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ABSTRACT

We propose a new family of geodesic interpolation techniques to perform upsam-
pling of low frame rate animations to high frame rates. This approach has impor-
tant applications for: (i) creative design, as it provides a diversity of interpolation
methods for digital animators; and (ii) compression, as an original high frame
rate animation can be recovered with high accuracy from its subsampled version.
Specifically, we upsample low frame rate animations by interpolating the rotations
of an animated character’s bones along geodesics in the Lie group SO(3) for dif-
ferent invariant Riemannian metrics. For compression, we propose an optimiza-
tion technique that selects the Riemannian metric whose geodesic most faithfully
represent the original animation. We demonstrate the advantages of our approach
compared to existing interpolation techniques in digital animation.

1 INTRODUCTION

Upsampling for creative design When digital animators create animations, they must position
their character’s limbs in 3D space—called a pose—to make the character perform the actions they
want. Animators do so using a rig, which is a skeleton made of connected bones in a tree structure,
whose positions and rotations control the character mesh that it is attached to. However, the labor
of posing k characters with b bones at m frames grows quickly as O(k ∗ b ∗m) and in fact becomes
impractical at 30 frames per second.

Instead, animators block out key poses in time—called keyframes. A keyframe contains the location,
rotation, and scale of a bone at a specific time. After posing their character at these keyframes
only, animators rely on automatic in-betweening to create an animation curve, that is: a complete
animation of the character through time. In-betweening is a cornerstone of the creation process,
as it automatically generates poses in between two consecutive keyframes: it effectively performs
interpolation to find intermediate poses. In-betweening can use different interpolation schemes and
types of artistic controls available in animation software.

Often, when automatic in-betweening is not satisfactory, animators still need to edit the animation
curves directly, which means manually correcting the automatically generated poses to fit their artis-
tic intention. Current industry-standard interpolation schemes such as spherical linear interpolation
(SLERP) fail at interpolating very sparse keyframes, so animators use more keyframes to achieve
higher fidelity in-betweening thus increasing memory storage and computation cost. Alternatively,
state-or-the-art deep learning methods such as Oreshkin et al. (2023) can handle sparse key-frame
interpolation, but rely on having hours of previous animation data for interpolations, and do not
generalize to different rig models.

Consequently, there is an interest in providing novel interpolation methods to increase the diversity
of automatically generated animation curves, enhancing and speeding up the creation process of dig-
ital animators while minimizing the number of keyframes required for high fidelity in-betweening.

Upsampling for compression Beyond animation creation for digital arts, upsampling techniques
are crucial for animation compression. Storing every location, rotation, and scale (k) of every bone
(b) in the rig of a character for every frame (m) of an animation can impose large memory require-
ments (O(k∗b∗m)). Being able to compress an animation into a handful of keyframes is of practical
importance. From the perspective of compression, upsampling techniques aim to faithfully recover
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Figure 1: Comparison of traditional interpolation techniques with the proposed geodesic interpola-
tions. From left to right: ground truth animation, piecewise constant, linear (cartesian), spherical
linear (slerp), and our geodesic interpolation. In this frame our geodesic interpolation most closely
matches the original.

an original animation from its compressed version composed of only a subset of poses. Upsampling
beyond the original frame rate allows animators to then create an animation curve with an arbitrarily
high frame rate. Thus, there is a motivation for researching new upsampling techniques that can
achieve high accuracy in recovering original animations and even enhance them by increasing their
original frame rate.

Contributions We propose a new family of interpolation techniques—called geodesic interpo-
lations—to perform upsampling of low frame rate animations to high frame rates for creative ex-
pression and compression in digital animation. Geodesic interpolation generates characters’ poses
in between two keyframes by computing a geodesic curve linking these keyframes in the space of
poses. The space of poses is represented as the set of rotations defining the orientations of the char-
acter’s bones: i.e., as a Lie group SO(3)B where B is the number of bones. As geodesic curves
depend on the choice of Riemannian metric on SO(3)B , we propose a family of geodesic interpola-
tion techniques parameterized by a family of Riemannian metrics on SO(3)B .

