
In-Context Adaptation to Concept Drift for Learned Database Operations

Jiaqi Zhu 1 Shaofeng Cai * 2 Yanyan Shen 3 Gang Chen 4 Fang Deng 1 Beng Chin Ooi 2 4

Abstract

Machine learning has demonstrated transforma-
tive potential for database operations, such as
query optimization and in-database data analytics.
However, dynamic database environments, char-
acterized by frequent updates and evolving data
distributions, introduce concept drift, which leads
to performance degradation for learned models
and limits their practical applicability. Addressing
this challenge requires efficient frameworks capa-
ble of adapting to shifting concepts while mini-
mizing the overhead of retraining or fine-tuning.

In this paper, we propose FLAIR, an online adap-
tation framework that introduces a new paradigm
called in-context adaptation for learned database
operations. FLAIR leverages the inherent prop-
erty of data systems, i.e., immediate availability
of execution results for predictions, to enable dy-
namic context construction. By formalizing adap-
tation as f : px | Ctq Ñ y, with Ct representing a
dynamic context memory, FLAIR delivers predic-
tions aligned with the current concept, eliminating
the need for runtime parameter optimization. To
achieve this, FLAIR integrates two key modules:
a Task Featurization Module for encoding task-
specific features into standardized representations,
and a Dynamic Decision Engine, pre-trained via
Bayesian meta-training, to adapt seamlessly using
contextual information at runtime. Extensive ex-
periments across key database tasks demonstrate
that FLAIR outperforms state-of-the-art baselines,
achieving up to 5.2ˆ faster adaptation and reduc-
ing error by 22.5% for cardinality estimation.

1Beijing Institute of Technology, Beijing, China 2National Uni-
versity of Singapore, Singapore 3Shanghai Jiao Tong University,
Shanghai, China 4Zhejiang University, Hangzhou, China. Corre-
spondence to: Shaofeng Cai <shaofeng@comp.nus.edu.sg>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Data systems are increasingly integrating machine learning
functionalities to enhance performance and usability, mark-
ing a paradigm shift in how data is managed and processed
in databases (Ooi et al., 2024; McGregor, 2021; Li et al.,
2021; Ooi et al., 2015). The integration has transformed
key database operations such as query optimization, index-
ing, and workload forecasting into more precise, efficient,
and adaptive processes (Zhang et al., 2024a; Kurmanji &
Triantafillou, 2023; Anneser et al., 2023).

Despite these advancements, learned database operations
face a persistent challenge: concept drift. Databases are
inherently dynamic, undergoing frequent insert, delete, and
update operations that result in shifts in data distributions
and evolving input-output relationships over time (Zeighami
& Shahabi, 2024). These drifts, often subtle but cumulative,
can alter the patterns and mappings that traditional machine
learning models rely upon, rendering their assumptions of
static distributions invalid. This phenomenon requires adap-
tive methods for maintaining predictive accuracy in dynamic
database environments.

Traditional reactive training-based adaptation approaches
to handling concept drift, such as transfer learning (Jain
et al., 2023; Kurmanji & Triantafillou, 2023; Kurmanji et al.,
2024), active learning (Ma et al., 2020; Li et al., 2022), and
multi-task learning (Kollias et al., 2024; Wu et al., 2021),
come with significant drawbacks in learned database op-
erations. As illustrated in Figure 1, delays and costs in
post-deployment data collection and model updates, and re-
liance on static mappings limit their practicality in dynamic
database environments (Kurmanji et al., 2024; Li et al.,
2022). In addition, they process each input independently.
The negligence of inter-query dependencies and shared con-
textual information in databases results in poor modeling
of database operations. Addressing these limitations raises
two critical challenges: (1) How can we support one-the-fly
adaptation to constantly evolving data without incurring the
overhead of frequent retraining or fine-tuning in databases?
(2) How can we dynamically inject contextual information
into the modeling process to achieve context-aware predic-
tion for learned database operations?

To address these challenges, we introduce FLAIR, an
eFficient and effective onLine AdaptatIon fRamework that

1

In-Context Adaptation to Concept Drift for Learned Database Operations

Concept Drift

Concept Drift in Databases
D

B
M

S
M

L-
en

ha
nc

ed
M

od
el

s

FLAIR

FL
AI

R

FLAIR

b

a

d

TransferabilityEffectiveness Efficiency

FLAIR’s Key Features

Applications

Framework

FLAIR

Key Features and Applications c

Overall Performance

DatabaseSQL Query

U U U UID I D I…… D … I

Model 2 Model n
High Latency

Model 1

Offline AdaptationDrift
Detection

Periodically Detect,
Collect and Update

Meta-trained
FLAIR

Effective and Efficient

Online: In-context Adaptation

Statistics with
Assumptions

Statistics
• Table Statistics
• Column Statistics
• Index Statistics

…

Collecting and
Updating Statistics

Inaccurate and
Inefficient

Periodically
Update Statistics with

Assumptions

System-internal Tasks & User-oriented Tasks

… Approximate
Query ProcessingCardinality Estimation In-database

Data Analytics

Event-driven

Adapt
On-the-fly

Insert

Select

Delete
Update

I D
U S

Update
Retrain

Collect

Adaptation Paradigm

D U IS S S

…

Efficiency:
Adaptation speed
increased by 5.2X

Effectiveness:
Error reduced
by 22.5%

PostgreSQL Latency: 40.4s

FLAIR Latency: 21.4s
(1.9X Faster)

Figure 1: FLAIR in a nutshell. (a) An example of concept drifts in a dynamic database setting. (b) Adaptation paradigm for
handling concept drifts in FLAIR and two conventional approaches. (c) Key features and applications of FLAIR. (d) A
preview comparison of FLAIR against PostgreSQL and state-of-the-art approaches for handling dynamic databases.

establishes a new adaptation paradigm for learned database
operations. FLAIR is built on a unique property of database
operations: the immediate availability of execution results
for predictions in the database. These results, serving as
ground-truth labels, provide real-time feedback that enables
seamless adaptation. FLAIR leverages this property to dy-
namically adapt to evolving concepts using such contextual
cues from databases. Formally, FLAIR models the mapping
as f : px | Ctq Ñ y, where x denotes the input query, Ct is
the current context consisting of recent pairs of queries and
their execution results, and y is the predicted output.

To achieve in-context adaptation for learned database oper-
ations, FLAIR introduces two cascaded modules: the task
featurization module (TFM) and the dynamic decision en-
gine (DDE). The TFM encodes database operations into
standardized task representations, extracting informative
features and producing a unified, structured input format.
This ensures consistency and efficiency across diverse tasks
within databases. The dynamic decision engine functions
as the core of FLAIR, delivering predictions that can adapt
to evolving concepts. To this end, we introduce a Bayesian
meta-training mechanism that utilizes synthetic prior distri-
butions to pretrain FLAIR with a comprehensive knowledge
base, pre-adapting it to handle diverse and dynamic scenar-
ios. Unlike traditional reactive approaches, FLAIR elimi-
nates the need for compute-intensive parameter optimization
after deployment. To the best of our knowledge, FLAIR is
the first framework to enable on-the-fly and context-aware
adaptation in dynamic data systems.

We summarize our main contributions as follows:
• We propose a novel in-context adaptation framework

FLAIR, designed to address the persistent challenge of
concept drift in dynamic data systems with high effi-

ciency and effectiveness.

• FLAIR introduces Bayesian meta-training that enables ro-
bust and transferable learning from dynamic distributions,
thus eliminating the need for costly parameter retraining
or fine-tuning after deployment.

• FLAIR is designed as a task-agnostic framework that
enhances a wide range of learned database operations.
These include system-internal tasks such as cardinality
estimation, and user-oriented applications like approxi-
mate query processing and in-database data analytics.

• Extensive experiments show FLAIR’s superior perfor-
mance in dynamic databases, achieving a 5.2ˆ speedup
in adaptation and a 22.5% reduction in GMQ error for car-
dinality estimation. Furthermore, by integrating FLAIR
with PostgreSQL, we achieve up to a 1.9ˆ improvement
in query execution efficiency.

2. Preliminaries
Problem Formulation. Consider a database D consisting
of a set of relations (tables) tR1, ...,RNu. Each relation
Ri has ni attribute fields (columns), Ri “ pai1, ...,a

i
ni

q,
where the attributes correspond to either categorical or nu-
merical features in prediction. In this paper, we focus on
select-project-join (SPJ) queries executed alongside a mix
of insert, delete, and update operations. The challenge ad-
dressed is concept drift, an intrinsic property of databases,
described as a shift in the relationship between queries and
their corresponding predictive outputs over time.

Definition 2.1 (Concept Drift in Databases). Let dt be the
underlying data of a database at time t, and qt denote a user
query at time t. Given the data-query pair pdt,qtq, let yt

be the corresponding prediction output (e.g., row counts in

2

In-Context Adaptation to Concept Drift for Learned Database Operations

cardinality estimation). Concept drift occurs at time t if the
joint distribution of queries, data, and predictions changes,
i.e., Pt pq,d,yq ‰ Pt`1 pq,d,yq.

Here, concept drift is driven by two interrelated sources:
(1) Query drift, from evolving user behavior. (2) Data drift,
caused by insert/delete/update operations that change un-
derlying data distributions. Notably, changing data not only
changes the marginal distribution P pdq, but also the condi-
tional distribution P py|q,dq. That is, the same queries may
yield different outputs over time. This suggests that concept
drift in databases involves shifts in the joint distribution of
queries, data, and predictions, and their interaction. For
example, in an e-commerce database, incremental updates,
such as new product additions, customer preference changes,
or promotional campaigns, can lead to significant concept
drift in product recommendations.

Learned Database Operations. Learned database opera-
tions employ machine learning models to enhance specific
tasks in databases, such as cardinality estimation and approx-
imate query processing. Let MDp¨; Θq denote a prediction
model parameterized by Θ in a database D. MDpx; Θq

takes a query x as input and makes a prediction, e.g., the
number of rows matching x for cardinality estimation.

However, a model becomes stale when concept drift oc-
curs. Formally, the model MDtpx; Θtq trained on data
Dt becomes ineffective at time t ` ∆t, if Pt px,yq ‰

Pt`∆t px,yq. Traditional approaches require periodic data
recollection and model retraining to maintain accuracy. This
incurs high costs. Our objective is to ensure that the model
MDt

px; Θtq can be efficiently and effectively adapted to
evolving data distributions with these resource-intensive
processes in database environments.

In-context Learning with Foundation Models. Founda-
tion models have seen rapid advancements in capability and
scope (Radford et al., 2019; Raffel et al., 2020; Brown et al.,
2020; Achiam et al., 2023), which give rise to a transforma-
tive paradigm called in-context learning (ICL). ICL embeds
context into the model input, and leverages foundation mod-
els’ broad learned representations to make predictions based
on limited contextual examples, thus bypassing the need
for parameter updates after deployment. This paradigm
drastically cuts compute demands and facilitates various
applications (Sun et al., 2022; Dong et al., 2022). A notable
application for tabular data is Prior-data Fitted Networks
(PFNs) (Müller et al., 2022; Hollmann et al., 2023; Helli
et al., 2024), which are pre-trained on synthetic datasets
sampled from pre-defined priors. This enables PFNs to
pre-adapt to dynamic environments by effectively modeling
uncertainties and various distributions, making PFNs suit-
able for scenarios with frequent updates and concept drift.
Please refer to Appendix B for more details on ICL and
PFNs. In this paper, we aim to utilize real-time feedback

Query
Parser

Query
Optimizer

Query
Executor

SQL Query
DBMS

Data Access
LayerData

FLAIR

Dynamic Decision Engine

Task Featurization Module

 User-oriented Tasks
Approximate Query Processing
Data Regression
Data Classification

System-internal Tasks

Cardinality Estimation

Bayesian
Meta-training

In-context
Adaptation

Update
Context Memory

Predictions

Queries

Figure 2: FLAIR for dynamic data systems.

from database environments and explore how to support
in-context adaption for learned database operations.

3. FLAIR for Dynamic Data Systems
As illustrated in Figure 2, FLAIR introduces a dual-
module architecture that addresses concept drift in dynamic
databases. First, to provide a unified interface across dif-
ferent tasks, the Task Featurization Module (TFM) extracts
task-specific features from database operation for the sub-
sequent modeling. Second, the Dynamic Decision Engine
(DDE) is pre-trained via Bayesian meta-training on dynamic
distributions of tasks, pre-adapting it to diverse tasks encoun-
tered during inference. After meta-training, DDE utilizes
the real-time feedback from databases as the latest contex-
tual information to dynamically adapt to the current task.
The workflow of FLAIR MF is outlined as:

MF px; ΘT ,ΘDq “ MDDEpMTFM px; ΘT q; ΘDq, (1)

which comprises two cascading modules, the TFM MTFM

and the DDE MDDE parameterized by ΘD and ΘT , re-
spectively. We introduce the technical details below.

3.1. Task Featurization Module

The TFM is designed to standardize database operations into
structured inputs for downstream modeling. It first encodes
data and queries of database operations into data vectors
and a query vector respectively, and then extracts a task
vector via cross-attention that integrates their interactions.

