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Abstract

Given the remarkable capabilities of large language models (LLMs), there has1

been a growing interest in evaluating their similarity to the human brain. One2

approach towards quantifying this similarity is by measuring how well a model3

predicts neural signals, also called "brain score". Internal representations from4

LLMs achieve state-of-the-art brain scores, leading to speculation that they share5

computational principles with human language processing. This inference is only6

valid if the subset of neural activity predicted by LLMs reflects core elements7

of language processing. Here, we question this assumption by analyzing three8

neural datasets used in an impactful study on LLM-to-brain mappings, with a9

particular focus on an fMRI dataset where participants read short passages. We10

first find that when using shuffled train-test splits, as done in previous studies11

with these datasets, a trivial feature that encodes temporal autocorrelation not only12

outperforms LLMs but also accounts for the majority of neural variance that LLMs13

explain. We therefore caution against shuffled train-test splits, and use contiguous14

test splits moving forward. Second, we explain the surprising result that untrained15

LLMs have higher-than-expected brain scores by showing they do not account16

for additional neural variance beyond two simple features: sentence length and17

sentence position. This undermines evidence used to claim that the transformer18

architecture biases computations to be more brain-like. Third, we find that brain19

scores of trained LLMs on this dataset can largely be explained by sentence20

position, sentence length, and static word vectors; a small, additional amount is21

explained by sense-specific word embeddings and contextual representations of22

sentence structure. We conclude that over-reliance on brain scores can lead to23

over-interpretations of similarity between LLMs and brains, and emphasize the24

importance of deconstructing what LLMs are mapping to in neural signals.25

1 Introduction26

Recent developments in large language models (LLMs) have led many to wonder whether LLMs27

process language like humans do. Whereas LLMs acquire many abstract linguistic generalizations, it28

remains unclear to what extent their internal machinery bears resemblance to the human brain [1]. A29

number of studies have attempted to answer this question through the framework of neural encoding30

[2–4]. Within this framework, an LLM’s internal representations of some linguistic stimuli are used31

to predict brain activity during comprehension of the same stimuli. Results have been uniformly32

positive, showing that LLM representations are highly effective at predicting neural signals [5, 6].33

In one impactful study, authors evaluated the brain scores of 43 models on three neural datasets [2].34

They found that GPT2-XL [7] achieved the highest brain score and, in one neural dataset, accounted35

for 100% of the "explainable" neural variance (i.e., taking into account the noise inherent in the data)36
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[8]. This result was interpreted as evidence that the brain may be optimizing for the same objective37

as GPT2, namely, next-word prediction. Surprisingly, the authors further found that untrained (i.e.38

randomly initialized) LLMs predict neural activity well, leading to speculations that the transformer39

architecture biases computations to be more brain-like. The finding that untrained LLMs predict40

neural signals significantly above chance has been replicated in other studies [9, 4, 10].41

More generally, many studies have compared models to brain activity and concluded that high42

prediction performance reveals correspondence between some interesting aspect of the model and43

biological linguistic processing [4, 11–14]. One issue with this approach is that it assumes that the44

subset of neural activity predicted by a model reflects core processes of the human language system45

[15]. However, this assumption is not necessarily true. For example, a recent paper found that, when46

participants listen to stories, the fMRI signal includes an initial ramping, positional artifact [16].47

It is likely that LLMs which contain absolute positional embeddings would be able to predict this48

ramping signal, whereas a simpler model such as a static word embedding (e.g. GloVe, [17]) would49

not, leading to exaggerated differences between LLMs and GloVe due to reasons of little theoretical50

interest. This issue relates to a more general trend in machine learning research: a complex algorithm51

solves a task, but it is later discovered that the key innovation was a very simple component of the52

algorithm [18]. Analogous to Weinberger [18], without attempting to rigorously deconstruct the53

mapping between LLMs and brains, it is possible to draw erroneous conclusions about the brain’s54

mechanisms for processing language.55

We analyze the same three neural datasets used in [2]. These include the Pereira fMRI dataset, where56

participants read short passages [8]; the Fedorenko electrocorticography (ECoG) dataset, where57

participants read isolated sentences [19]; and the Blank fMRI dataset, where participants listened to58

short stories [20]. As in Schrimpf et al. [2], we focus our analyses on the Pereira dataset. In order to59

deconstruct the mapping between LLMs and the brain, we follow Reddy and Wehbe [21] and de Heer60

et al. [22] by building a set of predictors that describe simple features of the linguistic input, and61

gradually add features that increase in complexity. Our goal is to find the simplest set of features62

which account for the greatest portion of the mapping between LLMs and brains.63

2 Methods64

2.1 Experimental data65

For all three neural datasets, we used the same version as used by [2]. For additional details, refer to66

A.1.67

Pereira (fMRI): The Pereira dataset is composed of two experiments. Experiment 1 (EXP1) consists68

of 96 passages each containing 4 sentences, with n = 9 participants. Experiment 2 (EXP2) consists of69

72 passages each consisting of 3 or 4 sentences, with n = 6 participants. Passages in each experiment70

were evenly divided into 24 semantic categories which were not related across experiments (471

passages per category in EXP1, and 3 passages per category in EXP2). A single fMRI scan (TR)72

was taken after visual presentation of each sentence. Unless otherwise noted, we focus our results73

on voxels from within the "language network" in the main paper. EXP1 was a 384× 92450 matrix74

(number of sentences × number of voxels) and EXP2 was a 243 × 60100 matrix. All analyses were75

conducted separately for each experiment.76

Fedorenko (ECoG): Participants (n = 5) read 52 sentences of length 8 words. A total of 9777

language-responsive electrodes were used across 5 participants: 47, 8, 9, 15, and 18, for participants78

1 through 5, respectively. Neural activity was temporally averaged across the full presentation of each79

word after extracting high gamma, and the entire dataset was a 416× 97 matrix.80

Blank (fMRI): The dataset consisted of 5 participants listening to 8 stories from the publicly81

available Natural Stories Corpus [23]. An fMRI scan was taken every 2 seconds, resulting in a total82

of 1317 TRs across the 8 stories. fMRI BOLD signals were averaged across voxels within each83

functional region of interest (fROI). There were 60 fROIs across all 5 participants, resulting in a84

1317× 60 matrix.85
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2.2 Language models86

We focus our analyses on GPT2-XL [7], as it was shown to be the best-performing model on the87

Pereira dataset [10, 24, 2]. GPT2 is an auto-regressive transformer model, meaning that it can88

only attend to current and past inputs, trained on next token prediction. The XL variant has ∼1.5B89

parameters and 48 layers. We replicate some of our key findings on Pereira with RoBERTa-Large[25]90

(A.6). RoBERTa is a transformer model with bidirectional attention trained on masked token91

prediction, meaning that it can attend to past and future tokens. The large variant contains 335M92

parameters and 24 layers. Both GPT2 and RoBERTa use learned absolute positional embeddings,93

such that a unique vector corresponding to each token position is added to the input static embeddings.94

2.3 LLM feature pooling95

Pereira: Each sentence was fed into an LLM, with previous sentences from the same passage also fed96

as input. Since each fMRI scan was taken at the end of the sentence, we converted LLM token-level97

embeddings to sentence-level embeddings by summing across all tokens within a sentence (sum98

pooling). We used the sum pooling method because it is consistent with other neural encoding studies99

[26, 27], and it performed better than taking the representation at the last token which was done in100

