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Abstract

We discuss the inverse problem for the kernel embedding of measures. We identify which
elements of a reproducing kernel Hilbert space which are in the cone generated by some
set of kernel functions as polar dual of the Herglotz-type functions, the functions with
positive imaginary part. Over certain spaces, such as Sobelev spaces, the duality to Herglotz
functions reduces to a classical multivariate moment problem, and, over analytic spaces, we
see more complex analytic type conditions. We give conditions for when Herglotz functions
have representations in terms of kernel functions in terms of reflexive reproducing kernel
Hilbert spaces. We identify the orbits of a dynamical system in terms of the Koopmanism
philosophy: we give a way to decide when there is an orbit contained in some compact
subset of the domain.

1 Introduction

Kernel methods offer powerful techniques for dealing with complex and high-dimensional data by implicitly
mapping the data into a high-dimensional feature space using kernel functions, see, for example, Schölkopf
et al. (1998); Muandet et al. (2017); Sriperumbudur et al. (2011). The kernel embedding of measures, also
known as the kernel mean, allows us to represent probability distributions as functions in some reproducing
kernel Hilbert space. The kernel embedding of measures has proven to be a useful tool for various tasks in
machine learning, such as distribution comparison in Gretton et al. (2012), generative modeling in Li et al.
(2015), and density estimation in Liu et al. (2016), due to its ability to leverage the Euclidean geometry of
reproducing kernel Hilbert spaces.

Let Ω be a set. A reproducing kernel Hilbert space is a Hilbert space H of functions f : Ω → C such
that point evaluation is a bounded linear functional. In reproducing kernel Hilbert spaces, for each ω ∈ Ω
there is a kernel function kω ∈ H such that ⟨f, kω⟩ = f(ω). (Note that the kernel functions thus induce
a natural metrizable topology on Ω which we will assume is Hausdorff for ease of discussion.) For more
information on the basic theory of reproducing kernel Hilbert spaces, see Paulsen & Raghupathi (2016);
Berlinet & Thomas-Agnan (2011).

As aforementioned, an apparently somewhat useful technique is various contexts is to consider the the
kernel embedding of measures (or kernel mean in the case of distributions) taking a measure µ to an
element ι(µ), defined by the map

ι(µ)(z) =
∫

kω(z)dµ(ω).

Note that
⟨f, ι(µ)⟩ =

∫
f(ω)dµ(ω).

That is, ι(µ) behaves like integration against µ as a linear functional on H. See Muandet et al. (2017);
Sriperumbudur et al. (2011) for a comprehensive review establishing theoretical foundations and exploring
applications. The utility of the kernel embeddings of measures has proven significant recently for its ability
to represent probability distributions in a reproducing kernel Hilbert space, which in principle may be
more desirable to manipulate, calculate with, or compare because of their Euclidean geometry, as seen in
various references such as Alvarez-Melis & Jaakkola (2018); Gretton et al. (2012); Sejdinovic et al. (2014);
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Balasubramanian et al. (2021). Each reproducing kernel Hilbert space thus gives a metric on measures
defined by d(µ1, µ2) = ∥ι(µ1) − ι(µ2)∥. (Known as the maximum mean discrepancy.) Such metrics are
also desirable over other metrics on measures such as the Wasserstein metric or other transport-based metrics
due to ease of calculation. Note that on a compact space Ω, and a reproducing kernel Hilbert space such
that the kernel embedding of measures is injective, we see that the Wasserstein distance is equal to zero if
and only if the kernel mean metric is zero– that is, the two distances induce the same metric topology.

Our goal will be to discuss the inverse problem for the kernel embedding of measures– given an element
ν of a reproducing kernel Hilbert space, when does there exist a measure µ such that ν(z) =

∫
kω(z)dµ.

We identify the elements of a reproducing kernel Hilbert space that correspond to measures (and other
measure-like elements) supported on a given set A, which provides insight into the data distribution and
could potentially facilitate certain various learning tasks.

