth labels associated with diseases. This structure allows us to fully validate our results, and325

it also used as the prior knowledge required in our framework.326

Our evaluations are designed to test three overarching goals: 1) Showing the effectiveness of results327

aggregating over partial queries. Although it has been shown before, we believe we are the first to328

use such a comprehensive benchmark. 2) Demonstrating the ARISE effectiveness through token329

efficiency. 3) Performing a deep ablation study investigating the different parts of ARISE and DUETS,330

including the "no prior-knowledge" case.331

Replicating the work of Hu et al. [2025b] on our datasets. Our first evaluation aims to demon-332

strate the need for a sophisticated query mechanism such as partition-and-aggregate. We used the333

annotated corpus described above to perform a large-scale real-data study following the work of Hu334

et al. [2025b]. As shown in Figure 3 in Supplementary Materiel Section A, even the most advanced335

models like GPT-4 (more specifically, gpt-4-1106-preview), which was used in the replication of the336

work of Hu et al. [2025b] on our benchmarks, did not achieve sufficient accuracy. On our corpus of337

data, a weak association was observed between the model’s self-reported confidence and semantic338

similarity (r=0.22 for Pearson correlation) between the pathways’ original names and the names339

generated by the model, along with a substantial tail of low-similarity predictions.340

Synthetic evaluation of DUETS. For evaluating DUETS, we used a controlled synthetic envi-341

ronment that simulates real-world conditions with noisy, graph-structured side observations. This342

setup allows us to measure DUETS’s sample efficiency and its ability to navigate complex depen-343

dencies. We created an environment with K=60 actions divided into C=3 clusters, with m⋆=2344

relevant actions per cluster, and a hubbed feedback graph that controls which side observations are345

revealed when an action is played (see Supplementary Material Section A). Query quality follows346

a cluster-aware matrix, so playing an action gives high-quality evidence for nearby entities and347

low-quality evidence for entities in other clusters. Because hubs reveal more neighbors, we evaluate348

8



rankings using inverse propensity weighting (IPW) to correct for bias. We compare three methods:349

GraphOnly, which explores the feedback graph structure; NoiseOnly, which focuses on quality-aware350

lookahead; and DUETS, our approach that mixes both strategies online. As shown in Figure 2 in351

Supplementary Materiel Section A, DUETS accelerates discovery by combining both sources of352

information, reaching 80% recall in 375 rounds (median) compared to 390 for NoiseOnly and 428 for353

GraphOnly. These results show that DUETS learns faster and is more sample-efficient. Its advantage354

holds compared to the two other methods.355

5 Conclusions356

Our work addresses the critical trade-off between reliability and computational cost in entity-centric357

question answering (ECQA) from long, complex contexts. Current methods, while effective, often358

lead to a "token explosion" that renders them impractical for large-scale scientific discovery. To359

overcome this, we introduced ARISE, a novel framework that reframes ECQA as a multi-armed bandit360

problem with side observations. ARISE’s core innovation is the DUETS Bandit, a dual-expert online361

learning algorithm that intelligently synthesizes prior structural knowledge (‘GraphExpert‘) with362

expected observation quality (‘NoiseExpert‘) to guide an efficient query policy. This is complemented363

by a modular system of Confirmation Atoms for robust, multi-faceted validation and a Statistical364

Engine that moves beyond opaque self-reported scores to provide rigorous, entity-wise p-values365

under an explicit null hypothesis. Our preliminary results are promising. On synthetic data, DUETS366

demonstrates superior sample efficiency compared to single-expert policies, confirming the value367

of its adaptive mixing strategy. Furthermore, our baseline replication on over 180 real-world gene368

expression datasets highlights the limitations of current single-query approaches.369

Limitations and Future Work. While ARISE presents a promising direction, we acknowledge370

several limitations that offer avenues for future research. First, ARISE relays on the availability of a371

relevant prior knowledge corpus. Although we have outlined a robust "uninformed initialization"372

protocol, its performance relative to a well-initialized model needs to be thoroughly benchmarked.373

Second, while ARISE is designed for efficiency, its scalability to extremely large sets of entities374

(e.g., tens of thousands) has not yet been tested. Finally, our framework assumes that the underlying375

LLM behaves as a consistent, stateless oracle. The performance of ARISE could be impacted by376

significant stochasticity in LLM responses or by unannounced updates to proprietary models, which377

could introduce non-stationarity into the learning environment.378

9



References379

Noga Alon, Nicolò Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Online learning with feedback380

graphs: Beyond bandits. In Proceedings of the 28th Conference on Learning Theory (COLT),381

volume 40 of Proceedings of Machine Learning Research, pages 23–35. PMLR, 2015. URL382

https://proceedings.mlr.press/v40/Alon15.html.383

Noga Alon, Nicolò Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Nonstochastic multi-armed bandits384

with graph-structured feedback. In Proceedings of the 34th International Conference on Machine385

Learning (ICML), pages 30–38. PMLR, 2017.386

Wilson Biscarri, Senhua D. Zhao, Robert J. Brunner, et al. A simple and fast method for computing387

the poisson binomial distribution function. Computational Statistics & Data Analysis, 122:92–100,388

2018.389

Davide Buzzao, Miguel Castresana-Aguirre, Dimitri Guala, and Erik L L Sonnhammer. Bench-390

marking enrichment analysis methods with the disease pathway network. Briefings in Bioin-391

formatics, 25(2):bbae069, 03 2024. ISSN 1477-4054. doi: 10.1093/bib/bbae069. URL392

https://doi.org/10.1093/bib/bbae069.393

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge University394

Press, 2006.395

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James396

Zou. Are more llm calls all you need? towards scaling laws of compound inference systems, 2024.397

URL https://arxiv.org/abs/2403.02419.398

Shanghua Gao, Ada Fang, Yepeng Huang, Valentina Giunchiglia, Ayush Noori, Jonathan Richard399

Schwarz, Yasha Ektefaie, Jovana Kondic, and Marinka Zitnik. Empowering biomedical discovery400

with ai agents. Cell, 187(22):6125–6151, Oct 2024. ISSN 0092-8674. doi: 10.1016/j.cell.2024.09.401

022. URL https://doi.org/10.1016/j.cell.2024.09.022.402

Ludwig Geistlinger, Gergely Csaba, Mara Santarelli, Marcel Ramos, Lucas Schiffer, Nitesh Turaga,403

Charity Law, Sean Davis, Vincent Carey, Martin Morgan, Ralf Zimmer, and Levi Waldron. Toward404

a gold standard for benchmarking gene set enrichment analysis. Brief Bioinform, 22(1):545–556,405

January 2021.406

Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape,407

security threats, and future research directions, 2025. URL https://arxiv.org/abs/2503.408

23278.409

Mengzhou Hu, Sahar Alkhairy, Ingoo Lee, Rudolf T Pillich, Robin Bachelder, Trey Ideker, and410

Dexter Pratt. Evaluation of large language models for discovery of gene set function. September411

2023.412

Mengzhou Hu, Sahar Alkhairy, Ingoo Lee, Rudolf T. Pillich, Dylan Fong, Kevin Smith, Robin413

Bachelder, Trey Ideker, and Dexter Pratt. Evaluation of large language models for discovery of414

gene set function. Nature Methods, 22(1):82–91, Jan 2025a. ISSN 1548-7105. doi: 10.1038/415

s41592-024-02525-x. URL https://doi.org/10.1038/s41592-024-02525-x.416

Mengzhou Hu, Sahar Alkhairy, Ingoo Lee, Rudolf T Pillich, Dylan Fong, Kevin Smith, Robin417

Bachelder, Trey Ideker, and Dexter Pratt. Evaluation of large language models for discovery of418

gene set function. Nat Methods, 22(1):82–91, 2025b. doi: 10.1038/s41592-024-02525-x.419

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong420

Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large421

language models: Principles, taxonomy, challenges, and open questions, 2024. Accepted by ACM422

