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ABSTRACT

We argue to apply Differentially-Private Local Stochastic Gradient Descent (DP-
LSGD), a generalization of regular DP-SGD with per-sample local iterations, to
systematically improve privacy-preserving machine learning. We prove and show
the following facts in this paper: a). DP-LSGD with local iterations can produce
more concentrated per-sample updates and therefore enables a more efficient
exploitation of the clipping budget with a better utility-privacy tradeoff; b). given
the same 7" privacy composition or per-sample update aggregation, with properly-
selected local iterations, DP-LSGD can converge faster in O(1/7T) to a small

neighborhood of (local) optimum compared to O(1/+/T) in regular DP-SGD,
i.e., DP-LSGD produces the same accuracy while consumes less of the privacy
budget. From an empirical side, thorough experiments are provided to support our
developed theory and we show DP-LSGD produces the best-known performance
in various practical deep learning tasks: For example with an (¢ = 4,6 = 107°)-
DP guarantee, we successfully train ResNet20 from scratch with test accuracy
74.1%, 86.5% and 91.7% on CIFAR10, SVHN and EMNIST, respectively. Our
code is released in an anonymous GitHub link[ﬂ

1 INTRODUCTION

Local Stochastic Gradient Descent (LSGD) |Stich|(2019) and Differential Privacy (DP)Dwork et al.
(2006); Cormode et al.|(2018)); |Geyer et al.[(2017) are two widely-used frameworks that address the
issues of communication efficiency and data privacy, respectively. Rooted in the FedAvg framework
proposed in |[Konecny et al.|(2016), LSGD reduces the communication burden by randomly sampling
participants to perform gradient descent on their local data in parallel, only aggregating updates
periodically instead of at each iteration. Although LSGD is a straightforward extension of SGD in
a distributed setting with lower synchronization frequency, it has empirically demonstrated strong
performance in both communication efficiency and convergence rate |Lin et al.[|(2020). When each
user holds i.i.d. data, LSGD achieves provable linear speedup proportional to the number of users
and asymptotic improvements in communication overhead compared to traditional distributed SGD,
while maintaining comparable accuracy |[Khaled et al.[(2020).

In the privacy preservation regime, DP |[Dwork et al.|(2000) offers a rigorous approach to quantifying
data leakage from any computation. At a high level, DP provides input-independent guarantees
that ensure an adversary cannot easily infer the participation of any individual datapoint from the
release. For example, classic (¢, §)-DP, with small parameters € and J, implies significant Type I or
Type II errors in adversarial hypothesis tests aimed at guessing whether a specific individual was
involved in the process|Dong et al.|(2022)). To produce required privacy guarantees, a core challenge
in DP research is determining the sensitivity, i.e., the maximum possible change in the output due to
replacing one individual in the input set. Once the sensitivity is provided, randomization techniques,
such as the Gaussian or Laplace mechanisms Dwork et al.| (2014)), can be accordingly applied to
obfuscate the leakage or release. However, computing sensitivity is generally NP-hard |Xiao & Tao
(2008). Consequently, a practical alternative is the decompose-then-compose framework: a complex
process is (approximately) decomposed into simpler subroutines, each with controllable sensitivity.
A white-box adversary is then assumed, who observes the intermediate computations, and the overall
privacy loss is bounded by composing the leakage across steps.
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In machine learning applications, where the output of the process is a model trained on potentially
sensitive data, DP-SGD |Abadi et al.[|(2016b); |Song et al.| (2013) is argubaly the most widely-used
DP technique. As an example of the decompose-then-compose framework, DP-SGD views SGD
as a sequence of adaptive gradient mean estimations. To enforce a bounded sensitivity, per-sample
gradients are clipped—usually in the [o-norm|Abadi et al.|(2016b)—to a constant ¢, which corresponds
to a projection within an ls-norm ball of radius c. Noise, determined by both the clipping threshold ¢
and the number of compositions (model updates) 7', is then added to the clipped gradients during
each iteration to ensure the privacy parameters (e, d) under 7-fold composition. Larger dimensions
and longer convergence times 7' (leading to more leakage) require larger noise to maintain privacy.
Although DP-SGD imposes no additional assumptions on either the model or the training data, it is
notorious for its utility loss, particularly in deep learning. Moreover, the bias introduced by clipping
is poorly understood; it is known that, even without added noise, clipped SGD does not converge in
general (Chen et al.|(2020).

Since DP-SGD is assumed to release intermediate per-sample aggregates, there is no essential
difference between the privacy analyses of centralized and local SGD. However, in the distributed
setting, alternative DP metrics like Local DP (LDP) (Cormode et al.| (2018)) or client-level DP
Geyer et al.|(2017) may be applied to protect each user’s local data. Interestingly, there are several
connections between federated learning and DP-SGD worth noting: First, DP-SGD is a special
case of DP-LSGD. DP-SGD can be viewed as involving n nodes, each holding a sample, with
a virtual server collecting clipped stochastic gradients from sampled nodes at each iteration and
releasing a noisy gradient descent update. Similarly, DP-LSGD aggregates a subset of local gradients,
clips them, but privately synchronizes updates periodically rather than after each iteration. The
reduced communication overhead in federated learning—through less frequent synchronization in
LSGD—also implies reduced leakage and a smaller composition of privacy loss. Second, the study
of utility loss due to perturbation and clipping in DP-SGD is relevant to federated learning with
compressed communication |Basu et al.| (2019), where quantization errors in the broadcasted local
updates are analogous to the bias due to clipping.

Given the fundamental connections between (a) communication efficiency and privacy composition
and (b) quantization/compression error and clipping bias, we are motivated to systematically improve
DP-SGD from a virtual federated learning perspective. However, before developing useful theoretical
insights, several technical challenges must be addressed.

Utility of Released Iterate Only: Many existing convergence results |[Khaled et al.|(2020); Yu et al.
(2019); [Wang & Joshil (2021)); [ Haddadpour & Mahdavil (2019); [Woodworth et al.| (2020) on non-
private LSGD are developed on the (weighted) average of all iterates. These include the intermediate
iterates produced during the local updates from each user or datapoint, which will not be exposed or
shared. To properly characterize the effect of noise perturbation and bias, we want more fine-grained
convergence analysis to measure the performance of released iterates only, which is also necessary for
DP-LSGD: The utility of concern is only with respect to the released outputs, and anything assumed
to be published would incur privacy loss and increase the scale of noise for DP guarantees.

Clipping Bias and Data Heterogeneity: In practice, tight sensitivity of many data processing
algorithms is intractable and thus a very popular but artificial control is clipping. However, clipping
could also bring heavy bias. In general, there is no convergence guarantee for clipped SGD if we
only assume the stochastic gradient is of bounded variance |Chen et al.| (2020); |Koloskova et al.
(2023), though under more restrictive assumptions, for example, when the stochastic gradient is in a
symmetric (Chen et al.|(2020) or light-tailed |[Fang et al.|(2023)) distribution, or provided generalized
smoothness Yang et al.[(2022), some (near) convergence results are known. A concise characterization
of such clipping bias still largely remains open and the bias is even more complicated in the more
general DP-LSGD. To provide meaningful theory to instruct bias reduction, we do not want to assume
Lipschitz continuity or bounded gradient, which may make the analysis trivial or impractical. The
desired analysis should capture the scenario with arbitrary data heterogeneity, and the results should
not require a bounded difference among the local updates.

In this paper, through tackling the above-mentioned challenges, we aim to provide useful and intuitive
theory to understand perturbed optimization with DP guarantees. In particular, we explain how
DP-LSGD outperforms regular DP-SGD from two perspectives: a) faster convergence in less privacy
composition, and b) higher clipping efficiency. Our contributions are summarized below.
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Contribution 1: Meaningful and Verifiable Assumptions. For both convex and non-convex
optimization, our presented convergence analyses for clipped DP-(L)SGD mostly require mild
assumptions that the stochastic gradients/local updates are of bounded second moment (Assumption
[T), rather than globally bounded gradients assumed in prior works. We ensure the parameters capturing
the statistics of local updates in our assumptions and theorems are simulatable for practical learning
tasks (Section ), which forms the foundation to develop meaningful and explainable theory that can
instruct systematic improvement.

Contribution 2: Tighter Convergence Analysis. We present the convergence analysis on the
released-only noisy iterates of DP-(L)SGD for both convex and non-convex smooth optimization
(Theorems [T}{2). We rigorously prove that with properly-selected local iteration, DP-LSGD enjoys
a faster convergence rate to a small neighborhood of a global/local optimum as compared to DP-
SGD given the same aggregation or privacy composition budget 7. That is to say, to produce the
same performance, DP-L.SGD theoretically requires less per-sample update aggregation, and less
composition ensures better privacy guarantees compared to DP-SGD in the same setup. Moreover,
for convex optimization, we present the stronger last-iterate analysis, i.e., the performance of model
parameters finally released from last iteration, for DP-(L)SGD, which, to our knowledge, is also the
first last-iterate analysis without assuming bounded gradients.

Contribution 3: Clipping Bias Reduction: Based on the theory, we then show LSGD behaves as
an efficient variance reduction of local update, where multiple local gradient descents with a small
learning rate cancel out substantial sampling noise, and explain why DP-LSGD enables more efficient
clipping with less clipping bias compared to DP-SGD. This initiates a new research direction to apply
federated learning methods to systematically improve DP optimization with bias-reduced clipped
update. Empirically, we also show DP-LSGD produces the best-known performance in various deep
learning tasks and setups after properly selecting local iterations. For example, in training CIFAR10
from scratch, we achieve 71.3% and 66.9% test accuracy via DP-LSGD compared to 68.9% and
63.6% achieved in |De et al.| (2022), for (¢ = 3,5 = 107°) and (¢ = 2,6 = 10~°) DP guarantees,
respectively.

1.1 RELATED WORKS

Convergence Analysis of LSGD: Though the idea of LSGD can be traced back to earlier works
Mangasarian| (1995); McDonald et al.| (2010), theoretical convergence analysis is more recent. For
general applications with heterogeneous data, [Wang et al.| (2018) studied the convex case with local
GD (without sampling on either users or users’ local data) but under Lipschitz continuity. |Khaled
et al. (2020) presented more generic and tighter analysis for LSGD without assumptions on bounded
gradient for both strongly and general convex optimization. Further generalization of LSGD to the
decentralized setup under arbitrary network topology was considered in|Wang & Joshi| (2021)); Hsieh
et al.| (2020). However, many existing works Khaled et al.|(2020); /Wang & Joshi| (2021)); |Koloskova.
et al.[ (2020) only showed the convergence rate relying on all the intermediate averages. To our
knowledge, the first analysis for synchronized-only iterates was shown in |[Karimireddy et al.|(2020).
Karimireddy et al.[(2020) proposed Scaffold, a generalized LSGD with careful correction on the
client-drift caused by data heterogeneity. Compared to existing works, in this paper, we prove more
powerful last-iterate analysis for general convex optimization with clipping and perturbation for
privacy. With a different motivation, there is another line of works also studying noisy LSGD to
capture the effect of compressed local updates to further save the communication cost. But, in most
existing related works [Basu et al.| (2019); Haddadpour et al.|(2021)), the compression error is assumed
to be independent with zero-mean. As we need to study DP-LSGD with clipped local update, which
introduces bias in the local update generation, in this paper we present more involved analysis to
handle such adaptive and biased perturbation.

Convergence Analysis of DP-SGD and DP-LSGD: Asymptotically, under Lipschitz continuity,
DP-SGD is known to produce a tight utility-privacy tradeoff Bassily et al.|(2014; 2019), where no
bias is produced given a clipping threshold larger than the Lipschitz constant. However, without
Lipschitz continuity, practical understanding of DP-SGD remains limited. On one hand, negative
examples are shown in|Chen et al.|(2020); Zhang et al.| (2022) where clipped-SGD in general will
not converge with lower bounds of clipping bias shown in|Koloskova et al.|(2023)), and in practice
clipped-SGD does have a lower convergence rate, especially in deep learning applications compared
to regular SGD [Zhang et al.|(2022). On the other hand, under more restrictive assumptions on the
stochastic gradient distribution, clipped-SGD can be shown to (nearly) converge (Chen et al.| (2020);
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Fang et al|(2023); Yang et al.|(2022). A systematical characterization of the clipping bias still largely
remains open. As a consequence, there is little known meaningful theory to instruct optimization
algorithms with DP guarantees, and most existing private deep learning works are empirical, which
aim to search for the optimal model and hyperparameters for objective training data|[Papernot et al.
(2021); [Tramer & Boneh| (2021); De et al.| (2022)). As for DP-LSGD, to our knowledge the only
known theoretical result that captures the clipping bias isZhang et al.|(2022). However, |Zhang et al.
(2022) assumes globally bounded gradient compared to bounded second moment as assumed in our
results, and its main motivation is to study the clipping effect in client-level DP. In this paper, we
show more intuitive and generic analysis of DP-LSGD for both convex and non-convex optimization,
and our motivations are also very different: We set out to provide usable quantification on the utility
loss due to clipping and we argue to apply DP-LSGD both in the centralized and distributed setup,
since DP-LSGD can significantly reduce the clipping bias with a faster convergence rate.