3.1.1. DATA AND QUERY ENCODING

Data Encoding. Each attribute (i.e., column) in the database
is represented as a histogram, which captures its distribution.
Formally, for an attribute ain in relation Ri, the histogram
xi
n “ rx1, ¨ ¨ ¨ , xδs uses δ bins to discretize the range of the

attribute. After scaling to r0, 1s, these histograms are aggre-
gated to form comprehensive data vectors XD of dimension
δ ˆ

řN
i“1 ni, where N is the total number of relations, and

ni is the number of attributes in relation Ri.

3

In-Context Adaptation to Concept Drift for Learned Database Operations

Query Encoding. Queries are represented as vectors cap-
turing structural and conditional information. Join predi-
cates, e.g., Ria

i
ni

“ Rja
j
nj

, are encoded into binary vec-
tors qJ via one-hot encoding, while filter predicates, e.g.,
Ria

i
ni

op Ω with op P tă,ď,ě,ą,“u being the compari-
son operators and ℧ the condition value, are encoded into
boundary vectors qF . For details of encoding schemes for
these predicates, please refer to Appendix C. The final query
vector qQ “ă qJ ,qF ą concatenates these encodings.

3.1.2. TASK FEATURIZATION

To derive the task vector, we adopt a lightweight trans-
former (Vaswani et al., 2017) architecture following (Li
et al., 2023b), which employs hybrid attention mechanisms
to extract deep latent features. The task featurization process
starts with a data modeling phase, where data vectors XD

are processed through a series of Multi-head Self-attention
(MHSA) layers, interleaved with Feed-forward Network
(FFN), Layer Normalization (LN), and residual connections.
This is to capture implicit joint distributions and complex
dependencies among attributes within XD:

Ẑl “ MHSApLNpZl´1qq ` Zl´1 (2)

Zl “ FFNpLNpẐlqq ` Ẑl (3)

where MHSA operations are formulated as:

Ql,m
“ Zl´1Wl,m

q ,Kl,m
“ Zl´1Wl,m

k ,Vl,m
“ Zl´1Wl,m

v (4)

Zl,m
“ softmaxp

Ql,m
pKl,m

q
T

?
dk

qVl,m, m “ 1, ¨ ¨ ¨ ,M (5)

Zl
“ concatpZl,1, ¨ ¨ ¨ ,Zl,M

qWl
o (6)

where Z0 is composed of data vectors from XD, and M
is the number of attention heads. Ql,m, Kl,m, and Vl,m

denote the query, key, and value of the m-th head in the l-th
layer, obtained via transformation matrices Wl,m

q , Wl,m
k ,

and Wl,m
v , respectively. Zl is the output of the l-th layer,

and Wl
o is the output transformation matrix.

In the subsequent interaction modeling phase, the output of
the data modeling phase ZO is further refined via the Multi-
head Cross-attention (MHCA) mechanism. Unlike MHSA,
ZO serves dual roles as both the keys and values, while the
query vector qQ acts as the query in MHCA. The query
vector qQ interacts with every vector in ZO through key
and value transformations, allowing TFM to dynamically
focus on the features in ZO pertinent to the query. For each
attention head m in MHCA, we have:

zm “ softmaxp
qQpZOWm

k q
T

?
dk

qpZOWm
v q. (7)

The final task vector zT is obtained by further processing
the MHCA output through an FFN layer followed by LN
with residual connections. In this way, the task vector zT
contains task-specific information of both data attribute re-
lations and query conditions, providing comprehensive task
representations for the subsequent modeling in the DDE.

+

Data Query

Data and Query
Encoder

Cross-Attention
Layers

Multi-head

Task Vector

LN Layer

Multi-head Attention LayerData
Vector

Update

X k

LN Layer

FFN Layer

DDE

Output
Prediction

Self-Attention
Layers

Multi-head

TFM Query
Vector

+

+

FFN Layer

Frozen (Meta-trained)
+ Concatenate

MLPFFN Layer

...

FIFO Queues

Context
Memory

...

Recent
Output Info

Recent
Input Info

Task Vector with
Updated Context Memory

Figure 3: The architecture of FLAIR.

3.2. Dynamic Decision Engine

The DDE forms the core module of FLAIR. As illustrated
in Figure 3, the DDE takes the task vector prepared by
the TFM to provide real-time, context-aware predictions
across various tasks. It comprises two phases: Bayesian
meta-training and in-context adaptation.

3.2.1. BAYESIAN META-TRAINING

DDE is pre-trained using synthetic datasets sampled from
prior distributions, which equips the model with broad gen-
eralization capabilities, enabling rapid adaptation to unseen
tasks. The meta-training is based on Bayesian inference
theory. Formally, for a given sample x with the evolving
concept represented by a set of c observed sample pairs
C “ tpyi,xiquci“1 from the current task, the Posterior Pre-
dictive Distribution (PPD) of task predictive modeling is:

ppy|x, Cq “

ż

Φ

ppy|x, ϕqppϕ|Cqdϕ (8)

9

ż

Φ

ppy|x, ϕqppC|ϕqppϕqdϕ (9)

where the task distribution ppϕq is sampled from curated
prior distributions Φ to diversify the adaptability of DDE
to different prediction tasks. Notably, to capture complex
dependencies and uncover underlying causal mechanisms,
we employ Bayesian Neural Networks (BNNs) (Neal, 2012)
and Structural Causal Models (SCMs) (Pearl, 2009; Peters
et al., 2017) in constructing the prior distribution following
PFNs (Hollmann et al., 2023).

Based on the PPD formulation in Eq. (9), we first gener-
ate synthetic datasets, namely the concept C of observed
samples from the task distribution ppϕq, i.e., C „ ppC|ϕq.
Second, we sample the data points px,yq for predictive
modeling from ppx,y|ϕq. Next, we can train DDE using

4

In-Context Adaptation to Concept Drift for Learned Database Operations

the input-output configuration via the loss:

LDDE “ Eppx,Cq,yqPppϕqr´ log qθpy|x, Cqs (10)

where the qθpy|x, Cq is the model’s predictive distribution
parameterized by θ. By minimizing this expected nega-
tive log probability LDDE , DDE is trained to maximize
the likelihood of the observed data under the current task
distribution ppϕq. In particular, LDDE can be formalized
as follows for different types of tasks, corresponding to
regression and classification tasks, respectively.

Lreg “ Eppx,Cq,yqPppϕq

„

py ´ µq
2

2σ2
` log σ

ȷ

(11)

Lcls “ Eppx,Cq,yqPppϕq

«

´

K
ÿ

k“1

Iy“k log qθpy “ k|x, Cq

ff

(12)

where µ and σ are the mean and standard deviation in regres-
sion tasks, Ip¨q is the indicator function and qθpy “ k|x, Cq

is the predicted probability of class k in classification tasks.

Remark. We note that the Bayesian meta-training is per-
formed only once on the curated prior distributions across
various tasks. With Bayesian meta-training, FLAIR is en-
abled to quickly adapt to new concepts using a limited set
of observed samples of the concept. This offers several
advantages: (1) Cost-effective Data Collection: Generating
synthetic data is significantly more cost-effective and faster
than traditional data collection. (2) One-time Effort: The
process is a one-time effort, eliminating frequent retraining
after deployment. (3) No Privacy Issues: Synthetic data
does not contain real user information, thereby circumvent-
ing privacy and security concerns. (4) Scalability: This
strategy allows for easy adoption of desired prior task distri-
butions instead of rebuilding the entire model from scratch.

3.2.2. IN-CONTEXT ADAPTATION

During inference, we query the meta-trained DDE with the
tuple pzT , Cq as input, where C “ pQpmt,Ypmtq, termed
as context memory, contains contextual information of the
current task. Qpmt and Ypmt denote the sequences of recent
queries and the system feedback, namely true outputs, which
are organized into two separate first-in, first-out (FIFO)
queues of size ϱ. This strategy enables DDE to dynamically
adapt to new concepts guided by the context memory during
inference, thus avoiding backpropagation-based adaptation
such as fine-tuning or retraining.

Remark. To better understand the in-context adapta-
tion mechanism, we examine the key differences between
FLAIR and existing learned approaches. Existing methods
like Marcus et al. (2021); Zhao et al. (2022); Wang et al.
(2023a) typically learn a static mapping from input to output
as in Eq. 13, which assumes a fixed data distribution. When
concept drift occurs in the time interval ∆t “ t1 ´ t, i.e.,
Dt ‰ Dt1 and Pt px,yq ‰ Pt1 px,yq, the mapping fDt,Θt

from the input to the output should change accordingly. To

handle concept drift, these methods require collecting suf-
ficient samples from the new distribution and updating the
mapping fDt,Θt with parameter Θt based on these samples,
so as to obtain a new mapping function fDt1 ,Θt1 with pa-
rameter Θ1

t that aligns with the new distribution Dt1 . In
contrast, our new paradigm essentially learns a conditional
mapping as formulated in Eq. 14, which explicitly models
the evolving concept provided by the context memory Ct as
the context of the current distribution Dt.

@ t, fDt,Θt
: x Ñ y (13)

@ t, fDt,Θ : px | Ctq Ñ y (14)

This adaptability via the in-context adaptation mechanism is
well-suited for databases. When a query is executed, the cor-
responding system output becomes immediately available
and can be stored in the context memory to provide super-
vision for contextualized predictions of subsequent queries.
Also, For user-oriented tasks like data classification, the con-
text memory within FLAIR allows for online user feedback,
which facilitates the development of a customized system
better aligned with user preferences.

3.3. FLAIR Workflow: Training to Inference
Training. FLAIR is trained in two stages: (i) First, the
MDDE module undergoes a one-off meta-training phase
using LDDE in Eq. 10 across crafted task distributions.
Note that the meta-training is not to optimize FLAIR directly
on end tasks but to prepare DDE to adapt to new tasks
met during inference without further training. (ii) Second,
the MTFM module is trained to extract informative latent
features that are critical for the specific tasks at hand. The
training of TFM is tailored to optimize performance on
these tasks. This employs a task-specific loss LTS to extract
informative features for the DDE module.

Inference. Once trained, FLAIR is ready for concurrent
online inference and adaptation in a real-time environment:

x ñ MTFM px; ΘT q “ zT ñ MDDEpzT , C; ΘDq “ y (15)

x ñ Sexecutepxq “ y˚ ñ pzT ,y
˚q

update
ÝÝÝÑ C (16)

where Sexecutep¨q is the data system executor that produces
the actual system output y˚. Fundamentally, FLAIR stream-
lines the model update process by replacing the traditional,
cumbersome backpropagation with an efficient forward pass
via meta-training and in-context adaptation mechanism.

FLAIR efficiently accommodates large dynamic databases
through incremental histogram maintenance in OpNvq with
Nv modified records and adapts to concept drift using a
FIFO key-value memory for in-context adaptation. The
cross-attention mechanism operates on a single query vector
and incurs only a linear overhead of Opdaϱq, where da is
the attention dimension in DDE. This flexible and scalable
workflow ensures that FLAIR learns effectively from new

5

In-Context Adaptation to Concept Drift for Learned Database Operations

tasks on-the-fly, adapting to evolving concepts in dynamic
databases. Please refer to Appendix F for more discussions.

3.4. Model Generalization Error Bound Analysis

In this section, we analyze the generalization error bounds
of FLAIR against conventional models optimized for static
data, when faced with post-training data evolving. We aim
to uncover the susceptibility of outdated static models to
dynamic environments and showcase FLAIR’s resilience.
Consider a model f̂i trained on dataset Di and frozen once
training concludes. Subsequent k single-point data opera-
tions alter the data from Di to Dj , where each operation is
atomic, comprising either insertion or deletion1. fDj refers
to the ground-truth mapping to Dj . We now explore the
worst-case bound on expected maximum generalization er-
ror for robustness. A proof sketch is provided below, with
detailed derivations available in Appendix E.

Theorem 3.1. Consider a model f̂i trained on an initial
dataset Di, where |Di| “ i. After k data operations, in-
cluding s insertion and r deletion, we obtain a new dataset
Dj of size |Dj | “ j, where k “ s ` r ą 1 and the net
difference in data size |j ´ i| “ |s´ r|. Suppose data in Dj

are i.i.d from any continuous distribution χ, we have

sup
x

EDj„χ

“
ˇ

ˇf̂ipxq ´ fDj pxq
ˇ

ˇ

‰

ě k ´ 1

Theorem 3.1 states that the risk of using a stale model to
make predictions escalates at a minimum rate of Ωpkq as
data evolves. Theoretically, to sustain a error at ϵ, κ

ϵ`1
model retraining is needed for every κ data operation. The
cost per retraining session generally involves processing
the entire dataset or a significant portion thereof in the
scale Opκq (Zeighami & Shahabi, 2024). Consequently,
the amortized cost per data operation, given that retraining
the model every ϵ ` 1 data operation, is also Opκq. Thus,
maintaining low error rates in such a dynamic setting can be
computationally expensive. In contrast, our model defined
as f̂px|Cjq exhibits resilience to changes in data.
Theorem 3.2. Consider FLAIR trained when the underlying
database is Di and using context memory Cj to perform
prediction when the database evolves to Dj , we have

sup
x

EDj„χ

”

ˇ

ˇf̂px|Cjq ´ fDj pxq
ˇ

ˇ

ı

ď
ℵ

?
ϱ

with high probability 1´δ, where ℵ “

b

1
2 pκ ` ln 1

δ q`
a

π
2 .

