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ABSTRACT

Fairness-aware graph learning has gained increasing attention in recent years.
Nevertheless, there lacks a comprehensive benchmark to evaluate and compare
different fairness-aware graph learning methods, which blocks practitioners from
choosing appropriate ones for broader real-world applications. In this paper,
we present an extensive benchmark on ten representative fairness-aware graph
learning methods. Specifically, we design a systematic evaluation protocol and
conduct experiments on seven real-world datasets to evaluate these methods from
multiple perspectives, including group fairness, individual fairness, the balance
between different fairness criteria, and computational efficiency. Our in-depth
analysis reveals key insights into the strengths and limitations of existing methods.
Additionally, we provide practical guidance for applying fairness-aware graph
learning methods in applications. To the best of our knowledge, this work serves
as an initial step towards comprehensively understanding representative fairness-
aware graph learning methods to facilitate future advancements in this area.

1 INTRODUCTION

Graph-structured data has become ubiquitous across a plethora of real-world applications (Hu
et al., 2020; Ying et al., 2019; Dong et al., 2023a; Narayanan et al., 2017), such as social network
analysis (Cho et al., 2011; Leskovec et al., 2010; Leskovec & Mcauley, 2012), biological network
modeling (Zitnik et al., 2018; Pavlopoulos et al., 2011; Zitnik & Leskovec, 2017), and traffic
pattern prediction (Yuan & Li, 2021; Atluri et al., 2018; Derrow-Pinion et al., 2021). To gain
a deeper understanding of graph-structured data, graph learning methods, such as Graph Neural
Networks (GNNs), are emerging as widely adopted and versatile methods to handle predictive tasks
on graphs (Wu et al., 2020; Zhou et al., 2020; Wu et al., 2022; You et al., 2019). However, as we aim
for improving utility (e.g., accuracy in node classification tasks), existing graph learning methods
have also been found to constantly exhibit algorithmic bias in recent studies, which has raised
significant societal concern and attracted attention from both industry and academia (Dong et al.,
2023b; Choudhary et al., 2022; Wu et al., 2021). For example, financial agencies have been relying
on GNNs to perform decision making in financial services (Wang et al., 2021; Song et al., 2023), e.g.,
determining whether each loan application should be approved or not based on transaction networks
of bank clients. Nevertheless, the outcomes have been found to exhibit bias, such as racial disparities
in the rejection rate (Song et al., 2023). As a consequence, addressing the fairness concerns for graph
learning methods has become an urgent need (Dong et al., 2023b; Dai et al., 2022), especially under
high-stake real-world applications such as financial lending (Song et al., 2023; Li et al., 2020) and
healthcare decision making (Dai et al., 2022; Anderson & Visweswaran, 2024).

In recent years, various techniques, such as adversarial training (Dai & Wang, 2021; Jiang et al.,
2024; Ling et al., 2023; Cong et al., 2023), optimization regularization (Agarwal et al., 2021; Jiang
et al., 2022; Rahmattalabi et al., 2019), and graph structure learning (Dong et al., 2022; Zhang et al.,
2024; Zhang & Ramesh, 2020), have been adopted to address the fairness concerns in graph learning
methods. Nevertheless, despite these existing efforts, we have not yet seen extensive deployment of
these fairness-aware graph learning methods. A primary obstacle lies in the lack of a comprehensive
comparison across existing fairness-aware graph learning methods, which makes it difficult for
practitioners to choose the appropriate ones to use. In fact, a comprehensive comparison of existing
fairness-aware graph learning methods not only tells the best-in-class methods under different settings
(e.g., different evaluation metrics and datasets from different domains) but also provides a guideline
for practitioners to understand the strengths and limitations of different methods in multiple aspects,
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such as utility, fairness, and efficiency. As such, comprehensively comparing the performances
between different graph learning methods becomes an urgent need to facilitate a broader application
of fairness-aware graph learning methods.

Multiple existing works have explored to compare different fairness-aware graph learning methods.
For example, Chen et al. (Chen et al., 2024) proposed to categorize and compare existing fairness-
aware GNNs by their input, main techniques, and tasks. However, the overwhelming focus on GNNs
narrows down the scope of comparison. Another study from Laclau et al. (Choudhary et al., 2022)
delivers a more comprehensive comparison of graph learning methods. However, it did not involve
any quantitative performance comparison, which thus jeopardizes its practical value for practitioners.
In fact, it is challenging to provide a quantitative performance comparison on fairness-aware graph
learning methods due to their inconsistencies in terms of the studied fairness notions, experimental
settings, and learning tasks. Therefore, lacking quantitative performance comparison becomes a
common flaw for most of the related studies (Dai et al., 2022). More recently, Qian et al. (Qian
et al., 2024) took an early step to present a quantitative performance benchmark in the area of graph
learning. However, they only focus on the comparison of two fairness-aware GNNs, which thus
blocks a broader understanding in a broader area of graph learning. Therefore, comprehensive
performance comparison of fairness-aware graph learning methods remains underexplored.