Transactions on Information Systems (TOIS).423

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:424

An introduction to concepts and methods. Machine Learning, 110(3):457–506, 2021.425

Carolyn M. Hutter and Jean Claude Zenklusen. The cancer genome atlas: Creating lasting value426

beyond its data. Cell, 173(2):283–285, 2018. doi: 10.1016/j.cell.2018.03.042. URL https:427

//doi.org/10.1016/j.cell.2018.03.042.428

10

https://proceedings.mlr.press/v40/Alon15.html
https://doi.org/10.1093/bib/bbae069
https://arxiv.org/abs/2403.02419
https://doi.org/10.1016/j.cell.2024.09.022
https://arxiv.org/abs/2503.23278
https://arxiv.org/abs/2503.23278
https://arxiv.org/abs/2503.23278
https://doi.org/10.1038/s41592-024-02525-x
https://doi.org/10.1016/j.cell.2018.03.042
https://doi.org/10.1016/j.cell.2018.03.042
https://doi.org/10.1016/j.cell.2018.03.042


Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language429

models struggle to learn long-tail knowledge, 2023. ICML 2023 camera-ready version.430

M Kanehisa and S Goto. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28431

(1):27–30, January 2000.432

Minoru Kanehisa, Miho Furumichi, Yoko Sato, Masayuki Kawashima, and Mari Ishiguro-Watanabe.433

KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res, 51(D1):434

D587–D592, January 2023.435

John G Kemeny and J Laurie Snell. Mathematical models in the social sciences. Ginn, 1962.436

Purvesh Khatri, Marina Sirota, and Atul J Butte. Ten years of pathway analysis: current approaches437

and outstanding challenges. PLoS Comput Biol, 8(2):e1002375, February 2012.438

Tomáš Kocák, Gergely Neu, and Michal Valko. Online learning with noisy side observations. In439

Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th International Con-440

ference on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learn-441

ing Research, pages 1186–1194. PMLR, 2016. URL http://proceedings.mlr.press/v51/442

kocak16.html.443

Anna V. Kotrys, Timothy J. Durham, Xiaoyan A. Guo, Venkata R. Vantaku, Sareh Parangi, and444

Vamsi K. Mootha. Single-cell analysis reveals context-dependent, cell-level selection of mtdna.445

Nature, 629(8011):458–466, May 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07332-0.446

URL https://doi.org/10.1038/s41586-024-07332-0.447

O. Lazareva, J. Baumbach, M. List, and David B. Blumenthal. On the limits of active module448

identification. Briefings in bioinformatics, 2021. doi: 10.1093/bib/bbab066.449

Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. Retrieval-augmented generation for knowledge-450

intensive NLP tasks. In Advances in Neural Information Processing Systems, volume 33, 2020.451

Shuai Li, Wei Chen, Zheng Wen, and Kwong-Sak Leung. Stochastic online learning with probabilistic452

graph feedback. arXiv preprint arXiv:1903.01083, 2019. doi: 10.48550/arXiv.1903.01083.453

M. Liu, Z. Zhang, Y. Wang, and et al. Towards event extraction with massive types: Llm-based454

collaborative annotation and partitioning extraction, 2025. URL https://arxiv.org/abs/455

25XX.XXXXX. Unpublished, cited with permission.456

Nelson F. Liu, Kevin Lin, John Hewitt, et al. Lost in the middle: How language models use long457

contexts, 2023.458

Shie Mannor and Ohad Shamir. From bandits to experts: On the value of side-459

observations. In Advances in Neural Information Processing Systems 24 (NeurIPS 2011),460

pages 684–692, 2011. URL https://proceedings.neurips.cc/paper/2011/hash/461

e1e32e235eee1f970470a3a6658dfdd5-Abstract.html.462

Ravi Mathur, Daniel Rotroff, Jun Ma, Ali Shojaie, and Alison Motsinger-Reif. Gene set analysis463

methods: a systematic comparison. BioData Mining, 11(1):8, May 2018. ISSN 1756-0381. doi:464

10.1186/s13040-018-0166-8. URL https://doi.org/10.1186/s13040-018-0166-8.465

Sarah Mubeen, Alpha Tom Kodamullil, Martin Hofmann-Apitius, and Daniel Domingo-Fernández.466

On the influence of several factors on pathway enrichment analysis. Briefings in Bioinformatics,467

23(3):bbac143, 04 2022. ISSN 1477-4054. doi: 10.1093/bib/bbac143. URL https://doi.org/468

10.1093/bib/bbac143.469

Tuan-Minh Nguyen, Adib Shafi, Tin Nguyen, and Sorin Draghici. Identifying significantly im-470

pacted pathways: a comprehensive review and assessment. Genome Biology, 20(1):203, Oct471

2019. ISSN 1474-760X. doi: 10.1186/s13059-019-1790-4. URL https://doi.org/10.1186/472

s13059-019-1790-4.473

11

http://proceedings.mlr.press/v51/kocak16.html
http://proceedings.mlr.press/v51/kocak16.html
http://proceedings.mlr.press/v51/kocak16.html
https://doi.org/10.1038/s41586-024-07332-0
https://arxiv.org/abs/25XX.XXXXX
https://arxiv.org/abs/25XX.XXXXX
https://arxiv.org/abs/25XX.XXXXX
https://proceedings.neurips.cc/paper/2011/hash/e1e32e235eee1f970470a3a6658dfdd5-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/e1e32e235eee1f970470a3a6658dfdd5-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/e1e32e235eee1f970470a3a6658dfdd5-Abstract.html
https://doi.org/10.1186/s13040-018-0166-8
https://doi.org/10.1093/bib/bbac143
https://doi.org/10.1093/bib/bbac143
https://doi.org/10.1093/bib/bbac143
https://doi.org/10.1186/s13059-019-1790-4
https://doi.org/10.1186/s13059-019-1790-4
https://doi.org/10.1186/s13059-019-1790-4


Jüri Reimand, Ruth Isserlin, Veronique Voisin, Mike Kucera, Christian Tannus-Lopes, Asha Ros-474

tamianfar, Lina Wadi, Mona Meyer, Jeff Wong, Changjiang Xu, Daniele Merico, and Gary D.475

Bader. Pathway enrichment analysis and visualization of omics data using g:profiler, gsea, cy-476

toscape and enrichmentmap. Nature Protocols, 14(2):482–517, Feb 2019. ISSN 1750-2799. doi:477

10.1038/s41596-018-0103-9. URL https://doi.org/10.1038/s41596-018-0103-9.478

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical479

Statistics, 22(3):400–407, 1951. ISSN 00034851. URL http://www.jstor.org/stable/480

2236626.481

K. Saito et al. Lisa: Llm-guided semantic-aware clustering for topic modeling. ACL Anthology, 2025.482

I. N. Sanov. On the probability of large deviations of random variables. Matematicheskii Sbornik, 42483

(84)(1):11–44, 1957. Original in Russian.484

Weijia Shi, Qian Chen, and Yuguang Yao. BABILong: A new benchmark for long-context under-485

standing, 2024.486

F. Simeoni, M. Rossi, C. De Sanctis, and E. Fornari. From academia to industry: On the economics487

of large language models. arXiv preprint arXiv:2402.12345, 2024.488

Karan Singhal. Toward expert-level medical question answering with large language models. Nature489

Medicine, 31(3):943–950, Mar 2025. ISSN 1546-170X. doi: 10.1038/s41591-024-03423-7. URL490

https://doi.org/10.1038/s41591-024-03423-7.491

Karan Singhal, Shekoofeh Azizi, Tu Tu, et al. Large language models encode clinical knowledge.492

Nature, 620(7972):172–180, 2023.493

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-494

ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,495

2023a. URL https://arxiv.org/abs/2203.11171.496

Yuxia Wang, Minghan Wang, Muhammad Arslan Manzoor, Fei Liu, Georgi Georgiev, Rocktim Jyoti497

