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ABSTRACT

Language models deployed in the wild make errors. However, simply updating
the model with the corrected error instances causes catastrophic forgetting—the
updated model makes errors on instances learned during the instruction tuning or
upstream training phase. Randomly replaying upstream data yields unsatisfactory
performance and often comes with high variance and poor controllability. Pre-
cisely identifying forgotten examples is computationally intractable with a large
upstream dataset. To this end, we study the problem of forecasting upstream ex-
amples that will be forgotten due to a model update. We shed light on how in-
teractions between examples cause learning one example to forget the other. We
train forecasting models given a collection of online learned examples and corre-
sponding forgotten upstream pre-training examples. We propose a partially inter-
pretable forecasting model based on the observation that changes in pre-softmax
logit scores of pretraining examples resemble that of online learned examples,
which performs decently on BART but fails on T5 models. We further show a
black-box classifier based on inner products of example representations achieves
better forecasting performance over a series of setups. Finally, we show that we
reduce forgetting of upstream pretraining examples by replaying examples that
are forecasted to be forgotten, demonstrating the practical utility of forecasting
example forgetting across different setups.

1 INTRODUCTION

While pretrained language models (PTLMs) have achieved remarkable success in various down-
stream tasks, it is inevitable that models deployed in the wild still make errors (Lin et al., 2022b;
OpenAI, 2023). Fixing errors without retraining the model, known as model refinement (Yao et al.,
2021), is crucial for the long-term usability of the model (Raffel, 2023). Although a few steps of
parameter updates are usually sufficient to correct errors (De Cao et al., 2021), a main obstacle is
catastrophic forgetting, i.e., massive misprediction of previously learned examples (Robins, 1995).
To combat forgetting, a prevalent practice in model refinement or continual learning algorithms is to
replay previously learned examples, most of which rely on random sampling from upstream training
data (de Masson D’Autume et al., 2019; Jin et al., 2022). However, such practice has shortcomings
that (1) they lack interpretability on what previously learned examples are affected due to model up-
dates, and (2) they achieve inferior performance as the replayed examples are not properly targeted.

Few works have tried to analyze or forecast forgotten examples in model updates. Existing work
demonstrated the existence of examples that are more prone to forgetting (Toneva et al., 2018; Tiru-
mala et al., 2022; Maini et al., 2022); however, they do not interpret how interactions between two
examples contribute to forgetting, i.e., why learning one example causes forgetting of the other. For
PTLMs, such interaction is intriguing to humans, as exemplified in Figure 1, where learning an ex-
ample about public relations causes forgetting of an example in paraphrase detection. This opens up
a novel and challenging task of forecasting forgetting based on interactions of two examples without
running expensive and repetitive inference with PTLMs.

The goals of this work are two fold: (1) shedding light on how interactions between two exam-
ples contribute to forgetting, and (2) developing effective methods that forecast example forgetting.

1



Under review as a conference paper at ICLR 2024

Incorrectly Predicted Example by FLAN-T5
Which of these is NOT a type of research that could be used for the 
purposes of evaluation?
(A)Media content analysis (B) Survey 
(C) Behavior study (D) Media Release

Upstream Pre-Training Example of FLAN-T5
How can you lose weight quickly? 
How do I lose weight in a short time? 

Pick one: These questions are "duplicates" or "not duplicates". 

Media Release (incorrect)→ Behavior study Duplicates→ Not duplicates (incorrect)

Correcting Prediction Errors Forgetting of Pretraining Examples

why?🤔

Figure 1: Intriguing patterns of example forgetting while correcting prediction errors in FLAN-T5. Fixing
errors in a question related to public relations flip the prediction on an example from the paraphrase detection
task. The association between two examples is obscure to humans.

Towards the goal of interpretability, we explore forecasting forgetting with an interpretable model.
With empirical study, we demonstrate the phenomenon of “logit-change transfer”, i.e., the changes
in pre-softmax logits of upstream pretraining examples proportionally copy that of online learned
examples while fixing an error, causing forgetting of the upstream pretraining example. Motivated
by this finding, we build a partially interpretable forecasting model that learns how much logit
changes are transferred based on the similarity of two examples. Similar techniques have been ap-
plied to track the dynamics of logits during continual learning in recent works (Ramasesh et al.,
2020; Karakida & Akaho, 2021; Evron et al., 2022). Experiments show that the forecasting model
is effective on BART0 (Lin et al., 2022a; Lewis et al., 2019) but fails on FLAN-T5 (Chung et al.,
2022).We then examine whether a black-box model can achieve better forecasting performance than
the interpretable model. We show that a model based on inner products of trainable representations
of two examples could achieve decent forecast accuracy across a series of setups.

We further demonstrate the practical utility of forecasting forgotten examples. At inference time, the
forecasting model is highly computationally efficient and does not require inference with PTLMs.
By replaying examples predicted to be forgotten, we reduce catastrophic forgetting compared to
replaying random examples. The approach is a significantly efficient alternative to replaying exact
examples that will be forgotten (Aljundi et al., 2019).

To summarize, our contributions are three fold: (1) a novel problem setup of forecasting forgotten
examples in model refinement, (2) a partially interpretable and a black-box model for forecasting
forgetting, and (3) a model refinement algorithm with reduced forgetting by replaying examples
predicted to be forgotten.

2 FORECASTING FORGOTTEN EXAMPLES

We set up a formal problem formulation of forecasting examples that will be forgotten in model re-
finement. We assume that a base language model (LM), f0, is pretrained on a collection of upstream
data DPT. We also assume f0 to be an instruction-tuned model (Chung et al., 2022) that can perform
diverse natural language tasks in DPT in a format of sequence-to-sequence generation. We measure
Exact Match (EM) score of a model f on a dataset D, defined as EMD,f := |{⟨x, y⟩ ∈ D | f(x) =
y}| / |D|, where x is the input text and y is the ground truth answer.