From the perspective of creation, the diversity of Riemannian metrics yields a novel diversity of in-
betweening methods for digital creators. From the perspective of compression, we propose to rely
on a gradient-free optimization technique to find the geodesic that best interpolates, and thus com-
presses, a given original animation. Our interpolation schemes applied to animations subsampled at
a very low frame rate achieves high accuracy reconstruction of original high frame rate animations.
Our work thus also allows for extreme downsampling of an animation while being able to faithfully
upsample it back up to a high resolution animation.

Specifically, our contributions are as follows:

1. We propose a new family of geodesic interpolations for 3D animations parameterized by Rie-
mannian metrics on the space of poses.

2. We explore how these geodesics characterize motion, providing guidelines for digital animators
that can rely on a new diversity of interpolated motions for creation.

3. We propose a gradient-free optimization technique to select the Riemannian metric whose
geodesic most closely matches an original animation curve, and subsequently achieve a com-
pression of animations that outperforms traditional techniques. To our knowledge, this is the first
time that Riemannian metric learning is applied to computer graphics.

2 RELATED WORKS

Interpolation Animation software traditionally relies on different types of interpolation tech-
niques Haarbach et al. (2018). constant interpolation, which corresponds to simply holding the
character rig still in between frames. Shown in 2, constant interpolation is jittery and tends to have
the “stop motion effect” where the character’s motion looks choppy. The second type, linear inter-
polation, is easy to compute, but can yield unrealistic motions due to the non-linear nature of human
movement. Linearly interpolating the orientations of the bones represented as rotation matrices or
quaternions will fail since neither the rotations matrices nor the quaternions are linear: for example,
the average of two rotation matrices, or two quaternions, is not necessarily a valid rotation matrix or
quaternion. Consequently, specific techniques are introduced to address the nonlinearity of the space
of rotations Dam et al. (1998), e.g., making sure that the quaternions lie on the unit sphere through
spherical linear interpolation (or slerp) Shoemake (1985). The third type of interpolation, spline
interpolation, uses a set of piecewise polynomial interpolating functions making a cubic Bezier
splines Bézier (1972) (see inset). Applying cubic spline interpolation to rotations again requires
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adapting the geometry of the rotation space through spherical spline quaternion (squad) Shoemake
(1987). Other interpolation methods exist Mukai & Kuriyama (2005), but are seldom implemented
in animation software. Newer machine learning methods such as Oreshkin et al. (2023); Harvey
et al. (2020); Zhang & van de Panne (2018) rely on large datasets with hours of animation video for
training their interpolation models. In contrast to widely used methods such as slerp, deep learning
techniques can handle much larger gaps between keyframes, however, their interpolation functions
do not generalize to new rigs. Additionally, Zhang & van de Panne (2018) exhibits loss of mo-
tion continuity near keyframes, and Oreshkin et al. (2023) can only interpolate on rigs seen during
training with transitions from the training dataset.

time

constant

linear

cubic

Figure 2

Our interpolation technique is most closely related to linear interpolation and
slerp. Our method works on arbitrary rigs with sparsely keyframed samples
without the use of any training data while providing a novel class of inter-
polation schemes beyond slerp’s by using non-spherical manifolds. In con-
trast with spline interpolation, which generalizes the interpolating curves from
lines to splines, we keep linear curves (geodesics) but change the geometry of
the space in which these curves live: changing the very definition of “linear”.

Artistic control for creative design Animation curves are the standard rep-
resentation of animation data. Expert artists edit these curves directly to tweak
their animation to look the way they intend. Intuitive alternatives for real time
control such as motion matching, proposed by Büttner & Clavet (2015) pro-
vide a data-dependent way to create interpolated motions. While standard
motion matching methods use high amounts of memory and scale linearly in
computation Holden et al. (2020) solves these issues using a neural approach.
Both standard and neural motion matching, however, take large amounts of
data in order to creatively interpolate trajectories. Other methods are less
data-dependent, but require skill and time from users. Staggered poses lets animators refine motion
at slightly different times than the keyframes Coleman et al. (2008). Ciccone et al. (2019) create
a simplified control that allows for constrained editing of the tangents of animation curves without
adding new keyframes. Similarly, Koyama & Goto (2018) offer animators a way to change the
tangents of animation curves using sliders. Other work focuses on the problem of providing the
keyframes themselves in more user-friendly options such as sketch-based methods where artists can
specify keyframes with 2D drawings or sketch motions with short strokes Davis et al. (2006); Guay
et al. (2015).All of these approaches still require heavy manual labor from animators. Addition-
ally, they require skilled users with a deep understanding of industry-standard animation software.
Given the need for simple, automated techniques, researchers have also recently leveraged neural
networks to generate in-between poses Harvey et al. (2020); Zhang & van de Panne (2018). Yet,
these approaches are more computationally intensive than traditional interpolation techniques, and
less intuitive for artistic control due to the high number of hyperparameters affecting the end results.