We will treat several classes of spaces in detail, some of which are mostly of theoretical interest, such as the
Hardy space or other spaces of analytic function, but may apply to some applied topics such as learning
partial differential equations along the lines of Stepaniants (2023), and others which are more concrete such
as Sobelev spaces. Spaces of analytic functions serve as important examples where the kernel embedding
of measures is not injective, which serve as interesting examples where complete information may not be
recoverable– for example, it is certainly plausible that there are multiple theories describing the same real
objects, but which disagree on objects which do not correspond to anything remotely observable in reality,
however troubling it may be to our innate longing for one to be right. Irregardless, the problem of whether
or not an element of a reproducing kernel Hilbert space remains tractable in terms of duality with the so-
called Herglotz functions. Note that, by Caratheodory’s theorem, that over an N dimensional reproducing
kernel Hilbert space that any such embedded measure can be expressed as a convex combination of at most
N + 1 kernel functions, which may or may not be supported in the support of the original. We identify
the orbits of a dynamical system using the framework of Koopmanism, enabling us to determine when an
orbit is contained within a specific compact subset of the domain. Our results offer theoretical foundations
and likely practical implications for tasks such as distribution modeling, manifold learning along the lines of
Belkin & Niyogi (2003), and anomaly detection (see the survey Chandola et al. (2009).)

2 The cone of A-measures

Let A ⊆ Ω. We define the cone CA of A-measures over H to be the closed cone generated by {kω|ω ∈ A}.
Observe that we can view the membership problem in CA as the inverse problem for the kernel embedding
of measures, although in the case where A is not compact we may not obtain a bona fide measure per se,
but something in their weak closure.

Call a reproducing kernel Hilbert space uniform if there exists a point ω0 such that kω0(z) is positive for
every z ∈ Ω. Note that if A is compact and the reproducing kernel Hilbert space is uniform, then if ν ∈ CA,
there is a positive measure µ such that ⟨f, ν⟩ =

∫
f(z)dµ(z).

We note that in a reproducing kernel Hilbert space on a compact set, one can reconstruct the measure by
iteratively taking convex combinations with kernel functions, which are the images of point masses under
the kernel embedding of measures. Namely, if one picks optimal convex combinations with random kernel
functions iteratively, we see that the result converges to the desired kernel mean in countably many steps, .
If our set A is compact, then the space of kernel means is compact, so we indeed get convergence. (Note that
if one picks random kernel functions with different distributions, the constructed measures may be different
if the problem is not uniquely determined.)
Theorem 2.1 (Update inequality). Let H be a reproducing kernel Hilbert space on Ω. Let A ⊆ Ω. Let µ, ν
be A-measures with total variation 1. If µ is not equal to ν, there exists α ∈ A such that

∥ν∥2 > Re[⟨µ, ν⟩ + µ(α) − ν(α)].

Moreover, for

t = min{∥ν∥2 + Re[ν(α) − ⟨µ, ν⟩ − µ(α)]
∥ν − kα∥2 , 1},
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we get that ∥µ − [(1 − t)ν + tkα]∥/∥ν − µ∥ is minimized and equal to√
1 −

[
Re⟨ ν − µ

∥ν − µ∥
,

ν − kα

∥ν − kα∥
⟩
]2

when t < 1 or ∥µ − kα∥/∥µ − ν∥ when t = 1.

Proof. Note that for any γ ∈ H

− d

dt
∥µ − [(1 − t)ν + tγ]∥2|t=0 = Re⟨ν − µ, ν − γ⟩.

Thus, if γ were an A-measure with total variation 1, we see that there must be some α such that ∥ν∥2 +
Re[ν(α)−⟨µ, ν⟩−µ(α)] = Re⟨ν −µ, ν −kα⟩ > 0 if Re⟨ν −µ, ν −γ⟩ > 0 as γ is a limit of convex combinations
of kernel functions. (Note that taking γ = µ gives such a positive choice.) Solving for the vertex of the
quadratic ∥µ − [(1 − t)ν + tkα]∥2 gives the desired result.

Note that, for optimal α, √
1 −

[
Re⟨ ν − µ

∥ν − µ∥
,

ν − kα

∥ν − kα∥
⟩
]2

≤

√
1 − ∥ν − µ∥2

∥ν − kα∥2

so we expect a quadratically slow convergence, along the lines of the law of large numbers whenever ∥µ−kα∥
is bounded above. (As the recurrence tn+1 = tn − αt3

n for t, α < 1 goes to 0 quadratically slow. That is, the
sequence is O( 1√

n
).) For comparable results on the Wasserstein distance, see Del Barrio et al. (1999).

3 Herglotz duality

Given a cone C in some locally convex topological vector space V, we define the polar dual C∗ to the cone of
linear functionals with nonnegative real part on C. Note that if C is a closed cone, the Hahn-Banach theorem
implies that v ∈ C if and only if, for every λ ∈ C∗, Reλ(v) ≥ 0.

