

PLAY TO GENERALIZE: LEARNING TO REASON THROUGH GAME PLAY

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908<br

054 AI agents, too, have benefited from games resembling aspects of human play. These environments
 055 encourage exploration, robustness to sparse rewards, and learning from multimodal inputs. For ex-
 056 ample, emergent tool use has been observed in agents trained via hide-and-seek (Baker et al., 2019),
 057 and Atari gameplay has been incorporated into training generalist agents (Reed et al., 2022). By
 058 learning in these environments, AI systems develop robust and transferable reasoning capabilities.

059 Recent work has shown that post-training with Reinforcement Learning (RL) can unlock reasoning
 060 behaviors from their base models (DeepSeek-AI, 2025; OpenAI, 2024). These RL-trained models
 061 can “think before they speak”, generating internal chain-of-thought traces before outputting a final
 062 answer. More importantly, growing evidence suggests that RL often generalizes more robustly to
 063 out-of-distribution samples than supervised fine-tuning (SFT). For example, models trained with
 064 RL on mathematics transfer their reasoning skills to physics (Meng et al., 2025), and navigation
 065 agents adapt to novel environments beyond their training domains (Chu et al., 2025a). Motivated
 066 by these findings, we ask: *since games already serve as a natural medium through which humans
 067 acquire reasoning strategies, can post-training multimodal LLMs on gameplay similarly enhances
 068 their ability to reason across diverse tasks?*

069 The results are striking (Fig. 1). We show that post-training a 7B-parameter multimodal LLM,
 070 Qwen2.5-VL-7B (Bai et al., 2023), to play simple arcade-style games like Snake (Kamradt, 2025)
 071 yields two surprising outcomes: (1) the model generalizes to previously unseen games (Sec. 2.3);
 072 and (2) it exhibits strong reasoning abilities on multimodal math benchmarks like MathVista (Lu
 073 et al., 2024), and multi-domain QA like MMMU (Yue et al., 2024a). Despite never observing
 074 worked solutions, equations, or diagrams during RL post-training, the model achieves competitive
 075 results not only against large-scale industrial systems like GPT-4o (Hurst et al., 2024), but also
 076 against specialist models post-trained on math datasets (Tabs. 2 and 3). Furthermore, it improves
 077 on reasoning benchmarks without degrading general visual understanding, a common limitation of
 078 domain-specialist training (Tab. 9). Overall, gameplay emerges as an effective surrogate task for
 079 incentivizing reasoning in multimodal LLMs.

080 Why does it work? Our ablation studies suggest that reasoning skills incentivized by gameplay can
 081 be helpful to other multimodal reasoning tasks. For example, Snake, a game set on a *2D grid* where
 082 the player maneuvers the “snake” to avoid collisions and collect apples, significantly improves per-
 083 formance on math problems involving *2D coordinates*. In contrast, Rotation, a puzzle requiring
 084 recognition of *3D object rotation angles*, more strongly boosts performance on *geometry questions
 085 involving angles and lengths* (Fig. 3). Furthermore, jointly training on both games yields consist-
 086 ently stronger results on downstream benchmarks than training on either game alone, suggesting
 087 the **compositionality** of the acquired skills (Tab. 2).

088 All these results point to a new post-training strategy: rather than relying solely on domain-specific
 089 datasets, we can design scalable and controllable **surrogate tasks for post-training**, such as games,
 090 that unlock reasoning behaviors transferable to downstream applications. Synthetic game environ-
 091 ments offer structured, rule-based rewards and fine-grained controllability, while also scaling far
 092 more easily than human-annotated data. This promising paradigm of post-training with surrogate
 093 tasks reminisces self-supervised pre-training in vision and language (He et al., 2020; Doersch et al.,
 094 2015; Radford et al., 2018), where carefully designed pretext tasks produce broad generalization.

095 2 REINFORCEMENT LEARNING ON VISUAL GAMES

096 We introduce ViGaL, a novel post-training paradigm designed to enhance generalization capabilities.

100 2.1 GAME ENVIRONMENT

101 As show in Fig. 2, under our ViGaL paradigm, the model is trained in a game environment where
 102 it receives states from game environment, outputs next actions, and obtains rewards as feedback
 103 from the environment. Formally, each task, given an instruction I , can be formulated as a partially
 104 observable Markov decision process (POMDP): $(\mathcal{S}, \mathcal{A}, \mathcal{O}, T, R, \Omega)$, where \mathcal{S} is the set of possible
 105 environment states, \mathcal{O} is the set of observations available to the model, and \mathcal{A} represents actions
 106 model can do in this game environment. $T : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$ is the state transition function, while
 107 R is a binary reward from the environment representing the correctness of action. Due to partial
 108 observability, the agent perceives only observations $o = \Omega(s)$.

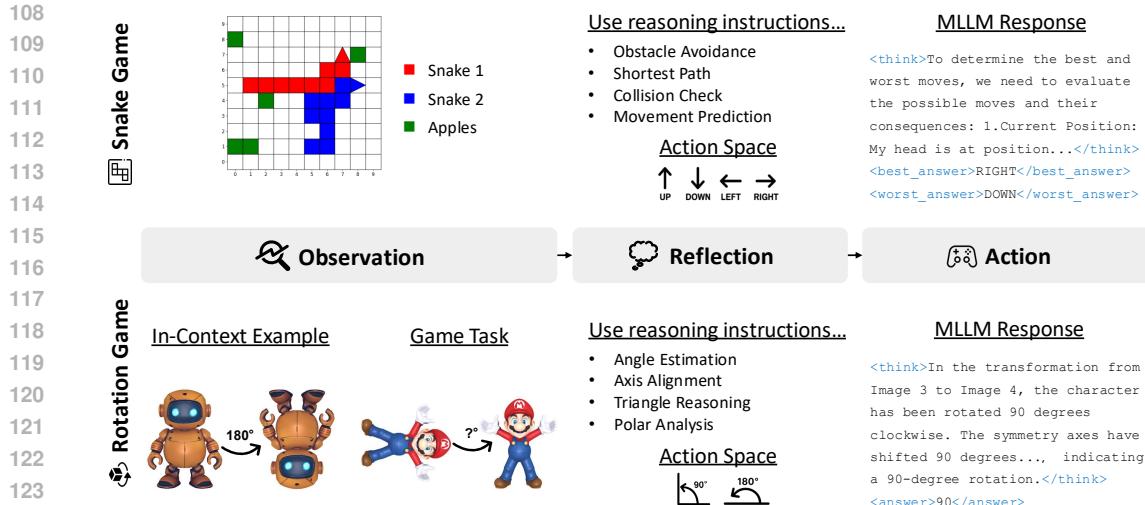


Figure 2: **Post-training MLLMs to reason through RL with games.** We propose post-training MLLMs via RL by playing visual games. We demonstrate this with two games: the classic arcade game Snake (Kamradt, 2025), and Rotation, a self-designed task to investigate spatial reasoning. In each game, the model receives multimodal inputs and follows reasoning instructions, *e.g.*, path planning in Snake, angle estimation in Rotation. It reflects to choose an action, outputs its chain-of-thoughts and decision, *e.g.*, best/worst move or predicted angle, and receives a reward. Through gameplay, the model obtains reasoning abilities that transfer to downstream multimodal reasoning tasks such as math and multi-discipline question answering.

Snake and Rotation Games. We design two complementary games, Snake and Rotation, to study the proposed paradigm (Fig. 2), each focusing on different MLLM capabilities. The Snake game, inspired by prior work showing that competition can enhance reasoning in MLLMs (Du et al., 2023), emphasizes strategic decision-making. We set up a dual-snake game based on SnakeBench (Kamradt, 2025), where each model independently controls one snake. The objective is to reach apples, score points, and outcompete the opponent. At time t , the environment state s^t includes the coordinates of both snakes ($x_{s_i}^t, y_{s_i}^t$) for $i \in \{1, 2\}$, the apple location (x_a^t, y_a^t), and the previous actions A_i^{t-1} . All elements are placed on a 10×10 board. Each snake then selects its next action $A_i^t \in \{\text{up, down, left, right}\}$. A snake dies if it collides with itself, the other snake, or the board boundary; the survivor wins, or in the case of simultaneous death, the higher score decides. Unlike SnakeBench, which uses only text to represent states, we provide both images of the game board and textual descriptions as observations $o^t = \Omega(s^t)$ for richer input. The Rotation game, inspired by rotation-angle prediction as a pre-text task in self-supervised learning (Gidaris et al., 2018), evaluates visual perception and spatial reasoning. The model is presented with two views of the same 3D object: an initial view I_{init} and a rotated view I_{rot} , obtained by rotating the object 90° or 180° around the z -axis (pointing toward the viewer). The task is to identify which rotation angle transforms I_{init} into I_{rot} . To guide reasoning, we include an in-context example with a known rotation. As in the Snake game, observations combine images and text. Together, these two games allow systematic exploration of reasoning and perception, two fundamental aspects of MLLM abilities.

2.2 RULE-BASED REINFORCEMENT LEARNING

We apply rule-based RL to directly post-train MLLMs for visual games, without relying on supervised learning as a warm up. The algorithm is described as follows:

Reward design. We use a simple rule-based reward function to avoid reward hacking (Gao et al., 2022) and help the model learn how to play the games effectively. This reward function has two components: an accuracy reward and a format reward. The total reward r is computed as the sum of an accuracy reward and a format reward $r = r_{\text{accuracy}} + r_{\text{format}}$. The accuracy reward r_{accuracy} is 1 if the answer is correct, and 0 otherwise. Details of reward for each game are in Appendix Sec. A.3.

Model	Wins (10)	Model	Acc. (%)	Game	ViGaL	Qwen2.5-VL-7B
ViGaL vs.		ViGaL	71.9	Space Invaders	280.0	85.0
Qwen2.5-VL-7B	9	Qwen2.5-VL-7B	47.4	Ms. Pacman	1370.0	670.0
Qwen2.5-VL-72B	7	Qwen2.5-VL-72B	52.1	Seaquest	80.0	60.0
Llama-4-Maverick	7	Llama-4-Maverick	66.2	Alien	540.0	450.0
Gemini-2.5-Pro	8	Gemini-2.5-Pro	51.0	Frogger	7.0	5.0
Claude-3.7-Sonnet	6	Claude-3.7-Sonnet	65.6	Breakout	0.0	9.0
GPT-4o	8	GPT-4o	61.5	Pong	-26.0	-26.0
o4-mini	6	o4-mini	70.8	Cumulative Reward	2251.0	1253.0

(a) Snake game.

(b) Rotation game.

(c) Atari game.

Table 1: **Game Performance.** (a) ViGaL gets high win rates (6-9 wins out of 10 matches) on Snake playing against advanced proprietary models. (b) ViGaL shows best performance on Rotation. (c) ViGaL trained on Snake and Rotation shows zero-shot generalization to unseen Atari games, achieving a nearly *doubled* cumulative reward compared to its base model (Qwen2.5-VL-7B).

Advantage estimation and policy update. We employ REINFORCE Leave-One-Out (RLOO) algorithm (Kool et al., 2019; Ahmadian et al., 2024) in our RL training phase. Following Group Policy Gradient (Chu et al., 2025b), we omit KL divergence regularization. Without KL constraints limiting policy changes, the model explores the solution space more freely, potentially discovering better reasoning strategies. This enables more flexible adaptation during RL training.

2.3 IMPLEMENTATION AND EVALUATION ON GAMES

Implementation details. We employ Qwen2.5-VL-7B-Instruct (Bai et al., 2023) as our base model. We follow DeepSeek-R1 (DeepSeek-AI, 2025), using a combination of rule-based format rewards and accuracy rewards, with RLOO (Kool et al., 2019; Ahmadian et al., 2024) as the core RL algorithm. We implement our training within a multimodal input RL framework based on Open-RLHF (Hu et al., 2024). For hyperparameters, we adopt the default settings from MM-Eureka (Meng et al., 2025), including a global batch size of 128, a rollout batch size of 128, a rollout temperature of 1.0, and a learning rate of $1e^{-6}$. Training uses 6 A100-80G GPUs.

Game training data. We build game environments to collect training data for our experiments. For Snake, we leverage SnakeBench (Kamradt, 2025) as our data engine. For Rotation, we utilize Hunyuan3D (Team, 2025), which generates 3D meshes from images or text instructions. We render each mesh into 2D images from different orientations, creating image pairs with associated rotation angles as ground truth labels for RL training. Our comprehensive data generation pipeline enables producing training samples at any desired scale with fully customized settings. For experiments, we synthesize 36K samples per game, sufficient for convergence. Details are in Appendix Sec. A.1.