Das, and Preslav Nakov. Factuality of large language models: A survey, 2024. URL https:498

//arxiv.org/abs/2402.02420.499

Z. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, K. Guu, and D. Zhou. Self-consistency500

improves chain of thought reasoning in large language models. arXiv preprint arXiv:2203.11171,501

2023b.502

Z. Wang et al. First: Faster improved listwise reranking with single token decoding. arXiv preprint,503

2025.504

Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. Chain-of-thought prompting elicits reasoning in505

large language models. In Advances in Neural Information Processing Systems, volume 35, pages506

24824–24837, 2022.507

Junde Wu, Jiayuan Zhu, Yuyuan Liu, Min Xu, and Yueming Jin. Agentic reasoning: A streamlined508

framework for enhancing llm reasoning with agentic tools. arXiv preprint arXiv:2502.04644, 2025.509

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe510

Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,511

Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongx-512

iang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing513

Huang, and Tao Gui. The rise and potential of large language model based agents: A survey, 2023.514

URL https://arxiv.org/abs/2309.07864.515

Ge Yuan, Zifan Zhao, Anastasia Belyaeva, et al. TALISMAN: A tool for analyzing and summarizing516

information in lists of molecules and other entities, 2024. preprint.517

Chen-Chen Zong and Sheng-Jun Huang. Rethinking epistemic and aleatoric uncertainty for active518

open-set annotation: An energy-based approach. In Proceedings of the IEEE/CVF Conference on519

Computer Vision and Pattern Recognition (CVPR), 2025. URL https://openaccess.thecvf.520

com/content/CVPR2025/papers/Zong_Rethinking_Epistemic_and_Aleatoric_521

Uncertainty_for_Active_Open-Set_Annotation_An_CVPR_2025_paper.pdf.522

12

https://doi.org/10.1038/s41596-018-0103-9
http://www.jstor.org/stable/2236626
http://www.jstor.org/stable/2236626
http://www.jstor.org/stable/2236626
https://doi.org/10.1038/s41591-024-03423-7
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2402.02420
https://arxiv.org/abs/2402.02420
https://arxiv.org/abs/2402.02420
https://arxiv.org/abs/2309.07864
https://openaccess.thecvf.com/content/CVPR2025/papers/Zong_Rethinking_Epistemic_and_Aleatoric_Uncertainty_for_Active_Open-Set_Annotation_An_CVPR_2025_paper.pdf
https://openaccess.thecvf.com/content/CVPR2025/papers/Zong_Rethinking_Epistemic_and_Aleatoric_Uncertainty_for_Active_Open-Set_Annotation_An_CVPR_2025_paper.pdf
https://openaccess.thecvf.com/content/CVPR2025/papers/Zong_Rethinking_Epistemic_and_Aleatoric_Uncertainty_for_Active_Open-Set_Annotation_An_CVPR_2025_paper.pdf
https://openaccess.thecvf.com/content/CVPR2025/papers/Zong_Rethinking_Epistemic_and_Aleatoric_Uncertainty_for_Active_Open-Set_Annotation_An_CVPR_2025_paper.pdf
https://openaccess.thecvf.com/content/CVPR2025/papers/Zong_Rethinking_Epistemic_and_Aleatoric_Uncertainty_for_Active_Open-Set_Annotation_An_CVPR_2025_paper.pdf


Technical Appendices and Supplementary Material523

A Evaluation524

We evaluate along two complementary axes. First, a controlled synthetic study that isolates the525

contribution of the online policy (DUETS) under graph-structured, noisy side-observations. Second,526

an ongoing real-data study that follows the work of Hu et al Hu et al. [2025b] to benchmark ARISE527

against contemporary LLM-based baselines on annotated gene-expression datasets.528

A.0.1 Synthetic evaluation: DUETS sample efficiency under graph-structured529

side-observations530

To isolate the contribution of the online policy itself, we benchmark DUETS on a controlled synthetic531

environment that mirrors the setting in Section 3: actions correspond to entities (pathways), pulling532

one action reveals noisy side-observations about many others, and which observations are revealed is533

governed by a feedback graph.534

Environment. We simulate K = 60 actions partitioned into C = 3 clusters of equal size. A small535

subset of actions are truly relevant: we draw m⋆ = 2 per cluster (6 in total) and set their Bernoulli536

success probabilities to θj = θhi = 0.75; the remaining actions have θj = θlo = 0.10. Querying537

action i produces a revealed/hidden mask according to a directed feedback matrix P ∈ [0, 1]K×K538

(row i gives the probability that j is revealed when i is played), and quality weights according to539

S ∈ [0, 1]K×K (row i gives the observation quality for all j). We instantiate a clustered, hubbed540

feedback graph. In each cluster we designate 25% of actions as hubs—actions whose feedback541

rows have high out-coverage (large
∑

j Pij), meaning that playing a hub i tends to reveal many542

neighbors. Concretely, for same-cluster j we set Pij = 0.95 if i is a hub and Pij = 0.12 if i is a543

non-hub; cross-cluster reveals are rare with Pij = 0.01. Observation quality is high within clusters544

and low across clusters (Sij = 0.90 within, Sij = 0.12 across), with small Gaussian jitter (clipped to545

[0, 1]). A single round proceeds as follows: after playing i, each j is revealed with probability Pij ; if546

revealed, we draw rt,j ∼ Bernoulli(θj) and record a reward rt,j Sij ; otherwise the reward for j is547

zero. We use the loss ℓt,j = 1− rt,jSij .548

Unbiased ranking via inverse propensity weighting (IPW). Because hubs reveal more neighbors,549

a naïve cumulative-reward ranking is biased. We therefore build, for each policy, a per-arm IPW550

estimator of the latent relevance rj :551

r̂t,j =
∑
τ≤t

obsτ,j
PIτ j SIτ j + ε

, obsτ,j = 1{j revealed} · rτ,j SIτ j ,

with a small ε for numerical stability. This estimator is unbiased for E[rj ]. At round t we rank actions552

by r̂t,j and report Recall@m⋆ (the fraction of the m⋆ ground-truth actions appearing in the top-m⋆553

estimated list).554

Policies. We compare three policies; all hyperparameters are identical to the code used to produce555

Fig. 2.556

• GraphOnly. An Exp3-style learner (following the Exp3 algorithm of Alon et al Alon et al.557

[2017]) that uses the known feedback graph P to enforce exploration on a dominating set558

Dt of the current graph. The sampling distribution is pgrapht = (1 − λ) wt

∥wt∥1
+ λ

|Dt|1Dt559

with λ = 0.35 and learning rate ηG = 0.25. We update weights using an importance-560

weighted estimator computed only on revealed coordinates: ℓ̂grapht,j = min
{
ℓt,j/(PItj +561

10−12), cap
}
· 1{j revealed}, with a cap of 50 to control variance.562

• NoiseOnly. A quality-aware look-ahead policy that chooses actions expected to yield the563

most informative side-observations. It maintains an exponential moving average of per-arm564

rewards, r̂ ← (1−β)r̂+β(1−ℓt) with β = 0.05, and samples from a softmax over utilities565

Ut(i) =
∑

j(S ⊙ P )ij r̂j (temperature 1/ηN , with ηN = 1.0).566

• DUETS. Our meta-learner mixes the two advisers: pt = (1 − αt) p
graph
t + αt p

noise
t .567

During a short warm-up of 40 rounds we use a fixed αt = αwarm = 0.20 to en-568

sure coverage. Thereafter, αt is learned online by Hedge with meta-rate ηmeta = 1.5:569

WG
t+1 = WG

t exp(−ηmeta · ⟨pgrapht , ℓt⟩), WN
t+1 = WN

t exp(−ηmeta · ⟨pnoiset , ℓt⟩), and570
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Figure 2: Synthetic evaluation with a hubbed feedback graph. Shaded bands are 95% CIs over
40 seeds. We report recall of the true top arms using inverse-propensity weighting (IPW) to debias
coverage. DUETS attains 80% recall in 375 rounds (median) versus 390 for NoiseOnly and 428 for
GraphOnly, reflecting faster sample-efficient discovery while maintaining competitive late-round
performance.