In this paper, we take an initial step to comprehensively evaluate the performance differences between
the most representative fairness-aware graph learning methods. Specifically, we first design a
systematic evaluation protocol, which helps ensure consistent settings for the evaluation of different
graph learning methods. Second, we collect ten of the most representative graph learning methods
and present a comprehensive benchmark on seven real-world graph datasets (including five commonly
used and two newly constructed ones) from different perspectives, such as different datasets, fairness
notions, and evaluation metrics. Finally, we perform an in-depth analysis based on the experimental
results and reveal key insights into the strengths and limitations associated with these fairness-aware
graph learning methods. We also provide guidance for practitioners to choose appropriate ones to
use, which further facilitates the practical significance of this study.

The main contributions of this paper are summarized as follows:

• Experimental Protocol Design. We design a systematic evaluation protocol, which enables
the comparison between different fairness-aware graph learning methods under consistent
settings. To the best of our knowledge, our work serves as the first step towards comprehen-
sively evaluating the performance of fairness-aware graph learning methods.

• Comprehensive Benchmark. We conduct extensive experiments on seven real-world
attributed graph datasets (including five commonly used and two newly constructed ones)
and present a comprehensive benchmark over ten fairness-aware graph learning methods,
which reveals key insights in understanding their strengths and limitations.

• Multi-Perspective Analysis & Guidance. We present four significant research questions
and perform in-depth analysis from different perspectives based on the benchmarking results.
Meanwhile, we also introduce a guide for practitioners to help them choose appropriate
methods in real-world applications.

2 PRELIMINARIES

Background. We use G = {V, E} to denote a graph, where V denotes the set of n nodes and E
represents the set of edges. Here, each node is equipped with an attribute vector, which makes the
graph an attributed graph. In this paper, we focus on node classification, which is among the most
widely studied graph learning tasks. Typically, in node classification, a graph machine learning model
can be represented as a function f : (V, E) → Ŷ ∈ Rn×c, which maps each node v ∈ V into a
c-dimensional matrix Ŷ . Each row in Ŷ (denoted as ŷi for the i-th row) is a vector indicating the
predicted probability distribution across different classes, and c denotes the total number of classes.
Meanwhile, the matrix of ground truth labels Y ∈ {0, 1}n×c is provided as the supervision for
optimization. The primary goal of fairness-aware graph machine learning is to ensure Ŷ bears high
levels of utility and fairness at the same time. Without loss of generality, we conduct benchmarking
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Figure 1: A timeline of the representative fairness-aware graph learning methods.

experiments on the popular graph learning task of binary node classification (i.e., c = 2), which
aligns with most works in this area (Dong et al., 2023b; Dai & Wang, 2021; Kose & Shen, 2022).

Timeline of the Collected Graph Learning Models. To provide a global understanding of fairness-
aware graph learning methods, we present a high-level overview of the timeline of the representative
explorations, which is shown in Figure 1. Specifically, we group these works by the fairness notions
they focus on, including group fairness and individual fairness (Dong et al., 2023b). Group fairness
emphasizes that the graph learning methods should not yield discriminatory predictions against any
demographic subgroups (Dong et al., 2023b; Hardt et al., 2016), where the subgroups are determined
by certain categorical sensitive attributes such as gender or race (Mehrabi et al., 2021; Dwork et al.,
2012). On the other hand, individual fairness argues that similar individuals should be treated
similarly (Dwork et al., 2012), i.e., the outcomes corresponding to a pair of individuals in the output
space should be close if they are close in the input space (Dong et al., 2023b; Kang et al., 2020b).

Notions and Metrics for Group Fairness. Here, we present the representative notions and metrics
under Group Fairness. (1) Statistical Parity. Statistical parity requires that the probability of yielding
positive predictions should be the same across different demographic subgroups (Dong et al., 2023b;
Dwork et al., 2012). Here, the rationale is that positive predictions correspond to beneficial decisions
in a plethora of real-world applications (Hardt et al., 2016). A commonly used metric to quantify to
what extent statistical parity is violated is ∆SP , which is given by

∆SP = |P (Ŷ = 1 | S = 0)− P (Ŷ = 1 | S = 1)|, (1)

where Ŷ , S ∈ {0, 1} denote random variables for the predicted label and the sensitive attribute of
any given individual, respectively. (2) Equal Opportunity. Equal opportunity requires that the
probability of yielding positive predictions should be the same for those who have a positive ground
truth across different demographic subgroups (Hardt et al., 2016). Different from statistical parity,
equal opportunity aims to protect individuals’ advantaged qualifications against bias arising from
subgroup membership (Hardt et al., 2016). ∆EO is commonly used to measure to what extent equal
opportunity is violated, which is given by

∆EO = |P (Ŷ = 1|Y = 1, S = 0)− P (Ŷ = 1|Y = 1, S = 1)|, (2)

where Y is the random variable of the ground truth for any given individual. (3) Utility Difference-
Based Fairness. Its rationale is to reveal the largest utility gap between different demographic
subgroups (Ali et al., 2021; Stoica et al., 2020; Rahmattalabi et al., 2021). A commonly used metric
is the maximum utility difference across all pairs of demographic subgroups (denoted as ∆Utility).
Here, utility refers to the performance in downstream node classification tasks (such as AUC-ROC
score), and ∆Utility serves as a fairness metric characterizing such performance gap between different
demographic subgroups.