2 PRELIMINARIES

We focus on the classic Empirical Risk Minimization (ERM) problem Given a dataset D =

{(#s,yi),i = 1,2,--- ,n}, the loss function is defined as F(w) = £ - >0 | f(w,z;,y;) = = -
i, fi(w). We will consider the cases where the loss function f;(w) : W — R is convex or
non-convex. w* = arg min,, F'(w) represents the global optimum. Some formal definitions about

the properties of the objective loss function and Differential Privacy (DP) are defined as follows.
Definition 1 (Smoothness). A function f is -smooth on W if the gradient V f (w) is B-Lipschitz
such that for all w,w’ € W, |V f(w) — Vf(w')|| < Bljw — w].

Definition 2 (Convexity and Strong Convexity). A function f(w) is A-convex on W if for all
w,w €W, 2w —w'|]? < flw) — fw') — (Vf(w'),w—w'). Wecall f(w) general convex if
A =0, and f%w) is strongly convex if A > 0.

Definition 3 (Differential Privacy Dwork et al.| (2000)). Given a universe X*, we say that two
datasets X, X' C X* are adjacent, denoted as X ~ X', if X = X' Uz or X' = X U x for some

additional datapoint x € X. A randomized algorithm M is said to be (¢, 0)-differentially-private
(DP) if for any pair of adjacent datasets X, X' and any event set O in the output domain of M, it

holds that P(M(X) € 0) < e -P(M(X') € O) +6. (H

With the preparation, we can now formally describe DP-(L)SGD, as Algorithm[I} The whole process
of Algorithm I is formed of T phases. In each phase, by g-Poisson sampling, in expectation (ngq)
many datapoints will be selected, and we perform K local gradient descents on each data point before
privately aggregating their local updates. In (3), a clipping operation on a vector v with threshold ¢
is defined as CP (v, ¢) = v - min{1, ¢/||v||}, which ensures a bounded sensitivity up to c. Using the
clipped local update , by selecting e(*) to be proper DP noise, Algorithmcaptures DP-SGD when
K =1 and DP-LSGD for general K > 1 where DP-LSGD (SGD) is essentially an LSGD (SGD)
with clipped local update (per-sample gradient) and additional DP noise. The privacy analysis and the
noise bound are identical for both DP-LSGD and DP-SGD given the same clipping threshold c and T'
composition: In both methods, the aggregation of per-sample updates at the end of each phase whose
sensitivity is ¢ in ly-norm are privately released. Therefore, we may follow the standard composition
analysis in|Abadi et al.| (2016a) to select noise for required (e, §) DP guarantees.

Lemma 1 (Abadi et al.[(2016a)). For given (e, ) DP budget and the number of composition/phase
T, there exist some constants oy and g such that once ¢ > o - \/€/T, Algorithmsatisﬁes (€,0)
DP once the noise variance o2 of the Gaussian noise Q) ~ N(0,0%-1),t=1,2,....T, satisfies

q Tlog(l/(S)_

€

o>z

3  UTILITY AND CLIPPING B1AS OF DP-(L)SGD

In this section, we present the convergence analysis of DP-LSGD with clipped local update (3) in
Algorithm[I]and a comparison with DP-SGD. To capture incurred clipping bias, we need to introduce
a new term, termed incremental norm.
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Algorithm 1 Differentially-Private Local SGD (DP-LSGD) with Noisy Clipped Periodic Averaging
1: Input: A dataset U = {uy,us, - ,u,} of n datapoints, per-sample loss function f;(w) =
L(w, u;), sampling rate g, step size 7, local update length K and released aggregation number 7,
clipping threshold c, initialization (%), and Gaussian noises Q") i.i.d. in N'(0, 02 - I).
2: fort=1,2,--- ,Tdo

3:  Implement ii.d. sampling of rate ¢ to select an index batch S®) = {[1], - ,[B,]} from
{1,2,--- ,n} of size B;.
4. fori=1,2,---, B, in parallel do
5: w[(f]’o) = @t-D),
6: fork=1,2,--- K do
6:
w[(z]k) = w[(;]’k_l) =V fli (w[(;]’k_l)). 2)
7: end for
8: Clip the per-sample update in [3-norm up to ¢ as

(LK) _pt=1) . min{1, ‘ }

Aw? C”P(w(,t’K) — w(t_l),c) = (w
(4] [i] ||w[(:]K) — =1y

il —
9: end for
1 &
w® = gt=1 4 ol (3" Awf) + Q") 3)
=1

11: end for
12: Output: @) fort =1,2,--- 7.

Definition 4 (Incremental Norm). In the t-th phase of Algorithm we define \Ill(.t) =
1(||Aw§t)\| >c) - (||Awl(t)|| — ¢) as the incremental norm of the local update from f;(w) com-
pared to the clipping threshold c, fort =1,2,--- |T.

)

In Definition @ the incremental norm W, simply quantifies the difference between the norm of

the local update and its clipped version from f;(w). Clearly, when the update Awgt) is of bounded

second moment, the second moment of its incremental norm \Ilgt) is also bounded. It is not hard to

observe that the clipped local update is essentially a scaled version of the original update, and thus
virtually one may view DP-LSGD as a generalization of noisy LSGD but each local update applies a
different and adaptively-selected learning rate. To characterize the difference among those learning
rates, we need the following assumption on the bounded-variance stochastic gradient and update.
Assumption 1 (Bounded Variance of Stochastic Gradient). For any w € W and an index i that is
randomly selected from {1,2,--- ,n}, there exists T > 0 such that E[||VF(w) — V f;(w)]|?] < .

Definition 5 (Second Moment Bound of Incremental Norm). In Algorithml[I} given the selections
of K and n, via (3) on an objective function F(w) = L - f;(w), E[( Z?zl(\llgt))z)/n] is upper
bounded by B*(K,n), fort =1,2,--- | T.

The expectations in Assumption [I] and Definition [5] are both took upon the entire randomness of
Algorithm Deﬁnitionintroduces a function B2 (K, n) as the upper bound of the square of /3-norm
of each local update. We will study B2 (K, ) later in Table 2 and 3 in practical deep learning tasks.
For notation brevity, we simply use B to denote B(K, 1) in the following. Moreover, we assume that

the dimensionality of the model parameter w is d, and thus the DP noise injected E[||Q®|]?] = o2d.

3.1 UTILITY OF DP-LSGD IN CONVEX OPTIMIZATION

Another assumption we need for the analyses of DP-LSGD on general convex optimization is the
similarity between f;.

Assumption 2 (v Similarity). For F(w) =1/n-3_"_, fi(w), local functions f; are of ~-similarity
to F such that for any w € W, | fi;(w) — F(w)| < =, for some constant v > 0.
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The main reason why we need this additional Assumption [2]is because we do not assume Lipschitz
continuity of F'(w) and we alternatively use the similarity among local functions to characterize the
deviation of the evaluation of convex F'(-) on biased iterates.

Theorem 1 (Last-iterate of DP-LSGD in General Convex Optimization). For an arbitrary objective
function F(w) = L3770 | fi(w) where f;(w) is convex and 3-smooth, and underAssumptionsand

whenn = O(1/vVTK) and QW is independent DP noise such that E[Q")] = 0 and E[||QM|]?] =

o?d,t=1,2,---,T, then when K? = O(nq), for (¢,0)-DP with o = O(Ci”Tl;f(l/é)), DP-LSGD
with clipping threshold c ensures that

E[F(@") - F(w")] =

~ _0) w2 3/2 1-1/2 2
O(C+B~ | w*|| y 1 +5)7)+ﬁ+c+B.T K'?1og(1/68)dc ). @)
c VTK VTK T c c n2e?
(A) (B) ()

The proof can be found in Appendix [D] We give a sketch here. There are three main challenges to
derive the last-iterate convergence of LSGD with unbounded gradients:

i).To derive the last-iterate guarantee, we need to keep track of the progress of F (")) — F(w*))
for different ¢ and ¢’. To support this, we adopt the idea from [Khaled et al.|(2020); [Zhou & Cong
(2017) to consider a virtual sequence determined by the average of all intermediate updates assuming

all users participate in the ¢-th phase, i.e., w(**) = % P wEt’k). But instead, we show a more
generic analysis on F (%)) — F(u) for arbitrary u and a careful characterization of the difference
between F (1w (**)) and F(w*)) under sampling, given that w(*) is the actual and only release.

ii). A more challenging problem is that we cannot straightforwardly apply classic last-iterate con-
vergence analyses|Zhang| (2004); Shamir & Zhang|(2013)); Li & Orabona) (2019) which must count
on the assumption of bounded gradient. To address this, in the proof, we alternatively use the
following two kinds of upper bounds on the gradient norm |V F(w)||? = [|[VF (w) — VF(w*)|]? <
min{3?|lw—w*||?,28(F(w) — F(w*)) }, which is based on the property of smoothness and convex-
ity. With a careful analysis on ||@(**) — w*||? for any ¢ and k, we propose a more generic last-iterate
framework to handle unbounded and heterogeneous local update, simultaneously.

iii). To characterize the clipping bias, at a high level, clipping can be viewed that we introduce a
different step size for the local iterations and the per-sample updates produced are scaled differently.
We thus carefully apply the incremental norm (Definition ) to bound the scaling difference, which
then provides an upper bound of the incurred clipping bias.

Back to the theorem interpretation, we want to mention 3 in is a general variable and we focus on
a practical scenario where B = O(c), i.e., the incremental norm of local updates is in the same order
of the clipping threshold ¢ selected (matched Table 3-4), and thus (¢ + B)/c = O(1). From Theorem
we show the last-iterate utility of DP-LSGD is captured by three terms: (A) a similar convergence
rate as regular LSGD, (B) a clipping bias, and (C) the DP noise variance. First, ignoring the bias
A (\/;—K + £)7). Second, the
clipping bias is captured by (v8)/c. This matches our intuition that a larger incremental norm B
combined with a smaller clipping threshold ¢ will imply a more significant change to the local update
and thus a larger bias. The last accumulated perturbation term is determined by noise in a scale

S T3/2 K2 og(1/6)dc?
O( 71262( /3)

and noise, DP-LSGD still enjoys a convergence rate O(

) injected across each phase for (e, §)-DP under T'-fold composition.

As we consider the very generic setup with non-trivial clipping, Theorem [ cannot be directly com-
pared to the classic DP-utility tradeoff Bassily et al.[|(2014) given Lipschitz continuity, where a utility
loss ©(v/d/ne) is tight for convex optimization under (e, §)-DP. However, we have the following
interesting observations. First, when we take the clipping threshold ¢ = O(n) = O(1/vTK) and
K = O(T - d/(n?¢?)), DP-LSGD achieves the same optimal rate O(v/d/ne) Bassily et al.| (2019)
ignoring the clipping bias. Second and more important, when the stochastic gradient variance 7 is in
the same order of the clipping bias O(yB/c), then by selecting ¢ = ©(n) and K = ©(T'), Theorem]l]
suggests that DP-LSGD will converge in O(1/7T)) to an O(yB/c + —£5) neighborhood of the global
optimum. As a comparison, when we select ' = 1 in Theorem|[I} it becomes the analysis of DP-SGD
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(a). DP-LSGD (b). DP-SGD (c). Performance Comparison
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Figure 1: Training ResNet 20 on CIFARI10 with DP-LSGD (K = 10,7 = 0.025,¢ = 1) and
DP-SGD (K = 1,7 = 1,c¢ = 1) under (e = 2,6 = 10~°)-DP, with expected batch size 1000.

but the convergence rate to the neighborhood of global optimum in the same scale O(yB/c+ n%z) is

only O(1/v/T). Moreover, as we will show in the next section, the local update bound 3 in DP-SGD
with K = 1 in practice would be much larger than that of DP-LSGD with a relatively larger K. As
a simple generalization, we also include an analysis of DP-LSGD on strongly-convex functions in
Appendix [E| and we move our focus to the non-convex optimization in the following.