Model Refinement. We evaluate the LM f0 a new task and collect all the mispredicted examples,
noted as DR. For each ⟨xi, yi⟩ ∈ DR, we fine-tune the language model f0 for K steps and obtain
an updated model fi for each of ⟨xi, yi⟩. We evaluate Edit Success Rate, defined as |{⟨xi, yi⟩ ∈
DR | fi(xi) = yi}| / |DR|, i.e., the proportion of examples that produces correct answers after
model updates. After fine-tuning on each of ⟨xi, yi⟩, we measure EM Drop Ratio on DPT, defined
as (EMDPT,fi − EMDPT,f0) / EMDPT,f0 . In our default setup, we only consider fixing one error at a
time; we involve sequential model updates over multiple examples later in our experiments.

Forecasting Forgetting. Due to forgetting, among the subset of upstream pretraining examples in
DPT that are correctly classified by the base pretrained LM f0, D̂PT := {⟨xj , yj⟩ ∈ DPT | f0(xj) =
yj}, examples may get correct or incorrect predictions after updating f0 on ⟨xi, yi⟩. For each online
learned example ⟨xi, yi⟩, we collect forgotten upstream pretraining examples, DFgt,i

PT := {⟨xj , yj⟩ ∈
D̂PT | fi(xj) ̸= yj} and those not forgotten, DNon-Fgt,i

PT = D̂PT\DFgt,i
PT . The task of forecasting

forgetting is a binary classification problem g : ⟨xi, yi⟩, ⟨xj , yj⟩ 7→ zij ∈ {0, 1} where the posi-
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tive class corresponds to ⟨xj , yj⟩ being forgotten upon learning ⟨xi, yi⟩. We note that although the
ground truth of forgotten upstream pretraining examples can be directly obtained by running infer-
ence on D̂PT with the updated model fi, it can be very inefficient and repetitive assuming a large
D̂PT and D̂R. We expect the forecasting function g to be computationally efficient, and prohibit g
from running full inference over D̂PT repetitively for each online learned example ⟨xi, yi⟩ ∈ DR.

Training and Evaluation of Forecasting Methods. We partition the set of online learned examples
into disjoint subsets DTrain

R and DTest
R . Given a trainable forecasting model g of example forgetting,

we train g using ⟨DTrain
R , DPT⟩ and evaluate it with ⟨DTest

R , DPT⟩. We also evaluate out-of-domain
generalization performance of g where DTrain

R and DTest
R are from different tasks.

3 METHODS

The key to the challenge of forecasting forgetting is to develop a computationally efficient and
reliable forecasting function g; Furthermore, a self-interpretable g could assist humans to understand
why an example is forgotten. In this section, we introduce two (partially) interpretable approaches
for forecasting forgetting inspired by empirical findings about frequently forgotten examples and
logit changes of examples. We also present a black-box forecasting model based on inner products
of representations of two examples.

3.1 FREQUENCY-THRESHOLD BASED FORCASTING

Existing study by Toneva et al. (2018); Maini et al. (2022) shows the existence of examples that are
more prone to forgetting than others. Following these findings, we set up a baseline that predicts
positive if the example is forgotten more than a preset frequency threshold γ in DTrain

R .

g(⟨xi, yi⟩, ⟨xj , yj⟩) = 1[|{⟨xi, yi⟩ ∈ Dtrain
R | zij = 1}| ≥ γ] (1)

The threshold γ is tuned to maximize its F1 on Dtrain
R . We refer to the approach as threshold-

based forecasting. However, this baseline does not capture or interpret how interactions between
the online learned example ⟨xi, yi⟩ and the pretraining example ⟨xj , yj⟩ contribute to the forgetting.

3.2 LOGIT-CHANGE BASED FORECASTING

As we have seen in Figure 1, it is intriguing to humans why learning an example ⟨xi, yi⟩ (about pub-
lic relations) causes model to forgetting an upstream pretraining example ⟨xj , yj⟩ (about paraphrase
detection). We figure out clues by examining logit change (pre-softmax outputs) of two examples
after model updates. Figure 2(a) reveals that in the same pair of examples, the logit scores of the
some tokens such as “not” and “duplicates” in ⟨xi, yi⟩ changes significantly, despite that their token
probabilities after normalization are close to 0. This logit change does not have an effect on the
prediction of ⟨xi, yi⟩; but the problem arises on ⟨xj , yj⟩ as the logit change partially transfers to
the example. In the pretraining example ⟨xj , yj⟩, the logit change affects the ordering of the top-2
prediction candidates (“not” versus “duplicates”), causing the prediction to flip.

A natural question is whether we can predict the proportion of logit changes of ⟨xi, yi⟩ that will
be transferred to ⟨xj , yj⟩. We derive the relationships between logit change of the online learned
example and the pretraining example with techniques similar to those of previous work on neural
tangent kernels (NTKs) (Lee et al., 2019). We note the output logits of an example x as f̂(x) ∈
RTV , where T is the output length, and V is the size of the vocabulary. The change of model
parameters ∆θi = θi − θ0 in the model f after a single step of gradient step on the online learning
example ⟨xi, yi⟩ is θi − θ0 = −η∇θf̂0(xi)∇f̂0(xi)

L(xi, yi), where L is the training loss function
and η is the learning rate. With the first-order Taylor expansion, the logit change of an upstream
pretraining example xj after performing one step of gradient descent with xi can be approximated
as ∆f̂i(xj) = f̂i(xj) − f̂0(xj) = −ηΘ(xj , xi)L(xi, yi), where the kernel Θ(xj , xi) ∈ RTV×TV

measures inner products among gradients ∇θf̂0(xj)∇θf̂0(xi)
T . Similarly, for the online learning

example, the logit change is ∆f̂i(xi) = f̂i(xi) − f̂0(xi) = −ηΘ(xi, xi)L(xi, yi). We therefore
obtain the relationship between the logit changes of xi and xj ,

f̂i(xj)− f̂0(xj) = Θ(xj , xi)Θ
−1(xi, xi)[f̂i(xi)− f̂0(xi)] (2)
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Incorrectly	Predicted	Example	
by	FLAN-T5
Which	of	these	is	NOT	a	type	of	
research	that	could	be	used	for	the	
purposes	of	evaluation?