Here, ϱ is the size of the context memory Cj , κ is a constant
reflecting the training adequacy, and data in Dj is drawn
i.i.d from any continuous distribution χ.

Theorem 3.2 demonstrates that the generalization error of
FLAIR can be effectively controlled by the size of context

1For simplicity, we solely consider insertion and deletion since
the update operation can be decomposed into these operations.

memory ϱ. By ensuring that ϱ is sufficiently large, the gen-
eralization error remains well within the bounds of Op 1?

ϱ q.
Unlike traditional models that experience a linear growth in
generalization error with each data operation k, FLAIR’s er-
ror remains stable regardless of k, showing no performance
deterioration with post-training data changes. Specifically,
setting ϱ to be at least p ℵ

k´1 q2 ensures that the expected
worst-case generalization error of FLAIR stays below static
models. This aligns with existing research (Namkoong &
Duchi, 2016; Sagawa et al., 2020) that considers potential
distribution shifts during training bolsters model resilience
after deployment. Overall, Theorem 3.2 elucidates FLAIR’s
theoretical superiority over static models in maintaining
continuous accuracy and operational efficiency, providing a
scalable solution with frequent data evolving.

4. Experiments
In this section, we systematically evaluate the effective-
ness, efficiency, and transferability of FLAIR2. Extensive
experiments are conducted on real-world benchmarks for
cardinality estimation to test the effectiveness of FLAIR
across various degrees of concept drift, followed by assess-
ments of training and inference efficiency. We then explore
FLAIR’s robustness against long-term concept drift, and its
transferability to representative user-oriented tasks within
databases. Moreover, we integrate FLAIR with PostgreSQL
to confirm its compatibility with operational environments.
Further results are provided in Appendix H and I.

4.1. Experimental Setup
Benchmarks. We evaluate FLAIR on two established
real-world benchmarks: STATS (STA, 2015) and JOB-
light (Leis et al., 2018; 2015). STATS contains over 1
million records, while JOB-light, derived from the IMDB
dataset, includes 62 million records. We simulate real-
world database conditions in our experiments by incorporat-
ing varied SQL operations and design scenarios that mirror
different levels of concept drift, ranging from mild to severe.
Further details are elaborated in Appendix G.1 and G.6.

Downstream Tasks. We primarily assess FLAIR’s core per-
formance through cardinality estimation (CE) tasks, along-
side exploring its capabilities in user-oriented activities like
approximate query processing (AQP) and in-database data
analytics involving data classification and regression. Fur-
ther details are available in Appendix G.3.

Baselines. We compare FLAIR with predominant fami-
lies of CE technologies, including the estimator from Post-
greSQL (pos, 1996), and SOTA learned approaches for
dynamic environments, such as DeepDB (Hilprecht et al.,
2019), ALECE (Li et al., 2023b), and DDUp (Kurmanji

2The code and data of FLAIR are available at https://
anonymous.4open.science/r/FLAIR-D4DA/

6

https://anonymous.4open.science/r/FLAIR-D4DA/
https://anonymous.4open.science/r/FLAIR-D4DA/

In-Context Adaptation to Concept Drift for Learned Database Operations

Table 1: Overall performance of cardinality estimation task under concept drift. The best performances are highlighted in
bold and underlined, and the second-best are bold only.

Data Method
Mild Drift Severe Drift

GMQ
Q-error P-error

GMQ
Q-error P-error

50% 75% 90% 95% 50% 75% 90% 95% 50% 75% 90% 95% 50% 75% 90% 95%

STATS

Fine-tune: 5.35 3.47 9.32 33.99 77.93 6.21 17.72 54.21 111.85 5.02 3.35 6.44 17.44 65.76 10.24 55.92 255.82 927.08
PostgreSQL 174.38 497.56 611.53 21556.35 70977.46 8.87 52.29 157.93 174.24 293.47 758.89 6740.46 62020.12 218196.66 10.39 83.37 401.75 1296.15

ALECE 20.29 15.03 52.26 197.61 430.69 7.67 30.05 131.25 249.24 36.16 22.77 112.79 624.31 1172.69 8.61 48.72 312.12 1130.76
DDUp 5.79 4.49 10.20 26.41 72.68 8.00 29.59 64.91 241.27 10.95 9.51 20.22 46.15 87.18 13.61 43.92 109.24 216.64
FLAIR 4.49 2.86 6.93 24.06 60.94 7.01 28.04 61.70 162.61 5.47 3.12 7.87 28.52 81.57 7.97 26.78 308.43 1005.64

Job-light

Fine-tune: 2.45 1.36 2.05 9.28 20.47 1.09 2.56 3.42 4.09 8.09 2.31 9.68 57.51 5168.29 1.02 1.08 1.74 1.86
PostgreSQL 9.36 1.89 6.93 21.42 87.12 1.28 2.14 3.98 7.06 32.09 11.75 282.67 3834.32 7200.49 1.90 2.78 4.20 62.43

DeepDB 32.28 10.52 436.77 698.12 6894.09 1.98 18.19 36.24 126.55 49.69 14.76 972.51 7864.98 7.65e5 1.77 17.31 22.31 51.89
ALECE 12.21 11.59 19.34 26.40 63.37 1.96 4.83 8.72 19.06 27.32 11.72 114.32 1920.34 6970.01 1.56 2.35 3.68 4.26
DDUp 4.16 3.60 4.99 15.62 46.98 1.59 2.14 3.88 5.12 10.96 6.65 35.35 162.51 203.34 1.09 1.65 1.89 2.79
FLAIR 2.36 1.29 2.09 6.93 18.62 1.18 1.36 2.94 3.67 7.95 2.38 10.21 73.91 4826.64 1.03 1.41 1.78 2.38

: Fine-tune typically represents the performance upper bound among baselines, achieved through costly model updates via parameter retraining.

0 200 400 600 800 1000 1200 1400

DeepDB

ALECE

DDUp

Fine-tune

FLAIR

88.11%

98.60%

96.85%

97.93%

99.70%

0 100

165.8s

6.8s

29.0s

15.8s

1.3s

0.0 0.1 0 50

Total Time (s) Adaptation
Time (s)

Inference
Time (s)

Storage
Overhead

(MiB)

Building Time Adaptation Time Inference Time Storage Overhead

Figure 4: Comparison of model efficiency.

& Triantafillou, 2023) with NeuroCard (Yang et al., 2020)
being used as its base model. We also compare FLAIR with
model fine-tuning outlined in (Kurmanji & Triantafillou,
2023), serving as a high-performance baseline despite being
computationally intensive. For AQP, our baselines include
DBest++ (Ma et al., 2021), which utilizes only frequency
tables (FTs) for the update, DBest++FT, which updates both
FTs and mixture density networks (MDNs), and DDUp,
which uses DBest++ as its base model. For in-database
data analytics, we compare FLAIR with AutoML system
AutoGluon (Erickson et al., 2020) and established ML algo-
rithms, including K-nearest-neighbors (KNN), RandomFor-
est, MLP, and popular boosting methods, XGBoost (Chen
& Guestrin, 2016), LightGBM (Ke et al., 2017) and Cat-
Boost (Prokhorenkova et al., 2018) for data classification,
and AutoGluon, SVR, MLP, DecisionTree, RandomForest,
and GradientBoosting for regression. See Appendix G.2
and G.4 for baselines and implementation details.

Evaluation Metrics. We evaluate FLAIR’s effectiveness
and efficiency across various tasks using targeted metrics.
(1) Effectiveness Metrics: For CE tasks, we report the ac-
curacy by the geometric mean of the Q-error (GMQ) as (Li
et al., 2022; Dutt et al., 2019) along with Q-error and P-error
across various quantiles, with particular emphasis on the
tail performance. For AQP tasks, we use mean relative error
(MRE) to evaluate the accuracy of query approximations.
Additionally, we apply accuracy and F1 score for data clas-
sification and mean squared error (MSE) and the coefficient
of determination (R2) for data regression. (2) Efficiency
Metrics: We assess FLAIR’s efficiency by examining stor-
age overhead, building time, inference time, and adaptation
time. See Appendix G.5 for more details on the metrics.

1 2 3 4 5
Adaptation Step

0

100

200

300

400

GM
Q

1 2 3 4 5
Adaptation Step

10

20

30

40

50

GM
Q

0

2

4

6

D
KL

DKL

4 5
10
20
30

0

1

2

3

D
KL

4 55

10

15

(a) STATS (b) Job-light

PostgreSQL ALECE DDUp Fine-tune FLAIR

Figure 5: Comparison of model robustness for long-term
incremental concept drift.

4.2. Effectiveness

In Table 1, we report the overall performance comparison
in CE task. The results reveal that FLAIR consistently de-
livers superior performance across all datasets and dynamic
scenarios, often matching or even surpassing the outcomes
of the fine-tune approach. Specifically, FLAIR achieves the
best performance in 29 out of 32 quantile metrics. Even
when including fine-tune comparisons, FLAIR surpasses
nearly half of the evaluations for all metrics, underscoring
its considerable precision in dynamic environments. Ad-
ditionally, FLAIR significantly outperforms PostgreSQL
across all datasets and settings, highlighting the limitations
of PostgreSQL’s independence assumption that often re-
sults in inaccuracies with non-uniform data distributions.
Furthermore, our experiments reveal that existing methods,
including those using fine-tuning and knowledge distilla-
tion, struggle with rapid and complex changes in dynamic
systems. In contrast, FLAIR excels by promptly adapting to
current concepts during concept drift, without data recollec-
tion, offline updates, or separate drift detection processes.

4.3. Efficiency

We evaluate the construction efficiency and resource us-
age of FLAIR alongside baseline models on the JOB-light
benchmark. The results in Figure 4 demonstrate that FLAIR
is notably efficient in both building and adaptation phases.
Remarkably, FLAIR accelerates adaptation speed by 5.2ˆ

while reducing the GMQ by 22.5% compared with the best
baseline. To further improve FLAIR’s inference efficiency,
we implement an embedding caching mechanism in FLAIR,

7

In-Context Adaptation to Concept Drift for Learned Database Operations

title
cast_info

movie_companies
movie_info

movie_keyword

movie_info_idx
0

1

2

3

16

MR
E

title
cast_info

movie_companies
movie_info

movie_keyword

movie_info_idx
0
1
2
3
4
5

24

MR
E

(a) Mild Drift (b) Severe Drift

MRE (lower is better) Average MRQ (lower is better)

DBest++
AvgDBest++

DBest++FT
AvgDBest++FT

DDUp
AvgDDUp

FLAIR
AvgFLAIR

Figure 6: Performance of AQP task.

STATS Job-light0

10

20

30

40

La
te

nc
y

(s
) 32.2

18.918.1

26.7
21.518.8

STATS Job-light0

10

20

30

40

50

La
te

nc
y

(s
)

40.4

21.420.8

39.5
31.628.3

(a) Mild Drift (b) Severe Drift

PostgreSQL FLAIR Optimal

Figure 8: Comparison of query latency.
Figure 7: Decision boundaries and model performance on data clas-
sification task under concept drift.

which eliminates redundant computations by preventing
recomputation on the repeated inputs. This enhancement
significantly accelerates the inference process, yielding com-
petitive inference times. Taking the overall performance
into consideration, the slightly higher storage requirement
imposed by FLAIR is acceptable.

4.4. Long-term Incremental Concept Drift

To further assess FLAIR’s adaptability, we track the per-
formance on STATS and JOB-light, focusing on gradual
drift indicated by rising Kullback-Leibler divergence DKL

over extended periods. Figure 5 illustrates that FLAIR ef-
fectively handles the challenging conditions of long-term
incremental concept drift across both benchmarks, even on
par with model fine-tuning. Furthermore, we observe that
DDUp based on knowledge distillation is inferior to fine-
tuning under long-term gradual drift. This is in line with the
results in Section 4.2, highlighting the inherent limitations
of knowledge distillation: it mitigates catastrophic forget-
ting by preserving prior learned knowledge but can inad-
vertently replicate past errors, whereas fine-tuning directly
adjusts to new data, correcting inaccuracies and adapting
to evolving distributions. Conversely, FLAIR’s innovative
in-context adaptation paradigm, guided by dynamic context
memory, achieves negligible error accumulation and ensures
sustained adaptability without further training, distinguish-
ing it from both knowledge distillation and fine-tuning.

4.5. Transferability
In data systems, system-internal tasks like CE provide im-
mediate critical outcomes for optimization, while it is often
not straightforward for user-oriented tasks. Next, we val-
idate FLAIR’s performance in user-oriented scenarios to
showcase its wide applicability, where our context memory
establishes a virtuous cycle of user feedback to refine model
performance and facilitate system customization.