Competing with leading models on Snake and Rotation. To evaluate the game capabilities of ViGaL models, we initialize environments in diverse states unseen during training. For Snake (Tab. 1a), we randomly initialize games 10 times with two models competing directly, measuring win counts. For Rotation (Tab. 1b), we measure rotation angle prediction accuracy on comprehensive validation sets with 3D object meshes unseen during training. Our 7B-parameter model consistently outperforms proprietary models in both games. Results confirm that RL effectively unlocks small 7B models’ ability to excel in visual games requiring environmental understanding, reasoning, planning, and interactive decision-making.

Out-of-distribution generalization to Atari games. We then test ViGaL on Atari-GPT (Waytowich et al., 2024), a benchmark for evaluating MLLMs as decision-making agents in Atari video games such as in Fig. 5. The benchmark consists of seven different Atari games, with detailed settings in Appendix Sec. B.1. We follow most settings and prompts from Atari-GPT, with a small modification to ensure format correctness for all models. Following Atari-GPT (Waytowich et al., 2024), we report cumulative reward over 1K steps as the evaluation metric, where higher rewards indicate better performance. As shown in Tab. 1c, ViGaL shows significant cumulative reward improvement on Atari games despite being trained only on Snake and Rotation games. This is particularly notable because Atari games differ substantially from our training games in both visual appearance and gameplay strategies. These results suggest that our rule-based RL training approach enables strong generalization to previously unseen game environments.

Model	Math					Geometry		
	Avg.	Avg.	MathVista	MathVerse	MathVision	Avg.	GeoMath	Geo3K
Proprietary Model								
GPT-4o (Hurst et al., 2024)	47.5	47.3	61.4	50.2	30.4	46.8	50.2	43.5
Gemini-2.0-Flash (Team, 2023)	55.4	56.4	73.4	54.6	41.3	54.4	55.3	53.5
Multimodal Reasoning Model Post-Trained on Qwen2.5-VL-7B (Bai et al., 2023)								
<i>Base Model (Qwen2.5-VL-7B)</i>	46.3	47.7	68.0	49.0	26.0	44.8	44.0	45.6
R1-Onevision-7B (Yang et al., 2025)	40.9	46.8	64.1	46.4	29.9	35.0	45.4	24.5
R1-VL-7B (Chen et al., 2025b)	40.9	42.7	63.5	40.0	24.7	39.0	42.0	36.1
MM-Eureka-Qwen-7B (Meng et al., 2025)	39.3	50.1	73.0	50.3	26.9	28.4	53.1	3.8
Reason-RFT-Zero-7B (Tan et al., 2025)	46.5	38.1	60.7	35.3	18.3	54.9	55.0	54.8
VLAA-Thinker-7B (Chen et al., 2025a)	51.3	48.7	68.0	51.7	26.4	53.9	51.1	56.6
OpenVLThinker-7B (Deng et al., 2025)	52.1	47.8	70.2	47.9	25.3	56.4	49.2	63.5
ViGaL Snake	51.6	49.4	70.7	51.1	26.5	55.0	49.9	60.0
ViGaL Rotation	52.8	49.3	71.2	50.4	26.3	57.9	51.7	64.1
ViGaL Snake + Rotation	53.9	50.6	71.9	52.4	27.5	57.1	51.0	63.3
	±0.3	±0.3	±0.4	±0.2	±0.3	±0.5	±0.3	±0.4

Table 2: **Results on multimodal mathematical benchmarks.** We compare to other multimodal reasoning models. Results post-trained on the same subject as the evaluation are de-emphasized, while our ViGaL models only use games for post-training. **Bold** numbers are the best in each Avg. column. We include standard deviations of three independent runs for ViGaL Snake + Rotation.

Model	CLEVR ⁺				Multi-Discipline		
	Avg.	Avg.	CLEVR-M	S-CLEVR	Avg.	MMMU _{val}	MMMU-Pro _{overall}
Proprietary Model							
GPT-4o (Hurst et al., 2024)	55.9	51.2	68.1	34.3	60.5	69.1	51.9
Gemini-2.0-Flash (Team, 2023)	–	46.3	64.9	27.6	–	71.9	–
Multimodal Reasoning Model Post-Trained on Qwen2.5-VL-7B (Bai et al., 2023)							
<i>Base Model: Qwen2.5-VL-7B</i>	50.3	54.9	74.6	35.2	45.7	54.3	37.0
R1-Onevision-7B (Yang et al., 2025)	53.7	65.1	75.5	54.7	42.3	51.9	32.6
R1-VL-7B (Chen et al., 2025b)	53.9	68.0	87.4	48.6	39.7	50.0	29.4
MM-Eureka-Qwen-7B (Meng et al., 2025)	62.8	79.3	98.4	60.1	46.4	55.8	36.9
Reason-RFT-Zero-7B (Tan et al., 2025)	58.6	76.2	99.4	53.0	40.9	51.2	30.6
VLAA-Thinker-7B (Chen et al., 2025a)	61.7	83.4	94.7	72.1	40.1	48.2	31.9
OpenVLThinker-7B (Deng et al., 2025)	60.4	82.4	93.8	71.0	38.5	54.8	22.1
ViGaL Snake	64.4	82.6	92.6	72.6	46.2	55.8	36.6
ViGaL Rotation	63.3	80.7	93.0	68.3	45.9	54.1	37.7
ViGaL Snake + Rotation	64.7	81.7	91.9	71.4	47.7	58.0	37.4

Table 3: **Results on multimodal spatial and multi-discipline reasoning benchmarks.** CLEVR-M denotes CLEVR-Math (Lindström & Abraham, 2022), and S-CLEVR stands for Super-CLEVR (Li et al., 2023). Results post-trained on the same subject as the evaluation are de-emphasized, while ViGaL is exclusively post-trained using games. **Bold** numbers are the best in each Avg. column.

3 VISUAL REASONING GENERALIZATION

Evaluation collection. Following prior studies (Tong et al., 2024a; Li et al., 2024c), we systematically divide existing benchmarks into two broad categories: (i) *reasoning-oriented benchmarks* requiring multi-step or mathematical reasoning, and (ii) *general-purpose perception benchmarks* assessing visual understanding and perception abilities.

For reasoning-oriented evaluation, we test on four key areas: *Math* (MathVista (Lu et al., 2024), MathVerse (Zhang et al., 2024), MathVision (Wang et al., 2024b)), *Geometry* (GeoMath (Gao et al., 2023; Shi et al., 2024), Geometry3K (Lu et al., 2021)), *CLEVR+* (CLEVR-Math (Lindström & Abraham, 2022), Super-CLEVR (Li et al., 2023)), and *Multi-Discipline* (MMMU (Yue et al., 2024a), MMMU-Pro (Yue et al., 2024b)). For general perception, we evaluate across three cate-

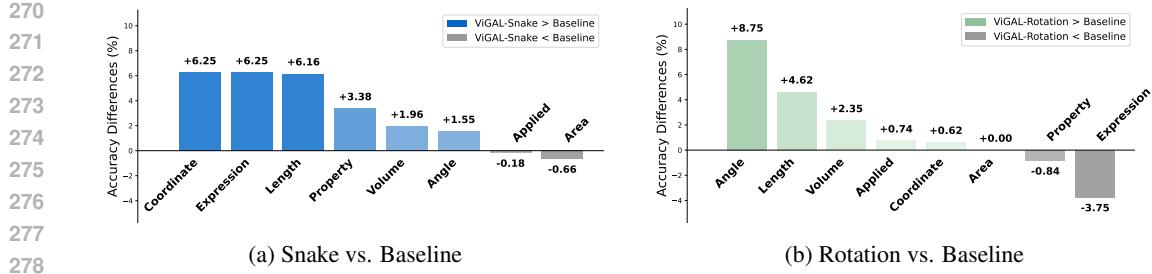


Figure 3: **Per-category gains on MathVerse are *not* uniform.** The eight math categories follow MathVerse (Zhang et al., 2024). (a) Snake yields the largest gains on *Coordinates* and *Expressions*, consistent with its 2D grid structure. (b) Rotation boosts *Angle* and *Length* questions but reduces *Expression* accuracy, suggesting its training primarily incentivizes orientation recognition.

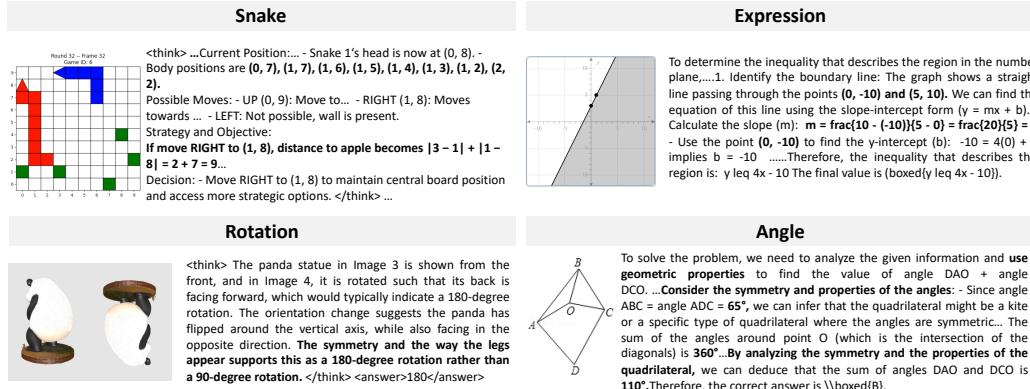


Figure 4: **Reasoning trace of different games and math questions.** Top: Algebraic functions and coordinate-level interpretations that emerge from playing the Snake game help solving *Expression* questions. Bottom: Spatial reasoning skills incentivized by playing the Rotation game appear when solving *Angle*-related problems.

gories: General (MuirBench (Wang et al., 2024a), CRPE (Kazemzadeh et al., 2014)), Vision-Centric (MMVP (Tong et al., 2024b), RealWorldQA (X.AI, 2024), MMStar (Chen et al., 2024a), MME (Fu et al., 2023), BLINK (Fu et al., 2024)), and OCR & Chart (AI2D (Kembhavi et al., 2016), SEED-Bench-2-Plus (Li et al., 2024a), DocVQA (Mathew et al., 2021), OCRBench (Liu et al., 2023)). More detailed descriptions of each benchmark are provided in Appendix B.6.

3.1 MAIN RESULTS

Zero-shot generalization from gameplay to multimodal reasoning. Our approach consistently shows remarkable generalization capabilities on mathematical and other reasoning tasks, despite having no direct exposure to in-domain training data during RL post-training. As shown in Tab. 2, our method notably outperforms models specifically RL-trained on mathematical tasks. For instance, ViGaL Snake + Rotation achieves 0.5% higher accuracy than MM-Eureka-Qwen-7B (Meng et al., 2025) 28.7% on Geometry, even though MM-Eureka-Qwen-7B was explicitly trained on high-quality mathematical and geometry datasets.

This strong generalization extends beyond mathematics. Tab. 3 shows that ViGaL Snake + Rotation outperforms R1-OneVision-7B (Yang et al., 2025) by 5.4% on average across MMMU series benchmarks, which test multi-disciplinary reasoning. This is particularly notable since R1-OneVision-7B was trained on a carefully curated comprehensive dataset spanning multiple subjects.

These empirical results suggest that gameplay-based post-training develops fundamental reasoning capabilities that transfer more effectively than direct RL training on diverse task-specific datasets. Moreover, the gameplay environment appears to encourage general problem-solving strategies that consistently generalize well to out-of-domain tasks.

Model	Avg.	MathVista	MathVerse	MathVision
Base Model: Qwen2.5-VL-7B	47.7	68.0	49.0	26.0
MM-Eureka-Qwen-7B	50.1	73.0	50.3	26.9
ViGaL Snake + Rotation	50.6	71.9	52.4	27.5
ViGaL Snake + Rotation + Math Data	51.8	72.3	54.5	27.7

Table 4: **Gameplay complements math data.** Adding math data MMK12 on top of ViGaL yields further gains in math performance. With access to the same amount of math data, ViGaL outperforms MM-Eureka (Meng et al., 2025) on average of the three math benchmarks.

Blending multiple games enhances generalization. As shown in Tab. 2, post-training on Snake achieves best performance on the CLEVR+ benchmark, while training on Rotation yields stronger results on geometry reasoning. Furthermore, training on both Snake and Rotation enables learning complementary skills, improving the overall benchmark average to 63.1%. These findings indicate that combining game environments drives meaningful performance gains, demonstrating Visual Gaming Learning’s potential as a promising paradigm for enhancing generalizable reasoning without large-scale domain-specific data. Expanding the types of games during training consistently scales performance across different visual reasoning tasks.