[2] A.5.101

Fedorenko: The current and previous tokens from within the same sentence were fed into the LLM102

as context. We converted LLM token-level embeddings to word embeddings, since each word has a103

neural response, by summing across tokens in multi-token words, and leaving single token words104

unmodified.105

Blank: For each story, we fed the current and all preceding tokens up to a maximum context size of106

512 tokens. As in Schrimpf et al. [2], for each TR, we took the representation of the word that was107

closest to being 4 seconds before the TR. For multi-token words, we took the representation of the108

last token of that word.109

2.4 Banded ridge regression110

We used ridge regression (linear regression with an L2 penalty) to predict activations for each111

voxel/electrode/fROI independently. We did not use "vanilla" ridge regression because it applies a112

single L2 penalty for all weights, whereas our analyses use multiple sets of distinct features. In such113

a case, a single penalty causes the regression will be biased against small feature spaces. Moreover,114

different L2 penalties are likely optimal for each feature space. To remedy this, we employed banded115

ridge regression which effectively allows a different L2 penalty to be applied to each feature space116

[28] (for further details, refer to A.2).117

2.5 Out of sample R2 metric118

We define the brain score of a model as the out-of-sample R2 metric (R2
oos) [29]. R2

oos quantifies119

how much better a set of features performs at predicting held-out data compared to a model which120

simply predicts the mean of the training data (i.e. a regression with only an intercept term). To be121

precise, given mean squared error (MSE) values from a model using features M and MSE values122

from an intercept only regression (I), then:123

R2
oos = 1− MSEM

MSEI
. (1)

A positive (negative) value indicates that M was more (less) helpful than predicting the mean of124

training data. We elected to use R2
oos over the standard R2 because of this clear interpretation125

and because it is a less biased estimate of test set performance [29]. We use R2
oos over Pearson’s126

correlation coefficient (r) because R2
oos can be interpreted as the fraction of variance explained,127

which lends more straightforwardly to estimating how much variance one feature space explains128

over others. Whenever averaging across voxels, we set R2
oos values to be non-negative to prevent129

differences in performance on noisy voxels/electrodes/fROIs from significantly impacting the results.130

We refer to R2
oos as R2 throughout the rest of the paper for brevity, and use the notation R2

M to refer131

to the performance of features M .132
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2.6 Selection of best layer133

We evaluate the R2 for each LLM layer, and select the layer that performs best across vox-134

els/electrodes/fROIs. Due to the stochastic nature of untrained LLMs, we selected the best layer for135

10 random seeds and computed the average R2 across seeds. When reporting the best layer, we refer136

to layer 0 as the input static layer, and layer 1 as the first intermediate layer.137

2.7 Train, validation, and test folds:138

For each dataset, we construct contiguous train-test splits by ensuring neural data from the same139

passage/sentence/story is not included in both train and test data. Due to low sample sizes, we140

employed a nested cross-validation procedure for each dataset (A.3). When computing R2 across141

inner or outer folds, we pooled predictions across folds and computed a single R2 as recommended by142

Hawinkel et al. [29]. The optimal parameters for banded regression were selected based on validation143

data.144

We created shuffled train-test splits, as done in [2], of the same size as the contiguous train-test splits.145

Unless explicitly noted, all results are performed using contiguous train-test splits.146

2.8 Correcting for decreases in test-set performance due to addition of feature spaces147

It is possible for a "full" encoding model to perform worse than a "sub-model" (which consists148

of only a subset of the predictors) because we are evaluating performance on a held-out test set149

[22]. To address this problem, in some analyses we select the best performing sub-model for each150

voxel/electrode/fROI which includes a given feature of interest. For instance, to examine how much151

feature space C adds onto features spaces A and B, we select the best sub-model which includes C152

and denote it as A+B + C*. More precisely, the R2 of A+B + C* is:153

R2
A+B+C∗ = max(R2

C , R
2
A+C , R

2
B+C , R

2
A+B+C). (2)

2.9 Orthogonal Auto-correlated Sequences Model (OASM)154

To model temporal auto-correlation in neural activity, we construct a feature matrix for each dataset155

by (i) forming an n-dimensional identity matrix, where n is the total number of time points in the156

dataset (per voxel / electrode / TR), and (ii) applying a Gaussian filter within "chunks" along the157

diagonal that correspond to temporally contiguous time points (i.e., within each passage in Pereira,158

each sentence in Fedorenko, and each story in Blank). This generates an auto-correlated sequence for159

each passage/sentence/story that is orthogonal to that of each other passage/sentence/story (A.7).160

3 Pereira dataset161

3.1 Shuffled train-test splits are severely affected by temporal auto-correlation162

Prior LLM encoding studies using this dataset [24, 2, 10, 30, 11] used shuffled train-test splits. Here,163

we demonstrate that this approach compromises the evaluation of the neural predictivity of LLMs.164

First, we replicated the pattern of neural predictivity across GPT2-XL’s layers reported in [2] and [24]165

when using shuffled splits. Using this procedure, early and late layers perform best and intermediate166

layers perform worst. Strikingly, when using the alternative approach of contiguous train-test splits,167

the opposite pattern is observed: intermediate layers perform best. Across layers, neural predictivity168

using the shuffled method is highly anti-correlated with neural predictivity using the contiguous169

method (r = −.929 in EXP1, r = −.764 in EXP2) (Fig. 1a).170

Next, we hypothesized that much of what LLMs might be mapping to when using shuffled splits171

could be accounted for by OASM, a model which only represents within passage auto-correlation172

and between passage orthogonality. OASM out-performed GPT2-XL on both EXP1 and EXP2173

(Fig. 1b, blue and red bars), revealing that a completely non-linguistic feature space can achieve174

absurdly high brain scores in the context of shuffled splits. This strongly challenges the assumption175

of multiple previous studies [2, 11, 10] that performance on this benchmark is an indication of a176

model’s brain-likeness, .177
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Figure 1: Comparing different approaches for creating train-test splits in the Pereira dataset. Within
each panel, EXP1 results are on the left and EXP2 results are on the right (same formatting in Figure
2,3) (a) R2 values across layers for GPT2-XL on shuffled train-test splits (gray) and contiguous
(unshuffled) splits (blue). (b) Each dot shows the mean R2 value across voxels within a participant,
with bars indicating mean R2 across participants.

Moreover, we find that the unique neural variance that GPT2-XL explains over OASM is very small178

relative to what OASM explains alone. To calculate this, we combine OASM with GPT2-XL and179

observe how much neural variance they explain together. To prevent OASM from ever weakening180

the reported performance of GPT2-XL for any voxel, we correct the R2 value for each voxel with181

the OASM+GPT2-XL model to be at least as high as with GPT2-XL alone (denoted OASM+GPT2-182

XL*) (2.8). Even with these corrections, we find that R2
OASM+GPT2−XL* was 13.6% higher than183

R2
OASM in EXP1, and 31.5% higher than R2

OASM in EXP2 (Fig. 1b) (% differences after averaging184

R2 across participants). To be clear, this means that any linguistically-driven neural variance that185

GPT2-XL uniquely explains over OASM is far smaller (13.6% on EXP1 and 31.5% on EXP2) than186

what is predicted solely by OASM, a model with no linguistic features that completely lacks the187

ability to generalize to fully held out passages. Thus, it appears that the largest determinant of188

model predictivity on this dataset when using shuffled train-test splits is whether a model contains189

autocorrelated sequences within passages that are orthogonal between passages.190

3.2 Untrained LLM neural predictivity is fully accounted for by sentence length and position191

We next sought to deconstruct what explains the neural predictivity of untrained GPT2-XL (GPT2-192