Upstream	Pre-Training	Example	
of	FLAN-T5
How	can	you	lose	weight	quickly?	
How	do	I	lose	weight	in	a	short	
time?

Token Logit Logit	After
Behavior -2.56 -1.72
Media -2.03 -2.18
Not -6.05 -9.43	(-3.38	↓)
Duplicates -6.24 -10.02	(-3.78	↓)

Token Logit Logit	After
Not -2.30 -2.56	(-0.26	↓)
Duplicates -2.23 -2.63	(-0.40	↓)

(a)	Logit	change	transfer

Online	Learning	
Example	𝑥!

Upstream	Pretraining	
Example	𝑥"

!ϴ(𝑥", 𝑥#)

Predicted	Logit	Change
+	Logit	before
=	Predicted	Logit	After

Binary	label
Forget	/	Not	Forget

(b)	Logit-based	Forecasting (c)	Rep.	based	Forecasting

Kernel
Media	Release →	Behavior	study

Duplicates	→	Not	duplicates

Figure 2: (a) Transfer of logit changes of first output tokens on an upstream pretraining example ⟨xj , yj⟩
when fixing prediction errors of an online learning example ⟨xi, yi⟩ (see Figure 1 for the full texts of the
example). After fixing the error, the logit scores of the tokens “not” and “duplicates” in ⟨xi, yi⟩ changes sig-
nificantly, despite that their token probabilities after normalization are both close to 0. The logit change has no
effect on the prediction of ⟨xi, yi⟩; however, the predictions of the upstream pretraining example ⟨xj , yj⟩ flips
as the logit change partially transfers to ⟨xj , yj⟩. (b) Logit-based forecasting infers transfer of logit changes
depending on the learned similarity measurement of two examples. (c) Representation-based forecasting di-
rectly predicts the binary label of forgetting based on learned similarity measurement.

Eqn. 2 enables forecasting logit change of a pretraining example xj with the logit change of the on-
line learned example xi and the kernel matrices Θ(xj , xi)Θ

−1(xi, xi). Nevertheless, the kernel can
be either easy or notoriously expensive to compute, depending on the trainable parts of the models.
When only fine-tuning the LM heads, obtaining Θ(xj , xi) does not require running repetitive infer-
ence with the LM because the gradients ∇WHead f̂0(xj) are simply the representations of xj before
the LM head, which can be computed once and cached for each xj ∈ DPT. We refer to the approach
as fixed logit-based forecasting. Unfortunately, when more parts of f0 are fine-tuned, the kernel
requires TV backward passes to obtain the gradients, which is prohibitive (Novak et al., 2022).

Trainable Logit-Based Forecasting Model. Is it possible that for LMs, we can approximate the
learning dynamics in Eqn. 2 with a low-dimensional and simpler model? We examine a signifi-
cantly simplified alternative of Eqn. 2 by substituting Θ(xj , xi)Θ

−1(xi, xi) with a trainable kernel
Θ̃(xj , xi) = h(xj)h(xi)

T , where h : x 7→ RT×d is an encoding function that maps x to a low-
dimensional vector in Rd, where T is output length. We implement h with a trainable LM and extract
its representation in the final layer as h(x). We also remove the huge 30k−50k dimensional vocab-
ulary space from the kernel so that Θ̃(xj , xi) ∈ RT×T . As such, we forecast the logits (reshaped
from RTV to RT×V ) of xj in the updated LM fi as f̂i(xj) = Θ̃(xj , xi)[f̂i(xi)− f̂0(xi)] + f̂0(xj).
Note that the equation does not require repetitive inference with the LM f : the logits of pretraining
examples before model updates f̂0(xj) can be computed once and cached for different online learn-
ing examples xi; the same applies to the representations h(xi) required by the trainable kernel Θ̃.
Upon forecasting the logits of pretraining examples after model updates, we optimize a margin loss
so that the predicted logit score f̂i(xj)[yj ] of the correct token yj exceeds the second-top candidate
token maxv ̸=yj

f̂i(xj)[v] by a preset margin if ⟨xj , yj⟩ is not forgotten, and reversed otherwise.

L(⟨xi, yi⟩, ⟨xj , yj⟩, zij) = (1− zij)max(0, 1− (f̂i(xj)[yj ]−max
v ̸=yj

f̂i(xj)[v]))

+zij max(0, 1− (max
v ̸=yj

f̂i(xj)[v]− f̂i(xj)[yj ]))
(3)

We summarize the full training and evaluation procedure in Algorithms 1 and 2 in Appendix C.
The resulting forecasting model is partially interpretable in that it explains how the logit change
of ⟨xi, yi⟩ is transferred to ⟨xj , yj⟩ depending on their similarity. We illustrate the method in Fig-
ure 2(b). In our experiments, we notice that this greatly simplified logit-based forecasting is effective
on BART models, but fails on another model, T5. The findings implies that logit change transfer
cannot be captured by a simplified kernel Θ̃ for all model types.

3.3 REPRESENTATION-BASED FORECASTING

We examine whether a black-box forecasting model can extract latent interactions between two
examples xi and xj that contribute to forgetting. We propose a model that directly maps the inner
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products of the representations h(xj)h(xi)
T (i.e.,, the kernel Θ̃(xj , xi)) to the label zij ∈ {0, 1}.

g(⟨xi, yi⟩, ⟨xj , yj⟩) = σ(

T∑
t=1

h(xj,t)

T∑
t=1

h(xi,t)
T ) (4)

where T is the length of the output sentence and h is a trainable LM encoder similar to trainable
logit-based forecasting. We optimize binary cross-entropy loss to learn the encoding function h. We
illustrate the method in Figure 2(c).