Different games benefit distinct math subfields. To study which types of problems in the math benchmarks benefit from game play, we analyze accuracy differences across MathVerse (Zhang et al., 2024) subcategories between ViGaL models trained with Snake or Rotation, as shown in Fig. 3. We find that training on the Snake game significantly improves performance on the sub-categories like Expressions and Coordinates, while training on Rotation notably enhances performance on questions about angles and lengths. To understand why different games help with different types of math, we compare the reasoning processes required for playing games versus solving math problems. As shown in Fig. 4, solving Expressions questions involves algebraic functions and coordinate-level interpretations of graphical representations, which closely align with the spatial reasoning process in Snake. Similarly, solving angle-related questions is consistent with requirement of playing Rotation game to reason about rotational angles of 3D objects. These results suggest that playing different games develops fundamental skills like spatial modeling and algebraic calculation that transfer to visual math questions. To validate whether this pattern generalizes beyond Snake and Rotation, we extend this analysis to four additional games (Maze, Tetris, Sudoku, Sokoban) and identify systematic transfer patterns based on cognitive alignment between game mechanics and mathematical skills. A complete multi-game study using K-Means clustering analysis on MathVerse subject-level categories is presented in Appendix Sec. B.4. The experiment on quantitatively analyzing the correlation between math and game is in Sec. B.9 in the Appendix. Furthermore, joint training on both games leads to improvements across *all* reasoning categories (see Appendix Sec. B.3). We also include qualitative analyses on improvements in math reasoning after RL in Appendix Sec. C.

Gameplay complements math data. We explore the complementary benefits of adding math data to the gameplay training pipeline, for which we implement a two-stage training process. Stage 1 equals to ViGaL setup, training the model on Snake and Rotation games. In stage 2, we further finetune the stage 1 model on MMK12 (Meng et al., 2025), a multimodal mathematical reasoning dataset containing approximately 12k examples. Stage 2 training uses the identical data and settings as MM-Eureka-Qwen-7B (Meng et al., 2025). As shown in Tab. 4, the integration of mathematical data in stage 2 yields a continuous improvement of 1.2% on average across three mathematical benchmarks. This demonstrates the complementary relationship between our visual game learning approach and mathematical data post-training. Moreover, ViGaL with math data significantly outperforms MM-Eureka-Qwen-7B by 1.7% on mathematical benchmarks on average, using the same math data. These results suggest that visual game learning can serve as an effective surrogate task together with domain-specific data to improve performance on target tasks.

Preserving general visual capabilities while reasoning enhancement. To examine whether generalization on reasoning tasks leads to degradation in general visual capabilities, we evaluate ViGaL Snake + Rotation on a broader set of MLLM benchmarks. As shown in Tab. 9 in Appendix, compared to Qwen2.5-VL-7B prior to RL tuning, our model maintains comparable general visual performance while achieving stronger math reasoning results. In contrast, other models that improve

	(a) Text prompt design.					(b) Reward design.					(c) Difficulty control.				
	prompt	Avg.	Math	CLEVR+	Geo.	reward	Avg.	Math	CLEVR+	Geo.	difficulty control	Avg.	Math	CLEVR+	Geo.
378	base model	49.1	47.7	54.9	44.8	base model	49.1	47.7	54.9	44.8	base model	49.1	47.7	54.9	44.8
379	w/o reasoning instr.	59.5	48.0	80.4	50.1	best moves	59.6	48.2	80.4	50.2	w/o difficulty control	60.6	48.8	81.4	51.8
380	w/ reasoning instr.	62.3	49.4	82.6	55.0	best & worst moves	62.3	49.4	82.6	55.0	w/ difficulty control	62.3	49.4	82.6	55.0
381						w/ random label	49.4	47.5	55.4	47.5					
382															
383	(d) Data scalability.					(e) Input modality.					(f) SFT vs. RL.				
384	training samples	Avg.	Math	CLEVR+	Geo.	input modality	Avg.	Math	CLEVR+	Geo.	post-training	Avg.	Math	CLEVR+	Geo.
385	base model	49.1	47.7	54.9	44.8	base model	49.1	47.7	54.9	44.8	base model	49.1	47.7	54.9	44.8
386	16K	60.1	48.9	81.2	50.3	text	59.6	48.5	80.1	50.3	SFT	47.2	38.0	71.5	32.1
387	36K	62.3	49.4	82.6	55.0	vision & text	62.3	49.4	82.6	55.0	RL	62.3	49.4	82.6	55.0
388															

Table 5: **Ablation study.** We ablate different aspects of ViGaL with Snake and evaluate on downstream benchmarks. The similar evaluation with Rotation is in Sec. B.2. Each benchmark consists of several subtasks (Tab. 2 and Tab. 3), and we report their averages. The base model is Qwen2.5-VL-7B, whose results are in gray. The default settings in Tab. 2 and Tab. 3 are highlighted in blue.

math performance through RL post-training often exhibit substantial drops in general visual capabilities. These results demonstrate that our gameplay-based approach enables math generalization without compromising other visual abilities.

3.2 ABLATION STUDY

We ablate key design choices in the Snake environment, evaluate each variant on downstream benchmarks, and report the results in Tab. 5. The corresponding ablation for the Rotation environment is provided in Appendix Sec. B.2.

Reasoning instructions in the text prompt help. We use reasoning instructions, such as “finding the nearest apple by calculating Manhattan distances”, in the text prompts to guide the model thinking chains. The complete text prompts are in Appendix Sec. A.2. In Tab. 5a, we demonstrate that reasoning instructions brings a significant improvement of 2.8%, from 59.5% to 62.3%, for Snake in average accuracy over the three out-of-domain benchmarks.

Reward design of pre-text game matters for downstream tasks. We show that reward design of RL for games plays a crucial role for the downstream tasks. As shown in Tab. 5b, we first ask the model to predict only the best next move, defined as the action that moves toward the closest apple while avoiding death. In our improved reward design, we task the model with simultaneously predicting both the best and worst next moves, where the worst move leads directly to losing the game. More importantly, it leads to improvements across all downstream tasks, bringing an average increase of 1.8%. These results suggest that proper reward design in pre-text game can improve not only gameplay capabilities but also generalization to downstream tasks.

Furthermore, inspired by several prior works that improve model performance without labeled rewards (Zhao et al., 2025) or with random labels (Shao et al., 2025), we also provide a random reward ablation, where we still ask the model to predict both best and worst moves but use random moves as the labels. We report the results in the last row in Tab. 5b. In our gameplay setting, RL with random labels reports 49.4% on average and does not provide significant gains over the base model, different from the conclusions in prior works (Shao et al., 2025). Potential explanations lie in the difference in data domains and base models, where other works applied random labels to text-only mathematical data while our work applies random labels to visual game data.

Controlling game difficulty for better reasoning. Gameplay for RL post-training offers unique opportunities to easily control task difficulty. We present an ablation study on difficulty control importance. We define difficulty based on snake length, where longer snakes represent higher difficulty. For controlled difficulty, we collect training data using states where snake length falls within a moderate range of 1-5. Details are in Sec. A.1. As shown in Tab. 5c, difficulty control achieves 61.4% overall accuracy compared to 60.6% without control. This suggests our game engine can easily generate appropriately difficult data, helping prevent model sub-optimization during RL training.

RL on games shows data scalability. Thanks to using game engine, we can generate data at any scale with high flexibility. To show data scalability on RL of visual games, we conduct experiments using 16k and 32k snake game samples, respectively. As in Tab. 5d, scaling data from 16k to

432 32k brings a performance improvement of 1.3% on average across all domains. This suggests the
 433 potential of the proposed ViGaL paradigm to improve downstream performance by easily scaling
 434 training data, which contrasts with the data scaling challenges of domain-specific human annotated
 435 data, requiring extensive manual effort.
 436

437 **Both text and vision contribute to better visual reasoning.** To isolate the contributions of text
 438 and vision modalities, we conduct an ablation study with a text-only setting. In this setup, we rep-
 439 resent game states—including snake positions, apple locations, and boundary constraints—using
 440 only textual descriptions during RL training. The model trained with text-only inputs on the Snake
 441 game demonstrates substantial improvements across all multimodal benchmarks, with average per-
 442 formance increasing from 49.1% to 59.6%. Incorporating visual inputs yields an additional 1.8%
 443 performance gain. These results demonstrate that multimodal RL enhances visual reasoning capa-
 444 bilities, with complementary contributions from both text and vision modalities.
 445

446 **RL generalizes better than SFT from games to math.** To evaluate the out-of-domain gener-
 447 alization of ViGaL, we compare it with supervised fine-tuning (SFT) using identical visual game
 448 data. Tab. 5f shows that SFT with Snake game data degrades the base model’s performance on
 449 both mathematical reasoning and geometry tasks by a notable 9.7% and 12.7%, respectively. While
 450 SFT produces modest improvements on CLEVR+, these gains are substantially smaller than those
 451 achieved by RL. Overall, RL improves performance by 12.3%, whereas SFT decreases performance
 452 by 1.9%. This stark contrast demonstrates that RL better preserves and extends the model’s reason-
 453 ing capabilities to new domains.
 454

4 RELATED WORK

455 **Reinforcement Learning in MLLMs.** Reinforcement Learning (RL) increasingly enhances rea-
 456 soning in Large Language Models (LLMs) beyond Supervised Fine-Tuning (SFT). Text-only mod-
 457 els like DeepSeek-R1 (DeepSeek-AI, 2025) demonstrate RL’s efficacy, especially with rule-based
 458 rewards, for complex reasoning. This paradigm is now being extended to Multimodal LLMs
 459 (MLLMs). Recent MLLM research explores RL for improved visual reasoning, drawing from
 460 LLM successes. Various works (Peng et al., 2025; Huang et al., 2025; Chen et al., 2025b) in-
 461 vestigate multi-stage training, trace supervision, or rule-based RL for specific visual subdomains
 462 like geometry and counting. Others focus on different RL algorithms like Process Reward Models
 463 (PRMs) (Luo et al., 2025; Xiang et al., 2024), often moving beyond SFT-based Chain-of-Thought
 464 generation (Dong et al., 2024; Thawakar et al., 2025). Many efforts favor simpler rule-based re-
 465wards (Huang et al., 2025; Zhou et al., 2025) over complex reward models prone to hacking (Eisen-
 466stein et al., 2023). Unlike approaches training on costly, domain-specific reasoning datasets, our Vi-
 467 GaL paradigm extends rule-based RL to simple, synthetic visual games, demonstrating these serve
 468 as scalable, cost-effective pre-text tasks.
 469

470 **Generalization in MLLMs.** Achieving robust generalization to novel tasks, distributions, and
 471 domains is central to MLLM development. RL shows promise for better out-of-distribution (OOD)
 472 generalization compared to SFT (Chen et al., 2025b; Meng et al., 2025), and developing multi-step
 473 reasoning like CoT (Wei et al., 2022) is itself generalization. This is often pursued through training
 474 on large, diverse instruction-following datasets (Li et al., 2024b; Liu et al., 2024; Chen et al., 2024b)
 475 or explicitly training general reasoning capabilities (Yang et al., 2025; Huang et al., 2025). While
 476 these methods advance OOD generalization, they typically operate within the same broad domain
 477 of complex visual reasoning as training data. Our ViGaL paradigm investigates stronger out-of-
 478 domain generalization, showing fundamental skills learned from simple synthetic games transfer
 479 zero-shot to enhance performance on entirely different, complex domains like visual mathematics
 480 and multi-discipline questions, without domain-specific data exposure.
 481

482 **Transfer Learning and Curriculum Learning.** The idea that training on simpler tasks can im-
 483 prove performance on more complex ones is often framed as transfer learning. In this view, a model
 484 first learns from a source task or domain, then reuses that knowledge to improve a different target
 485 task (He et al., 2020). Before MLLMs, this principle was studied widely in computer vision through
 486 self-supervised pretext tasks, where models are trained without labels to solve auxiliary tasks such

486 as predicting image rotations (Gidaris et al., 2018), relative positions of patches (Doersch et al.,
 487 2015), or colorization, and the learned representations are then transferred to downstream tasks like
 488 detection or segmentation. These methods show that solving carefully designed pretext tasks can
 489 produce robust visual features that support related vision problems. In reinforcement learning, cur-
 490 riculum learning (Bengio et al., 2009) applies a related idea by ordering tasks or data from easy to
 491 hard so that agents gradually master more difficult behaviors. RL curricula and autocurricula have
 492 been used to grow complex behaviors from simple environments, for example in multi-agent games
 493 and robotics (Baker et al., 2019; Narvekar et al., 2020), typically within a single task family where
 494 later tasks share the same goal structure as earlier ones. Our ViGaL paradigm is different in two
 495 key respects. First, unlike self-supervised pretext approaches that transfer static feature representa-
 496 tions within the visual domain, we transfer learned reasoning policies, such as look-ahead planning,
 497 spatial verification, and constraint satisfaction, across tasks and domains. Second, unlike RL cur-
 498 riculum work that mainly increases difficulty within the same environment class, ViGaL transfers
 499 policies learned in visual control games to abstract symbolic reasoning tasks in coordinate geometry
 500 and multi-discipline question answering, without using domain-specific supervision in those target
 501 domains.