3.2 UTILITY OF DP-LSGD IN NON-CONVEX OPTIMIZATION

Theorem 2 (DP-LSGD in Non-convex Optimization). For F(w) = 1 -3 | f;(w) where fi(w) is
B-smooth and satisfies Assumption[l} when n = O(1/K), DP-LSGD ensures that

L IVE@ P, 4P@®) | 169°r82K? A0+ Bn)(B7/q +0*d)

Ef T - TKn ng n?K
When we select n = O( \/%7) and K = O(T), for (¢,0)-DP we have that
SLVE@DP o F@®)  r BT d
e _ T 5
E| 7 ]=0( 7+ - + p n2€2). )]

The proof can be found in Appendix [F} For the analysis of DP-LSGD in non-convex optimization,
we do not need Assumption[2]on the similarity among local functions. To have a clearer picture, we
similarly consider a practical scenario when B = By - 7 for some constant By and the variance T is

also some constant. Then, with = O(—2-) and B? = O(B—g), from (5 we have that

VTK TK

T _(t—1)y )2 _(0) 2
VF F B
Zt:l” (w )l }—O( (w )+i+70_|_ d

T B T ng qK = n2e2

=11 d
) =0(5+ — +

El T K n252)'

In other words, similar to the convex case, DP-LSGD will converge at a rate of O(1/T) to an
O(l +d/(n%€%)) neighborhood of an optimum given some constant sampling rate q. As a comparison,
for DP-SGD when K = 1, from Theorem we can only ensure an O(1/+/T) convergence rate to a
same O(1 + d/(n%e?)) neighborhood.

Remark 1. As a final remark, of independent interests, our theory can be further generalized to study
the convergence rate of LSGD with more general and possibly biased perturbation, where clipping
error with DP noise studied above is a special case. We defer those results to Appendix[A]

4 CLIPPING BIAS REDUCTION IN DP-LSGD

Throughout the previous section, we demonstrated that, asymptotically, given the same composition
budget T, DP-LSGD achieves a faster convergence rate to a neighborhood of the (global/local)
optimum compared to DP-SGD. We characterized the clipping bias primarily in terms of the second

moment upper bound B2 of the incremental norm \I/Z(-t) of the local updates. In this section, we

proceed to empirically analyze \Ill(-t) and explore the tradeoff between clipping bias and DP (Gaussian)

noise in practical deep learning tasks. We will also explain why DP-LSGD induces a smaller bias
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Dataset and Method \ € 1.0 1.5 2.0 2.5 3.0 4.0

CIFARI0, DP-LSGD (K = 10)  56.5(+0.3) 59.4(£0.5) 64.0(£0.3) 66.2(£0.4) 67.7(£0.3) 71.3(£0.3)
CIFARI0, DP-SGD (K = 1) 37.6(£1.7) 49.8(£1.2) 58.7(£1.0) 59.9(£1.2) 60.6(£0.8) 64.5(£0.6)
SVHN, DP-LSGD (K = 10) 62.4(£0.0) 83.2(£0.4) 84.4(X0.5) 85.7(X0.5) 85.4(£0.4) 86.5(£0.3)
SVHN, DPSGD (K = 1) 55.0(£1.1) 74.5(£0.8) 78.2(£0.6) 79.8(£0.6) 80.3(£1.0) 82.2(X0.5)
EMNIST, DP-LSGD (K = 10)  89.7(X£0.6) _ 90.2(£0.4)  90.6(£0.3) 90.9(£0.3) 91.3(£0.3) 91.7(£0.3)
EMNIST, DP-SGD (K = 1) 88.1(£0.5) 89.2(X0.5) 89.8(X0.3) 90.3(£0.4) 90.5(X0.2) 91.0(X0.2)

Table 1: Test Accuracy of ResNet20 on CIFAR10, SVHN, and EMNIST via DP-LSGD and DP-SGD
Abadi et al|(2016b); DSrmann et al.| (2021) under various € and fixed § = 10~°, with expected batch
size 1000. Each subcase takes 5 independent trials.

and enables more efficient clipping compared to DP-SGD. All experiments were conducted using
eight NVIDIA A100 (80G) GPUs.

To achieve an optimal utility-privacy tradeoff, proper selection of the clipping threshold c is crucial.
Previous works have focused on optimizing c through either grid search [Tramer & Boneh| (2021)) or
adaptive fine-tuning |Andrew et al.[(2021)). A smaller c requires less DP noise. However, as shown in
Theorems|I]and [2] a smaller ¢, and consequently a larger 3, will lead to greater clipping bias. Thus,
from a signal-to-noise ratio (SNR) perspective, an ideal scenario is for the l;-norm of each local
update to be concentrated, allowing the clipping threshold ¢ to be maximally efficient with minimal
clipping effect on most updates. Based on our theory of clippi bias, we expect that, for a given c,
f

the incremental norm \Ilgt) remains small, as captured by 5 in (4) and .

In Fig. (a,b), we plot various statistics of the incremental norm \I/Z(.t) for DP-LSGD and DP-SGD,
respectively, on the CIFAR10 training dataset Krizhevsky et al.[(2009). As per our analysis, DP-
LSGD generally employs a smaller learning rate 1. To ensure a fair comparison, we consider the

normalized incremental norm \IIZ(.t) /n. Given the same clipping threshold, comparing Fig. [1{(a) and
(b), the mean of the normalized incremental norm (blue line), corresponding to By = /7 in our
theorems, is approximately 15.2% of that for DP-SGD. The corresponding standard deviation is only
around 24.3% of that of DP-SGD. A comparison of the 25% and 75% quantiles further suggests that
a greater proportion of local updates experience less clipping under DP-LSGD, resulting in higher
clipping efficiency. Similar observations are reported for ResNet20 training on SVHN [Netzer et al.
(2011) in Fig. 4] (Appendix [G).

In Fig. [I|(c), we compare the performance of DP-LSGD and DP-SGD, which aligns with our theory
that DP-LSGD exhibits a smaller clipping bias and a faster convergence rate. The smaller incremental
norm in DP-LSGD is expected: with a relatively larger K, though the K local gradients for each
individual function f;(w) are correlated (since they derive from a single sample), their aggregation
averages out a significant amount of sampling noise, leading to more concentrated /s-norms for local
updates. Table 1 presents additional comparisons of their performance on CIFAR10 |Krizhevsky et al.
(2009), SVHN |Netzer et al.| (2011), and EMNIST |Cohen et al.| (2017). Hyperparameters, such as
the number of iterations 7" and learning rate n, were fine-tuned for both DP-SGD and DP-LSGD, as
detailed in Section [G} The DP-SGD performance in Table 1 also matches that of previous works,
such as ResNet20 results on CIFAR10 Dormann et al.| (2021)), which report 58.6% test accuracy at
(e =1.96,6 = 107°) and 66.2% at (e = 4.2,§ = 107°).

We also compare DP-LSGD with the state-of-the-art results in De et al.[(2022), which suggest that
larger batch sizes significantly improve the utility-privacy tradeoff. In Table 2, we apply this idea
by scaling the batch size from 1,000 (as used in Table 1) to 8,192, incorporating other advanced
techniques such as weight standardization and parameter averaging from |De et al.| (2022). We
compare DP-LSGD with DP-SGD on both ResNet20 and WideResNet-40-4, showing that DP-LSGD
can also benefit from these improvements and outperforms |De et al.[(2022)), particularly in high-
and medium-privacy regimes, while in lower-privacy regimes larger neural network with stronger
learning capacity is advantageous.

Finally, in Figure 2, we compare the corresponding clipping bias bound B (K, 7)/c from Theorem
[l averaged across the initial 100 phases of DP-(L)SGD. The clipping threshold takes the form ¢ =
25 - Kn, where c scales with K and 7. The constant factor of 25 was empirically determined to yield
optimal performance on the CIFAR10 dataset. In Figure 2, we present the ratio B(K, n)/c¢(K,n),
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Method \ € 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
DP-LSGD on ResNet 20 59.2 66.9 71.3 74.1 74.8 75.5 76.4 77.9
DP-LSGD on WideResNet 40-4 57.0 64.7 70.2 73.4 75.1 78.6 79.4 80.6

DP-SGD on WideResNet 40-4 De et al.| (2022) 53.4 63.6 68.9 72.5 74.3 77.8 79.0 80.3

Table 2: Test Accuracy of ResNet20 and WRN-40-4 on CIFAR10 via DP-LSGD with expected
larger batch size 8,192 and DP-SGD on WRN-40-4 with batch size 8,192 (reproduction) De et al.
(2022)) under various € and fixed § = 107°.

K\n 001 0.02 003 004 0.05 K\n 001 002 003 004 005
K=1 1.74 173 172 173 1.72 K=1 068 1.32 2.06 270 3.40
K=1 133 130 1.28 126 1.24 K =4 733 4.63 682 9.07 112
K=8 09 08 08 082 078 K=8 381 743 1093 1436 178
K=12 060 054 049 047 046 K =12 474 912 1321 1723 2134
K=16 036 031 027 025 025 K =16 534 10.10 1448 18.71 23.28
K=20 018 0.14 011 013 0.12 K =20 567 1061 1508 1955 24.09

Figure 2: The Ratio between Incremental Figure 3: Average /5-Norm of Local Update
Norm and Clipping Threshold B(K)/c(K,n)from DP-(L)SGD when training ResNet20 over
of DP-(L)SGD on CIFAR10. CIFAR10 over the Initial 100 Phases.

which captures the bound on the clipping bias from Theorem|[I] As expected, larger values of K lead
to more concentrated local updates and improved clipping efficiency.

Figure 3 further showcases the average lo-norm of the local updates across different combinations
of local gradient descent number K and step size 7. On one hand, for a given stepsize (within each
column), a discernible trend emerges: the rate of increase in the /5 norm of the local update decelerates
as K escalates. This observation lends credence to our assertion that the sampling noises originating
from local gradients—despite their interdependence and evaluation on the same datapoint—tend to
cancel out substantially. On the other hand, when focusing on a fixed value of K (within each row),
it becomes evident that the norm of the local update maintains a linear proportionality with the step
size n, which matches our intuition.

Remark 2. We would like to comment on the discrepancy between the theoretical and practical
selection of the local iteration number K. Theorems[I|and 2| suggest that K should be selected as
K = ©(T). However, the above empirical findings indicate that in many deep learning tasks, the
optimal choice of K tends to be a constant. We believe there are two main reasons for this difference.
First, practical neural networks do not exhibit ideal smoothness with a constant smoothness parameter,
as described in Definition|l| In Figures 2 and 3, we observe that when K > 25, the divergence
between local updates increases significantly. Second, in DP-(L)SGD, the number of iterations T
cannot be arbitrarily large due to privacy budget constraints, limiting the feasible range for K.

5 CONCLUSION AND PROSPECTS

In this paper, we advanced the understanding upon the effect of local iterations on clipping bias and
convergence rate in privacy-preserving gradient methods. We established the connections between
the bias and the second moment of local updates and explain how DP-LSGD outperforms DP-SGD
in less composition with automatic clipping bias reduction. This initializes a new direction to
systematically instruct private learning by connecting the research of variance reduction in distributed
optimization, where more advanced acceleration methods |[Karimireddy et al.| (2020); [Haddadpour
et al.| (2021)); Mitra et al.|(2021)) in federated learning to reduce the “local-update drift” caused by data
heterogeneity could be potentially applied to further improve the clipping bias given local updates of
smaller variance.