Forecasting with Frequency Priors. We expect the representation-based forecasting model to
capture latent interactions that cannot be learned by the threshold-based forecasting in Sec. 3.1.
However, it is likely that the model overfits such a bias about frequency of example forgetting.
Therefore, we add a bias term to Eqn. 4 to represent the frequency priors before training, so that the
model fits the residuals. The bias term is the log odds that the example is forgotten in DTrain

R , more
specifically bj = log(|{⟨xi, yi⟩ ∈ Dtrain

R | zij = 1}| / |Dtrain
R |) − log(|{⟨xi, yi⟩ ∈ Dtrain

R | zij =
0}| / |Dtrain

R |). We refer to the approach as representation-based forecasting. We summarize the
full training and inference procedures in Algorithms 3 and 4 in Appendix C. In our experiments, we
will present the results of ablating the frequency prior.

4 EXPERIMENT SETUPS

Our main goals of experiments are (1) to examine the performance of methods that forecast forget-
ting when fixing errors in PTLMs and (2) to evaluate the practical utility of forecasting methods by
replaying examples predicted to be forgotten. We experiment with multiple PTLMs, datasets, and
various fine-tuning setups of PTLMs.

4.1 TRAINING AND EVALUATION SETUP

Base PTLMs and Datasets (f0, DPT). We experiment with BART0Large (Lewis et al., 2019; Lin
et al., 2022a), FLAN-T5Large, FLAN-T53B (Chung et al., 2022) models with 400M, 840M, and 3B
parameters respectively. All of these models are encoder-decoder language models instruction-tuned
over a mixture of training tasks and are able to solve diverse tasks in a format of sequence-to-
sequence generation. We evaluate forgetting over 36 tasks from the training split of the Public Pool
of Prompts (P3) dataset (Bach et al., 2022), which is involved in pretraining all three base PTLMs.

Tasks for Model Refinement (DR). We collect mispredicted examples (with Exact Match (EM)
metrics) of PTLMs over datasets that are not involved for pretraining. For BART0, we use tasks
from the test split of the P3 dataset; For FLAN-T5, we use MMLU (Hendrycks et al., 2020), since
the P3 dataset (including the test split) is involved in pretraining the model.

Training and Evaluation of the Forecasting Model g. For a given dataset for model refinement,
we collect mispredicted examples from the training split DTrain

R and the validation split DTest
R . We

train the forecasting model with DTrain
R and report the performance on DTest

R . We then evaluate the
performance of correcting these errors of PTLMs on DTest

R . We fine-tune the entire model (Full FT),
low-rank learnable weights (LoRA) (Hu et al., 2021), or the LM head only.

Hyperparameters. We perform 30 steps of parameter updates on a single online learning example
to fix the error when we apply LoRA or full FT, and 100 steps when we only fine-tune the heads. For
LoRA and full fine-tuning we use a learning rate of 10−5 for BART0Large and 10−4 for FLAN-T5.
When fine-tuning heads only, we use learning rates of 10−3 or 10−4. The hyperparameters of model
refinement are tuned to maximize edit success rate, which is the primary goal of model refinement.
We leave other details in Appendix B.

Metrics. We report F1 scores for binary forgetting prediction. For model refinement, we report the
Edit Success Rate and EM Drop Ratio defined in Sec. 2.

4.2 COMPARED METHODS

Forecasting Forgetting. For forecasting forgetting, we report the performance of fixed logit-based,
trainable logit-based and black-box representation-based forecasting. The fixed logit-based fore-
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Table 1: Average F1-score of forecasting example forgetting when fixing one error in DTest
R at a time. When

fixing errors of base PTLMs, we either fine-tune LM heads only (Head), learn low-rank parameter updates
(LoRA), or fine-tune entire model parameters (Full FT). Forgotten examples are minority among all pretraining
examples. Bold numbers indicate the forecasting method that achieves the best performance.

Language Model (→) BART0Large FLAN-T5Large FLAN-T53B
Dataset DR (→) P3-Test MMLU MMLU

Method (↓) LM Tuning Setup (→) Head Full FT Head LoRA Full FT Head LoRA

Threshold 62.96 55.75 59.95 43.93 48.43 63.64 41.42
Fixed Logit 69.57 43.26 68.37 19.54 12.74 59.03 17.50
Trainable Logit 73.39 57.15 61.09 36.54 40.91 55.07 31.40
Representation 79.32 67.19 67.81 48.66 51.51 65.93 42.99

w/o Prior 77.92 66.53 67.21 47.11 50.38 63.98 41.60

casting takes input representations before the LM head as its input, but this formulation only applies
scenarios where we only fine-tune the LM heads; we report performance in other fine-tuning setups
only as reference. We also note that forgotten examples (positive class) are minorities in DPT. As we
will see in Sec. 5.2 and Table 3, EM Drop Ratio (that represents ratio of forgotten examples) ranges
between 0.03% and 8.0%. This skewed distribution imposes challenges to forecasting methods.

Model Refinement. We correct errors in models with vanilla fine-tuning or randomly replaying a
subset of examples from DPT. We perform replay with a distillation loss against the outputs of the
base PTLM (Buzzega et al., 2020). We then verify whether replaying examples predicted as forgot-
ten reduces forgetting. We also compare with an upper bound that replays ground-truth forgotten
examples, which is computationally expensive and infeasible in practice, equivalent to Maximally
Interfered Retrieval (Aljundi et al., 2019) with the entire pretraining set as retrieval candidates. For
all variants of replay, we sparsely replay a mini-batch of 8 examples every 10 training steps on
BART0Large and FLAN-T5Large, and 4 examples every 5 training steps on FLAN-T53B.

5 RESULTS

5.1 FORECASTING MODEL FORGETTING WHEN FIXING SINGLE ERROR

We evaluate the performance of forecasting example forgetting while fixing one single error in
PTLMs. We examine whether these approaches outperform threshold-based forecasting that relies
solely on the frequency of forgetting while ignoring interactions between examples in DPT and DR.
Table 1 summarizes the results.