5 CONCLUSION

502 We introduced Visual Game Learning (ViGaL), a novel post-training paradigm where MLLMs learn
 503 transferable reasoning by playing simple arcade-style games. Our core finding is that RL on games
 504 like Snake and Rotation, *without any in-domain math data*, significantly boosts MLLM performance
 505 on mathematical and multi-discipline benchmarks, surpassing specialized models and even large
 506 proprietary systems. Ablations confirm the importance of game design, reward structure, and that
 507 RL outperforms SFT, while distinct games unlock different skills. We posit that games instill fun-
 508 damental reasoning skills, suggesting a new avenue for using scalable, controllable synthetic games
 509 as powerful pre-text tasks to unlock generalizable reasoning. This work opens doors to exploring a
 510 broader range of game-based learning for generalizable AI.

513 ETHICS STATEMENT

514 This work does not involve human subjects, private or sensitive data, or personally identifiable
 515 information. All training and evaluation data are either synthetically generated (Appendix A.1)
 516 or come from publicly available benchmarks (Appendix B.6). Our research adheres to the ICLR
 517 Code of Ethics, including principles of scientific integrity, fairness, and responsible stewardship.
 518 We believe the contributions of this work advance multimodal reasoning without raising foreseeable
 519 ethical or societal risks.

520 **Use of Large Language Models:** An LLM was used to assist with grammar refinement of text.
 521 Further details are provided in Appendix D.

523 REPRODUCIBILITY STATEMENT

525 We have taken steps to ensure the reproducibility of our results. The training environments, rein-
 526 forcement learning setup, and hyperparameters are described in Section 2. Details of synthetic data
 527 generation are provided in Appendix A.1, training prompts in Appendix A.2, and reward functions
 528 in Appendix A.3. Evaluation protocols for Atari-GPT and visual reasoning benchmarks are specified
 529 in Appendix B.1 and Appendix B.6.

531 REFERENCES

532 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
 533 reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025.

535 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
 536 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learn-
 537 ing from human feedback in llms. In *ACL*, 2024.

539 Fahad Alhasoun and Sarah Alnaghiehish. Probabilistic programming bots in intuitive physics game
 play. In *AAAI*, 2021.

540 Kelsey Allen, Franziska Brändle, Matthew Botvinick, Judith E. Fan, Samuel J. Gershman, Alison
 541 Gopnik, et al. Using games to understand the mind. *Nature Human Behaviour*, 2024.

542

543 Kelsey R Allen, Kevin A Smith, and Joshua B Tenenbaum. Rapid trial-and-error learning with
 544 simulation supports flexible tool use and physical reasoning. *PNAS*, 2020.

545

546 Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun Kwak.
 547 Online difficulty filtering for reasoning-oriented reinforcement learning. *arXiv:2504.03380*, 2025.

548

549 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
 550 Zhou, and Jingren Zhou. Qwen-VL: A versatile vision-language model for understanding, local-
 551 ization, text reading, and beyond. *arXiv:2308.12966*, 2023.

552

553 Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
 554 Mordatch. Emergent tool use from multi-agent autocurricula. In *ICLR*, 2019.

555

556 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
 557 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

558

559 Lara Bertram. Digital learning games for mathematics and computer science education: The need for
 560 preregistered rcts, standardized methodology, and advanced technology. *Frontiers in Psychology*,
 561 2020.

562

563 Franziska Brändle, Kelsey R Allen, Josh Tenenbaum, and Eric Schulz. Using games to understand
 564 intelligence. In *CogSci*, 2021.

565

566 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, et al. SFT or RL? an early
 567 investigation into training R1-Like reasoning large vision-language models. *arXiv:2504.11468*,
 568 2025a.

569

570 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-V: Reinforcing super generalization
 571 ability in vision-language models with less than \$3. <https://github.com/Deep-Agent/R1-V>, 2025b.

572

573 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
 574 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
 575 models? *arXiv:2403.20330*, 2024a.

576

577 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, et al. InternVL: Scaling up
 578 vision foundation models and aligning for generic visual-linguistic tasks. In *CVPR*, 2024b.

579

580 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,
 581 et al. SFT memorizes, RL generalizes: A comparative study of foundation model post-training.
 582 *arXiv:2501.17161*, 2025a.

583

584 Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. GPG: A simple and strong
 585 reinforcement learning baseline for model reasoning. *arXiv:2504.02546*, 2025b.

586

587 DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capability in llms via reinforcement learning.
 588 *arXiv:2501.12948*, 2025.

589

590 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. OpenVLThinker:
 591 An early exploration to complex vision-language reasoning via iterative self-improvement.
 592 *arXiv:2503.17352*, 2025.

593

594 Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
 595 context prediction. In *ICCV*, 2015.

596

597 Yuhao Dong, Zuyan Liu, Hai-Long Sun, Jingkang Yang, Winston Hu, Yongming Rao, and Ziwei
 598 Liu. Insight-V: Exploring long-chain visual reasoning with multimodal large language models.
 599 *arXiv:2411.14432*, 2024.

600

601 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
 602 factuality and reasoning in language models through multi-agent debate. In *ICML*, 2023.

594 Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
 595 et al. Helping or herding? reward model ensembles mitigate but do not eliminate reward hacking.
 596 *arXiv:2312.09244*, 2023.

597

598 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei
 599 Lin, Jinrui Yang, Xiawu Zheng, et al. Mme: A comprehensive evaluation benchmark for multi-
 600 modal large language models. *arXiv:2306.13394*, 2023.

601 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
 602 Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but
 603 not perceive. In *European Conference on Computer Vision*, pp. 148–166. Springer, 2024.

604

605 Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, et al. G-LLaVA:
 606 Solving geometric problem with multi-modal large language model. *arXiv:2312.11370*, 2023.

607

608 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
 609 *arXiv:2210.10760*, 2022.

610

611 Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
 612 predicting image rotations. *arXiv:1803.07728*, 2018.

613

614 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 615 unsupervised visual representation learning. In *CVPR*, 2020.

616

617 Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. OpenRLHF: An
 618 easy-to-use, scalable and high-performance RLHF framework. *arXiv:2405.11143*, 2024.

619

620 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, et al. Vision-R1: In-
 621 centivizing reasoning capability in multimodal large language models. *arXiv:2503.06749*, 2025.

622

623 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, et al.
 624 GPT-4o system card. *arXiv:2410.21276*, 2024.

625

626 Greg Kamradt. Snake Bench: Competitive snake game simulation with LLMs. <https://github.com/gkamradt/SnakeBench>, 2025.

627

628 Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to
 629 objects in photographs of natural scenes. In *EMNLP*, 2014.

630

631 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
 632 Farhadi. A diagram is worth a dozen images. In *ECCV*, 2016.

633

634 Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline for
 635 free! In *ICLR Workshop on Deep Reinforcement Learning Meets Structured Prediction*, 2019.

636

637 Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao Zhang, and Ying Shan. Seed-bench-2-plus:
 638 Benchmarking multimodal large language models with text-rich visual comprehension. *arXiv
 639 preprint arXiv:2404.16790*, 2024a.

640

641 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, et al. LLaVA-NeXT-Interleave:
 642 Tackling multi-image, video, and 3d in large multimodal models. *arXiv:2407.07895*, 2024b.

643

644 Jian Li, Weiheng Lu, Hao Fei, Meng Luo, Ming Dai, Min Xia, Yizhang Jin, Zhenye Gan, Ding Qi,
 645 Chaoyou Fu, et al. A survey on benchmarks of multimodal large language models. *arXiv preprint
 646 arXiv:2408.08632*, 2024c.

647

Zhuowan Li, Xingrui Wang, Elias Stengel-Eskin, Adam Kortylewski, Wufei Ma, Benjamin
 648 Van Durme, and Alan L. Yuille. Super-CLEVR: A virtual benchmark to diagnose domain ro-
 649 bustness in visual reasoning. In *CVPR*, 2023.

650

651 Adam Dahlgren Lindström and Savitha Sam Abraham. Clevr-Math: A dataset for compositional
 652 language, visual and mathematical reasoning. In *IJCLR*, 2022.

648 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 649 LLaVA-NeXT: Improved reasoning, OCR, and world knowledge. <https://llava-vl.gitub.io/blog/2024-01-30-llava-next/>, 2024.
 650

651 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xucheng Yin,
 652 Cheng lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: On the hidden mystery of ocr in large
 653 multimodal models. *arXiv:2305.07895*, 2023.
 654

655 Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
 656 Inter-GPS: Interpretable geometry problem solving with formal language and symbolic reasoning.
 657 *arXiv:2105.04165*, 2021.
 658

659 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, et al. MathVista:
 660 Evaluating mathematical reasoning of foundation models in visual contexts. *arXiv:2310.02255*,
 661 2024.
 662

663 Ruilin Luo, Zhuofan Zheng, Yifan Wang, Yiyao Yu, Xinzhe Ni, Zicheng Lin, et al.
 664 URSA: Understanding and verifying chain-of-thought reasoning in multimodal mathematics.
 665 *arXiv:2501.04686*, 2025.
 666

667 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 668 images. In *WACV*, 2021.
 669

670 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, et al.
 671 MM-Eureka: Exploring the frontiers of multimodal reasoning with rule-based reinforcement
 672 learning. *arXiv:2503.07365*, 2025.
 673

674 Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
 675 Curriculum learning for reinforcement learning domains: A framework and survey. *Journal of
 676 Machine Learning Research*, 21(181):1–50, 2020.
 677

678 OpenAI. Introducing OpenAI o1. <https://openai.com/o1/>, 2024.
 679

680 OpenAI. Gpt-5 system card. openai.com/index/gpt-5-system-card, 2025.
 681

682 YingZhe Peng, Gongrui Zhang, Xin Geng, and Xu Yang. LMM-R1. <https://github.com/TideDra/lmm-r1>, 2025.
 683

684 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
 685 standing by generative pre-training. *OpenAI*, 2018.
 686

687 Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
 688 Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
 689 A generalist agent. *arXiv:2205.06175*, 2022.
 690

691 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 692 optimization algorithms. *arXiv:1707.06347*, 2017.
 693

694 Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
 695 Du, Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi,
 696 Pang Wei Koh, and Luke Zettlemoyer. Spurious rewards: Rethinking training signals in
 697 rlrv. <https://rethink-rlrv.notion.site/Spurious-Rewards-Rethinking-g-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f>, 2025.
 698 Notion Blog.
 699

700 Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and
 701 Roy Ka-Wei Lee. Math-LLaVA: Bootstrapping mathematical reasoning for multimodal large
 702 language models. *arXiv:2406.17294*, 2024.
 703

704 Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and Shang-
 705 hang Zhang. Reason-RFT: Reinforcement fine-tuning for visual reasoning. *arXiv:2503.20752*,
 706 2025.
 707

708 Gemini Team. Gemini: A family of highly capable multimodal models. *arXiv:2312.11805*, 2023.
 709

702 Tencent Hunyuan3D Team. Hunyuan3D 2.0: Scaling diffusion models for high-resolution textured
 703 3d assets generation. *arXiv:2501.12202*, 2025.

704

705 Omkar Thawakar, Dinura Dissanayake, Ketan More, Ritesh Thawkar, Ahmed Heakl, Noor Ahsan,
 706 et al. LLaMAV-01: Rethinking step-by-step visual reasoning in LLMs. *arXiv:2501.06186*, 2025.

707

708 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha
 709 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully
 710 open, vision-centric exploration of multimodal llms. *Advances in Neural Information Processing
 711 Systems*, 37:87310–87356, 2024a.

712

713 Shengbang Tong, Zhuang Liu, Yuexiang Zhu, Xingjian Chen, Ruoyu Zhang, Bo Li, et al. Eyes wide
 714 shut? exploring the visual shortcomings of multimodal llms. *arXiv preprint arXiv:2401.06209*,
 2024b.

715

716 Bas Van Opheusden, Ionatan Kuperwajs, Gianni Galbiati, Zahy Bnaya, Yunqi Li, and Wei Ji Ma.
 717 Expertise increases planning depth in human gameplay. *Nature*, 2023.

718

719 Fei Wang, Xingyu Fu, James Y Huang, Zekun Li, Qin Liu, Xiaogeng Liu, Mingyu Derek Ma,
 720 Nan Xu, Wenxuan Zhou, Kai Zhang, et al. Muirbench: A comprehensive benchmark for robust
 721 multi-image understanding. *arXiv preprint arXiv:2406.09411*, 2024a.

722

723 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
 724 Hongsheng Li. Measuring multimodal mathematical reasoning with Math-Vision dataset. In
 725 *NeurIPS*, 2024b.