XLU) in the Pereira dataset. We hypothesized that R2
GPT2−XLU could be explained by two simple193

features: sentence length (SL) and sentence position within the passage (SP). Sentence length is194

captured by GPT2-XLU because the GELU nonlinearity in the first layer’s MLP transforms normally195

distributed inputs with zero mean into outputs with a non-zero mean. This introduces a non-zero196

mean component to each token’s representation in the residual stream. When these representations197

are sum-pooled, this non-zero mean component accumulates in a way that reflects the sentence length,198

making the length decodable in the intermediate layers (see A.9 for a formal proof). Sentence position199

is encoded within GPT2-XLU due to absolute positional embeddings which, although untrained, still200

result in sentences at the same position having similar representations when tokens are sum-pooled.201

We represent sentence position as a 4-dimensional one-hot vector, where each element corresponds202

to a given position within a passage, and sentence length as the number of words in a passage.203

To obtain representations from GPT2-XLU, we selected the best-performing layer for each of the 10204

untrained seeds. For EXP1 the best performing layer was layer 0 for 6 seeds, layer 1 for 3 seeds (first205

intermediate layer), and layer 19 for one seed. For EXP2 the best layer was layer 1 for 5 seeds, layer206

2 for 4 seeds, and layer 5 for 1 seed.207

We fit a regression using all subsets of the following feature spaces, SL, SP, GPT2-XLU, resulting in208

7 models. For both experiments, R2
SP+SL was descriptively higher than all other models, including209

the best-performing model with GPT2-XLU (SP+SL+GPT2-XLU) (Fig. 2a). Sentence position was210

particularly important in EXP1, and sentence length was particularly important in EXP2. This may211

explain why the static layer often outperformed intermediate layer representations in EXP1 despite212

encoding sentence length more poorly. Overall, these results suggest that, when averaging across213

voxels within the language network in this dataset, GPT2-XLU does not improve neural encoding214

performance over sentence length and position.215
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Figure 2: For all panels, EXP1 results are on the left and EXP2 results are on the right. (a) Brain
score (R2) for different combinations of features. Each dot represents R2 values averaged across
voxels in a single participant, with bars showing mean across participants. (b) 2D histogram of
R2 values for the best model without GPT2-XLU (SP+SL), and the best model with GPT2-XLU
(GPT2-XLU+SP+SL). The dotted lines show y = x, y = 0, and x = 0. Values below y = 0 or
left of x = 0 were clipped when averaging, but are shown here to visualize the full distribution. (c)
Same as (a), but after voxel-wise correction; lines connect data-points from the same participant. (d)
Glass brain plots showing R2 values of SP+SL (left) and GPT2-XLU+SP+SL (right) after voxel-wise
correction. Conventions are the same as Figure 1.

Although GPT2-XLU did not enhance encoding performance when averaging across voxels, there216

may be a subset of voxels where GPT2-XLU does explain significant additional neural vari-217

ance. To examine this possibility, we plotted a 2D histogram of voxel-wise R2
SP+SL values vs.218

R2
SP+SL+GPT2−XLU values in the language network (Fig. 2b). Values were clustered around the219

identity line, and there was no cluster of voxels where R2
SP+SL+GPT2−XLU appeared significantly220

higher. Next, for each voxel, we performed a one-sided paired t-test between the squared error221

values obtained over sentences (EXP1: N = 384 , EXP2: N = 243) between SP+SL+GPT-XLU222

and SP+SL. Across all functional networks, only 1.26% (EXP1) and 1.42% (EXP2) of voxels were223

significantly (α = 0.05) better explained by the GPT2-XLU model before false discovery rate224

(FDR) correction; these numbers dropped to 0.001% (EXP1) and 0.078% (EXP2) after performing225

FDR correction within each participant and network [31]. None of the significant voxels after FDR226

correction were inside the language network. Taken together, these results suggest GPT2-XLU does227

not enhance neural prediction performance over sentence length and position even at the voxel level.228

To control for voxels where the neural encoding performance of GPT2-XLU is weakened by the229

addition of SP+SL, we compared SP+SL* and SP+SL+GPT2-XLU*. When averaging across voxels,230

R2
SP+SL* still exceeded R2

GPT2−XLU+SP+SL* (Fig. 2c). Furthermore, the values for R2
SP+SL*231

and R2
GPT2−XLU+SP+SL* across brain areas were highly similar in both experiments (Fig. 2d).232

Only 1.00% (EXP1) and 1.18% (EXP2) of voxels were significantly better explained by the addition233

of GPT2-XLU before FDR correction; 0% (EXP1) and 0.05% (EXP2) of voxels were better explained234
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Table 1: Mean R2 values (across participants) for each model. For models composed of multiple
features, the best sub-model is used which includes the last feature.

Features EXP1 EXP2
GPT2-XL 0.032 0.036
SP+SL 0.013 0.031

SP+SL+WORD 0.024 0.039
SP+SL+WORD+SENSE 0.026 0.040

SP+SL+WORD+SENSE+SYNT 0.027 0.043
SP+SL+WORD+SENSE+SYNT+GPT2-XL 0.032 0.045

after FDR correction (once again, no significant voxels were inside the language network ). Thus, our235

results hold even when controlling for decreases in performance due to the addition of feature spaces.236

3.3 Sentence length, sentence position, and static word embeddings account for the majority237

of trained LLM encoding performance238

We next turned to explaining the neural predictivity of the trained GPT2-XL. In addition to sentence239

position and sentence length, we added static word embeddings (WORD). Together, these features240

defined a baseline model which does not account for any form of linguistic processing of words241

in context. We next included three more complex features which involved contextual processing.242

First, we added sense-specific word embeddings from RoBERTa-Large using the LMMS package243

[32]. Sense embeddings contain distinct representations for different senses of the same word (e.g.,244

mouse: computer device, and mouse: rodent). LMMS generates sense embeddings by averaging over245

contextual embeddings corresponding to the same sense of a word (see A.10 for further details).246

Whereas sense embeddings help disambiguate many content words, they do not disambiguate247

pronouns, i.e., do not encode the entities that they refer to. Therefore, our sense embeddings were248

generated for a version of the Pereira text where pronouns were dereferenced (i.e., replaced by249

the words that they referred to). To maintain consistency with these sense embeddings, our static250

word embeddings were created (1) by taking a frequency-weighted average of sense embeddings251

for the same word, where frequency values were obtained from WordNet [33]; and (2) based on the252

dereferenced Pereira texts. Importantly, this means the impact of pronoun dereferencing and word253

and sense embeddings are not decoupled in this study. Finally, we created an abstract representation254

of the syntax of each sentence (SYNT), using an approach highly similar to that of Caucheteux255

et al. [34]: we collected sentences that are syntactically equivalent but semantically dissimilar to the256

original sentence, and averaged their representations from the best layer of GPT2-XL (A.11). We257

selected the best layer based on averaged R2 across language voxels on test data (EXP1: layer 21,258

EXP2: layer 16).259

We fit a regression to the fMRI data using all subsets of the feature spaces SL+SP, WORD, SENSE,260

SYNT, GPT2-XL, resulting in 64 models. In this list, features are ranked from least to most complex.261