Potential Limitations and Improvements: Compared to DP-SGD, one drawback of DP-LSGD
is the relatively larger memory and timing consumption. In all above-presented experiments, we
simulate DP-LSGD by computing each local update in parallel at a cost of storing the local iterates
from each data point selected. For DP-SGD, many PyTorch libraries with fast per-sample gradient
computation in optimized memory overhead have been developed, such as Opacus|Yousefpour et al.
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(2021)). In addition, provided a same communication budget 7", though DP-LSGD can converge faster
with better utility compared to DP-SGD, its running time is also K times longer since K times more
gradient computation is needed. Therefore, another promising future direction is, from software level,
to design more efficient implementation of DP-LSGD.

6 REPRODUCIBILITY AND ETHICS STATEMENT

We release our code in an annonymous GitHub link https://anonymous.4open.science/
r/DP-LSGD-6710/README . md and the optimized hyper-parameter selections for both DP-
LSGD and DP-SGD are detailed in Appendix [G}

This paper does not propose or apply any new datasets for the experiments and the authors do not see
any potential ethical issues related to this paper.
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A CONVERGENCE OF SYNCHRONIZED-ONLY ITERATE IN LSGD UNDER
GENERAL PERTURBATION

We present a generalized version of clipped DP-LSGD (Algorithm |1y with general perturbation
QT in iterates, as Algorithm The clipping error and DP noise, considered in Algorithm can
be viewed as a special case.

We have two important remarks on Algorithm[I]and the simple generalization of the centralized DP
model considered in Algorithm [T}

(a) Full and Stochastic Local Gradient: As mentioned before, for DP-(L)SGD in the cen-
tralized DP model, each f; is determined by a single datapoint, and thus the stochastic
and the full gradient of f; are the same. However, Algorithm [1| and our analysis can be
easily generalized to the stochastic local gradient case since we always assume a general
perturbation term Q) across phases: the independent zero-mean sampling noise can be
captured by Q). Besides, when we compare with existing works in the following, we
always fairly compare those results in the same full local gradient setup.

(b) A Unified Analysis of Centralized/Local/Client DP: We also want to stress that our
motivation to study DP-LSGD is not because we focus on the federated setup, but to
provide a unified analysis of the clipping bias and argue for using DP-LSGD even in the
centralized setup. Our results are straightforwardly applicable to all setups for centralized,
local [Cormode et al.|(2018) and client-level Geyer et al.|(2017)) DP. The only difference is
that different scales of noise, captured by Q(*) are required, determined by the number of all
datapoints, local datapoints and the users involved, respectively.

In the following, we will study the convergence analysis of LSGD in Algorithm [2] using the non-
clipped local update (7) for both convex and non-convex optimization.

Theorem 3 (Last-iterate Convergence of Noisy LSGD in General Convex Optimization). For an

objective function F(w) = L .5"" | fi(w) where fi(w) is convex and B-smooth with variance-

bounded gradient (Assumption , when 1 < min{ \/%K, ﬁ, 2B+31<1B/(nq) 4, log(TK) > 2, and

QW is an independent noise such that E[Q®] = 0 and E[||Q"||?] < O, for some parameter Q for
t=1,2,---,T, when K? = O(nq) and n = O(1/VTK), Algorithmwith @ ensures

HHJ(O) fw*\|2 T Kt -
+ + 2T L VTK Q).
VvVTK VT K T )

The full proof can be found in Appendix
When there is no noise O = 0, provided that K = O(T'/?), we show LSGD achieves

~ 1 —p* |2 . . N
O(W) last-iterate convergence in general-convex optimization.

E[F(a™)] = O

We now study the non-convex scenario. Assumption []is the only additional assumption we need for
the analysis of non-private LSGD without clipping.

Theorem 4 (Synchronized-only Iterate Convergence of Noisy LSGD in Non-convex Optimization).
For an arbitrary objective function F(w) = £ .37 | fi(w), where fi(w) is 3-smooth and satisfies

n
Assumption[I} and for arbitrary perturbation (not necessarily independent or of zero mean) where

E[HQ(:&) ||2] < Q, when n < min{ﬁ, ﬁ, ﬁ} Algorithm@with (El) ensures that

E[ZL HVF(@“_I))HQ] _ o T1/3 T3 K Q
T O T?3(ng)'/3 (ng)?/3 7
(ng)'/®

when we select 1 = O( ). In particular, when Q) is independent and E[Q®")] = 0, and

n=0(1/K), then

T1/3K+1/3

S IVF@ D))
T ]

F(@') S BEIRIP] _ 1 5

E[

<o(
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Algorithm 2 (Differentially Private) Local SGD with Noisy (Clipped) Periodic Averaging
1: Input: A system of n workers where each holds a local loss function F'(w) = f;(w), sampling
rate ¢, update step size 7, local update length K and global synchronization number 7', and
initialization w(®) with synchronization noise Q*7).

2: fort=1,2,---,T do
3:  Implement i.i.d. sampling to select an index batch S®) = {[1],--- ,[B,]} from {1,2,--- ,n}
of size B;.
4. fori=1,2,---, B, in parallel do
5: w[(f]’o) = =1,
6: fork=1,2,--- ,Kdo
6:
k k-1 J—
wii™ = wii" Y =9V f (i), (6)
7: end for
8: end for
8:
1 <k (t,K) ()
o) — . ’ t
9: end for

10: Output: v fort =1,2,---,7T.

The proof can be found in Appendix [C] In Theorem 4] we provide an analysis on the effect of generic
perturbation, which can also be used to capture the clipping bias in DP-LSGD. When there is no
perturbation, Theoremhas two implications. First, we show to ensure min E[||VF(@")||?] < &,

we need T = O(~ ;é/(;m ), which is tighter than the state-of-the-art results O(% + HT‘//;Z) in

Karimireddy et al.|(2020). Second, compared to O(1/ T2/ 3), we also show that LSGD can converge
faster in O(1/T) to a T-neighborhood of the optimum. This is helpful to understand the practical
performance of DP-LSGD, as discussed in Section [3.2]

As a final remark, we want to mention it is possible to improve the convergence rate from O(1/72/?)
to O(1/T) via careful variance reduction or an error feedback mechanism, such as Scaffold [Karim-
ireddy et al.|(2020) or FedLin Mitra et al.|(2021). However, the implementation of those advanced
tricks in DP-LSGD with additional sensitivity control is not clear and in this paper we only focus on
the standard LSGD.

B PROOF OF THEOREM 3 LAST-ITERATE CONVERGENCE OF Noi1sy LSGD
IN GENERAL CONVEX OPTIMIZATION

We first present a sketch of the proof. There are two main challenges to derive the last-iterate
convergence of LSGD with unbounded gradients. First, to derive the last-iterate guarantee, we
need to keep track of the progress of F(w®)) — F(w®")) for different ¢ and ¢'. To support this,
we still adopt the similar idea from existing works |Khaled et al.| (2020); Zhou & Cong| (2017) to
consider a virtual sequence determined by the average of all intermediate updates assuming all users
participate in the ¢-th phase, i.e., w(**) = % > wgt’k). But instead, we show a more generic
analysis on F(w(“*)) — F(u) for arbitrary u and a careful characterization of the difference between
F(w**) and F(w") under sampling, given that @w(*) is the actual and only release. The second and
more challenging problem is that we cannot straightforwardly apply classic last-iterate convergence
analyses |Zhang| (2004); |Shamir & Zhang| (2013)); |[Li & Orabonal (2019) which must count on the
assumption of bounded gradient. To address this, in the proof, we alternatively use the following two
kinds of upper bounds on the gradient norm

IVE(w)|* = [VF(w) = VF(w")|* < min{p?|w — w"||*, 26(F(w) — F(w"))},
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which is based on the property of smoothness and convexity. With a careful analysis on [|@w(**) —
w*||? for any ¢ and k, we propose a more generic last-iterate framework to handle unbounded and
heterogeneous local update, simultaneously.

B.1 MAIN PROOF

1(t)( (t,k) w(tfl))

=1 "1
for those intermediate iterates produced by the users selected in the ¢-th phase. 1§ ) is an indicator

which equals 1 iff the i-th user is selected in the ¢-th phase. Meanwhile, we imagine the scenario

that all users participate in the ¢-th phase computation and a sequence of intermediate iterates wEt’k)

Before the start, we define a virtual sequence w(**) = w(*=1) + niq S

fori=1,2,--- ,n,andk = 1,2, , K, is produced. We use w(*¥) = 1. 5% 1w(t *#) {0 denote
the average. It is not hard to observe that E[«(**)] = (**) conditional on w(*~1). Moreover,
w® = 3t = t=D for i = 1,2,--- ,n. In the following, we unravel [|&**) — u|2 for

arbitrary v and obtain

68—l = [t = -2 SOV filw ) - ul?
=1

1=
e 2 e et S OV fi(wPF Yy
= [l " 1>—u||2—;q2n1§“-<w<t~’“ D, Vfi (w1 || == I2.

nq
0) (t=1) ®
We first work on the last term || iz, qu (W, ) ||? in .
Lemma 2. Conditional on w1,
(t) (t k—1) 2,2 N 2
E[HZ’L 1771 Vf%( )HQ] Slon ﬁ Z ngtakfl) _ w(t,k—l)”Q + 677 T
ng no = ng
+109* min{28(F(@"* 1) — F(w")), B2[@"F =1 — w*||?}.
9

Now, we move our focus to the second term +-2 - 37 1D @@= g v (wFTY) of .

Lemma 3. Conditional on w=b,

B[~ 2.3 Ot -0, ()]

nq11

<o — ) 4 0l ),

(10)
. . n h=1) (b
Finally, we consider the upper bound of - [|lw{"* ™) — g(tk-1)12,
1
Lemma 4. Whenn < VIGE
Z ”wlgt,k) _ w(t,k)H2 < 4k2n7n2. 11

Now, we combine Lemma 2] 3] and ] together and go back to (8). On one hand, when we adopt the
upper bound of Lemmalusmg F(w*®) — F(w*), we have

Efflo*" —ul®] < B[l —ul|* + 209° 5 (F(@“*V) — F(w")) + 25(F (u) — F(@**1))

6 2
+ Z—qT + (107282 + Bn) - 4k2rn?].
(12)

15



Under review as a conference paper at ICLR 2025

Sum up (12) on both sides from k = 1,2, -+ , K, and we have that

K
E[D 2n(F@@"* ) — F(u)) = 20p°8(F(@"*) = F(w*))]
k=1 (13)

6Kn?
<E[@" Y —ul? — "5 — )] + nz L4 (100282 + Br) - 4K 3102

When u = w*, it is noted that the left side of (I3 becomes

K

E[Y (20— 200*B)(F (@) — F(w"))],

k=1

and once 7 is small enough such that 2(n — 10n?3) > 0 where < 1/(108), then the above is
non-negative. In the following, we further take the perturbation Q(*) into accountant. It is noted that

Eff@® —ul?] = E[|o" + QW — ul*] = E[Jo™™) — u|] + E[JQV ], (14)

since @*) is independent zero-mean noise. Therefore, when we further sum up fort =
1,2,---,T combined with (T4),

S S F(@P) — F(w)

E| TK ) ) 15)
@@ — w*||? N (6n°7/(nq) + (100262 + Bn) - 4K??) + Q/K
= (20 —200?B)TK (2n —20m23) '

Here, as assumed E[||Q(")]|?] < Q. When 7 < 1/(203), which suggests that (27 — 201>3) > 7 and
(101232 + Bn) < 2/3n, respectively, can be simplified as

i Th, P = ), _ o — v

] 6nT
TK - nT'K

+ (n—q +8BK*mn*) + Q/(nK)  (16)

On the other hand, when we apply Lemma[]in if we adopt the form 52|+~ — w*||? as the
upper bound, we have

Efo" —ul?] < B[l —ul® + 10962 @Y — w*||® + 20(F (u) - F(a"*1))

6 2
+ % + (109%8% + 1) - 4/45277]2].

17)
With a similar reasoning, when n < 1/(2005),
E[F(@“*~V) = F(u)]
At k—=1) _ 12 _ |lan(tE) 12 3 (18)
w u W u
SE[” H2 H H +5nﬂ2‘|u~)(t,k71) 7w*||2+£+4]€2ﬂ7'772].
n ngq
However, to apply , we need an additional result to upper bound the term [|@(“*=1 — w*||,

summarized as the following lemma.