726

727 Nicholas R. Waytowich, Devin White, M.D. Sunbeam, and Vinicius G. Goecks. Atari-GPT: Investi-
 728 gating the capabilities of multimodal large language models as low-level policies for atari games.
 729 *arXiv:2408.15950*, 2024.

730

731 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 732 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *NeurIPS*,
 733 2022.

734

735 X.AI. Grok-1.5 vision preview. <https://x.ai/blog/grok-1.5v>, 2024.

736

737 Kun Xiang, Zhili Liu, Zihao Jiang, Yunshuang Nie, Runhui Huang, Haoxiang Fan, et al. AtomThink:
 738 A slow thinking framework for multimodal mathematical reasoning. *arXiv:2411.11930*, 2024.

739

740 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 741 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 742 learning. *arXiv preprint arXiv:2502.14768*, 2025.

743

744 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, et al.
 745 R1-OneVision: Advancing generalized multimodal reasoning through cross-modal formalization.
 746 *arXiv:2503.10615*, 2025.

747

748 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 749 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 750 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF
 751 Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024a.

752

753 Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,
 754 Botao Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline multimodal
 755 understanding benchmark. *arXiv preprint arXiv:2409.02813*, 2024b.

756

757 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 758 reinforcement learning really incentivize reasoning capacity in LLMs beyond the base model?
 759 *arXiv:2504.13837*, 2025.

760

761 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, et al. MathVerse:
 762 Does your multi-modal LLM truly see the diagrams in visual math problems? *arXiv:2403.14624*,
 763 2024.

756 Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
757 without external rewards. *arXiv preprint arXiv:2505.19590*, 2025.
758

759 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh.
760 R1-Zero’s “aha moment” in visual reasoning on a 2b non-sft model. *arXiv:2503.05132*, 2025.
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 APPENDIX
811812 **Content**
813

814 A. Data	16
815 A.1. Training Data Synthesis	16
816 A.2. Training Prompt in Visual Game Learning	17
817 A.3. Detail of Format Reward	19
818 B. Evaluation	20
819 B.1. Evaluation Detail of Atari Game	20
820 B.2. Ablation On Rotation Game	21
821 B.3. Synergistic Effects of Multi-Game Training	22
822 B.4. Auxiliary Task Selection: A Multi-Game Study	23
823 B.5. Reasoning Ability Boundary via Pass@ k Evaluation	24
824 B.6. Detail of Evaluation Benchmarks	25
825 B.7. Evaluation on General Visual Capabilities	26
826 B.8. Inference Length Analysis	26
827 B.9. Reasoning Correlation Analysis Between Game and Math	27
828 C. Case Study	27
829	
830	
831	
832	
833	
834	
835	
836	
837	
838	
839	
840	
841	
842	
843	
844	
845	
846	
847	
848	
849	
850	
851	
852	
853	
854	
855	
856	
857	
858	
859	
860	
861	
862	
863	

864
865

A DATA

866
867

A.1 TRAINING DATA SYNTHESIS

868
869
870
871
872

Thanks to using the synthetic game data engine, we can flexibly generate large-scale training data with precisely controlled difficulty levels. This completely eliminates the need for extensive data filtering strategies used in previous rule-based RL work training on domain-specific data like math (Meng et al., 2025; Bae et al., 2025), where difficulty is hard to define and filtering can significantly reduce dataset size.

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889

For the Snake game, the environment consists of a 10×10 grid game board with two snakes of 1-grid initial length, where at each time step t , each snake receives one action to move, resulting in a new game state s_{t+1} . We define difficulty based on snake length—longer snakes create more complex game situations and more constrained movement options, closely aligning with how humans perceive difficulty when playing Snake. To generate meaningful moves that accomplish the objective of collecting more apples while remaining alive, we implement a policy network based on Proximal Policy Optimization (PPO) (Schulman et al., 2017). The observation space is represented as a 10×10 grid with distinct values indicating empty cells (0), apples (1), the agent’s own body (2), and other agents’ bodies (3), stacked across 4 time steps to incorporate temporal information, resulting in an input tensor $\mathbf{X} \in \mathbb{R}^{10 \times 10 \times 4}$. The policy network architecture consists of two convolutional layers with 3×3 kernels ($C_1 = 16$ and $C_2 = 32$ output channels), followed by fully connected layers that output action logits for the four possible movements, transformed into a probability distribution $\pi(a|s)$ using softmax. To prevent suicidal moves, we incorporate action priors by masking logits for dangerous actions. The model employs the standard PPO objective with entropy regularization coefficient $\beta = 0.01$, value function coefficient $\lambda = 0.5$, and clipping parameter $\varepsilon = 0.2$. Agents receive rewards of $r = +1$ for collecting apples and penalties of $r = -1$ for dying, enabling them to learn complex behaviors such as obstacle avoidance, apple pursuit, and multi-step trajectory planning.

890
891
892
893
894
895
896
897
898
899
900

For the Rotation game, training data comprises synthetically generated visual puzzles focused on 3D spatial reasoning, utilizing 540 unique 3D object meshes (408 from Hunyuan3D 2.0 (Team, 2025) and 132 from Hunyuan3D 2.5). Our custom pipeline produces pairs of images ($I_{\text{init}}, I_{\text{rot}}$) representing objects before and after defined rotations. Difficulty in Rotation is determined by the rotation angle between two images, where smaller angle differences present greater perceptual challenges. Each pair is generated through a precise sequence: establishing diverse initial viewpoints through compound transformations (base orientation plus additional z-axis rotation from $\{0^\circ, 30^\circ, \dots, 330^\circ\}$ to prevent trivial pattern learning), then applying target rotations of either 90° or 180° exclusively around the z-axis. All objects are rendered at 512×512 pixel resolution using a consistent perspective camera under standardized lighting conditions, resulting in approximately 32k unique pairs.

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Based on empirical results, we established optimal difficulty parameters for RL training across both games, which we ablate in Tab. 5c. This controlled progression of difficulty, made possible by our synthetic data generation approach, enables more effective learning trajectories compared to traditional data collection methods.

918 A.2 TRAINING PROMPT IN VISUAL GAME LEARNING
919920 Prompt for Snake Game
921922 Your role is to guide a snake within a Snake game featuring multiple apples.
923924 This game is played on a board of size 10 by 10. The board uses a standard Cartesian coordinate system,
925 where (0,0) represents the bottom-left position and (9,9) is the top-rightmost coordinate.
926927 Apples at: {apple_position}
928929 Direction of Your Last Action: {last_action}
930931 Rules:
932933 1) If you move onto an apple, you grow and gain 1 point.
934 2) If your head moves to a position where its coordinates (x, y) are outside the board boundaries (meaning
935 x < 0, x > 9, y < 0, or y > 9), or into a space occupied by another snake's body, or into a space occupied
936 by your own body, you die. That's the worst move.
937938 **3) The goal is to prioritize snake not die, then efficiently collecting apples. First avoid the worst
939 move, then for each apple, find the nearest apple by calculating Manhattan distances. But only
940 choose best next move to get closer the nearest apple if you can confirm best next move will not
941 run outside the range of the listed coordinates, run into the position of another snake, or yourself.
942 Otherwise it will be the worst move.**943 Your snake with the ID {snake_id} in {snake_color} has its head now positioned at {snake_position}, and
944 its body extends to {body_position}. You should avoid your next move into your own snake's position.
945946 Enemy snakes in {enemy_color} positions: {enemy_position}.
947948 Decreasing your x coordinate is to the LEFT, increasing your x coordinate is to the RIGHT.
949 Decreasing your y coordinate is DOWN, increasing your y coordinate is UP.
950951 Read out another snake's position and apple position. Try to predict another snake's next move and avoid
952 colliding with it.
953954 Best answer is one of next move that is the closest to the apple and not lead to your death. Worst answer
955 is all of next moves 1. makes your head's coordinates (x, y) are outside the board boundaries, meaning x
956 < 0, x > 9, y < 0, or y > 9. 2. moves into a position occupied by another snake's body. 3. moves into a
957 position occupied by body of yourself.
958959 Check all the next moves to list out all the worst moves in <worst_answer> tag. If no worst answer,
960 return None for worst answer, e.g., "<worst_answer>None</worst_answer>"
961962 The best answer and the worst answer are mutually exclusive and different.
963964 You need first to give your reasoning process then to choose one of best next move and worst next move
965 from ['UP', 'DOWN', 'LEFT', 'RIGHT'].
966967 The reasoning process and answer are enclosed within <think> </think>, <best_answer>
968 </best_answer> and <worst_answer> </worst_answer> tags, respectively, i.e., "<think> reasoning pro-
969 cess here </think><best_answer> one best move here </best_answer><worst_answer> all worst moves
970 here </worst_answer>"
971

972
973

Prompt for Rotation Game

974
975

I'm showing you 4 images. Images 1-2 are an example pair, and Images 3-4 are the test pair. In each pair, the first image shows the initial orientation, and the second shows the object after rotation.

976
977

EXAMPLE OF ROTATION

978
979

Example: Image 1 shows the initial view and Image 2 shows the object after a 180 degree rotation.

980
981
982
983

YOUR TASK

Now, considering the transformation from Image 3 (initial) to Image 4 (rotated)

. Determine the angle of rotation from Image 3 to Image 4 on the plane

Analyze the rotation carefully using the example pair (Images 1-2) as a reference.

984
985
986
987

1. Coordinate System Transformation:

- Draw an x-y coordinate system on both original and rotated images with origin at center
- Identify a distinct feature point and note its coordinates in both images
- Apply rotation matrix equations to verify the transformation

988
989
990

Example: A star icon at coordinates (3,1) in the original image appears at (-1,3) in the rotated image. Testing with the 90° clockwise rotation matrix $[\cos(90^\circ), \sin(90^\circ); -\sin(90^\circ), \cos(90^\circ)]$ confirms the transformation from (3,1) to (-1,3), verifying a 90° clockwise rotation.

991

2. Angular Displacement Measurement:

- Mark the image center as the origin in both images
- Draw a straight line from center to a distinctive feature in both images
- Measure the angle between these two lines using counterclockwise as positive

995
996
997
998

Example: A line from center to a red dot makes a 30° angle with horizontal in the original image. In the rotated image, this line makes a 210° angle with horizontal. The difference (180°) indicates a clockwise 180° rotation.

999
1000
1001
1002

3. Symmetry Axis Tracking:

- Identify major symmetry axes in the original image
- Locate the same symmetry axes in the rotated image
- Calculate the angular displacement between original and rotated axes

1003
1004
1005

Example: A rectangular logo has vertical and horizontal symmetry axes. After rotation, the vertical axis now points right and horizontal points down. This 90° shift of both axes confirms a clockwise 90° rotation.

1006
1007
1008
1009

4. Triangle Configuration Analysis:

- Select three non-collinear distinct points forming a triangle in both images
- Compare the orientation of this triangle in both images using vector cross products
- Determine rotation angle from the triangle's orientation change

1010
1011
1012
1013

Example: Three points form a right triangle with vertices clockwise arranged. After rotation, the same triangle has its vertices arranged in counterclockwise order while maintaining the same shape. This inversion indicates a clockwise 180° rotation.

1014
1015
1016
1017

5. Polar Coordinate Comparison:

- Convert key points to polar coordinates (r, θ) relative to image center
- Compare θ values of the same features in original and rotated images
- Calculate consistent angular difference across multiple points

1018
1019
1020

Example: A feature at polar angle 45° in the original image appears at 135° in the rotated image. Another feature shifts from 10° to 100° . Both show a $+90^\circ$ shift in polar angle, confirming a clockwise 90° rotation.

1021
1022

Choose the rotation angle from this list: ['counter clockwise 90', '180']

1023
1024
1025

The reasoning process and answer are enclosed within `<think> </think>` and `<answer> </answer>` tags, respectively, i.e., "`<think>` reasoning process here `</think><answer>` answer here `</answer>`"

1026 While the model takes images as input to understand the current state of the game, we design
 1027 a structural text prompt framework to also provide game guidance. Our game prompts
 1028 consist of two parts: (1) game settings and (2) reasoning instructions. (1) To help the model under-
 1029 stand the game environment, we describe the background, current game state, rules, goals,
 1030 action space, *etc.* in text besides the input image. (2) In the reasoning instruction part,
 1031 we provide specific thinking guidance since games can be approached with various thinking
 1032 chains. To encourage broader thinking, we implement different types of reasoning instructions to
 1033 guide decision-making process. Specifically, we used GPT-4o (Hurst et al., 2024) to synthesize
 1034 mathematical thinking instructions for Snake, such as “finding the nearest apple by
 1035 calculating Manhattan distances”, and spatial thinking instructions for Rotation, for
 1036 example, “identify major symmetry axes in the original image”. With reasoning
 1037 instructions for games, the obtained reasoning abilities generalize to downstream evaluation
 1038 on visual math questions (Tab. 5a). **Bold text** indicates reasoning instructions synthesized by GPT-
 1039 4o (Hurst et al., 2024).