By contrast, our geodesic approach is automated with few parameters which also have intuitive
kinematic meaning which make them suitable for use by novice animators.We provide an accessible,
yet intuitive, alternative for artistic control during the creation process.

Animation compression A large animation sequence can be compressed into a small set of frames
to save space. During decompression, these frames are interpolated to accurately recover the orig-
inal animation. Principal Component Analysis is a common compression technique used by Alexa
& Müller (2000); Váša et al. (2014) on mesh animations (not rigs) in order to reduce storage. Data-
driven techniques analyze patterns in motion capture data Gu et al. (2009) or use a weighted combi-
nation of a few basis meshes Abdrashitov et al. (2019); Le & Deng (2013). In contract, our method
uses no prior data and works on rig-based animations. We learn a Riemannian metric which allows
us to pick keyframes that compress an animation sequence in a way that allows us to decompress
with the highest accuracy.

Models of Articulated Motions and Rotations Outside of digital animation, other works have
proposed modelling articulated motions by leveraging Riemannian geometry on manifolds. In
robotics, Žefran & Kumar (1998) leverages the variety of Riemannian metrics on the space of rigid
body motions SE(3) to provide new kinematics insights. In motion capture technology, Tiwari
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(a) For ease of explanation, we represent SO(3) as a
sphere. At the identity of the group, we define an inner-
product for all vectors u, v in the tangent space (green).
The vector γ̇(t) in the tangent space at Ri (purple) is
the velocity of the parameterized curve going to Rj . The
geodesic curve γ(t) (orange) is the shortest path between
two rotations Ri and Rj . In this example we interpolate
3 in-between rotations along the geodesic (black dots).

× · · ·× ×
1 1 1

2 2 2

B

(b) Changing α, β values can be thought of as
deforming the group. The distance between the
same 2 rotations changes. Our Pose Lie group is
a product of manifolds, one for each bone.

(c) We verify experimentally that updating α, β
leads to different geodesics, and thus different tra-
jectories despite the same start and end states.

Figure 3: Explaining how a geodesic on a manifold can interpolate trajectories. 397.48499pt

et al. (2022) propose to generate new human poses from high dimensional domain of quaternions
in order to enhance performances on downstream tasks such as pose denoising or pose recovery.
Authors from Guo et al. (2020) leverage Lie Algebra theory to represent natural human motions and
increase capabilities of human poses conditional generation from action types. In Zhou et al. (2016),
authors propose to integrate geometric constraints kinematic into a deep learning model for general
articulated object pose estimation.

Beyond dedicated application domains, research in applied mathematics has also investigated the-
oretical properties and possible extensions of interpolation specifically designed for SO(3) with
the fixed canonical Riemannian metric Park & Ravani (1997), or for general Riemannian man-
ifolds Gousenbourger et al. (2016) including data fitting schemes Bergmann & Gousenbourger
(2018); Gousenbourger et al. (2019). However, the canonical metric is not the only geometry that can
equip the non-linear space of rotations SO(3). The work by Huynh (2009) presents a comparison
and theoretical analysis of metrics and distances for 3D rotations. Yet, none of these application-
driven or theoretical research considers learning the optimal Riemannian metric of SO(3)—which
is what we propose to do here.

3 BACKGROUND

We introduce elements of Riemannian geometry and Lie groups that support our approach.

3.1 MANIFOLDS AND RIEMANNIAN METRICS

Lie theory and Riemannian geometry provide mathematics to precisely define the poses of animation
characters, specifically the rotation of each joints of a character, and to design novel interpolation
techniques. We refer the reader to Guigui et al. (2022) for mathematical details. We will represent
the space of possible animated character poses as a Lie group equipped with a Riemannian metric.
We define these concepts here.