Approximate Query Processing. The results in Figure 6,
measured in MRE, consistently show that FLAIR outper-
forms baseline approaches. Across various relations and
dynamic settings, FLAIR achieves significant error reduc-
tions, with averages up to or exceeding 10ˆ with DBest++,
3ˆ with DBest++FT, and 2ˆ with DDUp. These findings
highlight the effectiveness of FLAIR in handling complex
query scenarios. Most of the time, FLAIR outperforms
methods that rely on fine-tuning and knowledge distillation,
such as DBest++FT and DDUp. This superiority stems from
the limitations associated with only updating models during
significant data drifts, which may not suffice for the accurate
execution of AQP tasks in real and live system scenarios.

In-database Data Analytics. We initially conduct a qualita-
tive evaluation on illustrative toy problems to understand the
behavior of FLAIR under concept drift, comparing against
standard classifiers as shown in Figure 7. We utilize moons
and iris datasets from scikit-learn (Pedregosa et al., 2011).
For the drift scenarios, we allocate 10% of data for model
updates and the remaining 90% for evaluation. In each case,
FLAIR effectively captures the decision boundary between
samples, delivering well-calibrated predictions. We extend
our empirical analysis to real-world tasks, applying data
classification for sentiment analysis and data regression for
rating prediction on IMDB (See Appendix H).

4.6. FLAIR in Action
Given the observation from existing research (Negi et al.,
2021; Marcus et al., 2021; Li et al., 2023b) that a smaller Q-
error does not necessarily reduce execution times, we extend
our investigation by integrating FLAIR into PostgreSQL to
assess its efficacy in a full-fledged database system. We
evaluate the latency measured as execution time per query
on the test set of STATS and JOB-light. As in a recent
work (Li et al., 2023b), we substitute PostgreSQL’s default
cardinality estimator with FLAIR. Specifically, PostgreSQL
uses the cardinality estimated by FLAIR to generate the ex-

8

In-Context Adaptation to Concept Drift for Learned Database Operations

ecution plan for each query in the benchmarks. The optimal
baseline is established by replacing PostgreSQL’s built-in
estimations with ground-truth cardinalities. As depicted
in Figure 8, FLAIR achieves latency that approaches the
optimal level based on ground-truth cardinality. Compared
to PostgreSQL’s built-in cardinality estimator, FLAIR ac-
celerates query execution by up to 1.9ˆ. This superiority is
even more significant in severe drift scenarios.

5. Related Work
Advances and Challenges of AI×DB. Database systems are
increasingly embracing artificial intelligence (AI), spurring
the development of AI-powered databases (AI×DB) (Ooi
et al., 2024; Zhu et al., 2024b; Zhao et al., 2025). This
fusion marks a new era for database systems, in which AI
functionalities are incorporated to enhance the overall sys-
tem performance and usability. Consequently, advanced
models such as deep neural networks (DNNs) and large lan-
guage models (LLMs) are increasingly being integrated into
database systems and applications, which have improved
database management such as database tuning (Lao et al.,
2024; Huang et al., 2024; Trummer, 2022), cardinality esti-
mation (Lee et al., 2024; Kurmanji & Triantafillou, 2023; Li
et al., 2023b; Hilprecht et al., 2019), and indexing (Zhang
et al., 2024a; Li et al., 2020; 2023a; Gao et al., 2023; Sun
et al., 2023; Zhang et al., 2024b). Recent work (Zeighami
& Shahabi, 2024) presents a theoretical foundation for de-
veloping machine learning approaches in database systems.
However, unlike the data that AI models have been designed
for, online transactional processing (OLTP) data is dynamic
in nature and such dynamicity affects the robustness of mod-
els. Indeed, the phenomenon of concept drift, where the
underlying data distributions and relations shift, remains
a critical challenge. In this study, our goal is to provide a
solution for addressing concept drift in databases, ensuring
both accuracy and sustainability in dynamic environments.

Model Adaptation in Concept Drift. Variations in data
critically affect the efficacy of AI-powered database sys-
tems, also known as learned database systems. Such dis-
crepancies between training data and those encountered
post-deployment significantly degrade system performance,
challenging model reliability in dynamical environments
for the practical deployment (Negi et al., 2023; Zeighami
& Shahabi, 2024). Recent cutting-edge machine learning
paradigms such as transfer learning (Jain et al., 2023; Kur-
manji & Triantafillou, 2023; Zhu et al., 2023; Kurmanji
et al., 2024; Ying et al., 2018), active learning (Ma et al.,
2020; Li et al., 2022; Lampinen et al., 2024; Zhang et al.,
2022), and multi-task learning (Kollias et al., 2024; Wu
et al., 2021; Hu et al., 2024) have been employed to mitigate
challenges of concept drift in learned database systems. No-
tably, Kurmanji et al. utilize knowledge distillation, guided
by loss-based out-of-distribution data detection for handling

data insertions (Kurmanji & Triantafillou, 2023), and ex-
plore transfer learning for machine unlearning to address
data deletions (Kurmanji et al., 2024). Additionally, re-
inforcement learning (RL) has been used to strategically
reduce the high costs of data collection by allowing an RL
agent to selectively determine which subsequent queries to
execute in a more targeted fashion (Zhang et al., 2019; Hil-
precht et al., 2020; Zheng et al., 2024; Wang et al., 2023b).
These strategies, while aimed at improving generalization
in fluctuating settings, inherently face critical issues due to
their requirements for data recollection and model retraining.
For instance, optimizing query performance necessitates ex-
ecuting numerous query plans, a process that is computation-
ally intensive and significantly extends execution time (Wu
et al., 2021; Hilprecht & Binnig, 2021; Li et al., 2022). The
need for repetitive executions, whenever new concepts are
detected, further compounds the operational challenges.

Inspired by large language models (LLMs), zero-shot learn-
ing has been employed to enhance model adaptability
to dynamic environments and generalize across different
tasks (Zhou et al., 2023; Zhu et al., 2024a; Urban et al.,
2023; Zhang et al., 2024c; Lin et al., 2025; Li et al., 2025).
While this approach is theoretically promising, it faces prac-
tical challenges, as pre-training or fine-tuning foundation
models still requires substantial real-world data collection.
Additionally, the quality and relevance of training data to ac-
tual workloads remain uncertain until deployment, making
post-deployment performance unpredictable. Further, exist-
ing methods struggle to keep pace with real-time evolving
concepts and overlook inter-query relations, which compro-
mises their effectiveness. To fundamentally address these
challenges, we propose a fresh perspective on online adapta-
tion for database systems that supports on-the-fly in-context
adaptation to evolving concepts without unnecessary data
collection or retraining, ensuring unparalleled effectiveness
and efficiency in operational settings.

6. Conclusions
With frequent updates, the data in the database evolves, re-
sulting in concept drift. Learned database operations are
susceptible to concept drift, and may suffer significant pre-
diction accuracy losses. This paper presents a novel online
adaptation framework called FLAIR, which can adapt the
in-database predictive model to evolving concepts automat-
ically without cumbersome data recollection and model
retraining. FLAIR performs Bayesian meta-training using
abundant synthetic data sampled from dynamic task distribu-
tions. After meta-training, it generates adapted predictions
by prompting the model with contextual information re-
garding the current concept. Extensive experiments across
various database operations demonstrate that FLAIR is ef-
fective, efficient, and transferable in dynamic data systems.

9

In-Context Adaptation to Concept Drift for Learned Database Operations

ACKNOWLEDGMENTS
The work of BIT researchers is partially supported by Na-
tional Science and Technology Major Project under Grant
2022ZD0119701, National Natural Science Foundation of
China National Science Fund for Distinguished Young
Scholars under Grant 62025301, and National Natural Sci-
ence Foundation of China National Science Fund for Young
Scientists (Ph.D.) under Grant 624B2027. The work of NUS
researchers is supported by the Lee Foundation in terms of
Beng Chin Ooi’s Lee Kong Chian Centennial Professorship
fund. Yanyan Shen’s work is supported by National Key
Research and Development Program of China under Grant
2022YFE0200500. Gang Chen’s work is supported by Na-
tional Key Research and Development Program of China
under Grant 2022YFB2703100.

Impact Statement
This paper showcases advances in the integration of Ma-
chine Learning within data systems, presenting a framework
that enhances the reliability and usability of Machine Learn-
ing in real-world dynamic environments. By facilitating
various database operations, the proposed framework en-
courages broader adoption in practice, potentially reducing
operational costs and energy consumption. There can be var-
ious societal consequences, including enhancing decision-
making in data-reliant sectors such as healthcare, finance,
and public services, and enabling businesses to achieve sig-
nificant cost reductions through optimized operations and
minimized manual intervention.

References
Postgresql global development group. https://www.
postgresql.org. Accessed: 2024-05, 1996.

Stats benchmark. https://relational-data.
org/dataset/Stats. Accessed: 2024-04, 2015.

Imdb dataset(top 2000 movies). https://www.
kaggle.com/datasets/prishasawhney/
imdb-dataset-top-2000-movies. Accessed:
2024-05, 2024.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Amit, R. and Meir, R. Meta-learning by adjusting priors
based on extended pac-bayes theory. In International
Conference on Machine Learning, pp. 205–214. PMLR,
2018.

Anneser, C., Tatbul, N., Cohen, D., Xu, Z., Pandian, P.,
Laptev, N., and Marcus, R. Autosteer: Learned query

optimization for any sql database. Proceedings of the
VLDB Endowment, 16(12):3515–3527, 2023.

Baldassini, F. B., Shukor, M., Cord, M., Soulier, L., and
Piwowarski, B. What makes multimodal in-context learn-
ing work? In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1539–
1550, 2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun,
X., Xu, J., and Sui, Z. A survey on in-context learning.
arXiv preprint arXiv:2301.00234, 2022.

Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V.,
and Chaudhuri, S. Selectivity estimation for range predi-
cates using lightweight models. Proceedings of the VLDB
Endowment, 12(9):1044–1057, 2019.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy,
P., Li, M., and Smola, A. Autogluon-tabular: Robust
and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Gao, J., Cao, X., Yao, X., Zhang, G., and Wang, W.
Lmsfc: A novel multidimensional index based on
learned monotonic space filling curves. arXiv preprint
arXiv:2304.12635, 2023.

Han, Y., Wu, Z., Wu, P., Zhu, R., Yang, J., Tan, L. W., Zeng,
K., Cong, G., Qin, Y., Pfadler, A., et al. Cardinality esti-
mation in dbms: a comprehensive benchmark evaluation.
Proceedings of the VLDB Endowment, 15(4):752–765,
2021.

Harinath, S., Isaza, G., Mirchandani, A., and Dumitru, M.
Testing microsoft sql server analysis services. In Pro-
ceedings of the 1st international workshop on Testing
database systems, pp. 1–6, 2008.

Helli, K., Schnurr, D., Hollmann, N., Müller, S., and Hutter,
F. Drift-resilient tabpfn: In-context learning temporal
distribution shifts on tabular data. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Helskyaho, H., Yu, J., Yu, K., Helskyaho, H., Yu, J., and Yu,
K. Oracle analytics cloud. Machine Learning for Oracle

10

https://www.postgresql.org
https://www.postgresql.org
https://relational-data.org/dataset/Stats
https://relational-data.org/dataset/Stats
https://www.kaggle.com/datasets/prishasawhney/imdb-dataset-top-2000-movies
https://www.kaggle.com/datasets/prishasawhney/imdb-dataset-top-2000-movies
https://www.kaggle.com/datasets/prishasawhney/imdb-dataset-top-2000-movies

In-Context Adaptation to Concept Drift for Learned Database Operations

Database Professionals: Deploying Model-Driven Appli-
cations and Automation Pipelines, pp. 187–203, 2021.

Hilprecht, B. and Binnig, C. One model to rule them all:
towards zero-shot learning for databases. arXiv preprint
arXiv:2105.00642, 2021.

Hilprecht, B., Schmidt, A., Kulessa, M., Molina, A., Ker-
sting, K., and Binnig, C. Deepdb: Learn from data, not
from queries! arXiv preprint arXiv:1909.00607, 2019.

Hilprecht, B., Binnig, C., and Röhm, U. Learning a par-
titioning advisor for cloud databases. In Proceedings
of the 2020 ACM SIGMOD international conference on
management of data, pp. 143–157, 2020.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. The collected works of Wassily Hoeffd-
ing, pp. 409–426, 1994.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F.
Tabpfn: A transformer that solves small tabular classifica-
tion problems in a second. In The Eleventh International
Conference on Learning Representations, 2023.

Hu, Y., Xian, R., Wu, Q., Fan, Q., Yin, L., and Zhao, H. Re-
visiting scalarization in multi-task learning: A theoretical
perspective. Advances in Neural Information Processing
Systems, 36, 2024.

Huang, X., Li, H., Zhang, J., Zhao, X., Yao, Z., Li, Y., Yu,
Z., Zhang, T., Chen, H., and Li, C. Llmtune: Accelerate
database knob tuning with large language models. arXiv
preprint arXiv:2404.11581, 2024.

Jain, S., Salman, H., Khaddaj, A., Wong, E., Park, S. M., and
Madry, A. A data-based perspective on transfer learning.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 3613–3622,
2023.