For each feature, we took the model that exhibited the best performance in the language network262

which included that feature but did not include features more complex than it. For instance, values263

reported for R2
SL+SP+WORD+SENSE were taken from the best model which included SENSE,264

excluding models which included SYNT and GPT2-XL. By doing so, we were able to examine265

the impact of adding more complex features in explaining R2GPT2−XL while still accounting for266

decreases in test performance due to adding redundant features. We note that since this procedure is267

not performed at the voxel-level, we do not add a * to the R2 notation.268

Table 1 displays the performance of each model, including GPT2-XL on its own (Fig. 2a, 2b). The269

baseline SP+SL+WORD model, which does not account for any form of contextual processing,270

performs 75% as well as GPT2-XL in EXP1, and outperforms GPT2-XL in EXP2. When adding271

contextual features, namely SENSE and SYNT, our model performs 84.4% as well as GPT2-XL and272

the full model in EXP1, and better than GPT2-XL and 95.5% as well as the full model in EXP2,273

indicating that SENSE and SYNT play a modest role in accounting for GPT2-XL brain scores beyond274

simple features in this dataset.275

Similar to previous sections, we perform voxel-wise correction by selecting the best sub-model with276

GPT2-XL and the best sub-model without GPT2-XL for each voxel. We focus only on sentence277
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Figure 3: For all panels, EXP1 results are on the left and EXP2 results are on the right. (a) For each
model, we display the sub-model which includes the added feature. Dots represent participants and
bars are mean across participants. Grey dashed line is the performance of GPT2-XL alone. (b) 2d
histogram comparing full model and full model with GPT2-XL. (c) Same as (a) but after voxel-wise
correction for SP+SL+WORD and SP+SL+WORD+GPT2-XL. (d) Glass brain plots showing R2

values of SP+SL+WORD (left) and SP+SL+WORD+GPT2-XLU (right) after voxel-wise correction.

position, sentence length, and static word embeddings because sense and syntax had modest con-278

tributions beyond these features. R2
SP+SL+WORD* was 0.028 in EXP1 and 0.048 in EXP2, and279

R2
SP+SL+WORD+GPT2−XL* was 0.036 in EXP1 and 0.056 in EXP2 (mean across participants)280

(Fig. 3c). This indicates that even after controlling for a reduction in GPT2-XL performance from281

the addition of simple features, GPT2-XL only explains an additional 28.57% (EXP1) and 16.7%282

(EXP2) neural variance over a model composed of features that are all non-contextual.283

4 Fedorenko dataset284

4.1 Shuffled train-test splits also impact ECoG datasets, but less than with fMRI285

We first evaluated the impact of shuffled train-test splits on the Fedorenko dataset. Unlike in Pereira,286

the across-layer performance is well correlated between shuffled and contiguous splits (r = 0.622)287

(Fig. 4a). The OASM model performs 93.1% as well as GPT2-XL when averaging R2 values across288

participants (Fig. 4b). R2
OASM+GPT2−XL* was 45.3% better than OASM, meaning that the unique289

contribution of GPT2-XL is less than half the total contribution of a simple, auto-correlated model.290

Therefore, shuffled train-test splits also impact results on Fedorenko, albeit less than Pereira. This291

may be due to lower autocorrelation of ECoG compared to fMRI. We use contiguous splits for the292

remainder of the Fedorenko analyses.293

4.2 Word position explains all of untrained, and most of trained, GPT2-XL brain score294

As noted in [35], there was a strong positional signal in the ECoG dataset during comprehension of295

sentences that is likely related to the construction of sentence meaning. We therefore hypothesized296
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Figure 4: (a) Across-layer R2, averaged across electrodes in the Fedorenko dataset, for GPT2-XL
with and without shuffled splits. (b) Each dot is a participant, lines connect data-points from the same
participant. Bars display mean across participants. (c) and (d) Same guidelines as (b).

that a feature space that accounted for word position (WP) would do well relative to untrained and297

trained GPT2-XL. We generated a simple feature space that encodes word position, such that words298

in nearby positions were given similar representations (A.12). When performing a one-sided paired299

t-test between the squared error predictions of WP+GPT2-XLU* and WP, three electrodes were300

significantly better explained by the addition of GPT2-XLU before FDR correction, and none were301

better explained after FDR correction within each participant. Moreover, WP performs 86.7% as well302

as GPT2-XL, and 82.1% as well as WP+GPT2-XL*. Our results therefore suggest that the mapping303

between GPT2-XL and neural activity on the Fedorenko dataset is largely driven by positional signals.304

305

5 Blank dataset is predicted at near chance levels306

Lastly, we address the Blank dataset. We find that OASM achieves an R2 that is 103.6 times307

larger than that of GPT2-XL when using shuffled splits A.13, demonstrating that such splits are308

massively contaminated by temporal autocorrelation. We next turn to using contiguous splits, and test309

whether GPT2-XL performs better than an intercept only model by applying a one-sided paired t-test310

between the squared error values obtained from GPT2-XL and the intercept only model (N = 1317311

TRs). GPT2-XL predicts 1 fROI significantly better than an intercept only model, and 0 fROIs are312

significantly better after FDR correction. Our results therefore suggest that GPT2-XL performs at313

near chance levels on the version of the Blank dataset used by [2, 10, 11].314

6 Limitations and Conclusions315

Our study has three main limitations. First, our method of examining how much neural variance316

an LLM predicts over simple features scales poorly when the number of features is large. Second,317

although we attempted to correct for cases where adding features decreases test set performance and318

employed banded regression, fitting regressions with large feature spaces on noisy neural data with319

low sample sizes can lead to poor estimations of the neural variance explained. Finally, we did not320

analyze datasets with large amounts of neural data per participant, for instance [36], in which the gap321

between the neural predictivity of simple and complex features might be much larger.322

In summary, we find that on the Pereira dataset, shuffled splits are heavily impacted by temporal323

autocorrelation, untrained GPT2-XL brain score is explained by sentence length and position, and324

trained GPT2-XL brain score is largely explained by non-contextual features. We find that the325

majority of GPT2-XL brain score on the Fedorenko dataset is accounted for by word position, and326

on the Blank dataset GPT2-XL predicts neural activity at near chance levels. These results suggest327

that (i) brain scores on these datasets should be interpreted with caution; and (ii) more generally,328

analyses using brain scores should be accompanied by a systematic deconstruction of neural encoding329

performance, and an evaluation against simple and theoretically uninteresting features. Only after330

such deconstruction can we be somewhat confident that the neural predictivity of LLMs reflects core331

aspects of human linguistic processing.332
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A Appendix460

A.1 Experimental data461

Pereira: For both experiments, each sentence was visually presented for 4 s with 4 s between462

sentences and an additional 4 s between passages. A single fMRI scan was taken in the interval463

between each sentence. Because fMRI data is noisy, each experiment was repeated three times and464

fMRI data was averaged across the repetitions. A single fMRI scanning session consisted of 8 runs,465

where each run contained 12 passages in EXP1 and 9 passages in EXP2. Participants performed466

a total of 3 scanning sessions. The division of passages into runs and the order of the runs was467

randomized for each participant and scanning session.468

Fedorenko: Participants read sentence on word at a time, and each word was visually displayed for469

450 or 700 ms. For each electrode, high gamma signal was extracted using gaussian filter banks at470

center frequencies ranging from 73− 144 Hz, the envelope of the high gamma signal was computed471

through a hilbert-transform, and the envelope was z-scored within each electrode. For each participant,472

language-selective electrodes were selected where the z-scored envelope of the gamma activity was473

significantly higher during the sentences than a condition where participants read nonword lists.474