αt = WN
t /(WG

t +WN
t ), with on-the-fly normalization to prevent numeric under/overflow.571

DUETS uses the same graph and noise sub-learners as above (λ = 0.35, ηG = 0.25,572

ηN = 1.0, β = 0.05).573

Protocol and metric. We run each policy for T = 500 rounds on independent environments574

(40 random seeds) and report the mean recall curve with 95% confidence bands. For a compact575

sample-complexity summary we also report, for each policy, the median number of rounds needed to576

reach ≥ 80% Recall@m⋆.577

Results. Figure 2 shows mean recall with 95% CIs over 40 runs (evaluation by inverse-propensity578

weighting). The hubbed feedback makes graph structure consequential, and IPW removes the579

coverage bias induced by hubs. In this regime, DUETS accelerates early discovery by combining (i)580

structural coverage from the GraphOnly dominating-set exploration and (ii) quality-aware look-ahead581

from NoiseOnly. After a short warm-up, the Hedge meta-update shifts weight toward the stronger582

adviser online. Quantitatively, DUETS reaches 80% recall in 375 rounds (median), compared to 390583

for NoiseOnly and 428 for GraphOnly; end-of-horizon recall remains competitive across methods.584

A.0.2 Real-data evaluation: Planned ARISE comparison585

To assess the performance of ARISE on real data, we compare to recent benchmarks established586

by Hu et al. Hu et al. [2025b], who evaluated five large language models on the task of assigning587

functional names to gene sets. In their study, LLMs such as GPT-4 and Gemini Pro were prompted588

with full lists of genes and tasked with producing a descriptive pathway name together with a self-589

reported confidence score. GPT-4 was found to generate names similar to curated Gene Ontology590

(GO) terms in over 70% of cases, with its confidence estimates predictive of correctness; it also591

showed the strongest ability to decline naming incoherent or random sets, a crucial property for592

scientific reliability.593
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Figure 3: Baseline replication on our 180+ datasets using the Hu et al. pipeline: GPT-4’s self-reported
confidence versus semantic similarity between the LLM-produced pathway name and the ground-truth
pathway name. Points in the lower-right (high confidence, low semantic similarity) indicate likely
evaluation mismatches or model overconfidence.

Our Dataset. To enable systematic evaluation of ARISE, we assembled a large corpus of more than594

180 annotated gene expression datasets, spanning multiple diseases and experimental conditions.595

This corpus provides a diverse and challenging benchmark for entity-centric question answering in596

biology.597

Reproducing the Baseline. As a first step, we re-implemented the evaluation pipeline from Hu et598

al., running their published code on our 180+ datasets. This produced baseline results consisting599

of (i) the pathway names assigned by the LLM to each dataset, and (ii) the model’s self-reported600

confidence scores. These outputs form a direct replication of the Hu et al benchmark, but on a broader601

and more heterogeneous testbed. As shown in Figure 3, the Pearson correlation between model602

confidence and the semantic similarity of generated versus ground-truth names is r = 0.22 (weak603

association); moreover, a substantial fraction of generated names have similarity < 0.5.604

Planned Comparison with ARISE. Our next step is to run the ARISE framework incorporating605

Confirmation Atoms, the DUETS bandit policy, and the statistical significance engine on the same606

datasets. This will allow a direct, head-to-head comparison between ARISE and the baseline pipeline.607

We hypothesize that ARISE will outperform the baseline by achieving higher accuracy at substantially608

lower query cost, while also providing calibrated, interpretable significance estimates rather than609

opaque self-reported confidence scores.610

B The DUETS Algorithm: An Adaptive Dual-Perspective Solution611

B.0.1 Motivation: Reconciling Disparate Priors in a Concrete Setting612

Our problem is motivated by a concrete scenario: learning which entities are most likely to be613

returned by a query to a Large Language Model (LLM). In this setting, the true reward rt,j ∈ {0, 1}614

for an entity j is determined by its absence or presence in the LLM’s response. For this we leverage615

two distinct, independent sources of prior knowledge that an effective learning agent use:616
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1. A Graph-Based Co-occurrence Prior: The literature provides data on the co-occurrence617

probabilities of different entities. This knowledge is best represented as a directed graph618

Gt, realized from a known probability matrix P = {pij}, where an edge suggests a likely619

co-occurrence. To leverage this, an agent should behave as if it is exploring a sparse, partial-620

information landscape, where observing one entity provides a strong signal to observe its621

neighbors. This perspective is directly inspired by the feedback graph model of Mannor and622

Shamir Mannor and Shamir [2011].623

2. An Observation Quality Prior: The query mechanism itself introduces another layer624

of complexity. A query for entity i is performed using a specific set of its "observables"625

(features). While this provides the best possible observation for entity i, the same set of626

observables also provides a noisy signal about all other entities j. The quality of these627

observations, represented by pg(It, j), is stochastic but drawn from a known distribution.628

This implies a noisy full-information setting, where the agent’s action It determines the629

observation quality for the entire system. This setup shares conceptual similarities with the630

noisy side-observation models explored by Kocák et al. Kocák et al. [2016].631

These two priors suggest fundamentally different algorithmic strategies. The DUal Experts for632

Turbid side-Observations with Stochastic feedback graph (DUETS) algorithm is designed to633

resolve this tension. It creates a single agent that maintains two parallel worldviews—one partial-634

information and one full-information—and learns online how to best combine their advice.635

B.0.2 Algorithmic Framework: Adaptive Mixing of Two Expert Perspectives636

The ‘DUETS‘ algorithm consists of three core components, each justified by the need to handle a637

specific aspect of the problem:638

• A GraphExpert, which operates under the assumption that feedback is sparse and deter-639

mined by the graph Gt. Its purpose is to enforce a robust exploration strategy that respects640

the co-occurrence prior. Its design is heavily influenced by the ‘Exp3.G‘ family of algorithms641

from Alon et al. ?, which demonstrate that leveraging graph structure (e.g., dominating sets)642

is critical for efficient exploration in partial-information settings.643

• A NoiseExpert, which acknowledges the noisy full-information reality. Its purpose is644

to strategically choose an action that maximizes the overall quality of the observations it645

receives. Unlike the reactive model in Kocák et al. Kocák et al. [2016], where noise quality646

is unknown and adversarial, our ‘NoiseExpert‘ can be proactive because the statistics of the647

noise (p̄g(It, j)) are known. It performs a lookahead calculation to find the most informative648

action.649

• A high-level Meta-Expert, which acts as an adaptive mixer. This is a standard and powerful650

technique from the "learning from expert advice" literature. Its purpose is to learn the651

optimal blending of the two sub-experts’ advice by tracking their historical performance,652

thus freeing the user from having to manually set a fixed mixing parameter.653

Consulting the Experts. The two experts generate their advice independently, based on their654

distinct worldviews.655

• The ‘GraphExpert‘’s distribution, pgraph
t , must ensure exploration. Following Alon et al.656

Alon et al. [2015], an effective strategy is to guarantee a minimum level of exploration on a657

dominating set Dt of the current graph Gt. This ensures that all nodes are observed (in the658

hypothetical partial-information world) with high probability.659

• The ‘NoiseExpert‘’s utility function, Ut(i), is a proactive, one-step lookahead. It estimates660

the total "information reward" from playing action i, weighting the expected quality of each661

observation p̄g(It, j) by the current estimated reward of action j. This prioritizes choosing662

queries that yield high-quality information about promising entities.663

The Dual Update and its Estimators. This is the core of the algorithm’s dual nature. After664

observing the outcome, both experts update their internal state, but they interpret the information665

differently.666

• The ‘NoiseExpert‘ uses the simple, low-variance estimator ℓ̃t,k. This is possible because it667

operates in the full-information world and has access to the signal for every action.668
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• The ‘GraphExpert‘ must use the high-variance, importance-weighted estimator ℓ̂graph
t,k . The669

term I{(It, k) ∈ Et} enforces its worldview that it only "sees" feedback along realized edges.670