Taking the cone CA, the dual cone is exactly the set of h ∈ H such that Re⟨h, kω⟩ = Reh(ω) ≥ 0 for all
ω ∈ A. In analogy with classical complex analysis and operator theory, we call the polar dual of CA, the
cone of A-Herglotz functions over H denoted HA.

We call G ⊆ HA which generates HA as a closed cone an A-test set.

Viewing the above discussion (or perhaps more accurately annotated derivation) as a proof, we have the
following result.
Theorem 3.1. Let H be a reproducing kernel Hilbert space on some domain Ω. Let ν ∈ H. The following
are equivalent:

1. ν is an A-measure over H,

2. For every h ∈ HA we have Re⟨ν, h⟩ ≥ 0,

3. Given G ⊆ HA an A-test set, we have Re⟨ν, h⟩ ≥ 0.

Note also that the solution to the inverse problem for the kernel embedding of measures is often highly
nonunique– for example, for H a space of analytic functions that the problem for A compact is equivalent to
to the problem for ∂A by the maximum modulus principle, as they have the same cone of Herglotz functions.
Uniqueness problems for the kernel embedding of measures have been analyzed extensively, see the survey
Sriperumbudur et al. (2011).
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4 Over various spaces

4.1 The global case over analytic function spaces on the unit disk and the Hardy space in particular

Let H be a reproducing kernel Hilbert space over the unit disk D ⊆ C such that all bounded analytic
functions defined on a neighborhood of the unit disk are in our space.

The space of Herglotz functions HD is exactly the space of h ∈ H such that Reh ≥ 0. Of course, Herglotz
himself classifed the cone of all analytic functions with nonnegative real part Herglotz (1911); Lax (2002)-
they are functions of the form:

ia +
∫

|ω|=1

1 + ωz

1 − ωz
dµ(ω)

where a is some real number and µ is a finite positive measure on the unit circle. Thus, the cone of relevant
Herglotz functions is generated by the elements of the form 1+ωz

1−ωz where |ω| < 1 and ±i. which exactly says
such functions are a D-test set.

The reproducing kernel for the Hardy space H2(D) is given by the Szegő kernel kω(z) = 1
1−ωz . Note that

1+ωz
1−ωz = 2kω(z) − 1. Thus, if ν ∈ CD, we have that 2ν(z) − ν(0) is a Herglotz function such that ±iν(0) has
nonnegative real part. That is, we have the following result.
Theorem 4.1. Let ν ∈ H2(D). The following are equivalent:

1. ν is a D-measure over H2(D),

2.

ν(z) = ν(0)
2 +

∫
|ω|=1

1 + ωz

1 − ωz
dµ(ω)

where µ is a finite positive measure on the unit circle with total mass ν(0)
2 .

3. ν maps D into the half plane {z ∈ C|Rez ≥ ν(0)
2 }.

Note that the theorem assumes ν ∈ H2(D).

4.2 The global case for entire functions

Suppose H is a space of entire analytic functions on Cn. Liouville’s theorem implies that there are at most
only constant Herglotz functions of the from a + ib where a is positive and b is real are in our reproducing
kernel Hilbert space. Thus, the cone of Cn-measures over H is a space of codimension one plus a ray or the
whole space.
Theorem 4.2. Suppose H is a space of entire analytic functions on Cn. Then, either the cone of Cn-
measures over H is all of H (when there are no constant functions) or a space of codimension one plus a
ray.

If we additionally assume H is uniform and thus contains a constant function, we merely need to have the
value of ν at ω0 to be positive.

Examples of such spaces include the Taylor-type spaces, which arise from taking an entire analytic function
g with nonnegative power series coefficients and setting kω(z) = g(⟨z, w⟩). If g(0) > 0, the space is uniform.
The classical Fock space or Segal-Bargmann space (as defined in Bargmann (1961)) is given by kω(z) =
e⟨z,w⟩. (Note there are other objects called the Fock space in noncommutative operator theory, see Fock
(1932).) Note that the choice of g polynomial gives rise to finite dimensional examples, although one has a
paucity of important operators, such as multipliers, composition operators and so on, and thus one must use
their truncations.
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4.3 Real domains and real algebraic geometry

Let Ω be a subset of Rn. Let H be a real reproducing kernel Hilbert space. (For example, we could take
certain Sobelev spaces, or the space of functions on finitely many points, important for discretizing the
problem for applications, among other examples.) In such a case, all the kω must be real-valued functions.
Given A ⊆ Ω, the cone of real-valued Herglotz functions are exactly the nonnegative functions. Thus, the
cone of A-measures over H are exactly ν such that for every nonnegative h ∈ H, ⟨ν, h⟩ ≥ 0.