Jeon, H. J., Lee, J. D., Lei, Q., and Van Roy, B. An
information-theoretic analysis of in-context learning. In
Forty-first International Conference on Machine Learn-
ing, 2024.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. Advances in neural infor-
mation processing systems, 30, 2017.

Kollias, D., Sharmanska, V., and Zafeiriou, S. Distribution
matching for multi-task learning of classification tasks:
a large-scale study on faces & beyond. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 2813–2821, 2024.

Kullback, S. and Leibler, R. A. On information and suf-
ficiency. The annals of mathematical statistics, 22(1):
79–86, 1951.

Kurmanji, M. and Triantafillou, P. Detect, distill and up-
date: Learned db systems facing out of distribution data.
Proceedings of the 2023 ACM SIGMOD International
Conference on Management of Data, 1(1):1–27, 2023.

Kurmanji, M., Triantafillou, E., and Triantafillou, P. Ma-
chine unlearning in learned databases: An experimental
analysis. Proceedings of the 2024 ACM SIGMOD Inter-
national Conference on Management of Data, 2(1):1–26,
2024.

Lampinen, A., Chan, S., Dasgupta, I., Nam, A., and Wang,
J. Passive learning of active causal strategies in agents
and language models. Advances in Neural Information
Processing Systems, 36, 2024.

Lao, J., Wang, Y., Li, Y., Wang, J., Zhang, Y., Cheng, Z.,
Chen, W., Tang, M., and Wang, J. Gptuner: A manual-
reading database tuning system via gpt-guided bayesian
optimization. Proceedings of the VLDB Endowment, 17
(8):1939–1952, 2024.

Lee, S., Kim, K., and Han, W.-S. Asm in action: Fast and
practical learned cardinality estimation. In Proceedings
of the 2024 ACM SIGMOD International Conference on
Management of Data, pp. 460–463, 2024.

Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper,
A., and Neumann, T. How good are query optimizers,
really? Proceedings of the VLDB Endowment, 9(3):204–
215, 2015.

Leis, V., Radke, B., Gubichev, A., Mirchev, A., Boncz,
P., Kemper, A., and Neumann, T. Query optimization
through the looking glass, and what we found running the
join order benchmark. The VLDB Journal, 27:643–668,
2018.

Li, B., Lu, Y., and Kandula, S. Warper: Efficiently adapting
learned cardinality estimators to data and workload drifts.
In Proceedings of the 2022 International Conference on
Management of Data, pp. 1920–1933, 2022.

Li, G., Zhou, X., and Cao, L. Ai meets database: Ai4db
and db4ai. In Proceedings of the 2021 ACM SIGMOD
International Conference on Management of Data, pp.
2859–2866, 2021.

Li, P., Lu, H., Zheng, Q., Yang, L., and Pan, G. Lisa: A
learned index structure for spatial data. In Proceedings
of the 2020 ACM SIGMOD international conference on
management of data, pp. 2119–2133, 2020.

11

In-Context Adaptation to Concept Drift for Learned Database Operations

Li, P., Lu, H., Zhu, R., Ding, B., Yang, L., and Pan, G. Dili:
A distribution-driven learned index. Proceedings of the
VLDB Endowment, 16(9):2212–2224, 2023a.

Li, P., Wei, W., Zhu, R., Ding, B., Zhou, J., and Lu, H.
Alece: An attention-based learned cardinality estimator
for spj queries on dynamic workloads. Proceedings of
the VLDB Endowment, 17(2):197–210, 2023b.

Li, S., Lin, T., Lin, L., Zhang, W., Liu, J., Yang, X., Li,
J., He, Y., Song, X., Xiao, J., et al. Eyecaregpt: Boost-
ing comprehensive ophthalmology understanding with
tailored dataset, benchmark and model. arXiv preprint
arXiv:2504.13650, 2025.

Lin, T., Zhang, W., Li, S., Yuan, Y., Yu, B., Li, H., He, W.,
Jiang, H., Li, M., Song, X., et al. Healthgpt: A medical
large vision-language model for unifying comprehension
and generation via heterogeneous knowledge adaptation.
arXiv preprint arXiv:2502.09838, 2025.

Ma, L., Ding, B., Das, S., and Swaminathan, A. Active
learning for ml enhanced database systems. In Proceed-
ings of the 2020 ACM SIGMOD International Conference
on Management of Data, pp. 175–191, 2020.

Ma, Q. and Triantafillou, P. Dbest: Revisiting approximate
query processing engines with machine learning models.
In Proceedings of the 2019 International Conference on
Management of Data, pp. 1553–1570, 2019.

Ma, Q., Shanghooshabad, A. M., Almasi, M., Kurmanji, M.,
and Triantafillou, P. Learned approximate query process-
ing: Make it light, accurate and fast. In Conference on
Innovative Data Systems,(CIDR21), 2021.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and
Potts, C. Learning word vectors for sentiment analysis.
In Proceedings of the 49th annual meeting of the asso-
ciation for computational linguistics: Human language
technologies, pp. 142–150, 2011.

MacLennan, J., Tang, Z., and Crivat, B. Data mining with
Microsoft SQL server 2008. John Wiley & Sons, 2011.

Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh, M.,
and Kraska, T. Bao: Making learned query optimization
practical. In Proceedings of the 2021 ACM SIGMOD
International Conference on Management of Data, pp.
1275–1288, 2021.

McGregor, S. Preventing repeated real world ai failures
by cataloging incidents: The ai incident database. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 15458–15463, 2021.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and
Hutter, F. Transformers can do bayesian inference. In

International Conference on Learning Representations,
2022.

Namkoong, H. and Duchi, J. C. Stochastic gradient
methods for distributionally robust optimization with f-
divergences. Advances in neural information processing
systems, 29, 2016.

Neal, R. M. Bayesian learning for neural networks, volume
118. Springer Science & Business Media, 2012.

Negi, P., Marcus, R., Kipf, A., Mao, H., Tatbul, N., Kraska,
T., and Alizadeh, M. Flow-loss: learning cardinality esti-
mates that matter. Proceedings of the VLDB Endowment,
14(11), 2021.

Negi, P., Wu, Z., Kipf, A., Tatbul, N., Marcus, R., Mad-
den, S., Kraska, T., and Alizadeh, M. Robust query
driven cardinality estimation under changing workloads.
Proceedings of the VLDB Endowment, 16(6):1520–1533,
2023.

Ooi, B. C., Tan, K.-L., Wang, S., Wang, W., Cai, Q., Chen,
G., Gao, J., Luo, Z., Tung, A. K., Wang, Y., et al. Singa:
A distributed deep learning platform. In Proceedings of
the 23rd ACM international conference on Multimedia,
pp. 685–688, 2015.

Ooi, B. C., Cai, S., Chen, G., Tan, K. L., Wu, Y., Xiao,
X., Xing, N., Shen, Y., Yue, C., Zeng, L., and Zhang,
M. Neurdb: An ai-powered autonomous data system.
Science China Information Sciences, 2024.

Pearl, J. Causality. Cambridge University Press, 2009.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830, 2011.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: foundations and learning algorithms. The MIT
Press, 2017.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. Catboost: unbiased boosting with categori-
cal features. Advances in neural information processing
systems, 31, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

12

In-Context Adaptation to Concept Drift for Learned Database Operations

Ross, S. M., Ross, S. M., Ross, S. M., and Ross, S. M. A
first course in probability, volume 2. Macmillan New
York, 1976.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks. In International
Conference on Learning Representations, 2020.

Sun, J. and Li, G. An end-to-end learning-based cost es-
timator. Proceedings of the VLDB Endowment, 13(3):
307–319, 2019.

Sun, T., Shao, Y., Qian, H., Huang, X., and Qiu, X. Black-
box tuning for language-model-as-a-service. In Inter-
national Conference on Machine Learning, pp. 20841–
20855. PMLR, 2022.

Sun, Z., Zhou, X., and Li, G. Learned index: A comprehen-
sive experimental evaluation. Proceedings of the VLDB
Endowment, 16(8):1992–2004, 2023.

Trummer, I. Db-bert: a database tuning tool that” reads
the manual”. In Proceedings of the 2022 ACM SIGMOD
International Conference on Management of Data, pp.
190–203, 2022.

Urban, M., Nguyen, D. D., and Binnig, C. Omniscientdb: a
large language model-augmented dbms that knows what
other dbmss do not know. In Proceedings of the Sixth In-
ternational Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, pp. 1–7, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, F., Yan, X., Yiu, M. L., Li, S., Mao, Z., and Tang,
B. Speeding up end-to-end query execution via learning-
based progressive cardinality estimation. Proceedings
of the 2023 ACM SIGMOD International Conference on
Management of Data, 1(1):1–25, 2023a.

Wang, J., Trummer, I., Kara, A., and Olteanu, D. Adopt:
Adaptively optimizing attribute orders for worst-case op-
timal join algorithms via reinforcement learning. Pro-
ceedings of the VLDB Endowment, 16(11):2805–2817,
2023b.

Wasan, M. T. Parametric estimation. 1970.

Wu, Z., Yu, P., Yang, P., Zhu, R., Han, Y., Li, Y., Lian, D.,
Zeng, K., and Zhou, J. A unified transferable model for
ml-enhanced dbms. arXiv preprint arXiv:2105.02418,
2021.

Yang, Z., Kamsetty, A., Luan, S., Liang, E., Duan, Y., Chen,
X., and Stoica, I. Neurocard: one cardinality estimator

for all tables. Proceedings of the VLDB Endowment, 14
(1):61–73, 2020.

Ying, W., Zhang, Y., Huang, J., and Yang, Q. Transfer learn-
ing via learning to transfer. In International conference
on machine learning, pp. 5085–5094. PMLR, 2018.

Yu, H., Li, J., Lu, J., Song, Y., Xie, S., and Zhang, G. Type-
ldd: A type-driven lite concept drift detector for data
streams. IEEE Transactions on Knowledge and Data
Engineering, 36(12):9476–9489, 2023.

Zeighami, S. and Shahabi, C. Theoretical analysis of learned
database operations under distribution shift through dis-
tribution learnability. In Forty-first International Confer-
ence on Machine Learning, 2024.

Zeng, T., Lan, J., Ma, J., Wei, W., Zhu, R., Li, P., Ding, B.,
Lian, D., Wei, Z., and Zhou, J. Price: A pretrained model
for cross-database cardinality estimation. arXiv preprint
arXiv:2406.01027, 2024.

Zhang, J., Liu, Y., Zhou, K., Li, G., Xiao, Z., Cheng, B.,
Xing, J., Wang, Y., Cheng, T., Liu, L., et al. An end-to-
end automatic cloud database tuning system using deep
reinforcement learning. In Proceedings of the 2019 ACM
SIGMOD International Conference on Management of
Data, pp. 415–432, 2019.

Zhang, J., Su, K., and Zhang, H. Making in-memory learned
indexes efficient on disk. Proceedings of the 2024 ACM
SIGMOD International Conference on Management of
Data, 2(3):1–26, 2024a.

Zhang, S., Qi, J., Yao, X., and Brinkmann, A. Hyper: A
high-performance and memory-efficient learned index
via hybrid construction. Proceedings of the 2024 ACM
SIGMOD International Conference on Management of
Data, 2(3):1–26, 2024b.

Zhang, W., Zhu, L., Hallinan, J., Zhang, S., Makmur, A.,
Cai, Q., and Ooi, B. C. Boostmis: Boosting medical
image semi-supervised learning with adaptive pseudo la-
beling and informative active annotation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20666–20676, 2022.

Zhang, W., Lin, T., Liu, J., Shu, F., Li, H., Zhang, L., Wang-
gui, H., Zhou, H., Lv, Z., Jiang, H., et al. Hyperllava: Dy-
namic visual and language expert tuning for multimodal
large language models. arXiv preprint arXiv:2403.13447,
2024c.

Zhao, K., Yu, J. X., He, Z., Li, R., and Zhang, H.
Lightweight and accurate cardinality estimation by neural
network gaussian process. In Proceedings of the 2022
International Conference on Management of Data, pp.
973–987, 2022.

13

In-Context Adaptation to Concept Drift for Learned Database Operations

Zhao, Z., Gao, H., Xing, N., Zeng, L., Zhang, M., Chen, G.,
Rigger, M., and Ooi, B. C. Neurbench: Benchmarking
learned database components with data and workload
drift modeling. arXiv preprint arXiv:2503.13822, 2025.

Zheng, Y., Lin, C., Lyu, X., Zhou, X., Li, G., and Wang, T.
Robustness of updatable learning-based index advisors
against poisoning attack. Proceedings of the 2024 ACM
SIGMOD International Conference on Management of
Data, 2(1):1–26, 2024.

Zhou, X., Li, G., Sun, Z., Liu, Z., Chen, W., Wu, J., Liu,
J., Feng, R., and Zeng, G. D-bot: Database diagno-
sis system using large language models. arXiv preprint
arXiv:2312.01454, 2023.

Zhu, J., Cai, S., Deng, F., Ooi, B. C., and Zhang, W. Me-
ter: A dynamic concept adaptation framework for online
anomaly detection. arXiv preprint arXiv:2312.16831,
2023.