Lemma 5. With the initialization ), when 1 < min{ \/TiﬁK’ ﬁ, 2ﬁ+3K15/(nq) Y forany k € [0 :

K —1),

12K43%n*r + 3K2n*r
ngq

Eff|@®? —w*|?) < [@© —w*|* + 8t80° K> + (t = 1)(Q +

From Lemma 5] we also have a global bound that forany ¢ € [1: T]and k € [0 : K],

12K43%p% T + 3K 20T

Efflot? —w*|?) < | — w*|* + T(867° K7 + (Q+ ”

). (19)

16
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Now, for any tg € [1: T) and kg € [0 : K — 1], if we select u = w(to-ko)  stemmed from ,

Y (t.kyec EIF(@F)) — F(p(toko))]
(T —to+ 1)K — ko

(T —to+1)Q N 5032 Y tkyee E[||@®F) — w* 2]
2T ~fo + DK ~ o) T—to+ DK —ko

< 3nt/(ng) + 4K?Brn?

(20)

+

where C = ((to, k), k = ko, -+ ,K — 1)U ((t,k),t =to+1,--- , T,k =0,--- , K — 1). Finally,
as we are concerning about the utility of F(w(")), we need to virtually implement one more gradient
descent step on (™) to get an upper bound of F(w(™)) — F(w*). To be specific, we imagine one
additional full gradient descent using the entire set on (™), and for any u, we have that

2?21 vfi (w(T))
n

||U~J(T+1’1) u||2

I?

< @ —ul® = 2p(F(@'D) = F(u) + | VF(@™)) — VF(w")||?

< @ T —ul|? = 2(F(@) = F(u)) +minn* {520 —w||?, 28(F(@'D) - F(w"))}.
21

Therefore, let u = w* and we can combine (]Eg and (21) to produce the following. Since we assume
(2n — 20m?3) > n which also implies 2(n — n?/3) > 7, we have

[0 ™ —u—n-

Et 1Zk L (F@®F=D) — F(w")) + (F(@™M) — F(w"))

El TK +1

]

[5© —w' G g .

< ERTD T Cpe BT + O/ ().

Similarly, for 1) , it is noted that conditional on w“*l), we have that
E[f@" —u|®] = [l — @)% + |00 —ul?, (23)

and for E[|[w®*) — @(**)|12] for any ¢ and k,

E[|ji*) — @R))12) = B[J| (*) — o0=) — (@R — pt=1))2]
1(t—q - (t,k) qu—q U, (tl)
= HZ V fiw; "M )?) < DO IV L))
=0 i=1 =0
2k n k—
_ ke~ ) ZZ IV fi(wD) = W fi(@®D) + V fi(0 D) = F(aD) + VF(@"D) - VF
i=1 1=0
3k77 n k—1
1
< Y (Bl = O+ D — w1+ 7)
=1 (=0
3K k—1
< nn (4°K*my® —l—KT—I—ZﬂQHd}(” —w*|]?).
=0

(24)
where the last line of (24) we apply Lemma |5} Therefore, by replacing E[||w(**) — u||?] with
E[||®*) — ®F)|12] 4 || ®*) — |2 in (18), we have that

(w

Hﬂ}(t’k_l) _ u||2 _ ||1E(t’k) _ u||2 + ”w(t,k—l) _ iﬂ(t’k_l)HQ _ ||If}(t’k) —

I1%)

(t,k—1) ”2

B[P(@ ) - F(uw)] < B 5

3
+ 57762||1I)(t’k_1) — w*||2 + —TZ]T + 4K 267772].
(25)

17
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Now, we let u = 15(*o-%0) in (21 and , combining we have
T K— ~ - _ .
Sy Toi iy BIF (@) = Ftioho)] 4+ E[F (@) — F((00)]
(T'—=to+ 1)K — ko + 1)

(T—to+1)Q
< 3n7/(nq) + AK2Bm1* +
< 3n7/(ng) O (@~ 1o + DK — ko 1 1) )
3K?7 (4ﬂ2K3T77 +KT+Z ﬂQH’w“ *H2) (
2(T —to+ 1)K — ko + 1)
577/82(Et o Sohkg 1 EI@ER — w2 + E[[[@™) — w* %)
(T—to+ 1)K —ko+1 ’
Now, we can apply the last-iterate convergence rate trick.
Lemma 6. For any sequence y;, 1 = 1,2,--- | M,
M 1M
yar = Zj:l Yj I = Zl:M7j+1(yl - yM—j) 7
M= —Fr —
M = i +1)

One can easily verify the identity in Lemmalg]

If we take y; = E[F(w®") — F(w*)] and z; = E[||@®*) —w*|]?], for j = (t — 1)K + k and let
M = TK + 1 where yrg 1 = E[F(0™) — F(w*)] and 27k 11 = E[||Jo") — w*||?], combined
with (22),(26) and Lemma[6] we have that

yri1 = E[F(@™) — F(w")] (28)
TK
_ Zj:l Yj TZIS 1 Zl TK+2 ](?J YTK+1—4) 29
TK +1 — Jj+ 1 j
|@©® — W*||2 6nr 2 S
—_— K K 30
<A mr ) TGy T+ Q/K)) (30)
TK = E TK+1
1 3t 9 Q 12K4n‘3527' 3K%nt 3Ky 221 TK—j4+2 7l
. 4BK>T —= Mt ——
+;{J+1 (nq+ 7 T T e T g g mpx{}) + 5P 3G +1) J
€29)
@@ — w*||2 617 s o A 12K*n%p%r  3K2nt  3K%p
' 4 log(TK +1)(—— + 88K
< TR+ + log(TK + )(nq +8BK%m? +Q/n+ ong + 2na + na mlax{zl})
(32)
TK 1 1
506%) Y (5 = ) - 2R 33
+(ﬂ5);(j TK+1) ZTK—j+2 (33)

In li we apply (22) on ZT Kjrzf In 1l we apply the results in and QU((T(EF,&;?J[I(),%OH) <
2;7 since the number of iterates is always no less than the number of synchronization in any time

interval. In , we use the fact that 375 i1 < log(TK + 1) and as assumed log(TK) > 2.

+1
Now, with the assumption that K2 = O(ngq), can be further bounded as
TK 4

[ —w*||? 2
7+log(TK—|—1)( +K n* +9/n+71n)+n Z max{zl}

yrr+1 < O(1) - (

n(TK+1)
(34)
<0(1)- M—i—le (TK+1)(E+K272+Q/ + 1) (35)
- n(TK +1) & ng K K K
. K4 2.4 K2 2 _
+n(log(TK) + 1) (|® — w2 + T (8 K37 + Fon'r + K0T, 9)).  (36)

ngq
In (36), we apply Lemma [5|and (I9). Thus, we complete the proof.
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B.2 PROOF OF LEMMA[Z]

Conditional on w(t—” we have that

S 1O f(wlF )

E 2
I o I?
_ gy S ntOVE@TY) | EL V@) | B V@) o
ng n n
n Jk— k—
< Q.E[HZizl 77(11('” *Q)sz‘(wz(t 1))H2] +2. ||Zz 1V fi(w; v 1))”2 37)
- nq n
_ e AL VAP, S VAT
(ng)? n
2772 ;l, vfz wgt,kfl) 2 ?7 vfz wgt,kfl)
< 2_1 H n2q( )H +2n2”2_1 n( )HZ

In the fourth line of li we use the fact that 1&%] are i.i.d. Bernoulli variable of mean ¢, and thus

E[(1{"” —q)?] = q(1—q) and E[(1" —q)- (1}” — )] = 0fori # j. Asfor S0 |V fi(w"* )2,
we can further bound it as follows,

S IV A@Y) = V@) 4 V(@) - Vfi(w) + Vw2 (38)

i=1

< 32 (Bgnwl(t,k—l) ~(t k— 1)”2 +26D ( (t,k— 1) ) + ||Vf1(w*)||2) (39)
=1

<393 i = @D 4 68 (F (@) = F(w?)) + 3. (40)

In (39), we apply AM-GM inequality again and use the property that for convex and S-smooth
function f;(w), it holds that |V fi(z) — V f;(y)||> < 28Dy, (z,y), where Dy, (z,y) = f(z) —

f(y)—(Vf(y),z—y) is the Bregman divergence. In {0}, we use the fact that VF'(w*) = 0 and due
to Assumption the variance ., |V f;(w*) — VF(w*)||? = >, |V fi(w*)||* < nT. When

=1
we apply similar decomposition tricks in 1i to the term || M %,

HZ’L 1sz( (tk 1)>||2

n
<||Z?:1Vfi(w§t’k V) = VA@ED) + VA@EED) - Ii(w) + i)
- n
vl (tk 1) —Vf; (tk 1) VZ ~(t,k—1) — V fi(w*
n (t,k—1) ~ (t,k—
< 232 Zizl [lw; — otk 1)||2 +45(F(1I)(t’k_1)) —F(w*)),

n
since VF(w*) = 2. 3" | V f;(w*) = 0. Thus, can be further bounded as follows:

S OVl )

2
2 I?
2

10 252 n B ~ B ) B . -
< = D Y @ 2080 (R (@) — F(wt)) +

E[]
(41)

i=1
Here, we use the fact that ¢ > 1/n and thus 3. < ;. Meanwhile, it is noted that ||V fi(wtE=1)y —

1
V f;(w*)||? can also be bounded by 32 || **~ ) w |12 alternatlvely due to the smooth assumption.
Thus, by replacing 23(F (w0 **~1) — F(w*)) in (39) and (41) with 52(|w®*~1) —w*||?, we complete
the proof.
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B.3 PROOF OF LEMMA[3]

Based on the Poisson sampling assumption, conditional on (=1,

2 < — 20 o= (1 p —
= e 2o VM) = =R @Y~ Vi)
=1 =1
For each 1, it is noted that
— (@Y~ V fi(w D))
= (Y~ Vi (wlF )y — (@R plBFD g f (0B (42)
< Fi) = £ V) 4 ff ) - @) 4 2 R D g2

n lb we use the following facts. First, for smooth and convex function f;, Dy, (u, wgt’kfl)) >0
and thus — (w!"* ™ —u, V£ (w{"* D)) < fi(u)— fi(w"" ). Second, for the term — (@ (*+ 1) —
(t k=1) sz( 8k 1))>, we use the classic smooth inequality where

B

||w(t’k71) AU ||2
2 K

Fi@ D) < fi (D) 4 (@D — Y 9 f (D))

Therefore, by (@2), we have that

21 o~ (e o (e B < 1) ~(td
—g[ZW”“ D, ¥ fi(w D)) < 2n(F(u)—F (""" 1))+%Z||w(t’k D —qp(tk=1))2),

=1 =1
B.4 PROOF OF LEMMA [

Given w1,

" d X S Vi)
D ™ = a9 P =2 3 ||sz e (O
=1 =1
n k—1
< 3kn? ZZ IV fi(wi™) = (@D + (| f(@ D) = TF (@) (44)
i=1 1=0
Vfi(w (t,0)
V(@) - 2=t Y D) @)
n k-1 n k=1 n  p2)~(tl) _ , (&1))2
_ Bl w;” |
<3kn?[( D0 A wl™ — @ D|2) 4 knr + 333 I—] @0
i=1 1=0 i=1 1=0 j=1 "
n k—1
< 6kB*n? ZZ ||w — V2] 4 3k2nn?. 47)
=1 =0

In (#6), we use Assumption [I]that the variance of stochastic gradient is bounded by 7 and apply the
form VF (w*D) = g VA@T ) Vfi(wml)).

n

Let M®) =E[>"1 | ||w(t k) _ gtk ||?]. Then, from 1| when n > 1, we have an inequality in a
form
k—1

MW <p?(6kp? Y MY + 3k7n7),
1=0
where M(©) = ||w(*=1) —@(*#=1||2 = 0. It is not hard to verify that by induction, once 7% <
M®) < 4n?k2nr.

1
2452[{2 ’
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B.5 PROOF OF LEMMA[]

To provide more intuition, we start from the case when ¢t = 1, w0 = () and thus

v/ 1) R v (1,k—1)
H?IJ(lk 1) —w ||2 9 <Zz 1 frf )’w(l,k—l)_w*>+n2”Zz:1 fTsz )H2

(1,k
(1,E) _

[t —w*||* =

As a straightforward corollary of Lemma 2] [3|and[4] we can obtain a similar upper bound in a form
once 1) < min{ﬁ7 %}

(LE) _ w* 12 < lo@F=D — w112 + on(F (t,k— 1) ﬁ wtF—1 _ ptk=1))2
(| w*[|* < lw w*|[? + 2n(F(w*) — F(@ ng w %)

2y (tk=1) _ =(t,k—1)2
+2772(6 Die |lw; - w I

< [l FY — w2 4 2(n — 2877 (F(w*) — F(@"*Y) + (Bn + 28%0?) - 4> K1
< MY — w2 + 2(n — 2807) (F(w*) — F(@"*1) + 88n° K2r.