In Putinar (1993), the following Positivstellensatz, or positivity locus theorem, was obtained, which itself is
built of the foundational work of Schmüdgen (1987).
Theorem 4.3 (Putinar’s Positivstellensatz). Let g1, . . . , be real polynomials (either a finite or infinite list)
in n variables such that at least one of Gi = {z ∈ Rn|gi(z) ≥ 0} is compact. Let g0 = 1. Let A =

⋂
Gi. For

any polynomial p such that p > 0 on A,

p =
N∑

k=1
q2

kgik

where qk are some real polynomials and ik are some nonnegative integers and N is finite.

We see the following immediate corollary.
Corollary 4.4. Let Ω be a subset of Rn. Let H be a Hilbert space of functions which is closed under complex
conjugation such that the polynomials are contained in H and dense. Let g1, . . . , be real polynomials (either
a finite or infinite list) in n variables such that at least one of Gi = {z ∈ Rn|gi(z) ≥ 0} is compact. Let
g0 = 1. Let A =

⋂
i{z ∈ Rn|gi(z) ≥ 0} ⊂ Ω we have that the collection of polynomials of the form q2gi and

q2 are an A-test set.

Define the gi-localizing matrix to be the infinite matrix Ai = [⟨gix
α+β , ν⟩]α,β where α, β run over all

multi-indices. We see that ν ∈ CA if and only if all the Ai are positive semidefinite. (By which we mean all
of its finite principal minors are positive semidefinite.) Thus, we recover exactly the classical conditions on
moment sequences as in Schmüdgen (1987); Curto & Fialkow (2005).

4.4 Reflexive kernels

Say a real reproducing kernel Hilbert space is reflexive if HΩ ⊆ H∗
Ω and kω ∈ HΩ. Note, for example, this

is the case for the Poisson kernel, kw(z) = 1
1−wz + 1

1−zw − 1 = Re 1+wz
1−wz . In such a case, by Theorem 3.1,

we have that HΩ = CΩ. That is, any Herglotz function on a reflexive space is in the cone generated by the
kernels. Note also in a reflexive space that the kernels are positive functions, and the inner product of two
Herglotz functions is positive. The conincidental duality can also be used to do finite interpolation.
Theorem 4.5. Let H be reflexive. Then, HΩ = CΩ.

Moreover, note that there exists f ∈ HΩ
ptwise such that f(xi) = yi if and only if for every sequence of ai such

that
∑

aikxi
∈ HΩ, we have that

∑
aiyi ≥ 0. (Here HΩ

ptwise denotes the closure of the Herglotz functions
in the topology of pointwise convergence on C∞.)

Note that, over the disk with the Poisson kernel structure, we obtain exactly the Herglotz representation
formula from the above equivalence. Note that, with that structure, the Pick interpolation theorem gives that
the above interpolation problem is solvable if and only if there exist ỹi such that the matrix

[
yi+yj+i(ỹi−ỹj)

1−xixj

]
i,j

is positive semidefinite. It would be most excellent to give a direct proof of the equivalence.

Note that if the kernel functions are nonnegative, then either there is a a pair of Herglotz functions with
negative inner product or the space is reflexive. For example, the pluriharmonic Drury-Arveson space (kernel
Re 1+⟨z,w⟩

1−⟨z,w⟩ on the Euclidean ball in Cd) in more than one variable is not reflexive, so there must be a pair of
Herglotz functions with negative inner product. (We leave the process of finding such a pair to the reader.)
In general, the set of harmonic functions on an Ω with smooth enough boundary are reflexive. Note also
that given a space where the kernel functions are nonnegative, one can add some fictional points to the space

5



Under review as submission to TMLR

Ω to make the space reflexive. (Corresponding to a maximal cone such that ⟨ν, µ⟩ ≥ 0. The utility of such
a construction is questionable, especially as the resulting space is unlikely to have nice features, such as a
lot of multipliers, but is at least worth mentioning. Such maximal cones are the so-called self-dual cones,
which are classified abstractly for general Hilbert spaces in terms of a direct integral theory as described by
Penney (1976). Note there are a lot of these, even in finite dimensions– such the nonnegative orthant, right
circular cones in R3 and so on.)