Performance when Tuning LM Heads Only. We notice that on both BART0Large and FLAN-
T5Large, representation-based forecasting achieves the highest F1 (79.32 and 67.81). Fixed logit-
based forecasting performs competitively, achieving F1 scores of 69.57 and 68.37, despite the ab-
sence of learnable parts in the method. As we discussed in Sec. 3.2, when only LM heads are tuned,
fixed logit-based forecasting (Eqn. 2) can approximate the ground truth logit change of the upstream
pretraining example. Still, F1 is not perfect due to the nature of the first-order approximation in
Eqn. 2 and that we perform more than 1 gradient step to correct errors. Introducing trainable parts
to logit-based forecasting at the cost of inexact formulation does not further improve performance.
On BART0 and P3-Test, representation-based forecasting outperforms fixed logit-based forecast-
ing (79.32 and 69.57 F1); while on FLAN-T5 and MMLU, the performance is close within two
approaches (67.81 and 68.37 F1).

Performance with LoRA or Full Fine-Tuning. When we apply LoRA or fine tune the entire model
to fix the errors, we see that the fixed logit-based forecasting no longer performs decently. Trainable
logit-based forecasting (57.15 F1) can improve performance and outperform threshold-based pre-
diction (55.75 F1) on BART0Large , but not on FLAN-T5 models. As we discussed in Sec. 3.2, the
reason is likely that trainable logit-based forecasting has greatly simplified the dynamics of logits in
Eqn. 2; while for FLAN-T5, such a simplified model cannot fit the ground truth dynamics. Despite
the failure of logit-based forecasting, representation-based forecasting performs competitively. On
FLAN-T5Large and MMLU, it improves F1 by 4.73 and 3.08 compared to threshold-based forecasting
when fixing errors with full FT or LoRA updates. On BART0, the improvement is more significant,
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Table 3: Edit success rate (Succ.) and Exact Match Drop Ratio (EM Drop %) of model refinement while fixing
one error in DTest

R at a time. Lower EM Drop % indicates reduced forgetting. Bold numbers indicate lowest for-
getting achieved by methods other than utilizing ground truth forgetting (GT Forget), which is computationally
inefficient in practice. See Appendix B for EM scores of LMs on upstream data before refinement.

Language Model (→) BART0Large FLAN-T5Large FLAN-T53B
Dataset DR (→) P3-Test MMLU MMLU

LM Tuning Setup (→) Full FT LoRA Full FT LoRA

Methods (↓) Succ. EM Drop % Succ. EM Drop % Succ. EM Drop % Succ. EM Drop %

Vanilla FT 98.0 8.045 95.7 0.099 95.7 0.149 97.5 0.030
Replay
w/ Random 97.8 3.938 95.7 0.105 95.7 0.068 97.5 −0.018
w/ Threshold 97.0 2.649 95.7 0.100 95.7 0.024 97.5 0.001
w/ Trainable Logit 97.3 2.250 95.7 0.113 95.7 0.081 97.5 0.004
w/ Representation 97.3 2.191 95.7 0.079 95.7 −0.026 97.5 −0.020
w/ GT Forget 97.0 0.401 95.7 0.075 95.7 −0.056 97.5 −0.011

with 11.41 higher F1 than threshold-based forecasting. We also notice consistent performance drop
without the frequency prior term in representation-based forecasting.

Table 2: In-domain (ID) and out-of-domain (OOD)
performance of forgetting forecasting methods on
BART0. We split P3-Test into in-domain and out-of-
domain tasks and report performance on both splits.

Method / Split P3-TestID P3-TestOOD

Threshold 60.45 46.24
Trainble Logit 64.15 30.61
Representation 75.11 50.12

w/o Prior 74.19 34.85

Out-of-Domain Generalization of Forgetting
Prediction. We evaluate whether forecasting
models can generalize to new out-of-domain
(OOD) tasks upon training on a mixture of in-
domain tasks. We further split P3-Test into
two disjoint subsets of tasks (details in Ap-
pendix B) and train the forecasting model on
P3-TestID while evaluating on P3-TestOOD. We
notice that although all trainable approaches
outperform threshold-based prediction in terms
of in-domain performance, only representation-
based forecasting with frequency prior can im-
prove OOD performance, obtaining an OOD F1 of 49.73, compared to 46.24 F1 of the threshold-
based forecasting approach.

5.2 IMPROVING MODEL REFINEMENT WITH FORGETTING PREDICTION

We demonstrate the practical utility of forecasting forgetting by showing reduced catastrophic
foregetting by replaying examples predicted to be forgotten. Table 3 summarizes the results of
model refinement where we apply no replay (Vanilla FT), replay random examples, or replay ex-
amples predicted to be forgotten by forecasting methods. All variants of methods replay an equal
number of examples from DPT at a fixed interval, as we described in Sec. 4.2.

Table 3 shows that EM Drop differs significantly between the BART (8%) and FLAN-T5 models
when we do not apply replay (0.10%, 0.15% and 0.03%). Replaying random examples reduces EM
Drop except LoRA fine-tuning on FLAN-T5Large. Unsurprisingly, replaying ground truth forgot-
ten examples is very effective for reducing forgetting. The comparison of EM Drop between re-
playing with threshold, trainable logit, and representation-based forecasting is mostly aligned with
their F1 in forecasting forgotten examples in Table 1. Compared to replaying random examples,
representation-based forecasting reduces EM Drop consistently in four different setups. However,
the improvement is minor on FLAN-T5 models given the low forgetting when even no replay is per-
formed (Vanilla FT). We will see more significant forgetting and clearer improvement of replaying
forgotten examples when we continually fix multiple errors in the upcoming section. We also note
that differences in replayed examples do not affect Edit Success.

5.3 CONTINUAL MODEL REFINEMENT OVER MULTIPLE EXAMPLES

Generalization of Forecasting Models in Continual Model Refinement. We examine whether
forecasting models can generalize to scenarios of continually fixing multiple errors. The challenge
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Figure 3: F1, Precision, and Recall of representation-based (Rep), threshold-based (Thres), and trainable logit-
based forecasting models averaged up to a given time step (in x-axis) when continually refining the LM. For
all forecasting methods, recall drops over time (as more examples being forgotten), while precision remains
stable. Representation-based forecasting achieves best F1 and precision at the end of the sequence.

arises from the mismatch between the continually updated LM and the fixed pretrained LM (f0)
used for training forecasting models. Figure 3 plots the curves of averaged F1, Precision, Recall
of forecasting up to a given time step while we continually fix the errors in the LMs. We notice
that precision is mostly stable in the stream, while recall drops over time, mostly because more
examples are forgotten over time. The stable precision indicates that the forecasting methods are
effective in sequential model updates, but further improvement can be made to improve the recall
of forecasting. The relative comparison between the forecasting methods also aligns with those of
fixing single errors in Table 1, where the representation-based forecasting achieves the highest F1.