+2B8F (") — F(w"))

(48)
In (48), we apply Lemma4]and use the fact that 37 + 232> < 2431
On the other hand, during the synchronization, it is noted that
Ela™M] = E@*5) 4 QW] = Ejat5)].
Therefore,
Ela® — w*|?) = E[@® — @5 4 @5 — w2,
Moreover,
Effa® — a5
K n 1 (1 k—1)
1 i1 Vf
E[UQH Zkfl Z 71( ) 1( ) _ Q(I)HQ}
nq
2 K (L,k=1)\ 2
< B S S VA
n=q
n k—1 ~ _ ~ _ *
o 3K N {0 (Pl Y = @R DIR) + 28n(P@ D) - Pwt) £nr} o
= n2q +
3K 02 (48207 K30t + 260 Y (F(@MF=1) — F(w*)) + KnT} -
< n2q +
12K B%0tr + 6K An? Y (F(w (MDY — F(w*)) + 3K 2T Lo
= ” .
(49)
In the fifth line of (#9), we apply Lemma[d] From (48),
K
[0 —w*||* < @@ — w?|* +2(n — 2697) Y _(F(w*) = F@"*~V)) + 868° K*r. (50)
k=1

Now, 1vve combine and 1| Once 2(n — 25772) _ % > 0, which implies that n <
28+3K3/(nq)’

12K43%p%r 4+ 3K2nr

E[Jo® - ] < © - w’|? + FSAPKT + Q.

The remainder of the proof for the || —w w0 —w*|| =

|w(*~1) — w*||. Therefore, by induction reasoning, we have the bound claimed.
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C PROOF OF THEOREM 4l SYNCHRONIZED-ONLY CONVERGENCE OF NOISY
LSGD IN NON-CONVEX OPTIMIZATION

Based on the smooth assumption of F'(w), we have the following classic inequality,
F(’J)(t)) < F(u—)(tfl)) + <VF(w(t*1)),m(t) _ @(t71)> + g\\@(t) _ @(t71)||2

= P(u™) — (VP ), L 3 3 A @) - Qo)

1,550 k=0
B n t k) ()2
+olg 2 sz -QY|
ies® k=0
= F(o V)
K—1
k - k
Z ‘VF —(t—1) H2+H Z sz (t ) ”2 ||VF(wt 1) Z Vﬂ (t, ) H ))
k=0 'LES(’) zeSW
+(VE@®D), 00 + 5 n Z Z Y fi(w®M) — Q2.
165‘(’5) k=0
(5D
2 2 2
n we simply use the fact that (a by = w For notation simplicity, we will
use gt = Vi (w"") and g = = he " 2ies, sz( BR)y = e " DicS, 9!"* in the following.

Using the generalized AM-GM inequality, where (a,b) < 3 (7llal|* + Z[[b]|%) for any ¥ > 0, on
(VF(w® 1), Q®), we have that

_ n _ 1
(VEw®™),Q) < ZIVF@ " )I” + QW (52)

Similarly,

HUZZ“kWWWﬂFZZWWNWW (53)

1€St k=0 7/651 k=0

Thus, putting together, we have the following by rearranging the terms in (51J),

nk _(t—1)y (12 (t—1) (®) 77K ! (t.k) (|2 - (t.k) (|12
(2 )||VF( NP <F(@"V) - F(w 5 g™ 11" — Bn HZQ’ %)
k=0 k=0
(4)
77K ! 1
t3 IVF@@!) (t’k)||2+(;+/8)||Q(t)||2-
k=0

(54)
Still by AM-GM inequality, it is noted that || ZK gBR2 < K e lg®*) |12 and therefore
term (A) is lower bounded by (% — n*K) SE g(f )2, For a sufﬁ01ent1y small learning
rate 7, term (A) is non-negative. Thus, to upper bound |V F(w®)||2, it suffices to keep track of
IVE(w®) — g®&P2,
Now, we imagine the scenario that each agent participates in the ¢-th phase without Poisson
sampling and each produces intermediate w(t ") for i = =12,---,nand k = 1,2,--- | K. Let
Wtk = 150 w!™™ Tt is not hard to observe that conditional on =1, E[@® k) w(t_l)] =
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—nE[Z =g 9V]. On the other hand, by AM-GM inequality again,

IVE(w=D) — g2
<2(|VF@" ) = VE@")|? + |[VE (@) — g0|1%)

< 2B = @D 4 [VE@) - o)) (55)
_ a2 _ e 4 Bima = L TEED) = Viwi™)) o)
ng

n || we use the S-smooth assumption on V F'(w), and lgt) is an indicator which equals 1 iff the
i-th worker/agent is selected in the ¢-th phase with probability ¢, otherwise 0. We first handle the first

term 32(|@w® — (*)||2. With expectation conditional on w(*~1),
k-1
Ef@“" —a"|?) = E[)| Zg(” IP1=E[ll = (n)_g"") — @D — @)
1=0
e (56)
Z [l9“"11%]
1=0

In (56), we use the followmg fact about the variance and second moment: for a random vector v
whose mean is 1, E[||v]|?] = E|[||v — p]|? ] + ||p||?. As mentioned above, the expectation conditional

on @1 ElotH) — gt = —pE[SF) g*D]. Therefore,

K-1
25221@ — "M% < 28° an ZE Ng™D1%] < 28°n*K2 ) E[|lg"M)2).
k=1 1=0 k=0
(57
Now combined the same term E[|g(**)||?] in W1th (A), it is not hard to verifiy that, once

— Bn*K — %73 K? > 0, which holds when 7, < then the expectation

4;31(’

" K—-1 k
E[; - 287Ky’ SIS
k=0 [=0

A)] <o.

Now, we move our focus to the second term ||+ - 377", (¢ — — 1) (Vfi(@w®R)) = V f; (w, (& k))) |2
in (33).

Based on the assumption on Poisson sampling, 1 184

A

is independent and E[lgt)] =qfori=1,2,---,n
Morevoer, E [(15 ) q)?] = ¢ — ¢* < q. Therefore, with expectation,

& (g = 1) (V@) = Vi)
E[| . ]
k=0 q
-y Z (¢ = PE[IV£:(@“M) — Vfilwf"™)|?] <KZZ e i
= (nq) k=0 i=1 q '
(58)

n l) we use the fact for n random independent vectors vy, of zero mean, E[|| S vl =
>y E[||vi]|?]. On the other hand, we can apply the results 0f Lemma [4| to upper bound

Z?ZlE[ngt’k) — wP|2] by 4n*k®n7T once < min{ \/%K }. Now, back to we

» 208
have that
K—-1 n k
Z Z BPE| ||w (Bk) — z(t 1] . AT 2K
k=0 i=1 nq
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With the above preparation, we are finally ready to complete the proof. Back to (54)), conditional on
w®=1), with expectation we have that

77K

5

K-1
)IIVF( D)2 <E[F(@“) - F(@")] - (g — BPK — PP K?) Y Ellg"M|?]
k=0

n 8n’rBrK3 1
by BRI
nq
(59)
Summing up both sides of @I) fort = 1,2, ..., T, with unconditional expectation and averaging,
since nK /2 —n/4 > nK /4 for K > 1, we obtain that once < min{ﬁ, MLK, ﬁ}
g S IVEECD)E_AP@©) 16K (14 6n) S BIIQWE),
T - TKn ng "2 KT

Alternatively, especially when the perturbation Q) is independent and of zero-mean, we may
consider another bound derived as follows. Still, based on the smooth assumption of F'(w), if we

focus on each cross term between VE'(w(!~1)) and V f; (wgt’k)), we have

(1) - (1 B - (-
@) < F@=V) + (VF(@ V), 0 — o) + D — a0 |2

:F(ﬁ/(t 1) (VE( w(t 1 Z val (tk) Q(t)>

Zesm k=0
n tk ()12
|| Z ZVfZ —-QY|
2esm k=0
= F(w V)
K—-1
(t,k t,k
(Y > UIVE@D)2 + [V fi(w )2 = [VE@ D) = V fi(w)][2))
ieS® k=0
B, n - (t.h)
-0y o®y 4 2y (™Y _ o2
HVE@), Q) + 500 2 D Vhw™) - QU
ieS® k=0
(60)
With a similar reasoning as (53)), we have the following by rearranging the terms in (60),
nKB e (t— ~ n BPBiK k
L IVE@ DI <P@=D) - P - (52 - =-5=) 3 Z gt
ng (ng)?
ies®) k=0
(4) (61)
e 2 S V@) — IR + Bl

i€S® k=0
For a sufficiently small learning rate 7, term (A) is non-negative. Thus, to upper bound ||V F (w®)]|?,

it suffices to keep track of || VF(w(*~1)) — g(t:*)||2. Conditional on @w*~1), take expectation on both
sides of (54) and we have

5 2K n K-1
B[V )] <E[F@¢) - F@®) - T2) S 3 e
i=1 k=0
t.k ¢
oD = IVF@D) - g+ 81O,
i=1 k=0

since E[B;] = ng.
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By AM-GM inequality again,

2 NVE@ ) =g P

<23 (IVF@) = VA D 4 [9A0) = V)

(63)
< 2(nr + 823 000 - wltH)?)
i=1
n n k—1
1 A
2(n7 + 6 2Z||ngt P) < 2(nr+ B2k Y Y o)
i=1 1=0 i=1 =0
Plugging (63), which suggests that
n K-1 272 n K-1
_(t=1) (t,k) 2 ﬁ n°K (t.k)
L3S S IVR@ ) - g2 < ek + IS S gl
i=1 k=0 i=1 k=0
back to (62), we have that
n K-1
nK _ (- _ n o BrK 62 3K2 bk
E[|VF(@"D)|*) <E[F(@") - F@") ~ (5~ = ) D> lgMIP
i=1 k=0
+nrK + B1QW 7,
(64)
2 2.3
Therefore, when - — % — L KD K > 0, which requires that n < 25 > we have
F@ =)~ F@®) 8
F@®D)? <2-E 1™ )2]. 65
B[|VF(@¢D))?) <2 B 7 R CAll (65)
Now, we sum up (13_3]) both sides fort = 1,2, --- ,T" and average them, we have that
>t [VE(@—D))2 F(@V) i1 BE[1QW]1%]
<2 -E[——— = . 66
E| . ] o T e (66)
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D PROOF OF THEOREM I} UTILITY OF DP-LSGD IN GENERAL CONVEX
OPTIMIZATION

We first focus on the clipped local update CP(AwZ(t)7 c) = CP(wZ(t’K) —@*=1 ¢) in the ¢-th phase
if the ¢-th sample gets selected. Since the local update before clipping is essentially the sum of
gradient scaled by the learning rate —n, therefore,

K-1 K 1
CP(w"™™ — D ) = cP(—n Y Vii(wi™),c Vfi(w®M)),(67)
k=0 k=0

(®)

where 7, 7 = 7 - min{1

IsE vch-,(wﬁt*’”)n} is determined by the clipping threshold, and thus

ngt) < 7. Based on Deﬁnition

0) ( c v
n—mn,  =n-(1- =n- L, (68)
e+ 1(|Aw” || > ¢) - (|Aw!” | - ¢)) c+ ol

where \I'(t) = max{0, ||Aw(t) || — ¢} represents the incremental norm of the local update from the
®

i-th sample in the ¢-th phase. For simplicity, we will use A\I/( ) to denote —% O

c+¥;

Now, we consider two virtual sequences:

a) w’(t 0 = (-1 and w; (k) ;(t’kfl) - nft)Vfi(wEt’kfl)), which represents a sequence
of iterates based on the gradients V f; (wft"k_l)) but scaled by 771@ instead of constant 7 for
each 7;

b) We use 't = nq Zl 1 l(t) /(t’k) to represent the average of w;(t’k) for those indices

) = 1 iff the i-th sample is selected in the ¢-th phase.
1 /(t,k)
= w;