Definition 3.1 (Riemannian metric) Let M be a d-dimensional smooth connected manifold and
TpM be its tangent space at point p ∈ M. A Riemannian metric <,> on M is a collection of inner
products <,>p: TpM × TpM → R on each tangent space TpM that vary smoothly with p. A
manifold M equipped with a Riemannian metric <,> is called a Riemannian manifold.

A Riemmanian metric <,> provides a notion of geodesic distance dist on M. Let γ : [0, 1] → M
be a smooth parameterized curve on M with velocity vector at t ∈ [0, 1] denoted as γ̇t ∈ Tγ(t)M.
The length of γ is defined as Lγ =

∫ 1

0

√
< γ̇t, γ̇t >γt

dt and the distance between any two points
p, q ∈ M is: dist(p, q) = infγ:γ(0)=p,γ(1)=q Lγ . The Riemannian metric also provides a notion of
geodesic.
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Definition 3.2 (Geodesic) A geodesic between two points p, q is defined as a curve which minimizes
the energy functional:

E(γ) =
1

2

∫ 1

0

< γ̇(t), γ̇(t)) >γ(t) dt. (1)

Curves minimizing the energy E also minimize the length L: geodesics are locally distance-
minimizing paths on the manifold M.

Intuitively, a geodesic is the generalization of the straight lines from vector spaces to manifolds,
see Figure 3a. We note that the notion of geodesic depends on the notion of geodesic distance, and
thus on the choice of Riemannian metric on the manifold M. Different Riemannian metrics yield
different geodesics between two given points.

3.2 LIE GROUPS AND METRICS

In the context of animation interpolations, we will consider specific manifolds: Lie groups.

Definition 3.3 (Lie group) A Lie group is a group (G, ·) such that G is also a finite dimensional
smooth manifold, and the group and differential structures are compatible, in the sense that the
group law · and the inverse map g 7→ g−1 are smooth. Let e denote the neutral element, or identity
of G. The tangent space TeG of a Lie group at the identity element e ∈ G is called the Lie algebra
of G.

The set of all 3D rotations forms a Lie group. This group is referred to as SO(3), the special orthog-
onal group in three dimensions. It is defined as: SO(3) = {R ∈ M3(R)|RTR = I3,det(R) = 1},
where each element is a 3D rotation matrix R. Its Lie algebra is denoted by so(3). The Lie algebra is
a vector space of dimension 3, which is also called the dimension of the Lie group SO(3). Consider
an animation showing a character with B bones. Each bone in the skeleton, or rig, is associated with
a joint that has some 3D orientation, which we represent as a rotation matrix R ∈ SO(3).

Definition 3.4 (Pose Lie group) Consider a character with B bones or joints. The set of all possi-
ble poses of this character is the power Lie group SO(3)B = SO(3)× · · · × SO(3), which we call
the pose Lie group (see Figure 3b).

We give the interpretation of geodesics on SO(3)B in the context of animations of characters. One
geodesic on SO(3) is a curve t → γ(t) on SO(3), i.e., a sequence of rotations parameterized by a
time t. In other words, a geodesic on SO(3) represents a specific rotation motion for a given bone,
and the velocity γ̇(t) at any time point is the tangent to the curve at that point. A geodesic on the
pose Lie group SO(3)B represents a specific motion of the animated character.

We are interested in equipping this Lie group with a Riemannian metric to propose new interpolation
methods. To this aim, we first show how to equip each component SO(3) with a Riemannian metric.
We will represent each inner-product <,>g at TgG by its associated symmetric positive definite
(SPD) matrix Zg . We denote the matrix at the Lie algebra TeSO(3) as Ze = Z. Formally, this inner
product is defined as

< u, v >e= uTZv, (2)
for u, v ∈ so(3) = TeSO(3). The Lie group structure of SO(3) makes it possible to define a family
of Riemannian metrics on SO(3).

4 METHODS

We propose a novel method to determine which choice of Riemannian metrics (defined in A.1)
on the Pose Lie group SO(3)B yields better, more compressed, or more interpretable interpolation
techniques.

4.1 OVERVIEW

Problem statement: Consider the animation of an articulated character that is made up of B
bones, and call it the ground truth animation AG, see Figure 4 (left). We denote F the number
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Figure 4: Pipeline of our method. Given an animation, we downsample it, and upsample new in-
between frames using a search sweep for optimal parameters. Then we apply the animation to the
rig and quantitatively and qualitatively analyse the results.

of frames in AG. This animation is represented as a sequence of F poses on the Pose Lie group
SO(3)B , so that:

AG(t) ∈ SO(3)B for each time t ∈ [t1, tF ], (3)

between the first and last frames t1 and tF respectively.