Finally, we point out that a fundamental problem along these lines is given a bounded Ω ⊆ Cd, when is
there a reflexive reproducing kernel Hilbert space on Ω containing pluriharmonic functions defined on a
neighborhood of Ω as a dense subspace? More generally, one would like to classify all reflexive reproducing
kernel Hilbert space structures on a given Ω.

5 Koopmanism and an application of inverse problem for the kernel embedding of
measures.

Let Ω be some domain. Let F : Ω → Ω. Koopmanism is a popular technique in dynamical systems which
(among other things) seeks to find the orbits of a discrete or continuous time dynamical system by linearizing
the problem via the theory of composition operators, KF h = h◦F, which are known as Koopman operators
in the dynamical context, especially with respect to the dynamic mode decomposition. See Budišić et al.
(2012); Brunton et al. (2022). Their adjoints are the Perron-Fronbenius operators, which act on kernels by
PF kω = kF (ω). The Koopmanism way of doing things (in the discrete time case) should ask when there
is a measure supported in some set A which is invariant under composition, which our context translates
to finding eigenvectors ν such that PF ν = ν and ν is A-measure over H. Such ν are called F -invariant
A-measures over H. We say a compact set A is Urysohn on if there exists an A-Herglotz function h ∈ HA
such that h|A = 0 and hAc > 0.

Corollary 5.1. Let Ω be some domain. Let F : Ω → Ω continuous. Let H be a reproducing kernel Hilbert
space on Ω. Let A ⊆ Ω. The following are equivalent:

1. There exists an F -invariant A-measure over H

2. There is a ν such that PF ν = ν and ⟨ν, h⟩ ≥ 0 for every h an A-Herglotz function.

Moreover, if A is Urysohn then such a ν corresponds to a bona fide measure µ supported on A and thus A
contains an orbit of F.

Proof. It is worth explaining why ν corresponds to a such a proper measure µ. Pick a measure µ0 supported
on A representing ν. Now take µk = µk−1 ◦ F. Note µk must be supported in A since it also corresponds to
ν. So the support of the measure µ = limN→∞

1
N

∑N
k=1 µk is an orbit of F.

The case of the disk was extremely tractable as we had existing Herglotz representations on the disk. One
wonders if one could adopt our framework to be compatiable with Agler models (see Agler & McCarthy
(2002)) as adapted to Herglotz functions on the bidisk and study dynamics on the bidisk, with a goal of
generalizing existing work such as Sola & Tully-Doyle; Jury & Tsikalas (2023).
Theorem 5.2 (Operator update inequality). Let Ω be some domain. Let H be a reproducing kernel Hilbert
space on Ω. Let T be a bounded linear operator on H. Let A ⊆ Ω. Let ν ∈ H. Suppose there is µ ∈ CA such
that Tµ = µ. If Tν ̸= ν, there exists a point α ∈ A such that the derivative of f(t) = ∥(T −1)((1−t)ν +tkα)∥2

is negative and, moreover, f ′(t) ≤ −2∥(T − 1)ν∥2.

Proof. Take ν ∈ H take a random point α ∈ A mass kα. Now taking the best linear approximation of
∥(T −1)((1− t)ν + tkα)∥2 with respect to t at t = 0 gives 2 Re⟨(T −1)kα, (T −1)ν⟩−2∥(T −1)ν∥2. Note there
is always an α such that Re⟨(T −1)kα, (T −1)ν⟩ ≤ 0, if there exists such a measure µ with (T − 1)µ = 0.
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Thus, we see again see about quadratically slow convergence on compact A if one takes optimal updates by
convexly combining with random kernel functions iteratively. Taking T = PF for some F : Ω → Ω gives the
update inequality for the Koopman orbit-detection case. Conceptually, one can view this as a shift in view–
instead of iterating to find a steady state, we are picking a point and asking how much mass is missing there,
and add it back. Note also that it also statistically feasible to decide when the orbit of every point in A, as
if one stops seeing the norm of the defect ∥(PF − 1)ν∥ decrease as in Theorem 5.2, then with more and more
confidence we can conclude it will never decrease.
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