1 selected in the ¢-th phase. Here, 11(.
Similarly, we define (**) = to be the average of all w;(t’k) fori=1,2,--- ,n.
It is not hard to observe that i[}gt’K) =gt —I—CP(AwEt), ¢), and consequently conditional
on w1V, E[w®)] = E[w®5)] = @®K) since the independent DP noise satisfies that

E[Q] = 0

In the following, we unravel || (**) — v||? for arbitrary u and obtain
[ —

no () () (t,k—1)
— Ja®RD Z n 17 Vfi(w; ) 2
ng

) 1@ (t,k=1)
e ~ fh— i M1V fi(w; )
— ||rw(t,k 1 _ ul? — Zn(f)l(t) (t,k—1) mVﬂ-(wEf 1))> + ”Z 1 o i 2.
(69)
We first work on the last term of . With the fact that r]( ) < 1, conditional on @~

Sy 1V fi(w )
| == I

ng
n Jk— n k— n k—
oy SOV S VA | S OV )
nq n n
(t) (t,k=1) n (tk—1)
S (1 — gV fi(w!FY) S OV fi(wlF Yy
< 2. E[|| &=L : 2] + 2 - || == : I2
ng n
n Jk— n k—
o g =X VL P 255 V)
- (ng)? n
4 S0 IV fi(wiE D)2

n
(70)
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which can be further bounded via Lemmal[2 as

352 :_L wl(t,kfl) _ ptk=1)2 . o .
4,'72( Z_lH - ” +m1n{6ﬁF( (t,k— 1)) F(w )’362Hw(t,k 1)_w H2}+3T)

(71)
Now, we move our focus to the second term of (@) Still, with a similar reasoning as LemmaEI,

th) t) GtE=D _ u, V f; (w! (t,k— l)m
q =1

n

- [_72 Dl AU Tl )

2
S*
n

&M:

77(1 - A‘I’Et))(fz( ) fl( (t,k—1) )+ gngt,k—l) o w(t,kfl)HZ)

(tk— 1) ﬁ (t (th=1) _ (tk=1))2
< 2n(F(u) — F( s Z — AT %)
—g'inA\I/(-t)(F(u)— Gtk 1) iz nA\Ilt)
[ ' el
n ATY o 3 I Ay S AT
< 2m(1 — 21—171)(}7(”) — F(atk 1))) + (# Z le(t,k: D _ gtk 1)H2) I dny i AT

n n

(72)
In the fourth line of (72), we use the y-similarity assumption from Assumption 2] In the following,
_ o®
we will use AU = 7A for simplicity.

Next, we work on the upper bound of >_"_; ||w§t’k71)

Z || ~(t,k—1) (tykfl)”Q

n k 1 (t.0) k—1
o Xi-amy Vi (wf™)
2l = 175 : —n-vawE“))n?

k l | k— l
‘ Do X5 (V) - vmw“ D S Djma =0 )V )
(n || I*+1 %)
—~ n n
(73)
For the first term in 1i we have studied it in LemmaEl where once n? <

n Y f: ()
> - Z’; fitwi ) _ ZVf SN2 < ap?RPnr (74)

Plugging 1| back to , since (n — 77j(-t))2 < n?, and we apply the similar decomposition trick
used in (71]), we have that

— w®F=1)|12, Similar to LemmaEl

52
24K2°

k—1 k—1 t,l)
Z ||w (8.k-1) Et )||2 < 8n2k2n7+ l . 2kn? >0 Z —1 IV fi(w; ( )”2
n B n n
S 8772k:27
6k772 =

Z (820D — w{"V||2 + min {28(F(@®V) — F(w*)), 820D — w*|?} +7)

kp? o=
< 1492k27 + 67” Z (82D — w2 4 min {28(F(@®0) — F(w*)), B2l&") — w*|2}),
=0
(75)
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given that n > 1. Thus, when 7 is selected small enough such that < min{ \/%f( 5 ﬁ}, for any
ko < K, by induction it is not hard to verifiy that
n t,ko—1 ~ _
Sy i — @tk |2
n
ko—1 (76)

12n%k
< 15n2kRr 4 10

( Z min {ZB(F(d)(t’l)) - F(w*)),BQHd)(t’l) - w*||2})
1=0
Now, we put (7T), (72) and (76) together, and go back to (69)
[n(1 — ATO)(F@ED) = F))] < B¢+ — ulf? — [0 — ] + 47450
2 42 2o 1207k 2 (40 O a2i () w2
+ (12928 +ﬂ77)(1517 k T+T(me{26(F(w ) — F(w )),B |t — w*|] }))
1=0
+ 1202 min {28(F (@) — F(w*)), B2(|a®) — w*||?} + 1207
(77)
When 7 is small enough such that 121232 + 8n < 243n, can be simplified as
[n(1 — ATO)(F@E) = Fw)] < B¢ — ulf? — 509 — ] + 47 AT
3 k—1

24K
0Ky 4+ 1297)7 4 2B > min (25(F F(w)), 820 — w*|?})
+ 120 min {28(F (w"*1) — F(w )),52||w B0 — w2},
(78)
The remainder of the proof is almost the same as that for Theorem m On one hand, it is noted that
—AT® = Z - < (79)
£ @
i=1 ¢+ ‘I’( ) c+ ‘I’T
since 1/(1 + ) is convex regarding x. Therefore, E[(1 — AU®)] > —tz and E[AV®)] < B by
n (t)
Assumptionthat E[El:%] <B
Therefore, for sufficiently small n = O(n/K?) such that 241?43 + 48Kjf < 2(5 ~5y> summing

up both sides of (77) for k =1,2,--- K and ¢t = 1,2,--- ,T with u = w*, and take the zero-mean
independent DP noise into accountant where @(*) = (%) + Q®) we have

[Zt 1D Sy gy (F(@®F1) — F(w*))]
||1Z;(0) - W*HJ;K 20 2 4vB o?d ®0
e K 12 _ 4 —
< TRy + (30K=8n* + 12n)T + 1 B + Kn'

To obtain the convergence guarantee of (7, we similarly imagine a virtual step where we implement
one additional full gradient descent using the entire set and we have that

) . izt V@)
Hw(T+1,1) ’LL||2 ”w(T) —u—n- 1 - H2

< o™ —ul|® = 2 (F (@) - F(U)) +P[VE (@) = VF(w?)|?
< o™ —w|* = 2p(F(@")) = F(u)) +7° min{ 8| 0™ — w*|]*,28(F (@) = F(w"))}).
(81)
Therefore, for small enough 7, such that n — 5?3 > 0.5n, we combine (80) and with u = w*,
and have

[Zt I 3By (F(@"*F=1) — F(w*)) + 72(53) (F(@™) —F(w*))]
S e (82)
oY) —w 4
—_— K2Bn% + 12 — + —

= TR+ 1)y + (30K“Bn~ + 77)7’+ B+ Ky
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Similarly, it is noted that conditional on w1 we still have that
B[ ™* — u|?] = B[[d™" — &%) 4+ ot —u|?, (83)

and for E[||@** — @&®*)||2] for any ¢ and k, we use @'(t%) = L. 37" | w(t *)

)

Ef|o®" — @)% = E[||(2"" — o 1))*(@“”“)*@(“))\\2]
n (t) 1(t) k—1 k n k— (84)
n; q
=Bl ST L VA ! snfzz\wz N7,
=0 i=1 1=0

since n( ) < 7. Therefore, by , we also have that

k—1
. _ 3Kn? *
B[00 — @t PP < =L (482K r + K3 g a0 —wl?) - (85)
=0

Now, using and (83), can be rewritten as
[n(1 — ATO) (F(@¢ED) - F(u))]
< B[4 —ul? = ) — al? + A — D2 - [t — )
25 Foo3g2% (t1=1) _ = (t,k—1) 2 )
Z ( B Zz:l H i H + min{GﬁF(ﬂ}(t’k_l)> _ F(’U)*),?)BQH’LZ}(t’k_l) _ w*HQ} + 37_>

n n
q =1

k—
10K2 4Kﬁ773 . tl) * 211~ (1) (12
+ (10K2Bn® + 120°)7 + ———— Z min {28(F F(w")), Blo") —w*|?})

+ 12n% min {283 (F( F(w®F=1) —F(w )),52||w (0 |2 }.
(86)

On the other hand, if we select u = w(0-*0) for some ¢y € [1 : T] and ko € [0, K — 1] in (86), when
K? = O(nq),

e zem (F@ED) = F(atok) 4 pe o (P(aT) - Falok)))

E

[ (T—to+ 1)K —kg+1 J

.{375((177( ,82[(37'77 +KT+Z BQHW(” w*||2)
(Tft0+1)kao+1 &)

KB Sumyee Sio N0 —wrlP) oo

7 (T —to + VK — ko + 1 T
LB % 24 522(t,k)ec E[[Ja =1 —w* (2] + E[|@™ — w*|]?]

(C+B) n (T—t0+1)K—k0+1 ’

where C = ((to,k),k =ko, -, K — 1) U ((t,k)ﬂf =to+1, -, T,k=0,--- K — 1). In the
following, we may apply a similar reasoning as Lemma 3|to derive the following results.

Lemma 7. Provided sufficiently small ) = o(1/K), foranyt € [1 : T)and k € [0 : K — 1]

w* B . B . K7772
E[||w®*) 2] = O (|| — w*||* + TK(mC— + P K2 + 0?1 + Tq) +To%d).

+B
By Lemma (7)),
E K— ~ * — *
UKE? Tiosrce Do’ B — w2 + B[ — ]
n (T —to+ 1)K — ko (88)
KQ 3 B K 2
_# O(||w —w ||2+TK(77778+773K27+17 T+ ” )—l—T ’d).
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On the other hand, we have

~(t,k— *
19 ﬂg Zt to Zk ko+1 E[||w (BE=1) — g ||2]
(T —to+ 1)K — ko

(89)
B K7
<n-O0(|]@® —w*||? +TK(n 7W+n31{27+nr+ o )+T2d)

Now, we can apply the last iterate trick in Lemma@ Lety; = mE[(F(u}(t’k)) — F(w*))] for
j={t—1)K+k+1fort =1,2,--- , Tandk =0,1,--- , K—1,and yrg 1 = E[F(w(™))—

2((:3—8)

c

=E[—x (F(0™) - F(w*
YTK+1 [2(0—1—8)( (w') (w"))]
ZyTKlﬂ J'+Tzl§ 1 .le;ﬁ?+1—j(yl*yTK+lfj)
TK+1 4 j+1 J
27172 2
~ K K=n 1 —(0) 12
< . _
<O((n+ —+ ” +TK77) [|w w”||
K22 K?p K B
c TR o Tym (1 + K+ )177+77618)+ 1 (82K3 2 + K1)
K2  TK?n?
+(J+7+Tn+l/n)02d)
ng n
<1 K 1 K3? K
=O0((—== + )0 —w*|? + (= + 1+ + )7+ (K% +
((\/TT( ) L \/ﬁ)( T nq)T (K0 + )7
K3/2 \/7 )
+1 7—% Ko“d
T )
= ot — w2 1 K 2
=0 + + +—+\/ Ko?d
S, A )

(90)
when we select n = O(1/VTK), K = O(nq) and K = O(T'). This completes the proof.