Z-scored high gamma activity from these language-selective electrodes were used in subsuquent475

analyses.476
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Blank: Text was split into 2 s segments corresponding to each TR, with words that were on the477

boundary being assinged to the later TR. Due to the delay in the hemodynamic response function478

(HRF), neural activity was predicted using stimuli from 2 TRs (4 s) previous.479

Functional localization: For Pereira and Blank, the language network was defined by the following480

procedure [19]. First, voxels were identified in each participant which showed stronger responses481

to sentences compared to lists of non-words (sentences > non-word lists contrast). These voxels482

were then constrained by data-driven language activation maps formed by applying the same contrast483

to many other participants. Finally, the top 10% of the voxels were selected which showed the484

greatest sentences > non-word lists difference. For Pereira, we perform some analyses using four485

other networks: multiple demand (MD), default mode network (DMN), auditory, and visual network.486

The multiple demand (MD) and default mode network (DMN) networks were defined using the same487

procedure, except that the contrast involved a spatial working memory task, where a hard > easy488

condition contrast was used for MD and a fixation > hard contrast was used for DMN [37]. Auditory489

and visual networks were defined using resting state connectivity [38].490

A.2 Banded ridge regression491

We used a random search method to optimize the banded regression hyperparameters [28]. Banded492

regression has two hyperparameters, γ, which is a vector of shape number of feature spaces that493

determines how much each feature space is scaled, and α, which is the L2 penalty applied across494

feature spaces. Values for γ are drawn from a Dirichlet distribution and hence sum to 1. Down-scaling495

a certain feature space relative to others is functionally equivalent to assigning a separate L2 penalty496

for each feature space. This is because when a feature space is down-scaled, the L2 magnitude of497

the weights must increase for it to have a meaningful contribution to the predictions, which equates498

to increasing the L2 penalty for that feature space. The optimal γ and α combination was found499

for each voxel/electrode/fROI by performing a random search over γ values, storing the α value500

that performed best for that γ on validation data, and then selecting the best performing γ and α501

combination.502

Before starting the random search, we tried all combinations of γ values that removed feature spaces503

(i.e. down-scaled at least one feature space to 0) to ensure the regression had an opportunity to504

remove features which hurt performance. In theory, this should obviate the need for the procedure505

implemented in 2.8. This is because the banded regression procedure can remove feature spaces506

based on validation data, meaning if a model performs worse than a sub-model the banded procedure507

has the opportunity to set the γ value corresponding to the additional feature spaces to 0. However,508

because neural data is noisy and there is often little data per subject, performance on validation data is509

not always indicative of performance on test-data. Therefore it is possible for the banded regression510

procedure to include a feature space (since it helps on validation data), and for this feature space to511

ultimately hurt test set performance, necessitating the correction procedure detailed in 2.8.512

We ran banded ridge regression for a maximum of 1000 random search iterations with early stopping513

if the mean R2 did not improve by more than 10−4 after 50 iterations. We treated feature spaces514

with many dimensions as one features because preliminary results showed this performed better.515

Specifically, we always treated the following feature spaces as one feature space: static word516

embeddings, sense-specific word embeddings, syntactic representations, and GPT2-XL and Roberta-517

Large representations. All other features were treated as their own feature space.518

We z-score all features across samples before training regressions, as is standard when using ridge519

regression in neural encoding studies.520

A.3 Additional details on train, validation, and test folds521

Pereira: During each outer fold, a single passage from each of the 24 semantic categories from one522

experiment was selected, and half of these passages were designated as the test set. This equated to 8523

test folds for experiment 1 (4 passages per semantic category) and 6 test folds for experiment 2 (3524

passages per semantic category). During each inner fold, we again selected one passage from each525

semantic category, and half of these passages were designated as validation (leading to 7 inner folds526

for experiment 1, and 5 inner folds for experiment 2).527
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Fedorenko: For each outer fold, we selected 4 sentences as the test fold, resulting in 13 outer folds.528

For each inner fold, we once again select 4 sentences as the validation set, resulting in 12 inner folds529

per outer fold.530

Blank: For each outer fold, we selected a single story as the test fold, resulting in 8 outer folds. For531

each inner fold, each of the remaining stories served in turn as the validation set, resulting in 7 inner532

folds.533

A.4 Justification of statistical tests534

We performed a t-test between squared error values from two models to determine if one model535

performs better than another. While squared error values are not always normally distributed, our536

sample sizes were large (the minimum sample size was 243) and so we still opted to use a t-test over537

a non-parametric alternative [39]. One issue with a t-test is that relies on the assumption that samples538

are not correlated, which is not true for time-series data. However, we note that correlated samples539

leads one to underestimate the standard error of the mean and exaggerate differences between two540

models. Since we only perform one-sided t-tests to examine whether adding GPT2-XL representations541

improves performance, the net impact of this on our results is to overestimate how much GPT2-XL542

contributes over simple features.543

A.5 Across layer R2 values in the Pereira dataset544

Across layer performances in the Pereira dataset for GPT2-XLU and GPT2-XL when using the sum545

pooling method (Fig. 5a,b) and the last token method (Fig. 5c,d). Performance in language network546

is higher across the board than performance in DMN, MD, and visual networks. We do not show547

auditory network results because participants read passages in Pereira and hence auditory brain scores548

are near 0. Furthermore, performance is lower with the last token method in every case except in549

EXP1 trained results where the last token method performs slightly better.

a

c d

b

Figure 5: a) Across layer performances in Pereira dataset for GPT2-XLU for each functional network
when using the sum-pooling method. EXP1 is on the left, and EXP2 is on the right. b) Same as a but
for GPT2-XL, also using the sum-pooling method. c) Same as a but when using the last token method.
Dotted grey line shows performance of best layer of GPT2-XLU in language network when sum
pooling. d) Same as b but when using the last token method. Dotted grey line shows performance of
best layer of GPT2-XL in language network when sum pooling.

550

A.6 RoBERTa-Large shows similar results as GPT2-XL551

To examine whether our results depending on the choice of LLM, we replicated all of our Pereira552

trained analyses with RoBERTa-Large (ROB). The overall trend in results was the same as553

with GPT2-XL (Fig. 6). Namely, SP+SL+WORD performed 76.8% as well as the full model554

(SP+SL+WORD+SENSE+SYNT+ROB) and 80.0% as well as ROB alone in EXP1, and in EXP2 it555
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performed 88.0% as well as the full model and better than ROB. Furthermore, SENSE and SYNT556

bridge the gap to the full model by a small amount. In sum, our main conclusion that a large amount557

of trained LLM brain score in the Pereira dataset is accounted for by non-contextual features also558

applies to RoBERTa-Large.559

* *
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Figure 6: All panels are the same as Figure 3, except GPT2-XL is replaced with RoBERTa-Large
(ROB).