1040 **A.3 DETAIL OF FORMAT REWARD**

1041 The format reward r_{format} validates whether the response follows the task-specific format:

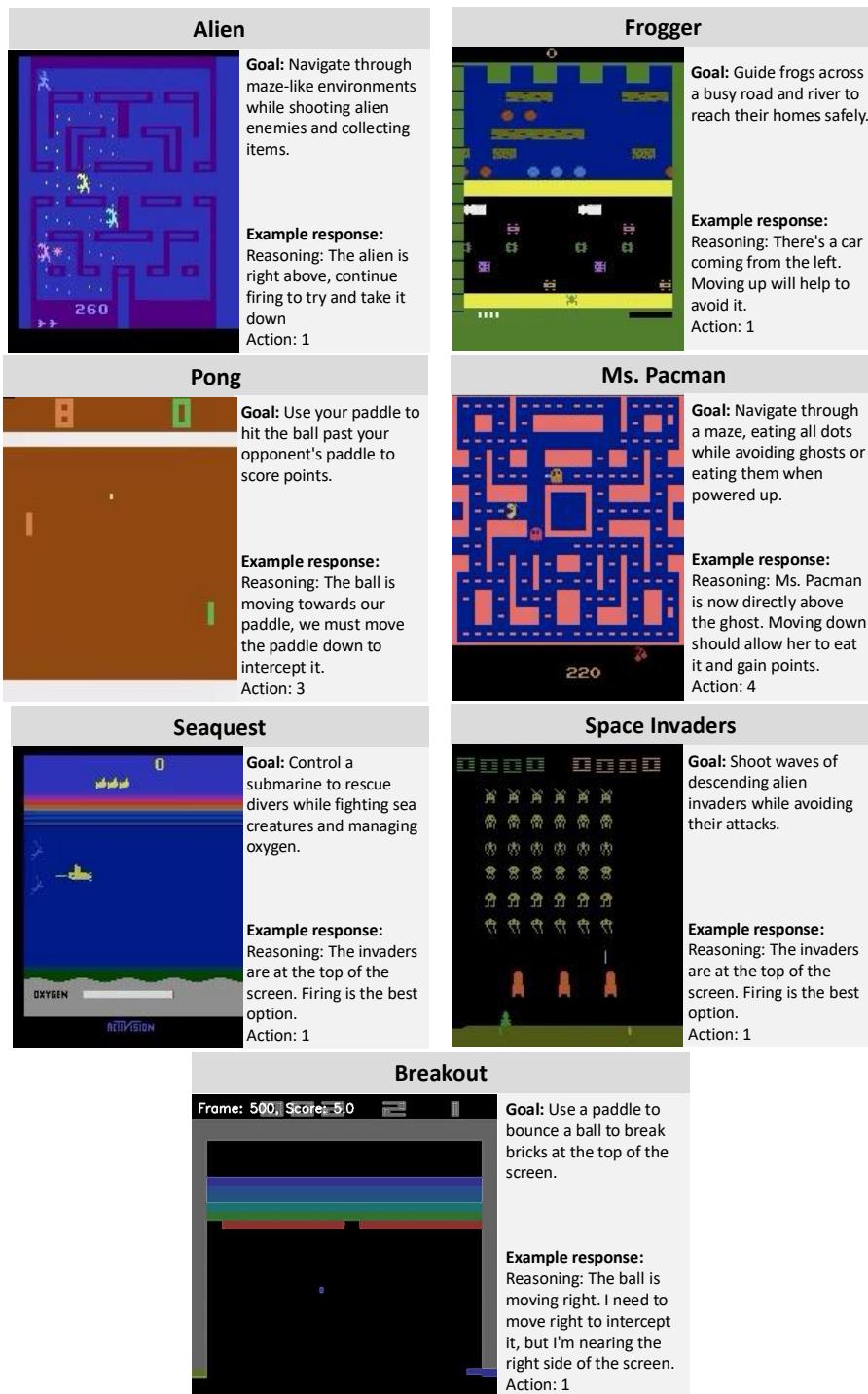
$$r_{\text{format}} = \begin{cases} 0.1, & \text{if the response follows the required format} \\ 0, & \text{otherwise} \end{cases} \quad (1)$$

1042 For Snake game, the desired format is:

1043 `<think>...</think><best_answer>...</best_answer><worst_answer>...</worst_answer>.`

1044 As suggested by the format, we encourage the model to predict both a positive move that moves
 1045 toward the apple and a negative move that leads to failure. This reward encourages contrastive
 1046 decision-making, which not only improves the model’s gameplay abilities but also boosts down-
 1047 stream reasoning performance on visual math benchmarks. We ablate the effect in Tab. 5b. For the
 1048 rotation task, the required format is simply `<think>...</think><answer>...</answer>`.

1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 **B EVALUATION**
10811082 **B.1 EVALUATION DETAIL OF ATARI GAME**
10831130 **Figure 5: Goal and example response from model of Atari games used for evaluation.** We
1131 implement 7 kinds of Atari games from Atari-GPT (Waytowich et al., 2024).1132
1133

1134 To evaluate out-of-distribution generalization, we test ViGaL on Atari-GPT (Waytowich et al.,
 1135 2024), a benchmark for evaluating MLLMs as decision-making agents in Atari video games, as
 1136 shown in Fig. 5. The benchmark consists of seven different Atari games: Alien, Frogger, Pong, Ms.
 1137 Pacman, Seaquest, Space Invaders and Breakout. These games present diverse visual environments
 1138 which is different from Snake game and Rotation game, and require different strategic approaches to
 1139 finish the goal, making them an ideal test bed for ViGaL evaluating out-of-distribution generalization
 1140 capabilities.

1141 For evaluation, we input game frames as pixel observations to our model, following the established
 1142 protocol in Atari-GPT. Specifically, each game frame is resized from $210 \times 160 \times 3$ to $512 \times 512 \times 3$,
 1143 then provided to our model along with game-specific action information. We maintain a context
 1144 buffer containing the two previous frames and responses together with the current frame to enable
 1145 temporal reasoning. Following Atari-GPT, we implement frame skipping of 8 frames, which extends
 1146 the standard 4-frame skipping in ALE to reduce computational intensity while preserving gameplay
 1147 continuity.

1148 We evaluate our method through four independent rollouts of 1,000 timesteps each and report the
 1149 average cumulative reward, with results presented in Tab. 1c.

1150

1151 B.2 ABLATION ON ROTATION GAME

1152

1153 **Table 6: Ablation study.** Similar to the evaluation in Tab. 5, we analyze how different aspects of
 1154 our post-training strategy within the Rotation game affect downstream generalization benchmarks.
 1155 The base model is Qwen2.5-VL-7B, with results shown in gray. The default settings from Tab. 2
 1156 and Tab. 3 are highlighted in blue. We observe the same improvement trends for each strategy as
 1157 reported in Tab. 5.

1158

prompt	(a) Prompt design.				(b) SFT vs. RL.				
	Avg.	Math	CLEVR+	Geo.	post-training	Avg.	Math	CLEVR+	Geo.
base model	49.1	47.7	54.9	44.8	base model	49.1	47.7	54.9	44.8
w/o Reasoning Instruction	61.4	48.9	80.4	54.8	SFT	55.6	44.0	75.4	47.5
w/ Reasoning Instruction	62.6	49.3	80.7	57.9	RL	62.6	49.3	80.7	57.9

	(c) Difficulty control.				
	difficulty control	Avg.	Math	CLEVR+	Geo.
	base model	49.1	47.7	54.9	44.8
	w/o difficulty control	61.0	48.0	80.2	54.8
	w/ difficulty control	62.6	49.3	80.7	57.9

1163

1164 As shown in Tab. 6, we conduct a similar ablation study to Tab. 5, but replace the Snake game
 1165 environment with the Rotation game. Our results demonstrate the same consistent improvement
 1166 trends on downstream generalization benchmarks for each strategy employed.

1167

1168 Specifically, we control the task difficulty by varying the rotation angles between two images. In
 1169 the uncontrolled difficulty setting, the rotation angle between images can be clockwise 90° , counter-
 1170 clockwise 90° , or 180° . However, we found that explicitly requiring the model to distinguish be-
 1171 tween clockwise and counter-clockwise rotations leads to training difficulties. Therefore, we remove
 1172 it and only retain option of clockwise 90° and 180° rotations.

1173

1174 Unlike the Snake game, we cannot conduct the ablations shown in Tab. 5e because the Rotation game
 1175 is inherently vision-dependent and requires visual input. Similarly, we cannot perform the ablations
 1176 in Tab. 5b because the Rotation game provides only binary answer options, making it impossible to
 1177 meaningfully designate both "best" and "worst" answers simultaneously.

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

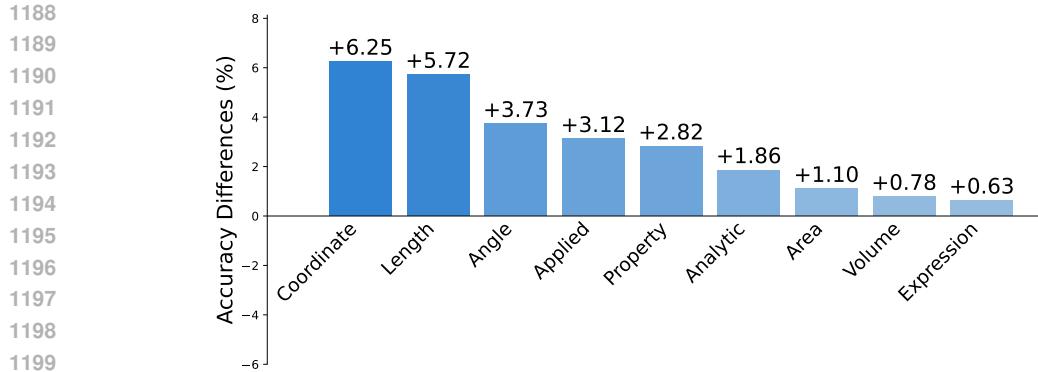


Figure 6: **Accuracy differences between ViGaL-Snake+Rotation and base model without RL training across mathematical subfields in Mathverse.** The synergistic effects of jointly training on two games observed suggest that complementary games can enhance overall mathematical reasoning capabilities.

B.3 SYNERGISTIC EFFECTS OF MULTI-GAME TRAINING

As discussed in Sec. 3.1, our analysis reveals that each game develops distinct reasoning abilities in the model. To investigate potential combined benefits, we conducted experiments where models were trained simultaneously on *both* the Snake and Rotation games. Fig. 6 shows that joint training effectively combines the strengths of each individual game, improving performance across the mathematical areas where each game shows particular effectiveness, resulting in greater overall gains on Mathverse. These results suggest that strategically combining games with complementary strengths offers a simple yet effective approach to enhance model generalization abilities.

B.4 GENERALIZATION BEYOND SNAKE AND ROTATION: A MULTI-GAME STUDY

A key question is whether the observed benefits are specific to Snake and Rotation, or whether they generalize across diverse game mechanics. To investigate this, we extend our study to four additional games: Sokoban, Maze, Tetris, and Sudoku. Sokoban requires pushing boxes to target positions while navigating spatial constraints; Maze involves pathfinding through obstacles to reach a goal; Tetris requires rotating and positioning falling shapes to complete rows; Sudoku demands filling grids while satisfying row, column, and box constraints. These games introduce cognitive challenges beyond Snake and Rotation, including strategic planning and logical deduction. This extended study allows us to examine whether the transfer of reasoning skills from gameplay to mathematical tasks is a general phenomenon or an artifact of our initial game selection.

Consistent improvements across diverse games. Tab. 7 shows that all games yield consistent gains across mathematical reasoning benchmarks, with improvements ranging from 1.5% to 1.7% on average. This demonstrates that developing transferable reasoning skills from visual gameplay is robust across diverse game mechanics and not specific to Snake and Rotation.

Systematic transfer patterns through subject-level analysis. To understand how different game mechanics transfer to specific mathematical sub-skills, we analyze performance on MathVerse using its official subject split, which assigns each problem to one of three subjects: Plane Geometry (angles and lengths), Functions (coordinate graphs and related diagrams), and Solid Geometry (volume and surface area). We use this subject-level split instead of the finer subfields because many of those subfields depend on overlapping skills. For example, the Coordinate, Property, and Expression subfields all require interpreting coordinate systems. The subject-level grouping therefore offers a more stable and disentangled proxy for distinct mathematical reasoning abilities, for instance by placing all questions that require interpreting coordinate systems under Functions.