Notions and Metrics for Individual Fairness. We now present the representative notions and
metrics under Individual Fairness. Different from group fairness, individual fairness does not rely
on sensitive attributes. Instead, the rationale of individual fairness is to treat similar individuals
similarly (Dwork et al., 2012). We introduce three notions and their corresponding metrics below. (1)
Lipschitz-Based Individual Fairness. This notion argues that the (scaled) distance between individuals
in the output space should be smaller or equal to their distance in the input space (Kang et al., 2020b).
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Table 1: Statistics of the collected real-world graph datasets.

Dataset Pokec-z Pokec-n German Credit Credit Defaulter Recidivism AMiner-S AMiner-L

#Nodes 67,796 66,569 1,000 30,000 18,876 39,424 129,726
#Edges 882,765 729,129 24,970 200,526 403,977 52,460 591,039
#Attributes 276 265 27 13 18 5,694 5,694

The level of the exhibited bias under this notion is measured by

BLipschitz =
∑
i

∑
j,j ̸=i

∥ŷi − ŷj∥F · Sij , (3)

where the S is an oracle similarity matrix that describes the similarity between nodes in the input
space. (2) Ranking-Based Individual Fairness. This notion requires that the rankings of the similarity
between each individual and all other individuals should be the same between the input and output
space (Dong et al., 2021b). The average top-k similarity between the two ranking lists in the input
and output spaces over all individuals is adopted as the fairness metric, where NDCG@k is a
common ranking similarity metric, which we denote as Branking. (3) Ratio-Based Individual Fairness.
This notion requires that different demographic subgroups should bear similar levels of individual
fairness (Song et al., 2022). Group Disparity of Individual Fairness (GDIF) is introduced as the
metric, which is given by

GDIF =

1≤i<j≤m∑
i,j

max

(
B

(i)
Lipschitz

B
(j)
Lipschitz

,
B

(j)
Lipschitz

B
(i)
Lipschitz

)
, (4)

where B(i)
Lipschitz and B

(j)
Lipschitz are the subgroup-level BLipschitz from two demographic subgroups i and

j; m is the total number of subgroups.

3 BENCHMARK DESIGN

In this section, we introduce the design of our benchmark. Specifically, we first present the experi-
mental settings and implementation details of our benchmark. Then we introduce four main research
questions we aim to explore in this paper. We note that our experiments are conducted based on node
classification, since most commonly used fairness metrics are defined for classification.

3.1 EXPERIMENTAL SETTINGS AND IMPLEMENTATIONS

Here we introduce the experimental settings, including benchmark datasets, collected fairness-aware
graph learning methods, and the implementation details regarding this newly introduced benchmark.

Benchmark Datasets. We collected seven real-world attributed graph datasets of different scales in
this benchmark paper, including five existing commonly used ones and two newly constructed ones.
These datasets include (1) Pokec-z (Takac & Zabovsky, 2012): social network data; (2) Pokec-n (Takac
& Zabovsky, 2012): social network data; (3) German Credit (Markelle Kelly): a graph based on
financial credit; (4) Credit Defaulter (Yeh & Lien, 2009): a graph over financial agency clients; (5)
Recidivism (Jordan & Freiburger, 2015): a graph over defendants; (6) AMiner-S (newly constructed):
a co-authorship graph over researchers; (5) AMiner-L (newly constructed): a co-authorship graph
over researchers. We present the statistics of the collected attributed graph datasets above in Table 1,
and a more detailed dataset introduction is given in Appendix.

Fairness-Aware Graph Learning Models. We collect ten of the most representative graph learning
methods for comparison. We provide a brief introduction for each of them below, where the fairness
notion they focus on is marked out in brackets. (1) FairWalk (group fairness). FairWalk (Rahman
et al., 2019) is a fairness-aware graph learning method based on DeepWalk, where it achieves bias
mitigation by balancing the transition probabilities between different demographic subgroups. (2)
CrossWalk (group fairness). CrossWalk (Khajehnejad et al., 2022) is a fairness-aware graph learning
method. Specifically, it is developed based on DeepWalk, where such an algorithm achieves bias
mitigation by steering random walks across demographic subgroup boundaries for representation
learning. (3) FairGNN (group fairness). FairGNN (Dai & Wang, 2021) is a fairness-aware graph
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learning method base on GNNs, where it achieves bias mitigation by incorporating an adversary
to wipe out the information of sensitive attributes in the learned node representations. (4) NIFTY
(group fairness). NIFTY (Agarwal et al., 2021) is a fairness-aware graph learning method based on
GNNs, where it achieves bias mitigation with an additional optimization regularization term based on
counterfactual sensitive attribute perturbation. (5) EDITS (group fairness). EDITS (Dong et al., 2022)
is a fairness-aware graph learning framework designed in a pre-processing manner, where it achieves
bias mitigation by minimizing the distribution difference between nodes from different demographic
subgroups in the node attribute space. (6) FairEdit (group fairness). FairEdit (Loveland et al., 2022)
is a fairness-aware graph learning method based on GNNs, where it optimizes the performance on
fairness by modifying the graph topology. (7) FairVGNN (group fairness). FairVGNN (Wang et al.,
2022) is a fairness-aware graph learning method based on GNNs, where it achieves bias mitigation by
identifying and masking sensitive-correlated attribute dimensions. (8) InFoRM (individual fairness).
InFoRM (Kang et al., 2020b) is a fairness-aware graph learning method that can be adapted to different
models, where it achieves bias mitigation by incorporating a fairness-aware optimization objective
based on the Lipschitz condition. (9) REDRESS (individual fairness). REDRESS (Dong et al.,
2021b) is a fairness-aware graph learning method based on GNNs, where it proposes a fairness-aware
optimization objective to improve performance on ranking-based fairness. (10) GUIDE (individual
fairness). GUIDE (Song et al., 2022) is a fairness-aware graph learning method based on GNNs,
where it uses a fairness-aware optimization objective to enforce similar levels of Lipschitz-based
individual fairness across different demographic subgroups.