Our goal is to learn the Riemannian metric <,> on the Pose Lie group SO(3)B that best describes
the animated character’s motion in AG, in the following sense: the animation AG can be downsam-
pled (compressed) to a lower frame rate F ′, such that the geodesic interpolation with metric <,>
brings it back to its original (higher) frame rate F with the highest accuracy. Once <,> is learned,
it can be used for creative design in digital creation, including extracting perceptual insights on the
character’s motion in AG, or for compression.

Notations: The metric <,> is the result of an optimization problem that depends on AG and F ′,
for which we introduce notations. Consider a sampling rate 0 < s < 1. We call initial animation,
and denote it AI , the animation obtained after uniformly downsampling the ground truth animation
AG of frame rate F to the lower frame rate F ′ = sF , see Figure 4 (pink). For example, if we have a
ground truth animation of F = 60 frames, and a sampling rate of s = 0.2, the initial animation will
have F ′ = 12 frames, each 5 frames apart in the ground truth. We call interpolated or upsampled
animation, and denote it AU , the animation obtained by upsampling the initial animation AI back up
to the ground truth frame rate F , see Figure 4 (purple). We note that AU depends on the interpolation
technique used: in particular, in the case of a geodesic interpolation, AU depends on the choice of
metric <,>.

Reformulated using these notations, our goal is to learn the metric <,> so that AU is as close as
possible to AG, according to a quality score Q. Figure 4 shows our pipeline.

4.2 RIEMANNIAN METRIC LEARNING

We propose to learn the metric <,> that most accurately describes the motion of a given animated
character. We restrict our optimization to a set of invariant Riemannian metrics on SO(3)B , which
provides a convenient parameterization of <,>. The definition and practical implementation of
invariant Riemannian metrics is detailed in Appendix A.

Metric Parameterization Consider one SO(3) within the power Lie group SO(3)B . We can
parameterize a Riemannian metric on the Lie group SO(3) by an inner product matrix Z on its Lie
algebra (see Appendix A). The matrix Z must be symmetric positive definite, meaning it can be
decomposed into Z = PTDP , where D is a diagonal matrix whose values are strictly positive, and
P is orthogonal. We will restrict our investigation to specific matrices Z:

Z =

[
1 0 0
0 α 0
0 0 β

]
, with α, β > 0, (4)

on each component SO(3) within the Pose Lie group SO(3)B . In other words, we restrict ourselves
to matrices Z where the orthogonal component P is taken to be the identity matrix and learn the
optimal α, β values for each matrix Z corresponding to each SO(3) within the power SO(3)B , in
order to best reconstruct the animation. Our metric on SO(3)B is thus parameterized by the set of
parameters: {α1, β1, ..., αB , βB}, written {α, β} for short. We also add a categorical parameter,
called inv, which indicates whether whether we propagate the inner-product Z with left or right
translations: i.e., whether the resulting metric <,> is left- or right- invariant (see Appendix A). This
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parameterization does not cover every metric on SO(3)B ; yet, it encodes a 4B-dimensional family
of metrics where we can perform metric learning.

Geodesic Interpolation Consider a bone b and two frames i, j that are consecutive in the ini-
tial animation AI and j − i + 1 frames apart in the ground-truth animation AG, i.e., AI(b, i) =
AG(b, i) = Ri ∈ SO(3) and AI(b, j) = AG(b, j) = Rj ∈ SO(3). Given a metric <,>, we
compute the geodesic γ on SO(3) such that γ(0) = Ri and γ(1) = Rj and the energy E(γ) mea-
sured with <,> is minimal according to Definition 3.2. The main challenge is to compute the initial
tangent vector u0 = γ̇(0) required to shoot from γ(0) to γ(1). This requires to numerically invert
the Exp map defined in the previous section, i.e., solving the optimization problem:

u0 = argmin
u∈TRi

SO(3)

∥ExpRi
(u)−Rj∥2. (5)

The tangent vector u0 then yields values of AU between frames i and j as: AU (b, t) = ExpRi
(t.u0)

for t ∈ [0, 1]. We observe that we do not have a closed form expression for the interpolating
geodesic, which is instead computed via numerical integration and optimization.