Table 4: Exact Match Drop ratio (%) while continually
fixing multiple errors. We report average scores of all
examples in the stream.

Model FLAN-T5Large FLAN-T53B
Dataset DR MMLU MMLU

Tuning LoRA Full FT LoRA

Vanilla FT 5.463 3.302 4.384
Replay
w/ Random 3.267 1.129 1.910
w/ Threshold 1.489 0.631 1.198
w/ Trainable Logit 2.565 0.898 1.516
w/ Representation 0.301 0.582 0.138

w/ GT Forget 0.189 0.560 0.030

Effect of Forecasting Forgetting in Contin-
ual Model Refinement. We examine whether
replaying examples predicted as forgotten dur-
ing continual model updates reduces forgetting
and summarize the results in Table 4. The re-
sults indicate much more significant forgetting
of Vanilla FT compared to fixing single errors,
where the EM drops are 5.5%, 3.3%, and 4.4%
in three different setups of fine-tuning FLAN-
T5 models. By replaying examples predicted
as forgotten by the representation-based fore-
casting model, we significantly reduce the EM
drops to 0.30%, 0.58%, and 0.14% respectively
in three different setups.

5.4 DISCUSSION: COMPUTATIONAL
EFFICIENCY

Table 5: Computational complexity of forecasting
methods and obtaining ground truth forgetting by run-
ning inference with updated LMs when only fine-tuning
the LM head or the entire model (Full FT). See Sec. 5.4
for the definitions of the notations.

Method / Setup Head Full FT

Threshold O(NPT) O(NPT)
Trainable Logit O(NPTT

2(H + V )) O(NPTT
2(H + V ))

Representation O(NPTH) O(NPTH)

Ground Truth O(NPTTHV ) O(Fw(N))

We discuss the computational efficiency of
forecasting methods when retrieving forgotten
examples from NPT upstream pretraining exam-
ples when fixing one error. We assume that the
maximal lengths of the inputs and outputs are
T , the feature dimensions of the sentence rep-
resentations are H , and the size of the vocab-
ulary is V . We denote the computational cost
of running model inference with N examples
as Fw(N) which can be very expensive given
large LMs. We also consider that representa-
tions and logits of pretraining examples can be
pre-computed, cached, and reused when fore-
casting forgetting caused by different online learning examples.

Table 5 summarizes the computational efficiency of three forecasting methods and obtaining ground
truth by running inference with updated LMs. The computational efficiency of forecasting ap-
proaches does not change when we only fine-tune LM heads or fine-tune the entire model. Ob-
taining the ground truth, in contrast, is less efficient when fine-tuning the entire LM compared to
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when only LM heads are fine-tuned. Representation-based forecasting and threshold-based fore-
casting are more efficient than computing the ground truth in both setups. Logit-based forecasting
is more efficient than computing ground truth when the maximal sequence length T is small due
to the term T 2 in its computational complexity. Nevertheless, all forecasting methods are far more
efficient than computing the ground truth when the entire LM is fine-tuned because no repetitive
inference with the LM is required. In Appendix D, we further present statistics about number of
Floating Point Operations (FLOP), which aligns well with our computational complexity analysis.

6 RELATED WORKS

Language Model Refinement. Reserach on language model refinement studies efficient approaches
to fix errors in LMs without retraining models from scratch (Yao et al., 2023). Several existing works
focus on editing factual knowledge in LMs (Meng et al., 2022; Onoe et al., 2023; Zhang et al., 2023;
Jang et al., 2021), while others, including this paper, study the problem in the context of general NLP
tasks. De Cao et al. (2021); Mitchell et al. (2021) learn meta-models that edit update gradients to
improve generalization of editing and reduce forgetting; Huang et al. (2023); Hartvigsen et al. (2022)
add new neurons or adapters as patchers to fix errors. We note that our paper is focused on forecast
forgetting, which brings the greatest benefit to replay-based model refinement and continual learning
algorithms. Replay-based approaches are shown to perform competitively in various settings for
PTLMs (de Masson D’Autume et al., 2019; Jin et al., 2022; Lin et al., 2022b; Wu et al., 2021). We
compare with a non-replay model refinement algorithm by Mitchell et al. (2021) in Appendix A,
which is effective in reducing forgetting, but at the cost of edit success rate in our setup.

Empirical and Analytical Characterization of Example Forgetting. Empirical study by Toneva
et al. (2018) demonstrates that there exist examples that are more susceptible to forgetting. Maini
et al. (2022) characterize training examples by their forgetting and inspect properties such as hard-
ness or minority. This line of works on learning dynamics of single examples does not address in-
teractions between examples that contribute to forgetting. Ramasesh et al. (2020) analytically study
how learning new tasks may change affects logits of a learned task in a frozen feature model. Evron
et al. (2022) analytically computes forgetting in linear models. Karakida & Akaho (2021) study
learning dynamics in continual learning with neural tangent kernels (NTKs) (Jacot et al., 2018; Lee
et al., 2019), and investigate conditions that cause knowledge transfer or forgetting between tasks.
Unfortunately, NTKs are very expensive to compute for LMs with a large output space (Novak
et al., 2022), which motivated us to approximate them with learnable models. In the context of
large LMs, Tao et al. (2023) dissects the forgetting of encoders and classification heads by probing
sentence representations given by LMs.