The denominator qt,k is the probability of this event occurring. Dividing by qt,k is essential671

to correct for the selection bias and ensure that the estimator is unbiased in expectation672

(E[ℓ̂graph
t,k ] = ℓt,k). This importance weighting is a cornerstone of modern bandit algorithms,673

essential for handling partial feedback as seen in works from Li et al. ? to Esposito et al. ?.674

Updating the Meta-Expert. The ‘Meta-Expert‘ learns by evaluating the advice of its sub-experts675

in hindsight. The meta-loss, Lmeta,G
t , represents the expected loss the agent would have suffered if it676

had followed the ‘GraphExpert‘’s recommendation pgraph
t precisely. By updating its weights based677

on these meta-losses, the ‘Meta-Expert‘ learns to increase the influence (αt) of the sub-expert that678

provides consistently better recommendations for the given environment.679

B.0.3 The DUETS Algorithm: Implementation-Level Pseudo-code680

This section provides a highly detailed pseudocode for the DUETS algorithm, intended to serve as681

a direct guide for implementation. Each step is broken down into its constituent mathematical and682

logical operations.683

The Loss Model The algorithm operates in a full-information setting where, after each round, the684

true binary outcome rt,j ∈ {0, 1} and the parameters Ac(t) and pg(It, j) are revealed for all entities685

j. The algorithm then constructs the loss for the round using the following function:686

ℓ(rt,j , Ac(It, j), p
(noise)
t,k ;Cback) = rt,j ·Ac(It, j) + (1− rt,j) · p(noise)

t,k · Cback (5)

This constructed loss, which incorporates various measures of uncertainty, is then used to update all687

expert components.688

Helper Functions For clarity, we first define two helper functions that will be used within the main689

algorithm.690

Algorithm 1 *
Function GreedyDominatingSet(G = (V, E))

1: Input: A directed graph G = (V, E).
2: Initialize: Dominating set D ← ∅, Uncovered nodes U ← V .
3: while U is not empty do
4: Let Nout(v)← {v} ∪ {j ∈ V | (v, j) ∈ E}.
5: Select node v∗ ∈ V that maximizes |Nout(v) ∩ U |.
6: D ← D ∪ {v∗}.
7: U ← U \Nout(v

∗).
8: end while
9: Return D.

Algorithm 2 *
Function NormalizeWeights(w)

1: Input: A vector of non-negative weights w = {w1, . . . , wK}.
2: W ←

∑K
k=1 wk.

3: if W = 0 then return uniform distribution {1/K, . . . , 1/K}.
4: elsereturn {w1/W, . . . , wK/W}.
5: end if

Main Algorithm The main loop of the DUETS algorithm integrates the advice from its three expert691

components to make decisions and learn from feedback.692
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Algorithm 3 The DUETS Algorithm (Detailed)
Require: Set of actions (entities) V , |V | = K; Number of rounds T .
Require: Learning rates: ηG, ηN , ηmeta > 0; Regularization parameter γ > 0.
Require: GraphExpert exploration parameter λG ∈ [0, 1].
Require: Known co-occurrence probability matrix P ∈ [0, 1]K×K , where Pij = pij .
Require: Known constant hyperparameter acb.

1: Initialize Data Structures:
2: GraphExpert weights: wgraph

1 ← {1, . . . , 1} ∈ RK .
3: NoiseExpert weights: wnoise

1 ← {1, . . . , 1} ∈ RK .
4: Meta-Expert weights: Wmeta,G

1 ← 1, Wmeta,N
1 ← 1.

5: Cumulative losses for NoiseExpert’s model: Lnoise
0 ← {0, . . . , 0} ∈ RK .

6: Running sum for Ac: SAc ← 0; Running count for Ac: NAc ← 0.
7: for t = 1, . . . , T do
8: Observe Context: An external process provides the realized graph Gt = (V, E⊔).
9: — Consult GraphExpert —

10: Compute dominating set Dt ← GreedyDominatingSet(Gt).
11: Normalize weights: pw,graph

t ← NormalizeWeights(wgraph
t ).

12: Form GraphExpert’s mixed distribution for all k ∈ V :
pgraph
t,k ← (1− λG) · pw,graph

t,k + λG

|Dt| · I{k ∈ Dt}.
13: — Consult NoiseExpert —
14: For each pair (i, j), compute the estimated quality: p̂g(i, j) ←

CalculateExpectedPg(i, j).

15: Let est_rewardt,j ← 1− Lnoise
t−1,j

t−1 · I{t > 1}.
16: Compute lookahead utilities for all i ∈ V : Ut(i)←

∑K
j=1 est_rewardt,j · p̂g(i, j).

17: Compute unnormalized weights: wu,noise
t,k ← exp(ηN · Ut(k)).

18: Normalize to form distribution: pnoise
t ← NormalizeWeights(wu,noise

t ).
19: — Consult Meta-Expert and Mix Advice —
20: Compute dynamic mixing parameter: αt ←Wmeta,N

t /(Wmeta,G
t +Wmeta,N

t ).
21: Form the final action distribution for all k ∈ V : pt,k ← (1− αt) · pgraph

t,k + αt · pnoise
t,k .

22: — Act and Observe Feedback —
23: Draw action to play: It ∼ pt.
24: An external process reveals the true binary outcomes: {rt,j}j∈V .
25: An external process reveals the scalar loss parameter: Ac(It, j).
26: An external process reveals the vector of loss parameters: {pg(It, j)}j∈V .
27: — Perform Dual Update —
28: For each j ∈ V , construct the loss for the round:

ℓt,j ← Ac(It, j) · (rt,j) + (1− rt,j) · p(noise)
t,k · Cback.

29: Update NoiseExpert:
30: Update cumulative losses: Lnoise

t,k ← Lnoise
t−1,k + ℓt,k for all k ∈ V .

31: Update weights: wnoise
t+1,k ← wnoise

t,k · exp(−ηN · ℓt,k) for all k ∈ V .
32: Update GraphExpert:
33: Compute observation probabilities for all k ∈ V : qt,k ←

∑K
i=1 pt,i · pik.

34: Form importance-weighted estimators for all k ∈ V :
ℓ̂graph
t,k ← ℓt,k

qt,k+γ · I{(It, k) ∈ E⊔}.
35: Update weights: wgraph

t+1,k ← wgraph
t,k · exp(−ηG · ℓ̂graph

t,k ) for all k ∈ V .
36: Update Online Learning Model for Ac(It, j):
37: SAc ← SAc +Ac(It, j); NAc ← NAc + 1.
38: — Update Meta-Expert —
39: Compute meta-loss for GraphExpert’s advice: Lmeta,G

t ←
∑K

k=1 p
graph
t,k · ℓt,k.

40: Compute meta-loss for NoiseExpert’s advice: Lmeta,N
t ←

∑K
k=1 p

noise
t,k · ℓt,k.