Optimization Criteria: Quality Metrics The upsampled animation AU is obtained by geodesic
interpolation, which depends on the invariant Riemannian metric <,> that is itself parameterized
by α, β and inv. Thus, we write AU as a function of α, β,inv: AU (α, β,inv). We detail here
how we find the optimal parameters α, β,inv and thus the optimal Riemannian metric <,> for
digital animations, see Figure 4 (center). Consider a quality metric Q that denotes how close the
interpolated animation AU (α, β,inv) is from the ground truth animation AG. We get:

α∗, β∗,inv∗ = argmin
α,β,inv

Q (AU (α, β,inv), AG) , (6)

for α, β ∈ (R∗
+)

B and inv in {left, right}. We will experiment with various quality metrics
Q within this optimization criterion. Our first quality metric quantifies the difference in position
between two bones’ endpoints:

Qloc(b1, b2) = ∥b1 − b2∥2, (7)
where b1 and b2 are the endpoint position of bones 1 and 2.

Our second quality metric quantifies the angle difference in rotation between two bones:

Qrot(b1, b2) = arccos
[ tr(b1bT2 )− 1

2

]
, (8)

where in this case b1 and b2 are the rotation matrices of bones 1 and 2 respectively, see Figure 4
(purple). Our third quality metric Qhyb is a weighted sum of Qloc(b1, b2) and Qrot(b1, b2). Each
of these three quality metrics is defined for a given bone of the rig, at a given frame. To get the
quality scores Q across bones and frames, we sum across the bones b = 1, . . . , B with or without a
weight wb > 0 corresponding to the depth of that bone in the rig, and we average over all frames in
the ground truth animation Wang et al. (2021). Thus, the total quality metric between a pose in the
ground truth animation AG and the upsampled animation AU is:

Q =
1

F

F∑
t=1

B∑
b=1

wbQ̃(AU (b, t), AG(b, t)), (9)

and Q̃ equal to Qloc, Qrot or Qhyb. The dependency on α, β,inv is within the bone bUt,i of the
upsampled animation AU .

Optimization Method: Gradient-Free We introduce the optimization method chosen to mini-
mize the criterion of Eq. 6 and learn α∗, β∗ and inv ∗. This criterion does not have a closed form as
a function of α, β and inv. Thus, we cannot compute its gradient, nor leverage any gradient-based
optimization methods. Consequently, we propose to rely on a gradient-free optimization methods:
the Tree-Structured Parzen Estimator (TPE). Tree-Structured Parzen Estimator algorithm Bergstra
et al. (2011) is designed to find parameters that optimize a given criterion whose gradient is not
available. TPE is an iterative process that uses history of evaluated parameters α, β,inv to create a
probabilistic model, which is used to suggest the next set of parameters α, β,inv to evaluate, until
the optimal set α∗, β∗,inv∗ is reached. More details can be found in Appendix B.
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Figure 5: Figure 5a shows a boy sits and swings his legs back and forth. Frame 24 of the Sitting
animation shows our geodesic almost perfectly recreating the pose. Figure 5b shows the entire pur-
ple overlay for our geodesic interpolation which indicates a high quality reconstruction. Figure 5c
shows extremities like hands are captured more accurately in our method. Figure 5d, we capture
the fast Rolling motion in frame 44.

Implementation Our ground truth animations are downloaded motion capture sequences from
Adobe Mixamo at 30 frames per second Adobe (2023). All animations are imported to Blender,
which we use to visualize, render, and export animation data Community (2023). File sizes are
computed as the sum of sizes (in bytes) of exported bone locations and rotations to NumPy files
Harris et al. (2020). The Riemannian metric learning with TPE is performed using HyperOpt
Bergstra et al. (2013), Tune Liaw et al. (2018) and Wandb to log the results Biewald (2020).

For cartesian linear interpolation, we linearly interpolate the locations as well as the rotations in
the form of component-wise quaternion interpolation. Blender’s quaternion interpolation was once
implemented this way but was problematic since it can yield invalid (non-unit) quaternions. Blender
has since updated to using a version of spherical linear interpolation (slerp), which we also compare
to.