7 CONCLUSIONS

In this paper, we studied the problem of forecasting examples that will be forgotten when fixing
errors in pretrained LMs. We set up problem formulation and evaluation protocols for forecast-
ing example forgetting. We observe transfer of logit changes from an online learned example to
an upstream pretraining example while fine-tuning PTLMs. Based on our empirical study on the
logits of the upstream pretraining and online learning examples before and after model updates,
we proposed a trainable logit-based forecasting method that infers the degree of logit change trans-
fer. The approach performs well on BART0 but fails on FLAN-T5. We also proposed a black-box
representation-based forecasting method that is consistently effective across various setups. We
show that replay-based model refinement algorithms benefit from forecasting models and achieve
reduced forgetting while fixing errors. Forecasting methods also generalize to sequential error fixing
over multiple examples and reduce forgetting in the setup.

Limitations. Our experiments show that the success of logit-based forecasting methods depends
on the type of model (which succeeds on BART0 but fails on FLAN-T5). Future work can analyze
factors that affect the success of the approach and develop forecasting methods with similar level
of interpretability but improved performance. Besides, although we showed that the performance of
forecasting models generalizes from fixing single errors to sequentially fixing multiple errors, future
works can study approaches to update forecasting models alongside the base pretraining model for
more effective solutions in the setup of continual model refinement.
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REPRODUCIBILITY STATEMENT

All models (BART0, FLAN-T5) and datasets (P3, MMLU) used in the experiments in this paper are
publicly accessible. We include training details during model refinement in Sec. 4.1 and introduce
implementation details about forecasting methods in Appendix B. We will release the code upon
acceptance of the paper.
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A COMPARISON TO NON-REPLAY MODEL REFINEMENT METHODS

Table 6: Comparison of edit succuss rate and EM Drop
% between replay-based model refinement and MEND
on FLAN-T5Large with LoRA fine-tuning.

Edit Succ. EM Drop%

Vanilla FT 95.7 0.099
Replay
w/ Random 95.7 0.105
w/ Representation 95.7 0.079
w/ GT Forget 95.7 0.075

MEND 93.1 0.060
w/o Forget Objective 93.1 0.610

We briefly compare replay-based model refine-
ment methods with MEND (Mitchell et al.,
2021), which learns a meta model that edits
gradients of model parameters when fixing the
errors in LMs. We report the results in Ta-
ble 6. We experiment with setup of LoRA fine-
tuning only, because of the high cost of train-
ing meta models for the entire LM. We notice
that EM Drop is even lower than replaying with
ground truth forgotten examples, indicating the
effectiveness of MEND in mitigating forget-
ting. However, we also notice that the edit suc-
cess rate is lower than Vanilla FT and replay-
based model refinement, which is the primary
goal of performing model refinement in the first place. We also ablate the learning objective that
mitigates forgetting, but we observe no improvement in the edit success rate.

B IMPLEMENTATION AND DATASET DETAILS

Out-of-domain evaluation. For out-of-domain evaluation of forecasting methods presented in
Sec. 5.1, we partition P3-Test into two disjoint splits. We include SuperGlue-Cb, SuperGlue-RTE,
SuperGLUE-wsc.fixed, SuperGlue-Copa, and SuperGlue-wic in the in-domain split, and include
storycloze, hellaswag, anli, winograde-xl in the out-of-domain split.

Table 7: EM scores of base LM on the upstream train-
ing data (P3-Train) before performing updates.

Model EM

BART0Large 50.50
FLAN-T5Large 47.47
FLAN-T53B 51.31

Training Details of the Forecasting Models.
Both trainable logit-based and feature-based
forecasting involve learnable encoders h to en-
code input sentences. For BART0 experiments,
we use BART0 followed by a freshly initialized
2-layer trainable MLP as the encoder h. For
FLAN-T5 experiments, we use FLAN-T5small
and a 2-layer MLP as the encoder. We opti-
mize the LM components with a learning rate
of 10−5, and the MLP with a learning rate of
10−4. We train the forecasting models to a maximum of 100,000 steps with a batch size of 16.
For each mini-batch, we sample 8 positive pairs (⟨xj , yj⟩ is forgotten after learning on ⟨xi, yi⟩) and
8 negative pairs. During training, we assign a smaller weight (α=0.1) to positive pairs due to the
skewed nature of ground truth forgetting that occurs after updating the model, i.e., the majority of
examples are not forgotten and belong to the negative class.

Base LM performance. Table 7 summarizes the EM scores of the base LM on upstream data (DPT)
P3-train before performing updates. We note that BART0 is exclusively trained on P3-train, while
FLAN-T5 models are trained on a mixture of other tasks with potentially different prompt formats.
This interprets higher EM of BART0Large compared to FLAN-T5Large.

C DETAILS OF FORECASTING ALGORITHMS

We summarize detailed procedures of training and inference of logit-based and representation-based
forecasting methods in Algorithms 1, 2, 3, 4.
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Algorithm 1: Training the logit-based forecasting model

Data: Training split of online learned examples Dtrain
R , upstream pretraining examples DPT, Pretrained

LM f0, maximum input sentence length T
Result: Learned encoding function h : RT → RT×H

while h has not converged do
Online learning example ⟨xi, yi⟩← sample(Dtrain

R ); Pretraining example ⟨xj , yj⟩← sample(DPT)
Obtain logits f̃0(xi) and f̃0(xj)
fi← update f0 with ⟨xi, yi⟩
Obtain updated logits f̃i(xi) and f̃i(xj)
Ground truth forgetting zij ← 1 if f0(xi) ̸= fi(xi) else 0
Encode xi to h(xi) and xj to h(xj);
Compute the kernel matrix Θ̃(xj , xi) ∈ RT×T ← h(xj)h(xi)

T

Predict updated logits of xj as f̂i(xj)← Θ̃(xj , xi)[f̂i(xi)− f̂0(xi)] + f̂0(xj)
Compute loss L(⟨xi, yi⟩, ⟨xj , yj⟩, zij) with Eq. 3 and optimize h

end

Algorithm 2: Inference with the trainable logit-based forecasting model

Data: Online learning example ⟨xi, yi⟩∈ DTest
R , upstream pretraining examples DPT, Pretrained LM f0,

trained encoding function h, maximum input sentence length T , cached h(xj) for ⟨xj , yj⟩∈ DPT
Result: Predicted binary forgetting label ẑij on DPT for ⟨xj , yj⟩∈ DPT
Encode xi to h(xi)