Implementation Details. All benchmarking experiments are implemented with PyTorch and per-
formed on an Nvidia A100 GPU. We obtain the best hyper-parameters by selecting the lowest loss
values on the validation node set via grid search, and all results are reported with standard deviation
from three different runs. For all GNNs, we adopt the most widely used GCN unless otherwise
specified. Comprehensive experimental details, including open-source URLs of the algorithms we
have used for reproducibility purposes, are introduced in Appendix.

3.2 RESEARCH QUESTIONS

RQ 1: How well can those representative methods perform under group fairness?

Significance & Experimental Design. Understanding the performance of graph learning methods
in terms of group fairness is crucial since it addresses the bias that may arise in applications due
to sensitive attributes such as race, gender, and age. We evaluate the collected methods focusing
on group fairness on both utility and fairness. Here we adopt the AUC-ROC score as an exemplary
metric for utility, while ∆SP, ∆EO, and ∆Utility are utilized as the metrics for fairness (as in Section 2).

RQ 2: How well can those representative methods perform under individual fairness?

Significance & Experimental Design. Evaluating individual fairness helps to identify and reduce
discriminatory practices at the individual level, which is more granular compared with group fairness.
To answer this question, we evaluate the collected methods focusing on individual fairness from the
perspective of both utility and fairness. Here, we adopt the AUC-ROC score for utility evaluation,
while BLipschitz, NDCG@k, and GDIF are adopted as the metrics for fairness (as in Section 2).

RQ 3: How well can existing methods balance different fairness criteria?

Significance & Experimental Design. Understanding how graph learning methods balance different
fairness criteria is vital when multiple criteria need to be considered simultaneously (Zhan et al.,
2024; Sirohi et al., 2024; Dai et al., 2022). Considering the scarcity of methods under individual
fairness, we focus on group fairness for this research question. Specifically, we measure the average
ranking corresponding to these methods on ∆SP, ∆EO, and ∆Utility, where a lower average ranking
indicates better performance.

RQ 4: How well can those representative methods perform in terms of efficiency?

Significance & Experimental Design. Ensuring that fairness-aware graph learning methods are
computationally feasible is essential for their usability in real-world applications. To answer this
question, we evaluate the collected methods by their utility vs. running time on each dataset. Better
utility with less running time indicates better efficiency.
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Table 2: Comparison of graph learning methods focusing on group fairness. Note that results include
AUC-ROC score and ∆SP, and complete results are in Appendix. The best ones are in bold; the
second best ones are underlined; OOM denotes out-of-memory.

Metrics Models Pokec-z Pokec-n German Credit Credit Defaulter Recidivism AMiner-S AMiner-L

AUC-ROC

DeepWalk 66.50 (± 1.34) 61.85 (± 1.06) 56.90 (± 1.75) 53.61 (± 0.66) 87.18 (± 1.34) 73.58 (± 0.43) 82.68 (± 3.28)

FairWalk 64.92 (± 0.43) 61.52 (± 0.34) 54.05 (± 0.83) 55.51 (± 0.29) 72.09 (± 0.11) 65.35 (± 0.54) 88.72 (± 0.08)

CrossWalk 58.99 (± 0.27) 62.98 (± 0.27) 51.42 (± 0.43) 54.50 (± 0.42) 82.89 (± 0.11) 64.44 (± 0.52) 89.67 (± 0.04)

GNN 64.16 (± 0.62) 67.05 (± 1.14) 67.36 (± 3.59) 62.62 (± 0.51) 84.60 (± 2.10) 81.95 (± 1.46) 86.82 (± 0.11)

FairGNN 69.47 (± 1.04) 68.51 (± 0.51) 52.91 (± 2.15) 56.73 (± 3.16) 92.87 (± 2.42) 86.23 (± 0.14) OOM
NIFTY 62.58 (± 0.14) 66.78 (± 0.82) 62.94 (± 5.78) 61.85 (± 0.70) 85.58 (± 0.83) 79.28 (± 0.15) 86.62 (± 0.69)

EDITS OOM OOM 60.02 (± 1.10) 61.14 (± 0.36) 92.34 (± 0.31) OOM OOM
FairEdit OOM OOM 56.30 (± 2.33) 62.50 (± 0.61) 81.97 (± 0.48) OOM OOM
FairVGNN 71.19 (± 0.94) 70.14 (± 0.55) 65.48 (± 3.46) 68.81 (± 0.81) 84.74 (± 2.70) OOM OOM