Tab. 8 reports performance gains for all six games separately for each subject. Based on these performance profiles, we grouped the six games into three clusters using K-Means clustering to identify systematic transfer patterns:

1242 Table 7: Comparison of different auxiliary games on mathematical reasoning benchmarks. All
 1243 models use Qwen2.5-VL-7B as the base. All games yield consistent improvements, demonstrating
 1244 the generalizability of game-based transfer learning.

Model	Math Avg.	MathVerse	MathVista	MathVision
Qwen2.5-VL-7B	47.7	49.0	68.0	26.0
+ Maze	49.3	50.9	70.3	26.7
+ Rotation	49.3	50.4	71.2	26.3
+ Snake	49.4	51.1	70.7	26.5
+ Sokoban	49.3	50.5	70.1	27.2
+ Sudoku	49.3	51.2	69.0	27.6
+ Tetris	49.2	50.8	69.4	27.4

1258 Table 8: Performance gains on MathVerse subjects for each auxiliary game, showing accuracy im-
 1259 provement relative to the Qwen2.5-VL-7B baseline. We use the official subject split from Math-
 1260 Verse: Plane Geometry (angles and lengths), Functions (coordinate graphs and related diagrams),
 1261 and Solid Geometry (volume and surface area). This subject-level grouping provides a more stable
 1262 proxy for distinct mathematical reasoning abilities compared to finer subfields that depend on over-
 1263 lapping skills.

Model	Plane Geometry	Functions	Solid Geometry
Baseline (Qwen2.5-VL-7B)	52.43	49.81	33.45
+Snake	+1.81	+3.77	+0.84
+Rotation	+2.32	+1.13	+0.50
+Maze	+1.96	+1.76	+1.84
+Tetris	+1.73	+2.01	+1.34
+Sokoban	+1.49	+1.89	+0.84
+Sudoku	+2.28	+2.27	+1.34

- **Cluster 1 (Snake, Sokoban):** Strongest transfer to **Functions** (+2.83% avg). Snake and Sokoban require tracking multiple objects moving in coordinate space: the snake’s growing body segments or boxes being pushed to target positions. Players must reason about how coordinate relationships between objects evolve as actions unfold, mirroring the core skill in Functions problems, understanding coordinate transformations (e.g., translations, scaling) and how values change under sequential operations.
- **Cluster 2 (Rotation):** Strongest transfer to **Plane Geometry** (+2.32%). This puzzle requires recognizing 3D object rotation angles, directly engaging angle reasoning and spatial relationships fundamental to plane geometry.
- **Cluster 3 (Maze, Sudoku, Tetris):** Balanced improvements across all three subjects. These games engage distinct reasoning modes: Maze requires navigating to find optimal paths; Sudoku demands symbolic constraint satisfaction without spatial movement; Tetris involves shape transformations and pattern completion. This diversity of non-overlapping cognitive demands supports reasoning across mathematical domains more broadly rather than specializing to a single subject.

1293 These findings reveal systematic relationships between game mechanics and mathematical reasoning
 1294 categories. Beyond confirming the generalizability of our approach, the results provide practical
 1295 guidance for auxiliary task selection: to improve a specific downstream skill, one can select existing
 games whose cognitive requirements align with the target skill. Our framework offers a method for

1296 systematically choosing and combining off-the-shelf games based on observed cognitive transfer
 1297 patterns.
 1298

1299 **B.5 REASONING ABILITY BOUNDARY VIA PASS@ k EVALUATION**
 1300

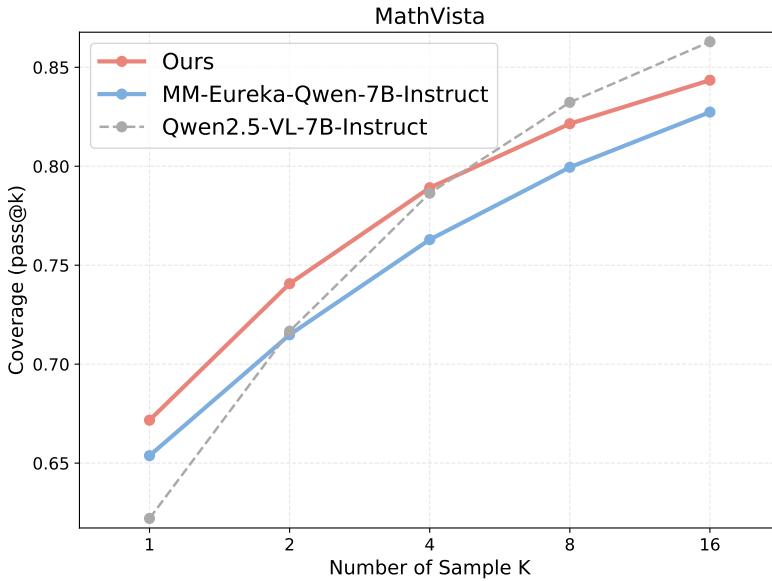


Figure 7: Pass@ k performance curves on MathVista comparing base models with their zero-RL counterparts trained on mathematical data and game data, respectively.

We explore the reasoning ability boundary of models trained with different RL approaches by evaluating the pass@ k metric. This metric measures the probability that at least one of k independent model samples solves a given problem, indicating the true scope or boundary of a model’s reasoning capability - essentially what problems the model can potentially solve given enough sampling attempts.

We evaluate the pass@ k performance of three models: the Base Model without RL training, MM-Eureka-Qwen-7B-Instruct, and our ViGaL. As shown in Fig. 7, our ViGaL consistently demonstrates increasing pass@ k scores on Mathverse as k increases. This finding suggests that our approach can effectively solve complex problems when allowed multiple reasoning attempts, uncovering capabilities not apparent in single-sample evaluations.

Moreover, compared to the other RL-trained model, MM-Eureka-Qwen-7B-Instruct, our model achieves a steeper improvement in pass@ k as k increases. This indicates that ViGaL possesses a broader reasoning boundary and stronger reasoning abilities, enabling it to solve a wider range of problems when given sufficient opportunities to explore different solution paths.

Finally, our results demonstrate that as k increases, base models without RL training eventually outperform RL-trained models. This aligns with the findings in (Yue et al., 2025) that highlight a fundamental limitation of reinforcement learning with verifiable rewards (RLVR): while RL training significantly improves performance at small k values (e.g., pass@1), base models possess a wider coverage of solvable problems. This suggests a trade-off where RL optimization focuses on solving high-probability problems at the expense of broader solution coverage. Future work should explore RLVR algorithms that can improve pass@ k performance across all values of k , effectively extending the reasoning boundary beyond that of the base model.

B.6 DETAIL OF EVALUATION BENCHMARKS

To obtain a clearer picture of the various facets of MLLM performance, we follow prior studies (Tong et al., 2024a; Li et al., 2024c) and systematically and carefully divide existing benchmarks

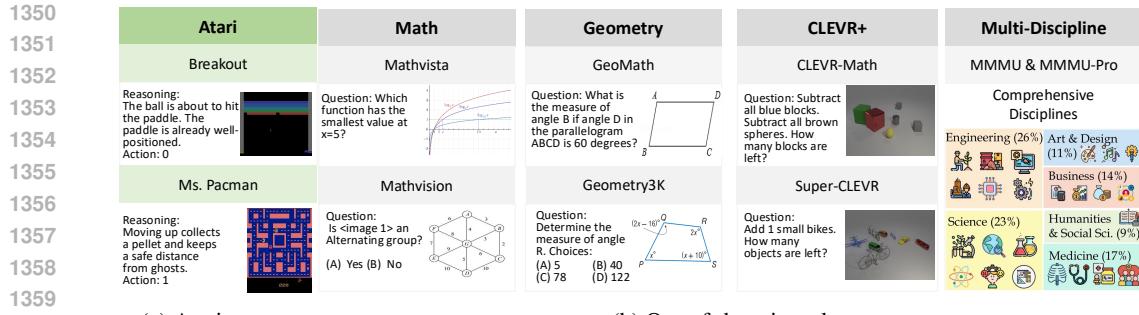


Figure 8: **Samples from our generalization reasoning benchmarks.** We evaluate the proposed Vi-GaL with two types of generalization: (a) *out-of-distribution* generalization, where models trained on our visual games are tested on unseen Atari games (Waytowich et al., 2024); and (b) *out-of-domain* generalization, where models trained only on game tasks are evaluated on diverse multimodal reasoning tasks including mathematical reasoning, geometric problem-solving, 3D understanding on CLEVR+ and multi-discipline reasoning on MMMU series.

into two broad groups: (i) *reasoning-oriented benchmarks*, which require multi-step or mathematical reasoning to solve the problems, and (ii) *general-purpose perception benchmarks*, which primarily assess broad visual understanding and perception abilities.

For reasoning-oriented benchmarks, we comprehensively evaluate the visual reasoning generalization capabilities of RL through gaming on a diverse collection of tasks that specifically demand advanced visual reasoning skills, including math-focused tasks like Math and Geometry, and other comprehensive reasoning benchmarks beyond math, like CLEVR+ and Multi-Discipline. Fig. 8b illustrates specific examples from each benchmark.

- **Math** evaluates multimodal math reasoning with widely-used datasets: MathVista (test-mini) (Lu et al., 2024), MathVerse (testmini) (Zhang et al., 2024), and MathVision (test) (Wang et al., 2024b). MathVista offers diverse problems spanning VQA, logic, algebra, and geometry; MathVerse emphasizes algebraic and geometric image comprehension; MathVision tests abstract visual reasoning.
- **Geometry** evaluates structural interpretation skills across mathematical diagrams, medical images, charts, and architectural layouts. It uses datasets GeoMath (Geo170K (Gao et al., 2023), Math360K (Shi et al., 2024)) and Geometry3K (Lu et al., 2021), featuring both choice and non-choice questions. Following Reason-RFT (Tan et al., 2025), we test with 820 GeoMath and 800 Geometry3K samples.
- **CLEVR+** evaluates the integration of mathematical and spatial reasoning skills through challenging arithmetic problems in complex 3D block-based scenes, including sub-tasks on CLEVR-Math (Lindström & Abraham, 2022) and Super-CLEVR (Li et al., 2023). Following Reason-RFT (Tan et al., 2025), we use 1K test samples from each of CLEVR-Math and Super-CLEVR.
- **Multi-Discipline** evaluates college-level expert knowledge across six disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. We follow the evaluation setting of MMMU (Yue et al., 2024a) val set (900 questions) and MMMU-Pro (Yue et al., 2024b) overall score (average of standard 10-option and vision-only settings).

For general-purpose perception benchmarks, we systematically evaluate comprehensive visual capabilities. Following previous work, these benchmarks are categorized into three distinct types: General, Vision-Centric, and OCR & Chart.

- **General** benchmarks assess fundamental visual understanding capabilities. We evaluate MuirBench (Wang et al., 2024a) for multi-image understanding and CRPE (Kazemzadeh et al., 2014) for relation understanding.

1404	Model	General				Vision-Centric					OCR & Chart					
		Avg.	Avg.	Muir-Bench	CRPE _{rel}	Avg.	MMVP	Real-WorldQA	MMStar	BLINK _{val}	MME _p	Avg.	AI2D _{w.M.}	SEED-Bench-2+	DocVQA	OCR-Bench
Proprietary Model																
1407	GPT-4o (Hurst et al., 2024)	74.8	72.3	68.0	76.6	69.4	—	75.4	64.7	68.0	1614	82.6	84.6	72.0	91.1	736
General Multimodal Language Model																
1409	Qwen2.5-VL-7B (Bai et al., 2023)	72.4	68.0	59.6	76.4	65.8	74.3	68.5	63.9	56.4	1698	83.3	83.9	70.4	95.7	864
Multimodal Reasoning Model Post-Trained on Qwen2.5-VL-7B																
1410	R1-Onenision-7B (Yang et al., 2025)	—	66.8	46.3	87.3	56.5	61.3	58.0	57.8	48.7	1504	—	—	—	—	—
1411	R1-VL-7B (Chen et al., 2025b)	67.4	63.3	54.1	72.4	59.6	70.3	61.4	55.6	51.0	1657	79.2	81.7	66.4	89.4	81.0
1412	MM-Eureka-Qwen-7B (Meng et al., 2025)	71.8	68.9	61.1	76.7	65.1	74.3	66.1	65.9	54.0	1626	81.5	84.3	68.2	92.0	87.0
1413	Reason-RFT-Zero-7B (Tan et al., 2025)	68.4	66.9	58.5	75.2	58.5	58.0	65.3	59.1	51.6	1653	79.8	83.3	68.0	88.1	82.0
1414	VLAA-Thinker-7B (Chen et al., 2025a)	69.7	65.9	57.1	74.6	62.6	71.6	65.4	60.4	53.0	1593	80.6	83.4	67.4	90.9	84.5
1415	OpenVLThinker-7B (Deng et al., 2025)	—	64.3	52.8	75.8	50.4	32.3	60.2	59.1	49.9	1513	—	—	—	—	—
1416	ViGaL Snake + Rotation	72.2	68.6	60.5	76.7	65.7	74.6	67.3	65.4	55.6	1685	82.2	84.8	69.1	92.7	86.6

Table 9: **Main results on multimodal language benchmarks targeting more general and comprehensive visual ability.** We compare with models post-trained on Qwen2.5-VL-7B (Bai et al., 2023). Best category averages are highlighted in **bold**. Note that MME_p is excluded from vision-centric category average accuracy due to scale differences.