41: Update meta-weights:
Wmeta,G

t+1 ←Wmeta,G
t · exp(−ηmeta · Lmeta,G

t ).
Wmeta,N

t+1 ←Wmeta,N
t · exp(−ηmeta · Lmeta,N

t ).
42: end for
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B.0.4 Estimating the Quality Score pg(i, j)693

The core motivation is to quantify the relationship between the query action i and the observed entity694

j. Specifically, we want to answer the question: "If we query the LLM using a set of observables695

sampled for entity i, how much evidence should we expect to see for entity j?". We define this696

quality score, pg(i, j), as the expected posterior probability of entity j, where the expectation is taken697

over all the evidence (sets of observables) that a query for entity i is likely to produce. Formally, we698

want to calculate the expectation:699

pg(i, j) = Eo∼P (o|θi) [P (j | o)] (6)

The direct computation of this expectation is intractable due to the combinatorial explosion in the700

number of possible observable sets o. We therefore turn to an information-theoretic analytical701

approximation, grounded in Large Deviation Theory(LD-T), for this value.702

The core of the approximation is to replace the true expectation over all observable sets,703

Eo∼P (·|θi)[P (j|o)], with the posterior evaluated at the mean set of observables, P (j|E[o]). The704

mean observables from entity i, E[o], is a count vector whose empirical distribution is precisely the705

mean probability vector θ̂i.706

A key result from Large Deviation Theory (Sanov [1957] Sanov’s Theorem states that the probability707

of observing an empirical distribution θ̂′ from a source k is asymptotically given by P (. . . ) ≈708

exp(−n ·DKL(θ̂
′||θ̂k)), where n is the number of observables.709

C Confirmation Atoms710

Our framework leverages a set of "confirmation atoms" to assign per-entity confidence scores based711

on LLM output behavior. Each atom is designed to probe a distinct source of uncertainty, which we712

explicitly separate into two types: epistemic uncertainty and aleatoric uncertainty. The results from713

these atoms are aggregated into a single confidence score, Ac(It, j), for each returned entity Ej at714

time step t.715

Here we provide an full description of the CAs.716

1. Counterfactual Agreement Atom This atom measures epistemic uncertainty by quantifying717

the stability of the LLM’s predictions under input perturbations. Given an initial observations subset718

Oquery, we generate n perturbed queries {Ok}nk=1 from neighbored entities from the graph Gt and719

observe the resulting LLM responses {Eresponse,k}nk=1. The Counterfactual Agreement Score A(Ej)720

for a returned entity Ej is defined as the proportion of perturbed queries that still include Ej in their721

top predictions:722

A(Ej) =
1

n

n∑
k=1

I[Ej ∈ Eresponse,k]

A low score indicates instability in the prediction, suggesting that the LLM lacks consistent internal723

knowledge.724

2. Graph Cohesion Atom This atom measures aleatoric uncertainty by evaluating the domain725

plausibility of the LLM’s output. It computes an Entity Neighborhood Dispersion (END) score based726

on the shortest-path distances between the entities returned by the LLM in our a-priori correlation727

graph Gt. Let {E1, . . . , Ek} be the set of entities returned in a trial. The END score is defined as the728

average pairwise shortest-path distance:729

END =
1(
k
2

) ∑
j<m

distGt(Ej , Em)

A low END score indicates a dense, localized cluster of entities, reflecting aleatoric uncer-730

tainty—multiple plausible domain interpretations of the same observations subset.731

3. The Round-Trip Atom This atom provides a powerful measure of the LLM’s internal knowledge732

coherence. It performs a round-trip verification by first retrieving an entity from a given observations733

set and then immediately asking the LLM to generate observations for that retrieved entity.734

1. Forward Pass: A query with an observations set Oquery yields a primary response entity Ej .735
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2. Reverse Pass: A second query, "Given entity Ej , what are its top N observations?", yields736

a new observations set Oreverse.737

The Self-Consistency Score UC(Ej) is defined as the Jaccard similarity between the initial and738

reverse-pass observations sets:739

UC(Ej) =
|Oquery ∩Oreverse|
|Oquery ∪Oreverse|

A high UC(Ej) indicates robust, self-consistent knowledge.740

4. Knowledge Grounding Atom This atom directly addresses factual inconsistency by comparing741

the LLM’s knowledge to an authoritative, external source. It builds upon the Round-Trip Atom, using742

the observations list Oreverse produced by the LLM. An external query is issued to a curated database743

to obtain a "ground truth" observations list, Oexternal, for entity Ej . The Grounding Score UG(Ej) is744

the Jaccard similarity between the two lists:745

UG(Ej) =
|Oreverse ∩Oexternal|
|Oreverse ∪Oexternal|

A high UG(Ej) provides a strong signal of factual accuracy, contributing to the confidence score.746
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D Framework Robustness: Uninformed Initialization747

A key strength of the ARISE framework is its robustness and adaptability, allowing it to function748

effectively even in the absence of a pre-existing, curated corpus for generating prior knowledge. We749

address this uninformed initialization scenario through three complementary mechanisms.750

First, in a practical application where no corpus is available, the framework can use the LLM itself751

to generate a preliminary set of priors. By prompting the LLM with randomly sampled sets of752

observables, we can build an initial, albeit noisy, estimate of entity co-occurrence probabilities and753

observable-to-entity mappings. This serves as a functional starting point for the framework.754

More fundamentally, the framework is designed to learn and refine these priors online as a core755

part of its operation. The residual information gathered by the Confirmation Atoms is not only756

used for scoring but also for updating ARISE’s internal beliefs. For instance, the Graph Cohesion757

Atom provides direct evidence for updating the stochastic feedback graph, allowing the framework758

to bootstrap and continuously improve its own knowledge base from the LLM’s responses.759

Finally, ARISE remains viable even in the most extreme case, assuming no initial priors are provided760

and the Confirmation Atom updates are disabled.761

1. A feedback graph is inherently constructed from the very first query. Each list of entities762

returned by the LLM is a direct observation of their co-occurrence, providing an immediate,763

dynamically updated graph for the ‘GraphExpert‘ to leverage.764

2. The statistical engine remains well-defined. The success probabilities {pi} used to parame-765

terize the Poisson Binomial distribution for the null hypothesis would default to a uniform766

distribution over all entities. While uninformative, this is not a misspecification but rather767

the correct assumption when no relationship between observables and entities is known a768

priori.769

3. The DUETS bandit is designed to adapt to this uncertainty. Initially, the ‘NoiseExpert‘770

(which relies on observable-entity mappings) will provide poor advice. However, the771

‘MetaExpert‘ will quickly learn to down-weight its recommendations and rely more heavily772

on the ‘GraphExpert‘, which learns from the dynamically observed co-occurrence graph.773

This results in a less sample-efficient "warm-up" period, but the system is designed to774

converge and find the correct signal.775

To validate these claims, we will include a dedicated ablation study in our final evaluation to em-776

pirically demonstrate the framework’s performance under this challenging uninformed initialization777

scenario.778

NeurIPS Paper Checklist779

The checklist is designed to encourage best practices for responsible machine learning research,780

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove781

the checklist: The papers not including the checklist will be desk rejected. The checklist should782

follow the references and follow the (optional) supplemental material. The checklist does NOT count783

towards the page limit.784

Please read the checklist guidelines carefully for information on how to answer these questions. For785

each question in the checklist:786

• You should answer [Yes] , [No] , or [NA] .787

• [NA] means either that the question is Not Applicable for that particular paper or the788

relevant information is Not Available.789

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).790

The checklist answers are an integral part of your paper submission. They are visible to the791

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it792

(after eventual revisions) with the final version of your paper, and its final version will be published793

with the paper.794

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.795

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a796
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proper justification is given (e.g., "error bars are not reported because it would be too computationally797

expensive" or "we were unable to find the license for the dataset we used"). In general, answering798

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we799

acknowledge that the true answer is often more nuanced, so please just use your best judgment and800

write a justification to elaborate. All supporting evidence can appear either in the main paper or the801

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification802

please point to the section(s) where related material for the question can be found.803

IMPORTANT, please:804

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",805

• Keep the checklist subsection headings, questions/answers and guidelines below.806

• Do not modify the questions and only use the provided macros for your answers.807

1. Claims808

Question: Do the main claims made in the abstract and introduction accurately reflect the809

paper’s contributions and scope?810

Answer: [Yes]811

Justification: Our main framework and ongoing evaluations are clearly stated in the abstract812

and demonstrated in the paper. They reflect the paper’s contributions and scope.813