Zhu, J., Cai, S., Deng, F., Ooi, B. C., and Wu, J. Do llms
understand visual anomalies? uncovering llm’s capabil-
ities in zero-shot anomaly detection. In Proceedings of
the 32nd ACM International Conference on Multimedia,
pp. 48–57, 2024a.

Zhu, R., Weng, L., Wei, W., Wu, D., Peng, J., Wang,
Y., Ding, B., Lian, D., Zheng, B., and Zhou, J. Pi-
lotscope: Steering databases with machine learning
drivers. Proceedings of the VLDB Endowment, 17(5):
980–993, 2024b.

14

In-Context Adaptation to Concept Drift for Learned Database Operations

APPENDIX
Appendix A. Notation Table.

Appendix B. Extended Preliminaries.

Appendix C. Data and Task Query Encoding.

Appendix D. FLAIR Workflow: Training to Inference.

Appendix E. Proofs.

Appendix E.1. Proof of Theorem 3.1.

Appendix E.2. Proof of Theorem 3.2.

Appendix F. Discussion of FLAIR’s Key Characteristics.

Appendix G. Details on Experimental Setup.

Appendix G.1. Benchmarks.

Appendix G.2. Baselines.

Appendix G.3. Downstream Applications.

Appendix G.4. Implementation Details.

Appendix G.5. Evaluation Metrics.

Appendix G.6. Dynamic Settings and Data Drift.

Appendix H. Supplementary Experimental Results on In-database Data Analytics.

Appendix H.1. Data Classification.

Appendix H.2. Data Regression.

Appendix I. Supplementary Experimental Results on Ablation Study of FLAIR.

Appendix I.1. Effects of Queue Size in Context Memory.

Appendix I.2. Effects of Histogram Granularity.

Appendix I.3. Effects of User Feedback.

15

In-Context Adaptation to Concept Drift for Learned Database Operations

A. Notation Table
In this paper, scalars are denoted by symbols such as x, vectors are represented by boldface symbols such as x, and matrices
are described by uppercase boldface symbols such as X. To provide a comprehensive overview of the notations used
throughout the paper, we present a summary of notations in Table 2 as a quick reference to facilitate the understanding and
recall of each symbol.

Table 2: Notations.

Notation Description

Ri The ith relation in the database.
ai
n The nth attribute of the relation Ri.

xi
n The histogram for attribute ai

n.
ni Number of attributes in relation Ri.
X Data matrix, aggregated by attribute histograms xi

n across all relations in the database.
δ Number of histogram bins, a hyperparameter that controls the granularity and dimensionality of X.

qQ “ă qJ ,qF ą Query vector, formed by concatenating join predicate vector qJ and filter predicate vector qF .
Dt Data distribution at time t.
fDt Mapping function of data distribution Dt.
dk Scaling factor for the dot product in the attention mechanism.
M Number of attention heads.

qm, km, vm The query, key, value vector for the mth attention head.
Wm

q , Wm
k , Wm

v Transformation matrices for query, key, and value in the mth attention head.
Wo Output transformation matrix.
ZO Final output of the MHSA phase.
zT Task vector obtained by the TFM.
da The attention dimension in the DDE.

Qpmt The queue contains ϱ recent queries processed by the system.
Ypmt The queue contains the corresponding system outputs of Qpmt.

C “ pQpmt,Ypmtq Context memory, containing contextual information of the current task.
ϱ Size of the context memory.
Φ Prior distributions in Bayesian meta-training.

LDDE Negative log likelihood loss of the DDE.
Lreg The instantiation of LDDE for regression tasks.
Lcls The instantiation of LDDE for classification tasks.
LTS Task-specific loss of the TFM.

ηT , ηD Learning rates for the TFM and DDE modules.
ΘT , ΘD Model parameters for the TFM and DDE modules.

16

In-Context Adaptation to Concept Drift for Learned Database Operations

B. Extended Preliminaries
In this section, we further explore the technical aspects of two techniques central to FLAIR, in-context learning and Prior-data
Fitted Networks.

In-context Learning. Emerging as a revolutionary paradigm alongside the advancement of large language models (LLMs),
in-context learning (ICL) enables the foundation models to make direct predictions based on contextual examples without
the need for parameter updates (Baldassini et al., 2024; Radford et al., 2019; Raffel et al., 2020; Brown et al., 2020; Achiam
et al., 2023; Jeon et al., 2024), akin to human reasoning processes. Specifically, ICL empowers a model by conditioning
it on a few select set of input-output examples. This setup estimates the likelihood of potential outputs by utilizing
contextual demonstrations with a sophisticated pre-trained model Formally, given an input x and a set of candidate outputs
Y “ ty1, y2, ¨ ¨ ¨ u, a pre-trained model M selects the candidate output with the highest score as its prediction, conditioned
on a demonstration set C. The demonstration set C includes k examples, represented as C “ tpx1, y1q, ¨ ¨ ¨ , pxk, ykqu, where
pxk, ykq is an example of input-output pair pertinent to the task. The likelihood of a candidate output yi is determined by
the scoring function S applied to the entire input examples using the model M. The predicted output ŷ is then the candidate
with the highest probability:

P pyi|xq fi SMpyi,x, Cq (17)
ŷ “ argmax

yiPY
P pyi|xq (18)

The scoring function S evaluates the plausibility of each candidate output based on the demonstration set C and the query
input x, supporting various learning scenarios or new tasks without specific training.

In FLAIR, we leverage the principles of ICL to enable context-aware adaptation for dynamic data systems. Our approach
allows the model to dynamically adjust its predictions based on evolving concepts rather than relying on a static input-output
mapping fixed to a particular data distribution, delivering superior modeling performance without the need for periodic
model retraining or fine-tuning, as required by existing methods.

Prior-data Fitted Networks. Prior-data Fitted Networks (PFNs) (Müller et al., 2022; Hollmann et al., 2023; Helli et al.,
2024) are advanced classifiers for tabular data, designed to perform Bayesian inference by pre-training on synthetic datasets,
which are constructed based on a carefully designed prior distribution. This approach allows PFNs to make accurate
predictions on new, unseen data without the need for further parameter updates, thereby effectively approximating the
Posterior Predictive Distribution (PPD). In Bayesian learning, the PPD estimates the likelihood of predictions for new data
points based on observed data D and a prior distribution of hypotheses Φ. For a given test sample xt, PFNs calculate the
distribution of the label yt as follows:

ppyt|xt, Dq9

ż

Φ

ppy|xt, DqppD|ϕqppϕqdϕ (19)

where ϕ P Φ represents a specific hypothesis, and ppD|ϕq is the likelihood of observing the data D given the hypothesis ϕ.
The PPD integrates over all hypotheses, weighted by respective priors and data likelihoods, thus enabling PFNs to make
informed probabilistic predictions. By approximating PPD, PFNs merge Bayesian inference with deep learning to enhance
the accuracy of predictions for diverse applications. In FLAIR, we integrate context into the input, via a task featurization
module, and then, model the current data distribution ppD|ϕq explicitly by uncovering PFNs to adaptive cases through a
dynamic decision engine, enhancing prediction accuracy for ppyt|xt, Dq. This enables FLAIR to adapt to new concepts in
databases on-the-fly.

C. Data and Task Query Encoding
To encode the data, the process first obtains a unified representation of the data distribution within the database via histogram
encoding of each attribute (i.e., column) across all relations (i.e., tables). Specifically, each attribute ain within a relation
Ri is represented by a histogram defined as xi

n “ rx1, ¨ ¨ ¨ , xδs, where δ indicates the number of bins, a parameter
that can be adjusted to account for the complexity of the data distribution. These histograms are aggregated into a set
txi

n|1 ď n ď ni, 1 ď i ď N,n, i P Zu after scaling into r0, 1s, where ni is the number of attributes in relation Ri, and N is
the total number of relations. The set is then aggregated into data vectors XD of dimension δ ˆ

řN
i“1 ni, offering a holistic

view of the entire database.

17

In-Context Adaptation to Concept Drift for Learned Database Operations

Subsequently, we encode the task query formulated as:

SELECT AGG FROM R1,...,RN

WHERE join predicates ’ AND filter predicates π;

Here, AGG represents the aggregate function such as COUNT, SUM, or AVG. Join predicates, formatted as Ria
i
ni

“ Rja
j
nj

are converted into binary vectors qJ by a one-hot encoding-like strategy. For filter predicates formatted as Ria
i
ni

op ℧,
where op P tă,ď,ě,ą,“u denotes comparison operators and ℧ is the condition value. We encode them into qF by
converting conditions on attributes into two boundary values, forming a 2

řN
i“1 ni dimensional vector. The final query

vector qQ “ă qJ ,qF ą is obtained by concatenating the join vector qJ and filter vector qF , capturing pertinent structural
and conditional information of the task query.

D. FLAIR Workflow: Training to Inference
As outlined in Section 2, FLAIR MF comprises two cascading modules, the TFM module MTFM parameterized by ΘT
and the DDE module MDDE parameterized by ΘD, represented as follows:

MF px; ΘT ,ΘDq “ MDDEpMTFM px; ΘT q; ΘDq (20)

Next, we elaborate on the workflow of FLAIR, covering phases of offline training and online inference and adaptation.

Offline Training. FLAIR is trained in two stages, as outlined in Algorithm 1. (i) In the first stage, the DDE module MDDE

undergoes a one-off meta-training phase using the loss function LDDE formalized in Eq. 10 across various task distributions.
These distributions are generated based on crafted priors, tailored to encompass a broad spectrum of scenarios rather than
specific real-world data, which enables DDE to generalize across various tasks. Note that the Bayesian meta-training is not to
optimize FLAIR directly on end tasks but to prepare DDE to adapt to new tasks met during inference without further training.
In all our experiments across diverse tasks, we perform Bayesian meta-training only once, demonstrating its efficiency and
scalability in real-world applications. (ii) In the second stage, the MTFM module is trained to extract informative latent
features that are critical for the specific tasks at hand. The training of TFM is tailored to optimize performance on these
tasks, utilizing a task-specific loss function LTS to extract standardized and informative features for the DDE module. In
particular, for tasks outputting raw logits, such as cardinality estimation and approximate query processing, a mean squared
error (MSE) loss will be employed to optimize the representation space. Otherwise, we utilize cross-entropy loss for tasks
generating probability distributions via softmax activation, like in-database data classification. Overall, the meta-training
phase is not confined to specific tasks, instead, it establishes a foundation for efficient adaptation by learning a flexible and
generalizable parameter space. Meanwhile, the TFM is independently tuned for the specific task at hand. Together, this
offline training approach ensures that the two key modules of FLAIR work seamlessly to the adaptability of the model in
dynamic databases.

Algorithm 1 FLAIR Training

Input: Designed priors ppϕq, number of synthetic datasets H, each with No observed samples, queue size ϱ in the context memory,
learning rate ηT for MTFM and ηD for MDDE .

Output: FLAIR MF px; ΘT ,ΘDq constructed by cascading MTFM and MDDE with parameters ΘT and ΘD .
1: Initialize MTFM and MDDE with random weights ΘT and ΘD
2: for i “ 1 to H do
3: Sample synthetic datasets rDi „ ppC|ϕq

4: Randomly select context C based on tpxj ,yjqu
ϱ
j“1 from rDi

5: repeat
6: Randomly select a training batch tpxj ,yjqu

No
j“1 from rDi

7: Compute stochastic loss LDDE using Eq. 10
8: Update ΘD using stochastic gradient descent ΘD Ð ΘD ´ ηD▽ΘDLDDE

9: until Convergence
10: end for
11: repeat
12: Randomly sample a minibatch
13: Update ΘT by minimizing the loss LTS of the specific task ΘT Ð ΘT ´ ηT ▽ΘT LTS

14: until Convergence
15: MF px; ΘT ,ΘDq “ MDDEpMTFM px; ΘT q; ΘDq;
16: Return FLAIR MF

18

In-Context Adaptation to Concept Drift for Learned Database Operations

Online Inference and Adaptation. Once trained, FLAIR is ready for deployment in a real-time environment, where it
performs concurrent online inference and adaptation under evolving concepts as detailed in Algorithm 2. Specifically, for an
incoming input query x, the TFM first extracts its task vector as shown in Eq. 21 below. The task vector, along with its
contextual information in context memory C “ pQpmt,Ypmtq, are then fed to the DDE module as Eq. 22. After executing
the current query, the query and the corresponding ground-truth result returned by the database are used to update the queues
in context memory, i.e., Qpmt and Ypmt, respectively. Thus, FLAIR effectively utilizes contextual information from the
context memory to adapt to tasks encountered during inference.

zT “ MTFM px; ΘT q (21)
y “ MDDEpzT , C; ΘDq (22)

Algorithm 2 Concurrent FLAIR Inference and Adaptation

Input: MTFM and MDDE with parameters ΘT and ΘD, input query and data underlying the data system.
Output: Predicted output y.