During geodesic interpolation on SO(3), we generate new rotation matrices representing the ori-
entation of each bone at a frame using the implementation of invariant Riemannian metrics param-
eterized by α, β,inv and available through the Geomstats library Miolane et al. (2020). In order
to compute the quality metrics, we need to recover the new bone positions b at each frame given
orientations R ∈ SO(3) and root bone position. To do so, we start from the root bone of the rig (e.g.
hips) and traverse the tree breadth first, applying each new rotation to the bones on that “level” of
the tree, computing the new positions, iteratively until we have leaf node (e.g. fingertips) positions.

5 RESULTS

We compare our geodesic interpolations (purple) to the three most commonly used schemes: piece-
wise constant (PC, teal), linear cartesian (LC, orange), spherical linear (slerp, yellow), on 5 different
increasingly complex Mixamo animations: Pitching, Rolling, Punching, Jumping, and
Sitting. Our supplemental video contains the full animations.

Perceptual Accuracy We visualize and qualitatively compare the accuracy of each interpolation
scheme. We present this comparison using a sampling rate of s = 0.3 in Figs. 5a-5d, while corre-
sponding figures for other sampling rates can be found in the supplemental materials. Our visual-
izations show the ground truth animation, with the interpolation methods layered transparently over
to highlight where the interpolation deviates from the original.

The Pitching in Fig. 1 has 24 bones and shows our method working with animations with a
fixed root node. Sitting in Fig. 5a is an example where the fixed node is in the middle of the
armature. Jumping contains vertical motion and rotations in the legs that are far apart, i.e. differ
by a large angle close to pi. Punching animation in Fig. 5c shows horizontal translations with
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contacts. For example, it would be undesirable for an interpolation to miss frames where her feet
touch the floor to create an illusion of floating. Our approach outperforms traditional techniques
as it most accurately interpolates characters within this diversity of animations: displaying a larger
purple overlay in Figs. 5a-5b, effectively capturing extremities (hands and feet) in Fig. 5c as well as
fast motions in Fig. 5d.

The Rolling animation is difficult because it has the complexity of all previous animations. The
rotations of bones are large and flip upside down (see Fig. 5d). In this difficult setting, visual
inspection shows that our interpolation performs particularly well.

0.1

Sampling Rate vs Rotation+Location Error

0.50.40.30.2 0.6 0.7 0.8 0.9

0.2

1.0

0.4

0.6

0.8

0.0

our geodesic
piecewise constant
linear (cartesian)
linear (slerp)

sampling rate

error

Figure 6: As the sampling rate for the
Pitching animation increases—which
means a higher number of frames in the initial
animation—the error metric Qhyb decreases.

Quantitative Accuracy and Compression In
addition to these perceptual comparison, we
compare the interpolations’ accuracies using the
weighted error Qhyb = 0.5 Qloc + 0.5 Qrot and
present it in Fig. 6 for the Rolling animation.
The supplementary materials show these plots for
the 4 other animations. Our approach presents the
lowest error just in front of slerp’s. Despite the
seemingly small quantitative difference between
these two, we note that Fig. 5d shows significant
perceptually differences. Fig. 6 also allows us to
evaluate our method in terms of compression: we
require a lower sampling rate s to achieve a given
interpolation error (or accuracy). Consequently,
this method can decrease the memory required to
store animations: our compressed animation is a
factor of s smaller than the ground truth, plus the
Bα and Bβ float values. The supplemental mate-
rials provide additional details on compression and
exact file size.

CONCLUSION AND FUTURE WORK

We presented a method for animation interpolation using geodesics on Riemannian manifolds where
we learn the optimal metric. To our knowledge, this is the first time that Riemannian metric learning
is proposed for computer graphics. We hope that these ideas will inspire other applications in this
field. We showed that our method interpolates animations with high accuracy (both perceptually
and quantitatively) on a variety of different motion capture sequences. Because we are able to
accurately represent a high frame rate animation with very few frames, we achieve a compression
rate that requires digital animators to pose fewer keyframes during the creation process.

Future work will perform further analyses of the metric parameters to reveal additional meaning and
novel semantic intuition behind the motion. We will eventually provide animators full control over
the parameters α and β to change the interpolation style and foster a more interactive exploration.
We will do so by integrating our family of geodesic interpolation into animation software and en-
able animators to play with different geodesics in real time. We are also interested in performing
perceptual studies to investigate which interpolations animators and viewers prefer.