Guidelines:814

• The answer NA means that the abstract and introduction do not include the claims815

made in the paper.816

• The abstract and/or introduction should clearly state the claims made, including the817

contributions made in the paper and important assumptions and limitations. A No or818

NA answer to this question will not be perceived well by the reviewers.819

• The claims made should match theoretical and experimental results, and reflect how820

much the results can be expected to generalize to other settings.821

• It is fine to include aspirational goals as motivation as long as it is clear that these goals822

are not attained by the paper.823

2. Limitations824

Question: Does the paper discuss the limitations of the work performed by the authors?825

Answer: [Yes]826

Justification: We are discussing the limitations in section 5.827

Guidelines:828

• The answer NA means that the paper has no limitation while the answer No means that829

the paper has limitations, but those are not discussed in the paper.830

• The authors are encouraged to create a separate "Limitations" section in their paper.831

• The paper should point out any strong assumptions and how robust the results are to832

violations of these assumptions (e.g., independence assumptions, noiseless settings,833

model well-specification, asymptotic approximations only holding locally). The authors834

should reflect on how these assumptions might be violated in practice and what the835

implications would be.836

• The authors should reflect on the scope of the claims made, e.g., if the approach was837

only tested on a few datasets or with a few runs. In general, empirical results often838

depend on implicit assumptions, which should be articulated.839

• The authors should reflect on the factors that influence the performance of the approach.840

For example, a facial recognition algorithm may perform poorly when image resolution841

is low or images are taken in low lighting. Or a speech-to-text system might not be842
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used reliably to provide closed captions for online lectures because it fails to handle843

technical jargon.844

• The authors should discuss the computational efficiency of the proposed algorithms845

and how they scale with dataset size.846

• If applicable, the authors should discuss possible limitations of their approach to847

address problems of privacy and fairness.848

• While the authors might fear that complete honesty about limitations might be used by849

reviewers as grounds for rejection, a worse outcome might be that reviewers discover850

limitations that aren’t acknowledged in the paper. The authors should use their best851

judgment and recognize that individual actions in favor of transparency play an impor-852

tant role in developing norms that preserve the integrity of the community. Reviewers853

will be specifically instructed to not penalize honesty concerning limitations.854

3. Theory assumptions and proofs855

Question: For each theoretical result, does the paper provide the full set of assumptions and856

a complete (and correct) proof?857

Answer: [Yes]858

Justification: Assumptions underlying our online algorithm DUETS are stated in Section 3.2859

and Supplementary.860

Guidelines:861

• The answer NA means that the paper does not include theoretical results.862

• All the theorems, formulas, and proofs in the paper should be numbered and cross-863

referenced.864

• All assumptions should be clearly stated or referenced in the statement of any theorems.865

• The proofs can either appear in the main paper or the supplemental material, but if866

they appear in the supplemental material, the authors are encouraged to provide a short867

proof sketch to provide intuition.868

• Inversely, any informal proof provided in the core of the paper should be complemented869

by formal proofs provided in appendix or supplemental material.870

• Theorems and Lemmas that the proof relies upon should be properly referenced.871

4. Experimental result reproducibility872

Question: Does the paper fully disclose all the information needed to reproduce the main ex-873

perimental results of the paper to the extent that it affects the main claims and/or conclusions874

of the paper (regardless of whether the code and data are provided or not)?875

Answer: [Yes]876

Justification: We provide detailed descriptions of our experimental procedures in the Sup-877

plementary sub section A.0.1.878

Guidelines:879

• The answer NA means that the paper does not include experiments.880

• If the paper includes experiments, a No answer to this question will not be perceived881

well by the reviewers: Making the paper reproducible is important, regardless of882

whether the code and data are provided or not.883

• If the contribution is a dataset and/or model, the authors should describe the steps taken884

to make their results reproducible or verifiable.885

• Depending on the contribution, reproducibility can be accomplished in various ways.886

For example, if the contribution is a novel architecture, describing the architecture fully887

might suffice, or if the contribution is a specific model and empirical evaluation, it may888

be necessary to either make it possible for others to replicate the model with the same889
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dataset, or provide access to the model. In general. releasing code and data is often890

one good way to accomplish this, but reproducibility can also be provided via detailed891

instructions for how to replicate the results, access to a hosted model (e.g., in the case892

of a large language model), releasing of a model checkpoint, or other means that are893

appropriate to the research performed.894

• While NeurIPS does not require releasing code, the conference does require all submis-895

sions to provide some reasonable avenue for reproducibility, which may depend on the896

nature of the contribution. For example897

(a) If the contribution is primarily a new algorithm, the paper should make it clear how898

to reproduce that algorithm.899

(b) If the contribution is primarily a new model architecture, the paper should describe900

the architecture clearly and fully.901

(c) If the contribution is a new model (e.g., a large language model), then there should902

either be a way to access this model for reproducing the results or a way to reproduce903

the model (e.g., with an open-source dataset or instructions for how to construct904

the dataset).905

(d) We recognize that reproducibility may be tricky in some cases, in which case906

authors are welcome to describe the particular way they provide for reproducibility.907

In the case of closed-source models, it may be that access to the model is limited in908

some way (e.g., to registered users), but it should be possible for other researchers909

to have some path to reproducing or verifying the results.910

5. Open access to data and code911

Question: Does the paper provide open access to the data and code, with sufficient instruc-912

tions to faithfully reproduce the main experimental results, as described in supplemental913

material?914

Answer: [No]915

Justification: We don’t have any available code to share at the moment, the work is still in916

progress.917

Guidelines:918

• The answer NA means that paper does not include experiments requiring code.919

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/920

public/guides/CodeSubmissionPolicy) for more details.921

• While we encourage the release of code and data, we understand that this might not be922

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not923

including code, unless this is central to the contribution (e.g., for a new open-source924

benchmark).925

• The instructions should contain the exact command and environment needed to run to926

reproduce the results. See the NeurIPS code and data submission guidelines (https:927

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.928

• The authors should provide instructions on data access and preparation, including how929

to access the raw data, preprocessed data, intermediate data, and generated data, etc.930

• The authors should provide scripts to reproduce all experimental results for the new931

proposed method and baselines. If only a subset of experiments are reproducible, they932

should state which ones are omitted from the script and why.933

• At submission time, to preserve anonymity, the authors should release anonymized934

versions (if applicable).935

• Providing as much information as possible in supplemental material (appended to the936

paper) is recommended, but including URLs to data and code is permitted.937

6. Experimental setting/details938
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-939

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the940

results?941

Answer: [Yes]942

Justification: in the Supplementary section B, all the details of the DUETS algorithm are943

specified, including initial parameters, hyperparameters, etc.944

Guidelines:945

• The answer NA means that the paper does not include experiments.946

• The experimental setting should be presented in the core of the paper to a level of detail947

that is necessary to appreciate the results and make sense of them.948

• The full details can be provided either with the code, in appendix, or as supplemental949

material.950

7. Experiment statistical significance951

Question: Does the paper report error bars suitably and correctly defined or other appropriate952

information about the statistical significance of the experiments?953

Answer: [Yes]954

Justification: [TODO]955

Guidelines:956

• The answer NA means that the paper does not include experiments.957

• The authors should answer "Yes" if the results are accompanied by error bars, confi-958

dence intervals, or statistical significance tests, at least for the experiments that support959

the main claims of the paper.960

• The factors of variability that the error bars are capturing should be clearly stated (for961

example, train/test split, initialization, random drawing of some parameter, or overall962

run with given experimental conditions).963

• The method for calculating the error bars should be explained (closed form formula,964

call to a library function, bootstrap, etc.)965

• The assumptions made should be given (e.g., Normally distributed errors).966

• It should be clear whether the error bar is the standard deviation or the standard error967

of the mean.968

• It is OK to report 1-sigma error bars, but one should state it. The authors should969