∆SP

DeepWalk 5.49 (± 1.07) 5.90 (± 0.88) 10.4 (± 1.01) 6.69 (± 0.31) 6.50 (± 0.18) 6.75 (± 0.29) 6.41 (± 0.46)

FairWalk 0.60 (± 1.89) 0.29 (± 2.12) 3.36 (± 1.01) 6.20 (± 0.32) 4.67 (± 0.33) 3.06 (± 0.32) 4.28 (± 0.17)

CrossWalk 1.75 (± 1.17) 0.21 (± 1.63) 0.35 (± 1.75) 6.35 (± 0.51) 5.14 (± 0.21) 3.59 (± 0.43) 5.60 (± 0.42)

GNN 10.4 (± 1.46) 14.7 (± 0.40) 32.4 (± 1.93) 20.6 (± 4.34) 8.54 (± 0.10) 7.28 (± 0.31) 6.75 (± 0.00)

FairGNN 2.06 (± 1.82) 8.11 (± 1.16) 14.2 (± 0.83) 2.51 (± 5.61) 7.48 (± 0.30) 5.36 (± 0.27) OOM
NIFTY 2.48 (± 0.47) 2.42 (± 0.84) 0.26 (± 0.41) 12.5 (± 3.64) 7.88 (± 0.43) 3.25 (± 0.52) 5.86 (± 0.44)

EDITS OOM OOM 0.18 (± 1.78) 10.7 (± 0.66) 7.36 (± 0.05) OOM OOM
FairEdit OOM OOM 3.15 (± 3.73) 1.95 (± 0.21) 7.39 (± 0.50) OOM OOM
FairVGNN 6.33 (± 1.90) 5.31 (± 1.19) 3.13 (± 0.28) 9.93 (± 0.88) 6.54 (± 0.53) OOM OOM

4 EMPIRICAL INVESTIGATION

In this section, we present benchmarking results and in-depth analysis to answer the four research
questions in Section 3.2. Specifically, we first assess group fairness (RQ1) using metrics like statistical
parity and equal opportunity, followed by individual fairness (RQ2), which ensures similar treatment
for similar individuals. We then analyze the trade-offs between different fairness criteria (RQ3) and
evaluate the computational efficiency of these methods (RQ4). The findings provide valuable insights
into the strengths and limitations of each method, guiding the selection of appropriate fairness-aware
models for practical use. Due to space limit, we present a subset of the benchmarking results in this
section, and the complete results are discussed in Appendix.

4.1 PERFORMANCE UNDER GROUP FAIRNESS (RQ1)

FairV
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Figure 2: Average rankings on AUC-ROC score and ∆SP across all
datasets. Methods are ranked in ascending order by the summation
of two rankings.

We first perform experiments to
answer RQ1. Specifically, we
present the quantitative results
corresponding to those graph
learning methods focusing on
group fairness in Table 2. Note
that we present the results on
AUC-ROC score (utility) and
∆SP (fairness) as an example,
and the complete results are in
Appendix. Here DeepWalk and
GNN are added as baselines
for shallow embedding methods
and GNN-based methods, respec-
tively. We observe that differ-
ent methods yield different levels
of trade-offs between utility and
fairness. To better understand the strengths and limitations associated with each algorithm, we
calculate the average ranking of each method on datasets free from OOM. We show their average
rankings (ordered by the summation of two average rankings) in Figure 2.
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Finding 1: Fairness-aware graph learning methods excel differently on group fairness. Ac-
cording to Table 2 and Figure 2, we found that different fairness-aware graph learning meth-
ods exhibit different types of proficiency between utility and fairness. Specifically, we have
the following observations. First, top-ranked methods (those ranked at the left in Figure 2)

Pareto 
Optimal 
Frontier

Figure 3: Pareto optimal frontier between
AUC-ROC score and ∆EO from FairGNN on
Credit Default.

are all GNN-based ones. This verifies the natural
advantage of GNNs in achieving both accurate and
fair predictions owing to their superior fitting ability.
Second, fairness-aware shallow embedding methods
(i.e., CrossWalk and FairWalk) yield the top-ranked
performances in terms of fairness. Considering that
these shallow embedding methods do not take node
attributes as input compared with those GNN-based
ones, such an observation can be partially attributed
to the absence of bias encoded in the node attributes.
Third, neither DeepWalk nor GNN yields top-ranked
performance under utility. This implies that improv-
ing fairness does not necessarily jeopardize utility,
which also aligns with the observations given by
other representative works in this area (Dai & Wang,
2021; Dong et al., 2022). Additionally, to better char-
acterize the trade-off between utility and accuracy,
we show an exemplary (estimated) Pareto optimal
frontier between AUC-ROC score and ∆EO during

hyper-parameter search in Figure 3. We observe that such a frontier implicitly prevents a graph
learning model from further improving the performance under both evaluation metrics.