A.7 Orthogonal autocorrelated sequences model (OASM) hyperparameters560

The width of the Gaussian filter used for within-block smoothing was σ = 2.2 in Pereira, σ = 1.8 in561

Fedorenko, and σ = 1.5 in Blank. Gaussian widths were determined by sweeping σ across 50 evenly562

spaced values between 0.1 and 5.0 and choosing the best-performing σ for each dataset.563

A.8 Shuffled train test splits confound task-relevant and task-irrelevant neural activity564

OASM is a model which clearly lacks any linguistic representations that would allow it generalize to565

fully held-out passages. However, this is is not to say that OASM is not correlated with linguistic566

features. For instance, sentences in a given passage are more semantically related with each other567

than with sentences in other passages. Nonetheless, using shuffled train-test splits almost certainly568

exaggerates the variance explained by a model which, on the basis of semantic similarity, arrives569

at a similar representational structure as OASM. This is because task-irrelevant neural responses570

make up a large fraction of neural activity [40], and shuffled train-test splits allow a model with571

OASM-like representational structure to predict not just the task-relevant neural responses driven572

by the participant reading the passage, but also any task-irrelevant neural activity that was present573

throughout the reading of the passage. Hence, we strongly urge researchers to avoid shuffled train574

test splits when evaluating the neural predictivity of language models, and we surmise that previous575

studies using shuffled train-test splits to compare neural predictivity between models might have576

come to erroneous conclusions.577
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A.9 Linear decodability of sentence length578

Here, we show that the MLP block adds a linearly decodable component with non-zero mean to the579

residual stream in the GPT2 architecture.580

Proof :581

We denote the i’th input to the MLP block in the first layer of GPT2-XL as xi. The output of the582

MLP block is defined as follows:583

MLP (xi) = xi +Wd(GELU(Wu(LayerNorm(xi))))

We assume that the elements of xi are normally distributed. For a given xi, it then follows that the584

distribution of elements in LayerNorm(xi) is normal with µ = 0 and σ = 1 (assuming the standard585

LayerNorm initialization).586

Because Wu is initialized from a zero-mean normal distribution, Wu(LayerNorm(xi)) also has587

zero-mean.588

Note that GELU is a function for which E[Y ] > 0 for Y normally distributed with mean 0. Hence, the589

mean value across elements following the GELU is non-zero. Let us denote this mean value across590

all elements of GELU(Wu(LayerNorm(x))) and across all tokens x as m. Then, for an MLP591

with up-projected dimension du, we can take the dot product of GELU(Wu(LayerNorm(xi)))592

and 1
dum

× k̂, where k̂ is a du-dimensional vector of 1s. The resulting value will have mean 1.593

However, we cannot decode this value directly from the MLP in practice; first, this vector is down-
projected back to the residual stream by Wd. Nonetheless, we can still closely approximate it,
assuming it is approximately orthogonal to xi, by using the pseudo-inverse of Wd. More specifically,
we can extract a scalar with mean 1 as follows:√

du
dd

× 1

dum
× k̂W †

dMLP (xi)

where dd is the down-projected dimension. Because this extracted scalar value is distributed with594

mean 1 across token representations xi, assuming independence of token representations within a595

sentence, the sum of the extracted scalar value across the tokens of a sentence is distributed with596

mean equaling the number of tokens in the sentence.597

A.10 LMMS598

LMMS generates a sense embedding for each word by averaging across contextual embeddings (in599

our case from RoBERTa-Large) of that sense derived from a sense-annotated corpus. For words in600

WordNet where labeled senses don’t exist, LMMS sets their sense embeddings equal to the average601

of sense embeddings with the same sense (or same hypernym/lexname if that approach fails). Finally,602

the sense embeddings are averaged together with the gloss embeddings for that sense of the word603

generated using the same LLM. For additional details refer to Loureiro et al. [32].604

A.11 Contextual syntactic representations605

Syntactic embeddings are derived by substituting content words (nouns, verbs, adjectives, and606

adverbs) in the original sentences with words from the Generics KB corpus, matching their part-of-607

speech and dependency tag via the SpaCy transformer-based tagger [41]. For each sentence in the608

Pereira dataset, we generate 170 new sentences, ensuring the subtree token indices from each token609

match those of the original sentence. The top 100 sentences, selected based on summed surprisal610

with GPT2-XL, are retained. Each sentence’s syntactic embedding is then computed by summing611

token representations within each sentence and then averaging across the 100 sentences.612

A.12 Word position feature in Fedorenko dataset613

The primary finding in the paper which first collected the Fedorenko dataset [35] was a ramping of614

neural activity across the words of sentences, where each sentence was 8 words long. Hence, we615

concatenate a linearly ramping 1-dimensional positional signal to an 8-dimensional 1-hot positonal616
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Figure 7: Word Position feature for a single sentence in the Fedorenko dataset.

signal. Because we expect positional signals to be more simlar between adjacent words than more617

distant words, we apply a Gaussian filter (σ = 1) to the 8-dimensional positional signal. The resulting618

feature space, which we refer to as "word position" in the main text, is shown for a single sentence in619

the above figure.620

A.13 OASM and GPT2 Model Comparison on Blank Dataset621

0.0

0.3

R
2

OASM
OASM + GPT2-XL
GPT2-XL

Figure 8: OASM far outperforms GPT2-XL on the Blank dataset, and GPT2-XL does not appear to
explain any variance beyond that explained by OASM.

We find that OASM achieves 103.6 times higher neural predictivity than GPT2-XL on the Blank622

dataset when using shuffled train-test splits. There could be several reasons for this. First, it might623

be that the method for pooling representations from GPT2-XL used here 2.3 and in [2, 10, 11]624

did not yield useful enough representations for GPT2-XL to map effectively to the brain data. An625

additional likely culprit is that, of the three datasets we study here, Blank has the greatest potential for626

autocorrelation in temporally adjacent samples. This is because, while the Pereira dataset typically627

has a TR every 8 seconds, the Blank dataset has a TR every 2 seconds. We note that our results here628

are not completely surprising; given that [2, 10] observed untrained GPT2 models perform far better629

than trained models on this dataset, it did not seem likely that GPT2-XL would map onto neural630

representations of linguistic features here.631

17



A.14 Computational Resources632

All analyses were done between 2 machines: One with 2 RTX 3090 GPUs, and another with 1633

RTX 4090 GPU. The most computationally demanding parts of our analyses were fitting the banded634

ridge regressions used to generate Figure 3, collecting untrained model results across 10 seeds, and635

generating syntactic representations, which each took around 3 hours to complete.636

A.15 Dataset Licenses637

The Blank dataset was originally released as part of the Natural Stories Corpus, which is provided638

under the CC BY-NC-SA license [23]. The Pereira dataset is released under the Creative Commons639

License [8]. The version of the Fedorenko dataset used here is provided under the MIT license. All640

datasets used are the same versions as in [2] and can be downloaded using the neural-nlp repository:641

https://github.com/mschrimpf/neural-nlp/tree/master. All datasets were collected with642

IRB approval at their respective institutions.643
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NeurIPS Paper Checklist644

1. Claims645

Question: Do the main claims made in the abstract and introduction accurately reflect the646

paper’s contributions and scope?647

Answer: [Yes]648

Justification: We support each of the three claims made in the abstract regarding shuffled649

train-test splits, untrained LLM brain scores, and trained LLM brain scores in the Results650

section. These results support the claim that it is important to deconstruct the mapping651

between LLMs and the brain.652

Guidelines:653

• The answer NA means that the abstract and introduction do not include the claims654

made in the paper.655

• The abstract and/or introduction should clearly state the claims made, including the656

contributions made in the paper and important assumptions and limitations. A No or657

NA answer to this question will not be perceived well by the reviewers.658

• The claims made should match theoretical and experimental results, and reflect how659

much the results can be expected to generalize to other settings.660

• It is fine to include aspirational goals as motivation as long as it is clear that these goals661

are not attained by the paper.662

2. Limitations663

Question: [Yes]664

Justification:We discuss the three main limitations in the paper in the section titled "Limita-665

tions and Conclusions", and additionally include limitations throughout the Appendix (e.g.666

Justification of statistical tests).667

Guidelines:668

• The answer NA means that the paper has no limitation while the answer No means that669

the paper has limitations, but those are not discussed in the paper.670

• The authors are encouraged to create a separate "Limitations" section in their paper.671