Obtain logits f̃0(xi)
fi← update f0 with ⟨xi, yi⟩
Obtain updated logits f̃i(xi)
for ⟨xj , yj⟩∈ DPT do

Encode xj to h(xj)

Compute the kernel matrix Θ̃(xj , xi) ∈ RT×T ← h(xj)h(xi)
T

Predict updated logits of xj as f̂i(xj)← Θ̃(xj , xi)[f̂i(xi)− f̂0(xi)] + f̂0(xj)

if argmax f̂i(xj) ̸= yj then
ẑij ← 1

else
ẑij ← 0

end
end

Algorithm 3: Training the representation-based forecasting model

Data: Training split of online learned examples Dtrain
R , upstream pretraining examples DPT, Pretrained

LM f0, maximum input sentence length T
Result: Learned encoding function h : RT → RT×H

while h has not converged do
Online learning example ⟨xi, yi⟩← sample(Dtrain

R ); Pretraining example ⟨xj , yj⟩← sample(DPT)
fi← update f0 with ⟨xi, yi⟩
Ground truth forgetting zij ← 1 if f0(xi) ̸= fi(xi) else 0
Encode xi to h(xi) and xj to h(xj)
Obtaining the frequency prior
bj ← log(|{⟨xi, yi⟩ ∈ Dtrain

R | zij = 1}| / |Dtrain
R |)− log(|{⟨xi, yi⟩ ∈ Dtrain

R | zij = 0}| / |Dtrain
R |)

Compute the probability of forgetting ⟨xj , yj⟩ as z̃ij ← σ(
∑T

t=1 h(xj,t)
∑T

t=1 h(xi,t)
T ) + bj

Compute binary cross entropy loss LBCE(z̃ij , zij) and update h
end
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Figure 4: F1, Precision, and Recall of representation-based forecasting models averaged up to a given time
step (in x-axis) when continually refining the LM under different learning rates.

Algorithm 4: Inference with the representation-based forecasting model

Data: Online learning example ⟨xi, yi⟩∈ DTest
R , upstream pretraining examples DPT, Pretrained LM f0,

trained encoding function h, maximum input sentence length T , cached h(xj) for ⟨xj , yj⟩∈ DPT,
cached frequency priors bj for ⟨xj , yj⟩∈ DPT

Result: Predicted binary forgetting label ẑij on DPT for ⟨xj , yj⟩∈ DPT
Encode xi to h(xi)
for ⟨xj , yj⟩∈ DPT do

Encode xj to h(xj)

Compute the probability of forgetting ⟨xj , yj⟩ as z̃ij ← σ(
∑T

t=1 h(xj,t)
∑T

t=1 h(xi,t)
T ) + bj

end

D FLOATING POINT OPERATION COUNTS OF FORECASTING METHODS

Table 8: Number of FLOPs when forecasting for-
gotten examples among 3,600 upstream pretraining
examples given one online learning example.

Method #. FLOP

Representation 1.35e10

Trainable Logit 2.15e11

Ground Truth 9.04e14

We complement the computational complexity
of forecasting methods with floating point oper-
ation (FLOP) statistics obtained during the ex-
periments. We sample 100 examples per up-
stream task (36 tasks in total) to compute the
statistics. Table 8 summarizes the results as we
forecast forgetting when we update the model
with a single online learning example. We
see that representation-based and trainable logit-
based forecasting require 1/6700 and 1/42 of FLOPs compared to obtaining ground truth forgetting
by running inference on all upstream examples.

E HYPERPARAMETER ANALYSIS

E.1 LEARNING RATES IN MODEL REFINEMENT

Table 9: Edit sccuess rate and EM Drop Ratio (%) un-
der different learning rates in continual model refine-
ment over multiple examples (Sec. 5.3) with Full FT on
FLAN-T5Large. 1e−5 is our default learning rate.

Method Succ. EM Drop %

1e−4 95.7 24.897
1e−5 95.7 3.302
2e−6 93.5 1.820

Learning rate is a crucial factor that trades off
plasticity and stability during model updates.
Table 9 shows that using a larger rate (1e−4)
than our default setup (1e−5) clearly increases
EM Drop ratio; while using a smaller learning
rate (2e−6) reduces EM Drop ratio at a cost of
edit success rate. We further evaluate the fore-
casting model trained in the default setup on
other learning rate setups and present the results
in Figure 4. We notice that the precision scores
almost remain the same across different learn-
ing rates, as a common subset of examples are
forgotten; while recall scores differ across setups, because a greater number of examples are for-
gotten only when using larger learning rates. The results imply the precision scores of forecasting
methods generalize well across different learning rate setups.
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E.2 NUMBER OF REPLAYED EXAMPLES

As we introduced in Sec. 4.2, we replay a mini-batch of 8 examples every 10 update steps. This
corresponds to replaying 3 mini-batches over 30 steps of model updates on a single online learning
example. We also present the result of increasing the number of replayed examples by reducing
intervals between replays while learning an online learning example. Table 10 summarizes the re-
sults. When fixing single errors, we notice that increasing the number of replayed examples causes
increased forgetting (EM Drop Ratio). This is not surprising given previous studies that show over-
fitting of models to replayed examples (Jin et al., 2022). Meanwhile, increasing the number of
replayed examples consistently reduces the EM drop ratio when continually fixing multiple errors.
By comparing to the results in Table 4, we see that the EM Drop Ratio of replaying 3 mini-batches
of examples forecasted to be forgotten is between that of replaying 6 to 15 mini-batches of random
examples.

Table 10: EM Drop Ratio (%) when replaying random
example while fixing (1) single errors or (2) continually
fixing multiple errors, which correspond to our setups in
Tables 3 and 4 respectively. Replaying 3 mini-batches
(one per 10 steps over 30 steps) corresponds to our de-
fault setup.

#. replayed batches Single errors Multiple errors

3 0.068 1.129
6 0.064 0.089
15 0.122 0.038
30 0.138 -0.141
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