4.2 PERFORMANCE UNDER INDIVIDUAL FAIRNESS (RQ2)

We then answer RQ2 by comparing the performance of graph machine learning methods focusing on
individual fairness. Similar to RQ1, we will explore their performance on both utility and fairness.
Specifically, we choose the AUC-ROC score as an exemplary metric for utility, and we adopt the
three metrics for individual fairness presented in Section 2 to measure the level of individual fairness.
Without loss of generality, we adopt a common setting of k = 10 for the ranking-based individual
fairness metric NDCG@k (Dong et al., 2021b). We present the experimental results in Table 3, and
the complete results with supplementary discussion are given in Appendix.

Finding 2: Fairness-aware graph learning methods exhibit different levels of versatility on
individual fairness. According to Table 3, we have the following observations. First, in terms of
utility, the vanilla GNN generally achieves the best utility across most datasets. The collected fairness-
aware graph learning methods generally sacrifice a certain level of utility in order to improve the level
of individual fairness. Second, in terms of fairness, we observe that these methods exhibit different
levels of versatility. Specifically, InFoRM, REDRESS, and GUIDE yield the best performance
on those individual fairness goals they are equipped with by design, i.e., Lipschitz-based fairness
(measured with BLipschitz), ranking-based fairness (measured by NDCG@k), and ratio-based fairness
(measured by GDIF), respectively. However, GUIDE also delivers the second best BLipschitz and
NDCG@k on four out of the seven datasets at the same time, which makes it the most versatile method
among the studied three. This implies that compared with the other two methods, GUIDE contributes
to a more general improvement in terms of the levels of individual fairness instead of only optimizing
one objective and sacrificing others. Such an advantage can be attributed to the compositional design
of its objective function, which consists of different fairness objectives (Song et al., 2022). Similar
versatility is also observed in InFoRM, which yields the second-best performance on GDIF in three
out of the seven datasets. Hence, we conclude that these methods exhibit different levels of versatility
under individual fairness.

4.3 TRADE-OFF BETWEEN DIFFERENT FAIRNESS CRITERIA (RQ3)

We now answer RQ3 by comparing the performance of fairness-aware graph learning methods under
different fairness metrics. Considering the scarcity of methods under individual fairness, here we
focus on group fairness and discuss the results over individual fairness in Appendix. Specifically, for
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Table 3: Comparison of graph learning methods focusing on individual fairness. Note that results
include AUC-ROC score, BLipschitz, NDCG@k, and GDIF; complete results are in Appendix. The
best ones are in bold; the second best ones are underlined; OOM denotes out-of-memory.

Metrics Models Pokec-z Pokec-n German Credit Credit Defaulter Recidivism AMiner-S AMiner-L

AUC-ROC

GNN 66.50 (± 0.53) 67.62 (± 0.76) 69.70 (± 3.48) 62.29 (± 4.85) 82.47 (± 1.41) 82.23 (± 0.56) 88.15 (± 0.11)

InFoRM 60.53 (± 3.67) 64.12 (± 4.12) 63.61 (± 4.93) 62.72 (± 5.87) 79.66 (± 6.58) 69.75 (± 5.18) 73.72 (± 7.97)

REDRESS 62.31 (± 6.52) 64.70 (± 4.88) 63.79 (± 4.40) 64.39 (± 5.25) 69.52 (± 5.58) OOM OOM
GUIDE 63.55 (± 3.62) 60.36 (± 4.43) 65.56 (± 4.18) 64.64 (± 3.86) 75.09 (± 5.41) 73.34 (± 4.28) OOM

BLipschitz

GNN 2.5e6 (± 2e4) 5.5e3 (± 3e3) 3.6e3 (± 2e3) 1.3e4 (± 7e3) 1.2e7 (± 3e5) 2.2e6 (± 3e5) 3.2e7 (± 5e5)

InFoRM 9.1e2 (± 1e2) 3.4e3 (± 4e3) 2.0e2 (± 7e2) 5.2e1 (± 3e2) 4.7e3 (± 9e3) 9.7e3 (± 4e3) 9.8e4 (± 3e3)

REDRESS 2.0e5 (± 1e4) 1.9e5 (± 2e4) 7.0e3 (± 1e3) 1.2e4 (± 3e3) 2.6e4 (± 6e3) OOM OOM
GUIDE 1.8e3 (± 3e2) 4.0e3 (± 6e2) 6.4e3 (± 9e2) 4.2e3 (± 3e2) 1.1e5 (± 1e4) 1.5e4 (± 7e3) OOM

NDCG@k

GNN 44.56 (± 0.59) 37.01 (± 0.26) 31.42 (± 1.49) 39.01 (± 1.05) 15.31 (± 0.32) 43.74 (± 0.70) 37.75 (± 0.19)

InFoRM 48.78 (± 3.62) 44.09 (± 3.00) 35.89 (± 3.69) 37.11 (± 3.18) 19.81 (± 1.74) 38.85 (± 2.07) 33.34 (± 1.70)

REDRESS 54.30 (± 3.08) 48.53 (± 3.85) 42.82 (± 3.62) 42.74 (± 2.11) 25.30 (± 1.96) OOM OOM
GUIDE 49.02 (± 2.72) 47.27 (± 4.72) 32.70 (± 2.02) 37.38 (± 2.69) 21.50 (± 2.18) 39.16 (± 2.26) OOM