• The paper should point out any strong assumptions and how robust the results are to672

violations of these assumptions (e.g., independence assumptions, noiseless settings,673

model well-specification, asymptotic approximations only holding locally). The authors674

should reflect on how these assumptions might be violated in practice and what the675

implications would be.676

• The authors should reflect on the scope of the claims made, e.g., if the approach was677

only tested on a few datasets or with a few runs. In general, empirical results often678

depend on implicit assumptions, which should be articulated.679

• The authors should reflect on the factors that influence the performance of the approach.680

For example, a facial recognition algorithm may perform poorly when image resolution681

is low or images are taken in low lighting. Or a speech-to-text system might not be682

used reliably to provide closed captions for online lectures because it fails to handle683

technical jargon.684

• The authors should discuss the computational efficiency of the proposed algorithms685

and how they scale with dataset size.686

• If applicable, the authors should discuss possible limitations of their approach to687

address problems of privacy and fairness.688

• While the authors might fear that complete honesty about limitations might be used by689

reviewers as grounds for rejection, a worse outcome might be that reviewers discover690

limitations that aren’t acknowledged in the paper. The authors should use their best691

judgment and recognize that individual actions in favor of transparency play an impor-692

tant role in developing norms that preserve the integrity of the community. Reviewers693

will be specifically instructed to not penalize honesty concerning limitations.694

3. Theory Assumptions and Proofs695
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Question: For each theoretical result, does the paper provide the full set of assumptions and696

a complete (and correct) proof?697

Answer: [Yes]698

Justification: Our only theoretical result is that the MLP layer introduces a non-zero mean699

component in the residual stream. We provide both a rough sketch in the main paper as well700

as a formal proof.701

Guidelines:702

• The answer NA means that the paper does not include theoretical results.703

• All the theorems, formulas, and proofs in the paper should be numbered and cross-704

referenced.705

• All assumptions should be clearly stated or referenced in the statement of any theorems.706

• The proofs can either appear in the main paper or the supplemental material, but if707

they appear in the supplemental material, the authors are encouraged to provide a short708

proof sketch to provide intuition.709

• Inversely, any informal proof provided in the core of the paper should be complemented710

by formal proofs provided in appendix or supplemental material.711

• Theorems and Lemmas that the proof relies upon should be properly referenced.712

4. Experimental Result Reproducibility713

Question: Does the paper fully disclose all the information needed to reproduce the main ex-714

perimental results of the paper to the extent that it affects the main claims and/or conclusions715

of the paper (regardless of whether the code and data are provided or not)?716

Answer: [Yes]717

Justification: We include all details regarding the following: banded regression proce-718

dure, construction of feature spaces, train, validation, and test splits, and selection of719

voxels/electrodes/fROIs in neural data. These are all the elements needed to reproduce our720

results, with the exception of slight variability due to stochasticity in untrained LLM seeds721

and the randoms search process in banded regression.722

Guidelines:723

• The answer NA means that the paper does not include experiments.724

• If the paper includes experiments, a No answer to this question will not be perceived725

well by the reviewers: Making the paper reproducible is important, regardless of726

whether the code and data are provided or not.727

• If the contribution is a dataset and/or model, the authors should describe the steps taken728

to make their results reproducible or verifiable.729

• Depending on the contribution, reproducibility can be accomplished in various ways.730

For example, if the contribution is a novel architecture, describing the architecture fully731

might suffice, or if the contribution is a specific model and empirical evaluation, it may732

be necessary to either make it possible for others to replicate the model with the same733

dataset, or provide access to the model. In general. releasing code and data is often734

one good way to accomplish this, but reproducibility can also be provided via detailed735

instructions for how to replicate the results, access to a hosted model (e.g., in the case736

of a large language model), releasing of a model checkpoint, or other means that are737

appropriate to the research performed.738

• While NeurIPS does not require releasing code, the conference does require all submis-739

sions to provide some reasonable avenue for reproducibility, which may depend on the740

nature of the contribution. For example741

(a) If the contribution is primarily a new algorithm, the paper should make it clear how742

to reproduce that algorithm.743

(b) If the contribution is primarily a new model architecture, the paper should describe744

the architecture clearly and fully.745

(c) If the contribution is a new model (e.g., a large language model), then there should746

either be a way to access this model for reproducing the results or a way to reproduce747

the model (e.g., with an open-source dataset or instructions for how to construct748

the dataset).749
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(d) We recognize that reproducibility may be tricky in some cases, in which case750

authors are welcome to describe the particular way they provide for reproducibility.751

In the case of closed-source models, it may be that access to the model is limited in752

some way (e.g., to registered users), but it should be possible for other researchers753

to have some path to reproducing or verifying the results.754

5. Open access to data and code755

Question: Does the paper provide open access to the data and code, with sufficient instruc-756

tions to faithfully reproduce the main experimental results, as described in supplemental757

material?758

Answer: [Yes]759

Justification: We will release all our code on Github, and all neural datasets are openly760

available for use. We also provide anonymized code.761

Guidelines:762

• The answer NA means that paper does not include experiments requiring code.763

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/764

public/guides/CodeSubmissionPolicy) for more details.765

• While we encourage the release of code and data, we understand that this might not be766

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not767

including code, unless this is central to the contribution (e.g., for a new open-source768

benchmark).769

• The instructions should contain the exact command and environment needed to run to770

reproduce the results. See the NeurIPS code and data submission guidelines (https:771

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.772

• The authors should provide instructions on data access and preparation, including how773

to access the raw data, preprocessed data, intermediate data, and generated data, etc.774

• The authors should provide scripts to reproduce all experimental results for the new775

proposed method and baselines. If only a subset of experiments are reproducible, they776

should state which ones are omitted from the script and why.777

• At submission time, to preserve anonymity, the authors should release anonymized778

versions (if applicable).779

• Providing as much information as possible in supplemental material (appended to the780

paper) is recommended, but including URLs to data and code is permitted.781

6. Experimental Setting/Details782

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-783

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the784

results?785

Answer: [Yes]786

Justification: We dedicate sections towards explaining the data splits in the main paper, and787

the necessary details to run the banded ridge regression in the main paper and Appendix.788

Guidelines:789

• The answer NA means that the paper does not include experiments.790

• The experimental setting should be presented in the core of the paper to a level of detail791

that is necessary to appreciate the results and make sense of them.792

• The full details can be provided either with the code, in appendix, or as supplemental793

material.794

7. Experiment Statistical Significance795

Question: Does the paper report error bars suitably and correctly defined or other appropriate796

information about the statistical significance of the experiments?797

Answer: [Yes]798

Justification: We perform a paired t-test and justify its use in the Appendix. For all plots799

which show the average across participants we show individual dots for each participant,800

and for this reason we do not include standard deviation values for the values in Table 1.801
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Guidelines:802

• The answer NA means that the paper does not include experiments.803

• The authors should answer "Yes" if the results are accompanied by error bars, confi-804

dence intervals, or statistical significance tests, at least for the experiments that support805

the main claims of the paper.806

• The factors of variability that the error bars are capturing should be clearly stated (for807

example, train/test split, initialization, random drawing of some parameter, or overall808

run with given experimental conditions).809

• The method for calculating the error bars should be explained (closed form formula,810

call to a library function, bootstrap, etc.)811

• The assumptions made should be given (e.g., Normally distributed errors).812

• It should be clear whether the error bar is the standard deviation or the standard error813

of the mean.814

• It is OK to report 1-sigma error bars, but one should state it. The authors should815