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis970

of Normality of errors is not verified.971

• For asymmetric distributions, the authors should be careful not to show in tables or972

figures symmetric error bars that would yield results that are out of range (e.g. negative973

error rates).974

• If error bars are reported in tables or plots, The authors should explain in the text how975

they were calculated and reference the corresponding figures or tables in the text.976

8. Experiments compute resources977

Question: For each experiment, does the paper provide sufficient information on the com-978

puter resources (type of compute workers, memory, time of execution) needed to reproduce979

the experiments?980

Answer: [TODO]981

Justification: [TODO]982

Guidelines:983

• The answer NA means that the paper does not include experiments.984
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,985

or cloud provider, including relevant memory and storage.986

• The paper should provide the amount of compute required for each of the individual987

experimental runs as well as estimate the total compute.988

• The paper should disclose whether the full research project required more compute989

than the experiments reported in the paper (e.g., preliminary or failed experiments that990

didn’t make it into the paper).991

9. Code of ethics992

Question: Does the research conducted in the paper conform, in every respect, with the993

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?994

Answer: [Yes]995

Justification: After careful review of the NeurIPS Code of Ethics, our research conforms996

with the Code of Ethics, as seen in all sections.997

Guidelines:998

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.999

• If the authors answer No, they should explain the special circumstances that require a1000

deviation from the Code of Ethics.1001

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1002

eration due to laws or regulations in their jurisdiction).1003

10. Broader impacts1004

Question: Does the paper discuss both potential positive societal impacts and negative1005

societal impacts of the work performed?1006

Answer: [NA]1007

Justification: This work is primarily theoretical and methodological, and we do not anticipate1008

any immediate societal impact. That said, we recognize that large-scale deployment of our1009

algorithm could inherit the same societal biases present in other generative models.1010

Guidelines:1011

• The answer NA means that there is no societal impact of the work performed.1012

• If the authors answer NA or No, they should explain why their work has no societal1013

impact or why the paper does not address societal impact.1014

• Examples of negative societal impacts include potential malicious or unintended uses1015

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1016

(e.g., deployment of technologies that could make decisions that unfairly impact specific1017

groups), privacy considerations, and security considerations.1018

• The conference expects that many papers will be foundational research and not tied1019

to particular applications, let alone deployments. However, if there is a direct path to1020

any negative applications, the authors should point it out. For example, it is legitimate1021

to point out that an improvement in the quality of generative models could be used to1022

generate deepfakes for disinformation. On the other hand, it is not needed to point out1023

that a generic algorithm for optimizing neural networks could enable people to train1024

models that generate Deepfakes faster.1025

• The authors should consider possible harms that could arise when the technology is1026

being used as intended and functioning correctly, harms that could arise when the1027

technology is being used as intended but gives incorrect results, and harms following1028

from (intentional or unintentional) misuse of the technology.1029

• If there are negative societal impacts, the authors could also discuss possible mitigation1030

strategies (e.g., gated release of models, providing defenses in addition to attacks,1031
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1032

feedback over time, improving the efficiency and accessibility of ML).1033

11. Safeguards1034

Question: Does the paper describe safeguards that have been put in place for responsible1035

release of data or models that have a high risk for misuse (e.g., pretrained language models,1036

image generators, or scraped datasets)?1037

Answer: [NA]1038

Justification: Our paper presents a framework that utilizes an online learning algorithm. We1039

don’t present any data or models that have a high risk for misuse.1040

Guidelines:1041

• The answer NA means that the paper poses no such risks.1042

• Released models that have a high risk for misuse or dual-use should be released with1043

necessary safeguards to allow for controlled use of the model, for example by requiring1044

that users adhere to usage guidelines or restrictions to access the model or implementing1045

safety filters.1046

• Datasets that have been scraped from the Internet could pose safety risks. The authors1047

should describe how they avoided releasing unsafe images.1048

• We recognize that providing effective safeguards is challenging, and many papers do1049

not require this, but we encourage authors to take this into account and make a best1050

faith effort.1051

12. Licenses for existing assets1052

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1053

the paper, properly credited and are the license and terms of use explicitly mentioned and1054

properly respected?1055

Answer: [Yes]1056

Justification: The creators of the data and code used for creating a baseline for future1057

comparison are mentioned in the Evaluation section 4.1058

Guidelines:1059

• The answer NA means that the paper does not use existing assets.1060

• The authors should cite the original paper that produced the code package or dataset.1061

• The authors should state which version of the asset is used and, if possible, include a1062

URL.1063

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1064

• For scraped data from a particular source (e.g., website), the copyright and terms of1065

service of that source should be provided.1066

• If assets are released, the license, copyright information, and terms of use in the1067

package should be provided. For popular datasets, paperswithcode.com/datasets1068

has curated licenses for some datasets. Their licensing guide can help determine the1069

license of a dataset.1070

• For existing datasets that are re-packaged, both the original license and the license of1071

the derived asset (if it has changed) should be provided.1072

• If this information is not available online, the authors are encouraged to reach out to1073

the asset’s creators.1074

13. New assets1075

Question: Are new assets introduced in the paper well documented and is the documentation1076

provided alongside the assets?1077
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Answer: [TODO]1078

Justification: [TODO]1079

Guidelines:1080

• The answer NA means that the paper does not release new assets.1081

• Researchers should communicate the details of the dataset/code/model as part of their1082

submissions via structured templates. This includes details about training, license,1083

limitations, etc.1084

• The paper should discuss whether and how consent was obtained from people whose1085

asset is used.1086

• At submission time, remember to anonymize your assets (if applicable). You can either1087

create an anonymized URL or include an anonymized zip file.1088

14. Crowdsourcing and research with human subjects1089

Question: For crowdsourcing experiments and research with human subjects, does the paper1090

include the full text of instructions given to participants and screenshots, if applicable, as1091

well as details about compensation (if any)?1092

Answer: [NA]1093

Justification: The paper does not involve human subjects or crowdsourced data.1094

Guidelines:1095

• The answer NA means that the paper does not involve crowdsourcing nor research with1096

human subjects.1097

• Including this information in the supplemental material is fine, but if the main contribu-1098

tion of the paper involves human subjects, then as much detail as possible should be1099

included in the main paper.1100

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1101

or other labor should be paid at least the minimum wage in the country of the data1102

collector.1103

15. Institutional review board (IRB) approvals or equivalent for research with human1104

subjects1105

Question: Does the paper describe potential risks incurred by study participants, whether1106

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1107

approvals (or an equivalent approval/review based on the requirements of your country or1108

institution) were obtained?1109

Answer: [NA]1110

Justification: The paper does not involve human subjects or crowdsourced data.1111

Guidelines:1112

• The answer NA means that the paper does not involve crowdsourcing nor research with1113

human subjects.1114

• Depending on the country in which research is conducted, IRB approval (or equivalent)1115

may be required for any human subjects research. If you obtained IRB approval, you1116

should clearly state this in the paper.1117

• We recognize that the procedures for this may vary significantly between institutions1118

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1119

guidelines for their institution.1120

• For initial submissions, do not include any information that would break anonymity (if1121

applicable), such as the institution conducting the review.1122

16. Declaration of LLM usage1123
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Question: Does the paper describe the usage of LLMs if it is an important, original, or1124

non-standard component of the core methods in this research? Note that if the LLM is used1125

only for writing, editing, or formatting purposes and does not impact the core methodology,1126

scientific rigorousness, or originality of the research, declaration is not required.1127

Answer: [Yes]1128

Justification: The paper clearly describes the use of LLMs for confirmation atoms, querying,1129

etc. in Section 3.1130

Guidelines:1131

• The answer NA means that the core method development in this research does not1132

involve LLMs as any important, original, or non-standard components.1133

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1134

for what should or should not be described.1135
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