GDIF

GNN 111.92 (± 0.81) 232.16 (± 24.2) 125.87 (± 11.1) 166.78 (± 36.1) 112.78 (± 1.29) 114.05 (± 1.17) 112.72 (± 1.21)

InFoRM 118.07 (± 10.2) 116.17 (± 5.65) 136.94 (± 10.3) 160.62 (± 11.2) 112.90 (± 8.66) 125.36 (± 11.4) 127.84 (± 8.51)

REDRESS 167.56 (± 7.12) 124.08 (± 10.8) 139.98 (± 8.84) 163.84 (± 5.75) 109.58 (± 7.33) OOM OOM
GUIDE 108.75 (± 5.89) 110.58 (± 9.36) 112.35 (± 8.27) 149.97 (± 5.14) 104.17 (± 8.21) 112.28 (± 7.80) OOM

each of the three group fairness metrics given in Section 2, we calculate the average ranking of each
method on those datasets free from OOM, and we present the comparison of their average rankings
in Figure 4. Generally, a good trade-off indicates that the superiority in one fairness metric does not
significantly sacrifice the fairness levels measured by other metrics.

Finding 3: Fairness-aware graph learning methods struggle for a balance. According to
Figure 4, we have the following observations. First, fairness-aware graph learning methods

FairW
alk

CrossW
alk

FairG
NN

FairE
dit

EDITS

Deep
Walk

NIFTY

FairV
GNN

GNN
0.0

2.5

5.0

7.5

10.0

Av
g.

 R
an

ki
ng

SP EO Utility

Figure 4: Average rankings on ∆SP, ∆EO, and ∆Utility across all datasets.
Methods are ranked in ascending order by the summation of average rank-
ings on all three fairness metrics.

based on shallow em-
bedding methods, i.e.,
FairWalk and Cross-
Walk, generally out-
perform those GNN-
based ones when con-
sidering the balance
over all three fairness
metrics. Notably, they
also achieve the best
performance on both
∆SP and ∆EO. This
aligns with the obser-
vations shown in Sec-
tion 4.1, which can
be attributed to the ab-

sence of bias brought by node attributes. Second, we note that the utility difference-based fairness
(measured with ∆Utility) is not an explicit optimization goal for any of these methods. Despite this,
top-ranked fairness-aware methods based on GNNs (e.g., FairGNN and FairEdit) clearly outperform
those based on shallow embedding methods in terms of ∆Utility. This can be attributed to the superior
fitting ability of GNNs and informative node attributes, which implicitly helps ensure that no subgroup
bears significantly worse performance than others. Based on the above observations, we conclude
that these methods always struggle for a balance between different fairness metrics, and one method
can hardly do well on all of them.

4.4 COMPUTATIONAL EFFICIENCY (RQ4)

Finally, we answer RQ4 by comparing the computational efficiency of the collected fairness-aware
graph learning methods. Here, we utilize running time in seconds to measure efficiency, and we also
collect the associated utility (measured with AUC-ROC score). We present an exemplary comparison
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across all collected graph learning models (two baselines and ten fairness-aware ones) on the Credit
Default dataset in Figure 5. The comparison on other datasets is presented and discussed in Appendix.

Finding 4: Fairness-aware graph learning methods generally sacrifice efficiency. Accord-
ing to Figure 5, we have the following observations. First, fairness-aware graph learning meth-
ods based on GNNs exhibit a clear sacrifice on efficiency, where EDITS under group fairness
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Figure 5: An exemplary comparison of AUC-ROC and running time across
different collected graph learning methods on Credit Default dataset.

and REDRESS under
individual fairness
sacrifice the most. This
can be attributed to
their computationally
expensive optimization
strategy: EDITS re-
quires optimizing the
whole graph topology,
while REDRESS calcu-
lates different similarity
rankings (across all
nodes) in every learning
epoch. In contrast to the
clear sacrifice on effi-
ciency, we also observe
that most fairness-aware
graph learning methods
maintain a relatively
high level of utility,
which remains consistent with the general utility assessment shown in Section 4.1. Second, although
those based on shallow embedding methods bear longer running time (than most GNN-based ones),
they only marginally sacrifice efficiency. A primary reason is that compared with GNN-based ones,
they usually do not introduce much additional computation in the calculation and optimization of the
objective function. In fact, both FairWalk and CrossWalk facilitate their fairness levels by adopting
different transition probability distributions to perform random walks on graphs. Meanwhile, we
also notice that those based on shallow embedding methods generally bear worse utility than
the GNN-based ones, which is also consistent with the discussion in Section 4.1. Based on the
observations above, we conclude that these fairness-aware methods generally sacrifice efficiency
compared with the vanilla baseline methods.

5 A GUIDE FOR PRACTITIONERS

Based on the discussion above, we conclude that each fairness-aware graph learning method bears its
strengths and limitations from different perspectives. Therefore, it becomes crucial to select the most
suitable methods to use carefully. To assist practitioners in making informed decisions in real-world
applications, this section provides a guide to help choose the most appropriate fairness-aware graph
learning methods such that their strengths can be fully leveraged to address fairness-related concerns
while maintaining a proper level of performance.