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis816

of Normality of errors is not verified.817

• For asymmetric distributions, the authors should be careful not to show in tables or818

figures symmetric error bars that would yield results that are out of range (e.g. negative819

error rates).820

• If error bars are reported in tables or plots, The authors should explain in the text how821

they were calculated and reference the corresponding figures or tables in the text.822

8. Experiments Compute Resources823

Question: For each experiment, does the paper provide sufficient information on the com-824

puter resources (type of compute workers, memory, time of execution) needed to reproduce825

the experiments?826

Answer: [Yes]827

Justification: We provide a section in the appendix describing the GPUs and CPUs used for828

our analyses, and we describe how long each experiment took to run.829

Guidelines:830

• The answer NA means that the paper does not include experiments.831

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,832

or cloud provider, including relevant memory and storage.833

• The paper should provide the amount of compute required for each of the individual834

experimental runs as well as estimate the total compute.835

• The paper should disclose whether the full research project required more compute836

than the experiments reported in the paper (e.g., preliminary or failed experiments that837

didn’t make it into the paper).838

9. Code Of Ethics839

Question: Does the research conducted in the paper conform, in every respect, with the840

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?841

Answer: [Yes]842

Justification: We did not conduct any direct interactions with human participants, none of843

the data-related concerns apply for us, and we do not see any direct societal impacts from844

our work. We make our methods clear to the best of our ability and provide anonymized845

code.846

Guidelines:847

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.848

• If the authors answer No, they should explain the special circumstances that require a849

deviation from the Code of Ethics.850

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-851

eration due to laws or regulations in their jurisdiction).852

10. Broader Impacts853
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Question: Does the paper discuss both potential positive societal impacts and negative854

societal impacts of the work performed?855

Answer: [NA]856

Justification: We do not develop any novel technology that can be used for good or bad, but857

rather show that some high-profile previous results have been over-interpreted. While our858

results are relevant for the cognitive neuroscience community, we do not see a direct path to859

any larger societal impacts.860

Guidelines:861

• The answer NA means that there is no societal impact of the work performed.862

• If the authors answer NA or No, they should explain why their work has no societal863

impact or why the paper does not address societal impact.864

• Examples of negative societal impacts include potential malicious or unintended uses865

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations866

(e.g., deployment of technologies that could make decisions that unfairly impact specific867

groups), privacy considerations, and security considerations.868

• The conference expects that many papers will be foundational research and not tied869

to particular applications, let alone deployments. However, if there is a direct path to870

any negative applications, the authors should point it out. For example, it is legitimate871

to point out that an improvement in the quality of generative models could be used to872

generate deepfakes for disinformation. On the other hand, it is not needed to point out873

that a generic algorithm for optimizing neural networks could enable people to train874

models that generate Deepfakes faster.875

• The authors should consider possible harms that could arise when the technology is876

being used as intended and functioning correctly, harms that could arise when the877

technology is being used as intended but gives incorrect results, and harms following878

from (intentional or unintentional) misuse of the technology.879

• If there are negative societal impacts, the authors could also discuss possible mitigation880

strategies (e.g., gated release of models, providing defenses in addition to attacks,881

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from882

feedback over time, improving the efficiency and accessibility of ML).883

11. Safeguards884

Question: Does the paper describe safeguards that have been put in place for responsible885

release of data or models that have a high risk for misuse (e.g., pretrained language models,886

image generators, or scraped datasets)?887

Answer: [NA]888

Justification: We release no new models or datasets, and do not see any potential for our889

results being misused in unsafe ways.890

Guidelines:891

• The answer NA means that the paper poses no such risks.892

• Released models that have a high risk for misuse or dual-use should be released with893

necessary safeguards to allow for controlled use of the model, for example by requiring894

that users adhere to usage guidelines or restrictions to access the model or implementing895

safety filters.896

• Datasets that have been scraped from the Internet could pose safety risks. The authors897

should describe how they avoided releasing unsafe images.898

• We recognize that providing effective safeguards is challenging, and many papers do899

not require this, but we encourage authors to take this into account and make a best900

faith effort.901

12. Licenses for existing assets902

Question: Are the creators or original owners of assets (e.g., code, data, models), used in903

the paper, properly credited and are the license and terms of use explicitly mentioned and904

properly respected?905

Answer: [Yes]906
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Justification: We cite the papers in which all datasets used were first published. We provide907

the licenses for the Blank and Pereira datasets in the supplement (we could not find a license908

for the Fedorenko dataset). We also specify the version of the datasets used and provide a909

link.910

Guidelines:911

• The answer NA means that the paper does not use existing assets.912

• The authors should cite the original paper that produced the code package or dataset.913

• The authors should state which version of the asset is used and, if possible, include a914

URL.915

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.916

• For scraped data from a particular source (e.g., website), the copyright and terms of917

service of that source should be provided.918

• If assets are released, the license, copyright information, and terms of use in the919

package should be provided. For popular datasets, paperswithcode.com/datasets920

has curated licenses for some datasets. Their licensing guide can help determine the921

license of a dataset.922

• For existing datasets that are re-packaged, both the original license and the license of923

the derived asset (if it has changed) should be provided.924

• If this information is not available online, the authors are encouraged to reach out to925

the asset’s creators.926

13. New Assets927

Question: Are new assets introduced in the paper well documented and is the documentation928

provided alongside the assets?929

Answer: [NA]930

Justification: We do not release any new assets with this paper.931

Guidelines:932

• The answer NA means that the paper does not release new assets.933

• Researchers should communicate the details of the dataset/code/model as part of their934

submissions via structured templates. This includes details about training, license,935

limitations, etc.936

• The paper should discuss whether and how consent was obtained from people whose937

asset is used.938

• At submission time, remember to anonymize your assets (if applicable). You can either939

create an anonymized URL or include an anonymized zip file.940

14. Crowdsourcing and Research with Human Subjects941

Question: For crowdsourcing experiments and research with human subjects, does the paper942

include the full text of instructions given to participants and screenshots, if applicable, as943

well as details about compensation (if any)?944

Answer: [Yes]945

Justification: We use open source datasets where neural data is obtained from consenting946

human adults. Information regarding research protocols is detailed in the references for947

these datasets.948

Guidelines:949

• The answer NA means that the paper does not involve crowdsourcing nor research with950

human subjects.951

• Including this information in the supplemental material is fine, but if the main contribu-952

tion of the paper involves human subjects, then as much detail as possible should be953

included in the main paper.954

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,955

or other labor should be paid at least the minimum wage in the country of the data956

collector.957
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human958

Subjects959

Question: Does the paper describe potential risks incurred by study participants, whether960

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)961

approvals (or an equivalent approval/review based on the requirements of your country or962

institution) were obtained?963

Answer: [Yes]964

Justification: All datasets used here were collected with IRB approval at their respective965

institutions, and this is stated in the appendix. We do not collect any data of our own from966

human subjects.967

Guidelines:968

• The answer NA means that the paper does not involve crowdsourcing nor research with969

human subjects.970

• Depending on the country in which research is conducted, IRB approval (or equivalent)971

may be required for any human subjects research. If you obtained IRB approval, you972

should clearly state this in the paper.973

• We recognize that the procedures for this may vary significantly between institutions974

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the975

guidelines for their institution.976

• For initial submissions, do not include any information that would break anonymity (if977

applicable), such as the institution conducting the review.978
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