1: Extract latent feature zT incorporating information from query and data, using MTFM as zT “ MTFM px; ΘT q

2: Gather context memory C “ pQpmt,Ypmtq

3: Predict y by inputting latent feature zT and context memory C into MDDE as y “ MDDEpzT , C; ΘDq

4: Store zT and the corresponding system output y˚ into queue Qpmt and Ypmt to update the context memory C
5: Remove oldest entries from Qpmt, Ypmt to maintain size ϱ
6: Return y

E. Proofs
E.1. Proof of Theorem 3.1

Proof. Let Yins be the number of inserted data points out of k operations that land in query x and Ydel be the number of
deleted data points out of k operations that come from x, where x specifies an axis-parallel hyperrectangle within the data
space. Then, the final frequency of points in x is

fDj pxq “
ÿ

dPDj

IdPx “ fDipxq ` Yins ´ Ydel

Set Y “ Yins ´ Ydel, then each data operation can increment Y by `1 (insert), decrement Y by ´1 (delete), or leave Y
unchanged if the inserted or deleted data point is out of x. We can represent the net difference for each single-point data
operation as Ypωq “

řk
t“1 Ytpωq, where Ytpωq takes values in t´1, 0, 1u. Consequently, Y is an integer-valued random

variable in r´k, ks. Hence, the generalization error can be represented as

EDj„χ

“
ˇ

ˇf̂ipxq ´ fDj pxq
ˇ

ˇ

‰

“ EDj„χ

“
ˇ

ˇf̂ipxq ´ pfDipxq ` Yins ´ Ydelq
ˇ

ˇ

‰

“ EDi„χ

“

EDi:j„χ

“

|pf̂ipxq ´ fDipxqq ´ Y|
ˇ

ˇDi
‰‰

Observe that f̂ipxq ´ fDipxq is a fixed quantity for a given Di. Recall the classic fact that argminc Er|X ´ c|s “ MedpXq

for any random variable X (Wasan, 1970). Thus, for each realized dataset Di, the fixed quantity f̂ipxq ´ fDipxq can be
seen as an offset and Y is the random part, so we have

EDi:j„χ

“

|pf̂ipxq ´ fDipxqq ´ Y|
‰

ě EDi:j„χ

“

|MedpYq ´ Y|
‰

To assess the worst-case scenario, we consider the extreme outcomes in which Y attains k or ´k. Consequently, MedpYq is
forced to be either 1 or ´1. In both extremes, |MedpYq ´ Y| reveals a mismatch of k ´ 1. Maximizing over all possible
queries x thus enforces

sup
x

EDj„χ

“
ˇ

ˇf̂ipxq ´ fDj pxq
ˇ

ˇ

‰

ě k ´ 1

19

In-Context Adaptation to Concept Drift for Learned Database Operations

E.2. Proof of Theorem 3.2

Proof. First, consider

EDj„χ

”

ˇ

ˇf̂px|Cjq ´ fDj pxq
ˇ

ˇ

ı

“ EDj„χ

”

ˇ

ˇf̂px|Cjq ´ fCj pxq ` fCj pxq ´ fDj pxq
ˇ

ˇ

ı

where fCj pxq denotes the optimal model updated by Cj after training on the initial data Di. By introducing fCj pxq term, we
decompose the maximum generalization error of FLAIR into two parts using the triangle inequality.

EDj„χ

”

ˇ

ˇf̂px|Cjq ´ fDj pxq
ˇ

ˇ

ı

ď EDj„χ

”

ˇ

ˇf̂px|Cjq ´ fCj pxq
ˇ

ˇ

ı

` EDj„χ

”

ˇ

ˇfCj pxq ´ fDj pxq
ˇ

ˇ

ı

The first term EDj„χ

”

ˇ

ˇf̂px|Cjq ´ fCj pxq
ˇ

ˇ

ı

(denoted as EM) represents the error between the FLAIR output f̂px|Cjq and

the optimal model fCj pxq trained on the context memory Cj . This measures the FLAIR’s ability to approximate fCj pxq,
reflecting whether the FLAIR can efficiently utilize the information in context memory Cj for prediction. Theoretically, EM
tends to be 0 if FLAIR can fully learn the mapping from Cj to the posterior distribution. Using the generalization error
bound on the PAC-Bayes framework (Amit & Meir, 2018), we have

EM “ EDj„χ

”

ˇ

ˇf̂px|Cjq ´ fCj pxq
ˇ

ˇ

ı

ď

d

KLpqpfq}ppfqq ` ln 1
δ

2ϱ

with high probability 1 ´ δ. Here, KLpqpfq}ppfqq is the Kullback-Leibler divergence (Kullback & Leibler, 1951) between
the posterior distribution qpfq over the model parameters, conditioned on the context memory Cj , and prior distribution
ppfq defined during meta-training. δ P p0, 1q is the confidence parameter. This result states that, for each particular x, the
expected error of f̂px|Cjq relative to fCj pxq is controlled by a PAC-Bayes term of order O

´

1?
ϱ

¯

. Assuming sufficient
training of FLAIR, KLpqpfq}ppfqq is bounded by a small constant κ, leading to

sup
x

EDj„χ

”

ˇ

ˇf̂px|Cjq ´ fCj pxq
ˇ

ˇ

ı

ď

d

κ ` ln 1
δ

2ϱ

This result highlights that FLAIR’s generalization performance improves as the size of the context memory ϱ increases.

Moreover, the second term EDj„χ

”

ˇ

ˇfCj pxq ´ fDj pxq
ˇ

ˇ

ı

(denoted as EC) measures how well the context memory Cj

approximates the full data Dj . We assume the performance of fCj pqq is estimated by the sample average on Cj , i.e.,
V Cj “ 1

ϱ

řϱ
i“1 Vi, where Vi is defined as the performance metric of the model on the i-th data point in Cj . By Hoeffding’s

inequality (Hoeffding, 1994), the probability of the deviation between fCj pxq and fDj pxq satisfies

Pr
”

ˇ

ˇfCj pxq ´ fDj pxq
ˇ

ˇ ě ϵ
ı

“ Pr
”

ˇ

ˇV Cj ´ µDj

ˇ

ˇ ě ϵ
ı

ď 2 expp´2ϱϵ2q

where µDj denotes the expected performance on Dj . Grounded in probability measure theory, the expectation of a non-
negative random variable can be computed by integrating the probability that the variable exceeds all possible values (Ross
et al., 1976). Consequently, integrating over ϵ, the expected approximation error satisfies

EC “ EDj„χ

”

ˇ

ˇfCj pxq ´ fDj pxq
ˇ

ˇ

ı

“

ż 8

0

Pr
”

ˇ

ˇfCj pxq ´ fDj pxq
ˇ

ˇ ě ϵ
ı

dϵ

ď

ż 8

0

2 expp´2ϱϵ2qdϵ

“ 2 ¨

c

π

4 ¨ 2ϱ
“

c

π

2ϱ

Finally, adding the two terms EM and EC , we obtain

sup
x

EDj„χ

”

ˇ

ˇf̂px|Cjq ´ fDj pxq
ˇ

ˇ

ı

ď EM ` EC “

d

κ ` ln 1
δ

2ϱ
`

c

π

2ϱ
“

´

c

1

2
pκ ` ln

1

δ
q `

c

π

2

¯ 1
?
ϱ

20

In-Context Adaptation to Concept Drift for Learned Database Operations

F. Key Characteristics of FLAIR
We discuss FLAIR on three key aspects that are crucial for deployment, namely effectiveness, efficiency, and transferability.

Effectiveness. FLAIR demonstrates robust effectiveness, particularly in handling dynamic environments. The task
featurization module of FLAIR prepares standardized task features for the subsequent DDE modeling, providing a holistic
perspective to achieve a comprehensive understanding of the context. Furthermore, compared to the existing event-driven
adaptation to evolving concepts like gradient-based out-of-distribution (OOD) detection (Kurmanji & Triantafillou, 2023),
our FLAIR leverages ongoing access to relevant contextual information for contextualized task modeling, which greatly
enhances prediction accuracy under evolving concepts.

Efficiency. As opposed to conventional models that require continuous training-based updates to adapt to new concepts,
FLAIR supports adaptation on-the-fly, eliminating the need for post-deployment data recollection and model retraining. This
capability enables FLAIR to be deployed into operational environments with ease, substantially saving on resources. Specifi-
cally, each attribute is initially represented by a histogram of size δ, giving an initialization complexity of Opδ

řN
i“1 niq.

Subsequent insert, delete, or update operations require only OpNvq incremental maintenance on the affected histograms
where Nv is the number of the records involved. Set the number of join and filter predicates in the query as NJ and NF .
The time complexity of encoding a task query is approximately OpNJ ` NF q, which is typically small and negligible.
For simplicity of analysis, we disregard the MLP’s computational cost, as it is typically overshadowed by the dominant
attention-related operations. Thus, for the task featurization stage, the MHSA yields a complexity of Opda δ

2q, where
we denote the embedding and attention dimension as da. The cost reduces to Opda δq for the MHCA part, because the
cross-attention occurs only once between the single query vector and the δ-dimensional data representation. In the DDE, the
model employs a FIFO key-value queue of ϱ input-output pairs as a context memory. When a new input vector (viewed as a
single token) attends over these ϱ stored entries, the time complexity grows linearly in ϱ, i.e., Opda ϱq, without incurring
additional self-attention among the ϱ memory entries themselves, thus being scalable and avoiding the quadratic overhead.

Transferability. Beyond its proven effectiveness and efficiency, the transferability of FLAIR is a pivotal feature for its
practical deployment in diverse settings. Central to the design of FLAIR is its in-context adaptation capability, which is
inherently task-agnostic and facilitates ready application across various tasks including both regression and classification.
This design enables FLAIR to support AI-powered database applications that meet both system-internal functions and
user-oriented objectives such as cardinality estimation and approximate query processing. The broad applicability of FLAIR
is thoroughly demonstrated in Section 4, providing empirical evidence of its superior utility across diverse tabular data-driven
domains.

G. Details on Experimental Setup
In this section, we detail the experimental setup and provide additional information to facilitate reader comprehension and
replication of our study.

G.1. Benchmarks

We evaluate FLAIR on two real-world benchmarks that are commonly referenced in previous database system studies (Sun
& Li, 2019; Yang et al., 2020; Hilprecht et al., 2019; Han et al., 2021; Li et al., 2023b; Zeng et al., 2024).

• STATS (STA, 2015), includes 8 relations with 43 attributes. There are 1,029,842 records from the anonymized Stats
Stack Exchange network. The benchmark workload includes 146 queries with 2603 sub-queries, featuring both PK-FK
and FK-FK join.

• JOB-light (Leis et al., 2018; 2015), derives from a subset of the Internet Movie Data Base (IMDB) dataset3 and
encompasses 6 relations with 14 attributes. There are 62,118,470 records in total. The benchmark workload consists of
70 queries with 696 sub-queries, focusing on PK-FK join.

As in a recent work (Li et al., 2023b), our evaluation involves randomly generating 2000 diverse queries with sub-queries
to form the training set for each benchmark. In the STATS benchmark, we utilize an existing workload of 146 queries
with 2603 sub-queries as the test set. For JOB-light, the test set comprises 70 queries associated with 696 sub-queries.

3https://www.imdb.com/

21

https://www.imdb.com/

In-Context Adaptation to Concept Drift for Learned Database Operations

Additionally, we incorporate a dynamic workload into each benchmark’s training and test sets. This dynamic workload
includes various SQL operations, including insert, delete, and update, which are strategically varied in proportion throughout
different phases of the experiment. Notably, the ground truth for the queries is obtained by executing them, as both the
dynamic workload and data changes can influence the results over time. For the cardinality estimation task, queries yielding
a ground-truth cardinality of zero are excluded from the analysis to ensure data integrity and relevance.

G.2. Baselines

In our experiments, we first compare FLAIR with predominant families of cardinality estimation technologies, including
the estimator from PostgreSQL (pos, 1996), and state-of-the-art learned approaches for dynamic environments, such as
DeepDB (Hilprecht et al., 2019), ALECE (Li et al., 2023b), and DDUp (Kurmanji & Triantafillou, 2023) with Neuro-
Card (Yang et al., 2020) being used as its base model. We also compare FLAIR with model fine-tuning outlined in (Kurmanji
& Triantafillou, 2023), which serves as a high-performance baseline despite being computationally intensive. For AQP, our
baselines include DBest++ (Ma et al., 2021), which utilizes only frequency tables (FTs) for the update, DBest++FT, which
updates both FTs and mixture density networks (MDNs), and DDUp (Kurmanji & Triantafillou, 2023), which uses DBest++
as its base model. For in-database data analytics, we compare FLAIR with AutoML system AutoGluon (Erickson et al., 2020)
and established machine learning algorithms, including K-nearest-neighbors (KNN), RandomForest, MLP, and popular
tree-based boosting methods, XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017) and CatBoost (Prokhorenkova
et al., 2018) for data classification, and AutoGluon, SVR, MLP, DecisionTree, RandomForest, and GradientBoosting for
regression. We briefly introduce the baselines in our experiments as follows.

• PostgreSQL (pos, 1996) employs a default 1D histogram-based estimation method to analyze the distribution of
individual columns.

• DeepDB4 (Hilprecht et al., 2019) is a pure data-driven method, which learns the joint probability distribution of the
underlying data using a Sum-Product-Network (SPN).