Specifically, we propose to organize this guide from two perspectives, including group fairness
and individual fairness. From the perspective of group fairness, if the main priority is to achieve
the best performance on typical group fairness metrics such as ∆SP and ∆EO, while utility and
efficiency are less of a concern, fairness-aware shallow embedding methods including FairWalk
and CrossWalk are recommended choices. The reason is that these methods can generally achieve
top-ranked performance in terms of group fairness, although the corresponding utility and efficiency
are usually inferior to GNN-based methods. If the main priority is to achieve a good balance between
utility and group fairness, GNN-based methods such as FairVGNN, EDITS, FairEdit, and NIFTY are
recommended. This is because these methods usually achieve a more satisfactory trade-off between
utility and group fairness compared with those based on shallow embedding methods. Furthermore,
we note that FairGNN maintains a better trade-off among all three fairness metrics, which makes
it more suitable for applications with significant emphasis on optimizing different types of fairness.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

From the perspective of individual fairness, since each method bears a different fairness optimization
goal, we recommend selecting the one with the most desired goal of individual fairness. Meanwhile,
we notice that GUIDE achieves a superior balance between BLipschitz and GDIF compared with the
other two methods. Hence GUIDE is recommended if higher levels of individual fairness is desired.

6 RELATED WORKS

Benchmarking Graph Learning Methods. Existing studies have explored two mainstream bench-
marks for graph learning methods, i.e., usability-oriented ones and trustworthiness-oriented ones.
Specifically, usability-oriented ones focus on evaluating models’ capabilities in accomplishing spe-
cific graph learning tasks, including node classification (Shchur et al., 2018; Izadi et al., 2020; Luan
et al., 2021), link prediction (Bordes et al., 2013; Shang et al., 2018; Suchanek et al., 2007), and
representation learning (Stier & Granitzer; Ren et al., 2020). In addition to those focusing on utility
(e.g., F1-score in node classification tasks), a few existing studies also explored efficiency, such as
comparisons on training time (Said et al., 2023) and memory usage (Huang et al., 2023). On the other
hand, trustworthiness-oriented ones mainly aim to provide comprehensive analysis on how well graph
learning models can be trusted, such as studies from the perspective of robustness (Bojchevski &
Günnemann, 2019; Zügner & Günnemann, 2019) and interpretability (Agarwal et al., 2018; Xuanyuan
et al., 2023). However, from the perspective of algorithmic fairness, existing benchmarks remain
scarce. To the best of our knowledge, Qian et al. (Qian et al., 2024) took an initial step towards
developing a fairness-aware graph learning benchmark. However, only two representative works are
evaluated in their benchmark, which limits the insights it reveals. Different from the existing research
work above, our work serves as an initial step towards a comprehensive benchmark on fairness-aware
graph learning methods, which reveals key insights on their strengths and limitations and exhibits the
potential to facilitate broader applications.

Fairness-Aware Graph Learning. In graph learning tasks, unfairness can be defined with different
criteria and exhibited from different perspectives (Dong et al., 2023b). In general, two fairness notions
are the most widely discussed ones by existing studies, i.e., group fairness and individual fairness.
Specifically, group fairness emphasizes that the learning methods should not yield discriminatory
predictions or decisions targeting individuals belonging to any particular sensitive subgroup (race,
gender, etc.) (Dwork et al., 2011). Common approaches to mitigate the bias revealed by the notion
of group fairness include rebalancing (Khajehnejad et al., 2022; Farnadi et al., 2018; Current et al.,
2022; Buyl & Bie, 2021), adversarial learning (Dai & Wang, 2021; Khajehnejad et al., 2020; Xu et al.,
2021; Bose & Hamilton, 2019), edge rewiring (Dong et al., 2022; Li et al., 2021; Kose & Shen, 2022;
Jalali et al.), and orthogonal projection (Palowitch & Perozzi, 2020; Zeng et al., 2021). On the other
hand, individual fairness notion requires models to treat similar individuals similarly (Dwork et al.,
2011). Existing works that mitigate the bias revealed by individual fairness include optimization with
constraints (Gupta & Dukkipati, 2021) and regularizations (Fan et al., 2021; Dong et al., 2021a; Kang
et al., 2020a; Lahoti et al., 2019). Despite the abundant efforts, there still lacks a comprehensive
benchmark to facilitate the understanding of those representative fairness-aware graph learning
methods. Our work presents a comprehensive benchmark to provide guidance based on the results
over a wide range of representative fairness-aware graph learning methods.

7 CONCLUSION

In this paper, we introduced a comprehensive benchmark for fairness-aware graph learning methods,
which bridges a critical gap between the current literature and broader applications. Specifically,
we designed a systematic evaluation protocol, collected ten representative methods, and conducted
extensive experiments on seven real-world attributed graph datasets from various domains. Our
in-depth analysis revealed key insights into the strengths and limitations of existing methods in
terms of group fairness, individual fairness, balancing different fairness criteria, and computational
efficiency. These findings, along with the practical guide we provided, offer valuable guidance for
practitioners to select appropriate methods based on their specific requirements. While we focused
on the node classification task in this paper, evaluations on other graph learning tasks remain a future
direction to be explored, which will further enrich the understanding of the performance of these
methods and expand their applicability across a wider range of applications.
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