D.1 PROOF OF LEMMA[]]

From , by letting u = w*, given w1 we have that

@) — ul|?
n t,k—1
— JathD — Z n' sz(w( )

7w*H2

TP IR T -ty g i Vi)
= @4 P = = @A O () 4 S I

v n

i=1
oD
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By (72) and (70), (@) can be further bounded by

Hﬁ)(t,k) _w*H2

D | 4 2n(1 — ATO) (F(w) — F@@tFD)) + (2 S Y — ptED)2)
n

=1

452 S (Bh=1) _ =(tk—1) |2
Azl =0 gt ) — P + 87)

< [l — w2 = (2n(1 = ATD) = 6852) (F(@F1) = F(w))
Sy g™t — @ tE D2

+ 4y AT 4 g2

+ (0B + 3n%6?%) + 4m/A\Il(t) + 3n°T

n
< ”w(t,kfl) _ w*||2 _ (277<1 ,’72)( t k— 1 F(w*))
k: k-1
+ (08 + 30° %) (159°k*T + BF@"Y) — F(w*))) + 4pyATD + 3p27.
z:o
92)
On the other hand, as for Hu?(t“) — w*||, we have that
E[lo® —w*|*) = E[@® — @] + E[|a*") — w*||?)
S i, (1 —qm”w ) . .
E[|| =A==t ” 1P + B[] @) — w*[|*] + 0°d
K2 K n \v ,(t,k—l) 2
< n Zk:l 21_712(1 f(wL )H —l—]E[”ﬂ)(t’K) _w*||2] +O‘2d
K n Jk—1 ~ _ ~ _ %
_B3En? S {0 (Bl — A D|P) 4 28n(F (@F D) — F(w)) + 7}
< ey
+ E[|o® ) — w*||2] + o%d
B KTn?
_ —(0) . %2 tK 2 3K2 t 2d .
Ol —w*|* + K (y — + O + 0’ K)7 + =) + to?d)
93)

for sufficiently small n = o(1/K) and K = O(ngq). Thus, with the above reasoning, we consider
t =T and k = K, and then we obtain a global upper bound.

E UTILITY OF DP-LSGD IN STRONGLY CONVEX OPTIMIZATION

Theorem 5. For an arbitrary objective loss function F ( ) 30 fi(w) where fi(w) is A-
strongly-convex and (B-smooth, when nn < min{1/3,2/(8 ? Algorithm 1| with clipped local
update (3)) ensures that

A1+ NE (S + B2+ pPrK? + o%d)
(L)% =11 = (1))

_ N TK, _ N
Eljo™ —w*?] < (1— (nN)?)" " 0@ —w*|* +
%94

Proof. For simplicity, we use G(w) = w — nVF(w) to represent the output of gradient descent of
function F'(w). Similarly, we use G;(w) = w — nV f;(w) to denote the gradient descent output of
the i-th individual loss function f;(w).

Lemma 8 (Hardt et al.|(2016)). If F'(w) is convex and [3-smooth, and 1 < 2/, then the operation
G(w) is contractive, i.e.,

[G(w) — G| < [lw -],
Sor arbitrary w and w'. In addition, if F(w) is A-strongly convex and [3-smooth, then if n < 2(8+ \),
then G(w) is strictly contractive such that
/ npA ’
[G(w) = Gw)| < (1 - 5+)\)Hw w'|.
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In the ¢-th phase of Algorithm conditional on the initialization @w(*~1), we first consider a virtual
trajectory produced by applying full gradient descent on F'(w) with step size n) for K iterations. We

denote those iterates by w“*), for k = 1,2, , K. Let w* = argmin,eyy F(w) be the global
optimum, when 7 < 1/,

[459) — w2 = 104D — w* — gV E (@A) ©5)
S *||2+?7 IVE @) = 2n(F (@) = F(w*)) (96)
< (L= pA)[@ Y —w* [P + (278 = 2n)(F(@F D) — F(w*))  (97)
< (1= B — w2 ©8)
In (96)), we use the property of strong convexity that
F(’J)(t’k_l)) _ F(w*) < <VF(’LT}(t’k_1)),1I)(t’k_l) > ” ~(t,k—1) _ w*HZ
In ( i we use the smooth assumption that - HVF(w(t F=1)|12 < F(w®*=1) — F(w*). Finally,
in (98), as < 1/4 and thus 2n(ns — 1) < 0 Therefore,
[ —w*|? < (1= pA) <@~ — w| %, (99)
We will use v; = (1 — n)\)¥ for simplicity.

Now, we consider to bound the deviation between W) and w®. In the following, we always
assume 1 < min{1//,2/(8 + A)}. Itis noted that, based on the strict contraction property of G and
G, for any u and v,

1Gi(u) = G(u)|| = [[Gi(u) = Gi(v) + Gi(v) = GO)|| < [|Gi(u) — Gi(v)[| + |Gi(v) = G(v)]]

npA
< (A= gplu = vl +nlVfi(o) = VE).

In the following, we use v2 = (1 — g%\) for simplicity. Similarly, for {G1, Ga, - - , Gy} on inputs

{u1,usg,- -+, uy}, we have

n Gy (u; n_ w n G,
2= G _ Gy < gy Ziml ol 2 GO g .
D vy (7| (100)
2 " .

At the t-th phase, from the initialization w®*—1), wlgt’K) = GioGio---oG(w'*Y). On the
—_—

k
other hand, with the same start point @*~1), the virtual iterate w**) = Go G o--- o G(w*~ V).
—_—

k
Therefore, with a recursion reasoning,

t,K
(t,K) Z;’Llw( )H

(|0
K 1 ~ _

TS DY [ et Citel|
- n

n S K—2 ~(t. K — ~(t. K — ~ —
< Yo D iy (72Hw§t ) K| 4|V £ (D) - VR0 D)) (101)
- n
< D _ gen) 4 180 11 S IVA@) - VR@))
- n
< VTl =7, )
B L=

Here, in (T0I), we apply Assumption [I] on the variance bound 7, where the sampling noise of
stochastic gradient satisfies || >, (V f;(w) — VF(w))| < nB. Now, we further take the clipping
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operation, i.i.d. sampling and DP noise into accountant. First, due to the clipping, stemmed from

(I01),

n (4 t
H Z*:l Iy +C'P(Aw§ )ac) . ﬁ}(t’K)H _

3

n _(t— t,K _(t—
Sy @D 4 CPw™) — a0 — @R

n n
no (i (HK)  —(p— (t,K) n K
< H Dici (“’(t Y + CP(w, — 1)76) - w; ) I+ Dic wz( : _ w(t,K)”)
n n
V(L =)
<py VI
- I—=7

(102)
In the following, we proceed to incorporate the sampling noise and DP noise into the deviation

> eP(Aw o)
n

analysis. Let u(*) = be the average of clipped local update at the ¢-th phase. Let

1 Z(-t) to be an indicator which equals 1 iff the ¢-th sample gets selected (independently with rate q).
Then,

i 12@ -CP(AwEt), c)

E[Jo) — 5| = Bfjat + +e® =R (103
ng
® 0)
< B[atD 4 Zim i CPAYLO)  pemoy 4 (104)
ng
® ®
_ 11,7 -CP(Aw; ", c -
_ ]E[H’LD(t 1) + Ez_l na ( ) —,U,(t) _‘_#(t) _w(t,K)H] —|—O’\/(§
(105)
® ®
=117 —q) - CP(Aw; , ) (- -
< g2t Z D EPEN O - 05 4 40+ v
(106)
2 1— K
< %+B+M+a\/&. (107)
nq 1=

In (104), we use the fact that Q*) is independent DP noise with zero mean and E[[|Q"|] = o/d.
In (106), we use the triangle inequality. In (107), we use the convexity of [, norm function and it is

noted that (l,l(»t) —q) fori=1,2,--- ,n,areiid. and of zero mean while ||C73(sz(t), ol <e

So far, we have derived the expected deviation between @*) and %) at the end of the ¢-th phase
conditional on w*~1). In the following, we will continue to incorporate such deviation to .

By applying the AM-GM inequality, |ju — v||> < (1 + 2)[ul|? + (1 4 1)||v||? for any z > 0, on
[@® —w*||? = [|(@0*5) — w*) + (0® — @®E))||2, we have that

_ . . X I .
Efw® —w*|*) < (1+ 2)E[[@"") —w*|* + (1 + )@ — 52

< (1+ 2)E[otY — w2 + (1 + %)(L T i Gl S B

/nq 11—

1., ¢? (1 —~&)2
<( Efat) —w*|?] + 401+ 2)(C + B2+ T =22 )7 2
< (Bl w4 aa+ D (E s TS L g

Based on (T08) by recursion, we further obtain the following unconditional expectation

(108)

4(1 1 2 2,271 _ ~K\2
1= (1+2)7 "ng (1—12)
414 nN)E - (,CTZ + B2 + n*1K? + 02d)
(L+nA)E =1)(1 = (mA)2)K
(109)

In (109), we select z = (1 +n\) & — 1, -

Ef@™ —w*|?] < (1 +2)y) T @@ —w?||* +

TK | _ .
< (1= () o —wt|? +
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F PROOF OF THEOREM[2l UTILITY OF DP-LSGD IN NON-CONVEX
OPTIMIZATION

To apply Theorem@] on DP-LSGD, we may equivalently view the perturbation term Q*) as formed
by two parts. One is due to the local update clipping and the other is the DP noise added, denoted by
(") in this proof. To be formal, Q*) can be rewritten as follows,

SRS S Jok + e

1 s, k=0 ma‘X{”Zk o 9l c}
S MLl o 4
= +e'.
i=1 k=0 maX{lle o 9¢ll.ch
(4)

In (TI0), term (A) corresponds to the correction term due to the clipping, where equivalently the
learning rate of the local update from each sample is scaled by a factor determined by the norm

I 22(2—01 gF||. e® is the independent DP noise added in the t-th phase. Therefore, conditional on
w1, the expectation of ||Q(*)||? is in the following form,

n K—1 ,(t c
Elll =i s 80— g 9t 1P

E[IQW % = (ng)? o
n _ C
3 ZizlE[”n(l maX{‘|ZkK:7()Ig§I|’C})Zk 0 9; H } +0‘2d (111)
< nqg
n E[(w)?
— W +0%d = qB* + o’d.

Recall Deﬁnition@ in l-i \If(t) is the incremental norm of the local update by ¢-th sample in the

t-th phase, i.e., max{||n >} _01 ng — ¢,0}. Now, plugging the form of E[||Q®|?] in 1) back to
Theorem ] we obtain the utility bound claimed for DP-LSGD.

G ADDITIONAL EXPERIMENTS AND EXPERIMENT SETUPS

(a). DP-LSGD ‘ (b). DP-SGD (c). Performance Comparison
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Figure 4: Training ResNet 20 on SVHN with DP-LSGD (K = 10,7 = 0.025, ¢ = 1) and DP-SGD
(K =1,n=1,c=1) under (e = 2,§ = 10~°)-DP, with expected batch size 1000.

For all the experiments with respect to CIFAR10, we assume the training data set of 50,000 samples
is private. Similarly, for SVHN, we assume the training data set of 73,257 samples is private. In
Fig. E] (a,b), we report the statistics of normalized incremental norm when we train ResNet20 on
SVHN. Very similar to our observation on CIFAR10, both the mean and the standard deviation of the
normalized incremental norm in DP-LSGD is only about a half of those in DP-SGD, which suggest
that DP-LSGD bears less influence from the clipping operator. As a consequence, in Fig. [ (c),
we can see DP-LSGD enjoys a faster convergence rate accompanying with a better utility-privacy
tradeoff.

Accuracy %

Normalized Incremental Norm

As for the hyper-parameter selection, in Table 1, we first fixed the clipping threshold ¢ = 1 and
conducted grid searches on the learning rate € {0.125,0.25,0.5, 1,2, 4} and composition budget
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Hyper \ € 1.0 1.5 20 25 30 4.0
Step Size 0.5 1 1 1 2 2
Composition Budget T 500 1000 1000 1500 1500 2000

Table 3: Optimal Hyper-parameter Selection of DP-SGD

T € {500, 1000, 1500, 2000, 2500} for DP-SGD in various (e, §)-DP setups, where empirically the
optimal selection is shown in Table 3.

Provided the optimal hyperparameter setup of DP-SGD, for DP-LSGD we also fixed ¢ = 1 and
adopted the same composition budget 7" as selected in Table 3 and moved on to optimize the step size
n € {0.0125,0.025,0.05,0.1} and local iteration number K € {5, 10, 15,20}. We found K = 10
and 1 = 0.025 consistently being the optimal selection in all cases, as summarized in Table 4.

Hyper \ € 1.0 1.5 2.0 2.5 3.0 4.0
Step Size n 0.025  0.025 0.025 0.025 0.025 0.025
Composition Budget T' 500 1000 1000 1500 1500 2000
Local Iteration K 10 10 10 10 10 10

Table 4: Optimal Hyper-parameter Selection of DP-LSGD
In Table 2 with comparisons to De et al.[(2022), for DP-SGD on WideResNet-40-4, we adopted the

same parameter ¢, 1" and 7 suggested in Appendix C.5 of De et al.| (2022), while for DP-LSGD we
applied the same c and T while similarly selected K = 10 and n = 0.025.
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