One can also explore how choice of keyframes impacts interpolation and compression results. Our
experiments uniformly downsample the ground-truth animation. Yet, with an extremely low sam-
pling rate, the downsampled animation consists of very few frames which might not capture all
important actions. One can explore how a smart downsampling of the animation improves interpo-
lation quality by ensuring that the most important frames are kept.
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Miloš Žefran and Vijay Kumar. Interpolation schemes for rigid body motions. Computer-Aided
Design, 30(3):179–189, 1998.
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A APPENDIX: INVARIANT METRICS

Definition A.1 (Invariant Riemannian metric) A left-invariant metric on a Lie group (G, ·) is a
Riemannian metric <,>, such that for all g, h ∈ G and for all u, v ∈ TgG, we have:

⟨DLh(g).u,DLh(g).v⟩ >Lhg
= ⟨u, v⟩g, (10)

where Lh is the left translation by h, i.e. Lhg = h · g, and DLh denotes its differential. In other
words, the left translations are isometries for this metric. Similarly, we can define right-invariant
metrics using the right translation Rh.

We note that any Lie group G admits a family of left (and right) invariant metrics, which we can
obtain with a construction that we illustrate with G = SO(3) in what follows. First, we define an
inner-product on so(3) = TeSO(3) by providing a SPD matrix Z as in Eq. 2. Then, this inner-
product is turned into a Riemannian metric by propagating it to get an inner-product at each tangent
space ThG using the differential of left-translations DLh(e) (resp. DRh(e)) that we compute with
automatic differentiation. We refer the reader to Guigui et al. (2022) for details. In practice, it means
that the specification of a single matrix Z provides us with a full Riemannian metric over SO(3),
which becomes a Riemannian manifold.

Remark: Intuitively, left-invariant metrics are metrics that are invariant with respect to change in
inertial frame, but not with respect to change in body-fixed frame Žefran et al. (1996). Similarly,
right-invariant metrics are invariant with respect to body-fixed frame but not with respect to changes
in inertial frames.

Proposition A.1 (Invariant Geodesic Equations Guigui & Pennec (2021)) Consider a left-
invariant metric <,> on a Lie group G with Lie algebra g. Its geodesics γ verify the ordinary
differential equation: {

γ̇(t) = dLγ(t)ω(t)
ω̇(t) = ad∗ω(t) ω(t)

, (11)

where ad∗ is the metric dual to the adjoint map, which is defined as: ∀a, b, c ∈ g, ⟨ad∗a(b), c⟩ =
⟨[a, c], b⟩, where [, ] is the Lie algebra bracket.

In the proposed geodesic interpolation method, our geodesics will be numerically computed by
integrating ODE Eq. 11 with an Euler integration scheme. Given initial conditions p = γ(0), u =
γ̇(0) for ODE Eq. 11, we denote Expp(u) the solution of ODE Eq. 11 at time t = 1, which is called
the Riemannian exponential map associated with metric <,>. We note that the Riemannian metric
<,> is bi-invariant if and only if the adjoint map is skew-symmetric, i.e. ad∗ω(ω) = 0, which is
what is used in the spherical interpolation of quaternions in the literature.
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B APPENDIX: TPE ALGORITHM

The TPE algorithm consists of three steps. First, we start with a random selection of tuples α, β,inv
and evaluate the criterion Q corresponding to each tuple, i.e., the accuracy of the interpolated an-
imation compared to the ground truth animation for each tuple given by Eq. 6. Second, we sort
the collected criteria and divide them into two groups based on a quantile chosen in advance. The
first group contains the tuples α, β,inv that gave the best (lowest) criteria Q and the second group
contains the other tuples with the worst (highest) criteria Q. We compute the two probability den-
sities p1, p2 on the tuples’ distributions in the first and second group respectively, using Parzen
Estimators, i.e., kernel density estimators. Finally, we draw new tuples from the probability density
corresponding to the best group: p1. We evaluate the new tuples in terms of an improvement score
I = p1(α, β,inv)/p2(α, β,inv) and return a set of new tuples that yields minimum values for I .
Intuitively, we expect this set to correspond to the greatest expected improvement I in the criterion
Q. These new tuples are then evaluated on the criterion Q, and the steps are iterated. We continue
the process until a convergence threshold is reached.
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