- **Vision-Centric** benchmarks thoroughly evaluate perception, real-world understanding, and multi-modal capabilities. We assess MMVP (Tong et al., 2024b), RealWorldQA (X.AI, 2024), MMStar (Chen et al., 2024a), MME (Fu et al., 2023), and BLINK (Fu et al., 2024).
- **OCR & Chart** understanding benchmarks focus on text-rich visual content. We specifically use AI2D (Kembhavi et al., 2016) for diagram understanding, SEED-Bench-2-Plus (Li et al., 2024a) for text-rich visual comprehension, DocVQA (Mathew et al., 2021) for document understanding, and OCRBench (Liu et al., 2023) for comprehensive OCR evaluation.

B.7 EVALUATION ON GENERAL VISUAL CAPABILITIES

As discussed in Sec. 3.1, we have already demonstrated that our game RL training can generalize to visual math reasoning and multi-discipline reasoning benchmarks. To evaluate whether reasoning improvements come at the cost of general visual understanding, we test ViGaL Snake + Rotation on diverse general visual benchmarks. The results, summarized in Tab. 9, show that our model preserves general visual performance at a level comparable to the Qwen2.5-VL-7B base model, while delivering stronger gains in mathematical reasoning. In contrast, prior RL-based approaches often sacrifice visual accuracy when optimized for reasoning. This confirms that our gameplay-driven strategy enhances reasoning ability without compromising broader visual competencies.

B.8 INFERENCE LENGTH ANALYSIS

Recent reinforcement learning studies (Xie et al., 2025; Aggarwal & Welleck, 2025) have raised questions about whether performance improvements stem from genuinely enhanced reasoning capabilities or merely from models generating longer responses. To address this concern, we analyze the relationship between response length and performance for models trained with our game-based approach.

Model	Response Length	Math Avg.
Qwen2.5-VL-7B (baseline)	250	47.7
ViGaL (ours, RL on games)	268	50.6

Table 10: Response length and performance on visual math benchmarks. Our game-based RL approach achieves significant performance gains while maintaining comparable inference costs.

Table 10 demonstrates that our performance improvements are not simply due to increased verbosity. Our ViGaL model achieves substantial performance gains (50.6% vs. 47.7%) while maintaining nearly identical inference costs—the response length increases by only 7% (268 vs. 250 tokens). This minimal increase in response length, coupled with the significant accuracy improvement, indicates that the model has learned transferable skills rather than merely generating longer outputs.

1458 These results suggest that game-based RL training enables effective knowledge transfer from game
 1459 environments to mathematical problem-solving. For example, spatial reasoning skills acquired from
 1460 the Rotation game and coordinate recognition abilities developed through Snake gameplay transfer
 1461 effectively to visual math tasks. The model thus learns genuine problem-solving strategies while
 1462 maintaining inference costs.

1463

1464 B.9 REASONING CORRELATION ANALYSIS BETWEEN GAME AND MATH

1465

1466 To understand the mathematical reasoning patterns in snake game playing, we developed a system-
 1467 atic approach to extract and analyze reasoning steps from multiple gameplay traces. Our methodol-
 1468 ogy uses GPT-5 OpenAI (2025) as an analytical tool in a two-stage process.

1469

1470 In Stage A, we collect multiple snake game "thinking traces", which are detailed reasoning se-
 1471 quences generated during gameplay, and distill them into a generalized set of 8 core reasoning steps.
 1472 These steps abstract away specific details like exact coordinates or particular board configurations to
 1473 capture fundamental cognitive operations. The operations include parsing board state, enumerating
 1474 moves, safety screening, path metric selection, distance computation, target identification, enemy
 1475 anticipation, and move ranking. This summarization ensures our analysis focuses on transferable
 1476 reasoning patterns rather than game-specific instances.

1477

1478 In Stage B, we quantify how mathematical each reasoning step is by evaluating its correlation with
 1479 nine distinct mathematical aspects. We use a simple 3-level scoring system where 0 means no cor-
 1480 relation, 1 means low correlation, and 2 means high correlation. GPT-5 analyzes how strongly each
 1481 step relates to mathematical concepts such as coordinate manipulation, distance metrics, analytical
 1482 reasoning, and geometric properties.

1483

1484 The resulting correlation matrix in Tab. 11 reveals clear patterns. Coordinate-based reasoning domi-
 1485 nates steps that involve spatial parsing and movement planning, particularly Steps 1 through 3, Step
 1486 5, and Step 7. Meanwhile, analytical and length-based reasoning become prominent in optimiza-
 1487 tion steps like target identification and move ranking, seen in Steps 6 and 8. Steps 4 and 5, which involve
 1488 path metrics and distance computation, show high correlation with both coordinate systems and
 1489 length calculations. This confirms the geometric nature of pathfinding in grid-based environments.
 1490 Our systematic analysis demonstrates that even seemingly simple game-playing behaviors require
 1491 sophisticated integration of multiple mathematical reasoning capabilities.

1492

Prompt Template for Reasoning Step Extraction and Correlation Analysis

1493

Stage A - Step Extraction:

1494 Given multiple snake game thinking traces, extract N general reasoning steps (6-9 steps) that capture the
 1495 core operations. Abstract away instance-specific details and output:

1496

- 1497 • Short, action-oriented step names with one-line descriptions
- 1498 • General patterns covering: state parsing, move generation, safety screening, target selection via
 1499 distance, opponent awareness, scoring/tie-breaks, decision, reporting

1500

Stage B - Mathematical Aspect Correlation:

1501

1502 For each extracted step, assign correlation levels (0/1/2) to these mathematical aspects:

1503

- 1504 • **Expression:** Formatting/structuring outputs
- 1505 • **Coordinate:** Reading/writing positions, mapping moves to (x,y)
- 1506 • **Area:** Board regions/bounds as areas
- 1507 • **Volume:** 3D spatial reasoning (if applicable)
- 1508 • **Applied:** Goal-directed task execution
- 1509 • **Property:** Rules/invariants (bounds, occupancy, collision)
- 1510 • **Angle:** Angle-based path reasoning
- 1511 • **Analytic:** Selection/optimization, tie-break logic
- 1512 • **Length:** Distance metrics (Manhattan/L1, grid paths)

1513 Output as structured table with integer scores only (0 = no correlation, 1 = low, 2 = high).

1512
 1513 Table 11: Correlation Matrix of each step reasoning trace of playing snake game with solving math
 1514 questions. (0=No Correlation, 1=Low Correlation, 2=High Correlation)

Step	Operation	Expression	Coordinate	Area	Volume	Applied	Property	Angle	Analytic	Length
1	Parse the board state									
2	Enumerate candidate moves									
3	Safety screening (worst-move test)									
4	Choose a path metric									
5	Compute distances to apples									
6	Identify nearest target									
7	Anticipate enemy motion (when present)									
8	Rank safe moves									

1515
 1516 **Correlation Legend:**
 1517

1518 = No Correlation = Low Correlation = High Correlation

1566 C CASE STUDY
1567

Rotation

Question:
As shown in the figure, the straight line a and the straight line b are intercepted by the straight line c . Line b is perpendicular to c , and the foot of the perpendicular is point A . $\angle 1 = 70^\circ$. If line b is parallel to line a , how many degrees clockwise can line b be rotated around point A ?
Choices: A: 70° B: 50° C: 30° D: 20°

Qwen2.5-VL-7B-Instruct

- ✓ 1. Identify the given information: Line b is perpendicular to line c . The foot of the perpendicular is point A . Angle 1 is 70° . Line b is parallel to line a .
- ✗ 2. Understand the geometric relationships: Since line b is perpendicular to line c , angle 1 is the angle between line a and line c . Since line b is parallel to line a , the angle between line b and line c is the same as the angle between line a and line c , which is 70° .
- ✗ 3. Determine the angle of rotation: The angle of rotation is the difference between the initial angle 70° , and the final angle 0° , since line b is perpendicular to line c .
- ✗ Therefore, the angle of rotation is 70° . Thus, the line b can be rotated 70° clockwise around the point A . The correct answer is: A

Ours

- ✓ 1. Identify the given information: Line b is perpendicular to line c . The foot of the perpendicular is point A . $\angle 1 = 70^\circ$. Line b is parallel to line a .
- ✓ 2. Analyze the geometric relationships: Since line b is perpendicular to line c , $\angle BAC = 90^\circ$. Line b is parallel to line a , so the corresponding angles are equal. The angle $\angle 1$ is given as 70° .
- ✓ 3. Determine the rotation angle: - The angle $\angle 1$ represents the angle between line b and the vertical line c . Since line b is perpendicular to line c , the angle between line b and line a (which is parallel to line b) is $90^\circ - 70^\circ = 20^\circ$.
- ✓ Therefore, the line b can be rotated 20° clockwise around the point A . The correct answer is: D.

(a) A case study from Mathverse. Base model misinterpreted the geometric configuration and rotation direction, while our model correctly identified the perpendicular relationship and calculated the proper angle.

Coordinate

Question:
Determine whether the graphed function is even, odd, or neither.

Qwen2.5-VL-7B-Instruct

- ✗ Let's analyze the graph:
1. Symmetry with respect to the y-axis: If the graph were symmetric with respect to the y-axis, then for every point (x, y) on the graph, the point $(-x, y)$ would also be on the graph. However, the graph in the image does not appear to be symmetric with respect to the y-axis. For example, the point $(3, y)$ does not have a corresponding point $(-3, y)$ on the graph.
- ✓ 2. Symmetry with respect to the origin: If the graph were symmetric with respect to the origin, then for every point (x, y) on the graph, the point $(-x, -y)$ would also be on the graph. However, the graph in the image does not appear to be symmetric with respect to the origin. For example, the point $(3, y)$ does not have a corresponding point $(-3, -y)$ on the graph.
- ✗ Since the graph does not exhibit symmetry with respect to either the y-axis or the origin, the function is neither even nor odd. The final answer is: neither.

Ours

- ✓ Let's examine the graph of the function. The graph shows a parabola that opens upwards and is symmetric about the y-axis. This symmetry indicates that the function is even.
- ✓ To confirm, we can check a few points:
For $x = 2$, the function value is $f(2)$. For $x = -2$, the function value is $f(-2)$. Since the graph is symmetric about the y-axis, $f(-2) = f(2)$. This confirms that $f(-x) = f(x)$, which is the definition of an even function.
- ✓ Therefore, the function is even. The final answer is: even.

(b) A case study from Mathverse. Base model misperceived critical visual information like symmetry and coordinates in graphs, while our model demonstrated accurate visual perception for mathematical elements.

1601 Figure 9: Comparison of base model and our model after rule-based RL training, showing improved
1602 visual-mathematical reasoning on geometric and coordinate problems.
1603

1604 We provide quantitative comparison examples below to demonstrate reasoning improvements on
1605 mathematical problems after RL training. In Fig. 9a, when solving a geometric angle problem, the
1606 base model fails to correctly interpret the critical relationship between perpendicular lines and corre-
1607 sponding angles. It makes contradictory assumptions about angle measures, leading to an incorrect
1608 calculation of the required rotation. In contrast, our ViGaL precisely tracks the geometric constraints
1609 and properly calculates the angle difference between initial and target positions. In Fig. 9b, when
1610 analyzing function properties from a graph, the base model incorrectly claims the function lacks
1611 symmetry despite clear visual evidence. It fails to recognize the fundamental y-axis symmetry of
1612 the parabola shown in the image. Our model immediately identifies this critical symmetrical pattern
1613 and correctly applies the appropriate mathematical definition of an even function, demonstrating
1614 enhanced visual perception of mathematical structures.
1615

1616 D USE OF LARGE LANGUAGE MODELS
1617

1618 In accordance with ICLR 2026 policies, we disclose that a large language model (LLM) was used
1619 during paper preparation. Specifically, LLMs were employed for grammar correction, wording

1620 refinement, and drafting of non-technical text passages. All research ideas, methods, experiments,
1621 and analyses were conceived, implemented, and validated by the authors, who take full responsibility
1622 for the correctness and integrity of the content.

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673