• ALECE5 (Li et al., 2023b) is an attention-based regression method, which captures the relations between queries and
data.

• DDUp6 (Kurmanji & Triantafillou, 2023) is a two-stage approach, which first conducts loss-based out-of-distribution
(OOD) detection and then uses knowledge distillation for model updates. DDUp utilizes NeuroCard as its base model
for cardinality estimation and employs DBest++ for approximate query processing.

• Fine-tune (Kurmanji & Triantafillou, 2023) is based on DDUp’s pipeline, with knowledge distillation being replaced
by fine-tuning for model updates.

• DBest++7 (Ma et al., 2021) utilizes mixture density networks (MDNs) to learn the probability density function of data
and predict the results of the queries. We use DBest++FT to denote the approach that updates only frequency tables
(FTs), whereas DBest++FT represents updating both FTs and MDNs to reflect its resemblance to fine-tuning.

• KNN is a distance-based method that classifies a data point based on the majority vote of its nearest neighbors.

• RandomForest constructs multiple decision trees using majority voting for classification and averaging their predictions
for regression tasks.

• MLP is a fully connected feedforward neural network trained with stochastic gradient descent.

• XGBoost8 (Chen & Guestrin, 2016) is an optimized gradient-boosting framework that builds an ensemble of decision
trees sequentially.

• LightGBM9 (Ke et al., 2017) is a gradient-boosting algorithm with a leaf-wise tree growth strategy.

4https://github.com/DataManagementLab/deepdb-public
5https://github.com/pfl-cs/ALECE
6https://github.com/meghdadk/DDUp
7https://github.com/qingzma/DBEstClient
8https://github.com/dmlc/xgboost
9https://github.com/microsoft/LightGBM

22

https://github.com/DataManagementLab/deepdb-public
https://github.com/pfl-cs/ALECE
https://github.com/meghdadk/DDUp
https://github.com/qingzma/DBEstClient
https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM

In-Context Adaptation to Concept Drift for Learned Database Operations

• CatBoost10 (Prokhorenkova et al., 2018) is a boosting method optimized for handling categorical variables via ordered
boosting and efficient one-hot encoding alternatives.

• Type-LDD11 (Yu et al., 2023) is a drift-aware classifier via knowledge distillation.

• SVR maps inputs into a high-dimensional space and finds an optimal hyperplane that minimizes the error within a
defined margin.

• DecisionTree recursively splits data into branches based on feature values, forming a hierarchical structure of decision
nodes and leaf nodes.

• GradientBoosting trains weak decision trees iteratively, minimizing the residual error of the previous weak learners.

• AutoGluon12 (Erickson et al., 2020) is an AutoML framework that employs multi-layer stack ensembling to combine
diverse models, simplifying hyperparameter tuning and model selection for classification and regression tasks.

G.3. Downstream Applications

In data systems, system-internal tasks such as cardinality estimation, database tuning, and transaction throughput mea-
surement provide immediate ground-truth outcomes critical for query optimization, resource management, and system
performance monitoring. However, obtaining ground truth for certain user-oriented tasks is more complex. In these cases,
our context memory in FLAIR establishes a virtuous cycle of user feedback, where users can provide feedback on the
model’s predictive outcomes. This feedback acts as a practical form of ground truth, facilitating continuous refinement of
model performance on user-oriented tasks and enabling system customization.

In our study, we evaluate FLAIR across four critical tasks in data systems, spanning from internal system functions to
user-oriented activities. Detailed descriptions of each task and its setting are provided below.

Cardinality Estimation (CE) estimates the number of rows a query returns, aiding query planners in optimizing execution
plans. We demonstrate FLAIR’s in-context adaptation process using the cardinality estimation task as an example, as
illustrated in Figure 9. In the cardinality estimation experiment, data-driven approaches such as DeepDB and DDUp are
configured with the database data after executing all statements from the training portion of the workload, reflecting a
real-world system scenario as described in (Li et al., 2023b). DeepDB is not compared on STATS as it only supports PK-FK
joins. For FLAIR, the queue size ϱ is set to 80, unless specified otherwise.

Approximate Query Processing (AQP) quickly delivers approximate results from large datasets by balancing accuracy with
computational efficiency. In our evaluation of the AQP task, we adopt the same query schema used in prior works (Kurmanji
& Triantafillou, 2023; Ma et al., 2021). Specifically, the test queries included 100 instances of SUM and AVG functions across
various relations in the IMDB dataset. Following (Kurmanji & Triantafillou, 2023), the queries are randomly generated
by selecting a lower and an upper bound for range filters and uniformly selecting a categorical column for the equality
filter, providing a consistent and controlled testing environment. We instantiate the TFM for AQP tasks based on word
embeddings to generate the task vector, following a methodology similar to DBest++. All methods use identical samples
from the original dataset to ensure fairness in model building.

In-database Data Analytics involves data classification tasks and data regression tasks executed within the database engine,
delivering insights directly from the data source. (1) Data classification boosts business intelligence by using categorical
attributes to categorize tuples, such as product types and transaction statuses, supporting analytics in data systems. (2)
Data regression predicts continuous outcomes, enhancing predictive analytics and decision-making on platforms like
Oracle (Helskyaho et al., 2021) and Microsoft SQL Server (MacLennan et al., 2011; Harinath et al., 2008).

G.4. Implementation Details

FLAIR is implemented in Python with Pytorch 2.0.1. In our experiments, we employ standard baselines such as KNN, MLP,
and RandomForest from scikit-learn. Other baseline methods are implemented using their open-source packages or the
source code provided by the respective researchers, which strictly adhere to the recommended configurations and settings.

10https://github.com/catboost/catboost
11https://github.com/liaub/Type-LDD
12https://github.com/autogluon/autogluon

23

https://github.com/catboost/catboost
https://github.com/liaub/Type-LDD
https://github.com/autogluon/autogluon

In-Context Adaptation to Concept Drift for Learned Database Operations

…
𝑞!"#𝑞!"$𝑞!𝑞!%$𝑞!%#

Dynamic
Databases

𝑡 − 1

𝑡

𝑡 + 𝑥

…

…

Query
Result

𝑦!"#𝑦!"$y!

…
Push(𝑞!, y!)

Context Memory

𝑞!"&

𝑦!"&

𝑞!"#

𝑦!"#

𝑞!"$

𝑦!"$

…

Pop(𝑞!"# ,𝑦!"#)

User Query

distribution	𝒟!%'

distribution	𝒟!

distribution 𝒟!"$
Query Input Contextual

Information

FLAIR

Figure 9: In-context adaptation for cardinality estimation.

The experiments involving PostgreSQL are conducted on PostgreSQL 13.1. All the experiments are conducted on a server
with a Xeon(R) Silver 4214R CPU @ 2.40GHz (12 cores), 128G memory, and a GeForce RTX 3090 with CUDA 11.8. The
OS is Ubuntu 20.04 with Linux kernel 5.4.0-72.

G.5. Evaluation Metrics

We employ a comprehensive set of metrics to evaluate both the effectiveness and efficiency of our FLAIR across various
downstream tasks, categorized into effectiveness metrics and efficiency metrics.

Effectiveness Metrics. For the CE task, we report accuracy by the widely recognized metrics Q-error and P-error. Q-error
gauges the accuracy of estimated query cardinalities by measuring the discrepancy between the estimated cardinalities cest
and the ground-truth cardinalities cgt, as defined in Eq. 23. We report the geometric mean of the Q-error (GMQ) as (Li
et al., 2022; Dutt et al., 2019) along with Q-error across various quantiles, with particular emphasis on the tail performance.
P-error measures the gap between the optimal query plan popt, which uses the actual cardinality cgt, and the plan pest
derived using the estimated cardinality, as Eq. 24. It is quantified using a cost function Fcost, for which we adopt the default
setting in PostgreSQL.

Q-error “
maxpcest, cgtq

minpcest, cgtq
P r1,`8q (23)

P-error “
Fcostppest, cestq

Fcostppopt, cgtq
P r1,`8q (24)

For AQP task, we use mean relative error (MRE) as Eq. 25, which is widely utilized in previous related works (Ma &
Triantafillou, 2019; Kurmanji & Triantafillou, 2023; Kurmanji et al., 2024) to evaluate the accuracy of query approximations
for SUM and AVG aggregates.

MRE “

N
ÿ

i“1

|ciest, cigt|
cigt

ˆ 100 (25)

For in-database data analytics, we apply accuracy and F1 score for data classification, both metrics range from 0 to 1,
with higher values indicating better model performance. In data regression, we utilize mean squared error (MSE) and the
coefficient of determination (R2), where MSE ranges from 0 to infinity and R2 ranges from 0 to 1. A lower MSE signifies a
more accurate regression model, while a higher R2 indicates better performance.

Efficiency Metrics. We assess FLAIR’s efficiency by examining storage overhead, building time, inference time, and
adaptation time. Specifically, storage overhead gauges the memory requirement of a method. Building time measures the
necessary offline training duration, while inference time indicates the average time per input instance for estimation, crucial
for real-time applications. Lastly, adaptation time reflects how quickly the model can adjust to concept drift. Additionally,

24

In-Context Adaptation to Concept Drift for Learned Database Operations

Dynamic
Workload

Dynamic
Data

Dynamic
Setting

Varied Mix of SQL Queries

SELECT INSERT

UPDATE DELETE

Permute the Joint
Distribution of Attributes

Attribute Distribution Drift

Attribute Correlation Drift

Figure 10: Overview of dynamic settings, illustrated by distribution discrepancies confirmed by Kolmogorov-Smirnov test
p-values below 0.01 before and after concept drift.

we evaluate the efficiency of FLAIR within PostgreSQL by testing its query execution latency, which directly connects to
the query optimizer and objectively shows how our method can enhance DBMS query performance.

G.6. Dynamic Settings and Data Drift

In our study, we explore a dynamic data system marked by variations in both workload and data, which is illustrated in
Figure 10. To emulate a real system environment, we introduce significant data drift after training and before testing. This
involves sorting each column to alter the joint distribution of attributes and then performing random sampling from this
permuted dataset. The impact of these manipulations on data distribution and attribute correlations is visually depicted
through histograms and heat maps in Figure 10, showcasing the data characteristics before and after experiencing data
drift. This dynamic scenario comprehensively mirrors real-world database operations where frequent insert, delete, and
update actions induce gradual changes in data distribution. Over time, these incremental modifications accumulate, resulting
in more pronounced shifts in data structures and inter-attribute relationships. To rigorously assess the robustness of our
approach, we design two scenarios based on the extent and nature of the changes.

• Mild Drift: We randomly select 50% of records from the database and independently permute their column values,
altering data distribution and inter-column correlations.

• Severe Drift: We randomly select 60% of records, independently permuting their columns, and performing random
insertions, deletions, and updates, which affects 10% of the total data (keeping the total data size constant).

H. Supplementary Experimental Results on In-database Data Analytics.
H.1. Data Classification

We conduct sentiment analysis (Maas et al., 2011) on IMDB, which is a prevalent binary classification task. We allocate
50% of the original data as the training set, and following prior setups, induced data drift on the remaining data. We
designate 20% of the post-drift data as the update set and the remaining post-drift data as the test set. For models that
support incremental updates, such as XGBoost, LightGBM, CatBoost, and MLP, we incrementally update the models
initially trained on the training set using the update set, while others are retrained on the update set. Finally, we evaluate all
models on the test set to measure their effectiveness in adapting to data drift, as summarized in Table 3. The mean time
represents the total execution time, integrating building, adaptation, and inference time averaged across two drift scenarios.
Our FLAIR distinctly showcases its robustness and adaptability in handling concept drift, resulting in superior performance
across both mild and severe drift scenarios. Furthermore, FLAIR achieves this high accuracy while maintaining impressive

25

In-Context Adaptation to Concept Drift for Learned Database Operations

computational efficiency compared with AutoGluon, making it exceptionally suited for practical dynamic environments
where both performance and speed are crucial.

Table 3: Performance of data classification on concept drift.

Category Method Mild Drift Severe Drift Mean
AccÒ F1Ò AccÒ F1Ò Time(s)Ó

Classical
Non-linear Classifier

KNN 0.795 0.591 0.586 0.379 1.469
RandomForest 0.921 0.891 0.621 0.334 8.893
MLP 0.852 0.585 0.676 0.496 15.798

GBDT Classifier
XGBoost 0.905 0.896 0.596 0.385 55.681
LightGBM 0.870 0.727 0.595 0.377 16.765
CatBoost 0.918 0.906 0.607 0.368 14.077

AutoML System AutoGluon 0.936 0.908 0.679 0.441 85.183

Ours FLAIR 0.932 0.920 0.826 0.632 8.377

H.2. Data Regression

Table 4 offers a comprehensive comparison of representative regression methods in the context of concept drift, focusing on
movie rating prediction (IMD, 2024), a scenario typically characterized by evolving concepts. FLAIR excels in both mild
and severe drift scenarios, maintaining consistent performance across MSE and R2 metrics while demonstrating comparable
efficiency. While AutoGluon delivers the best results under mild drift conditions, its performance noticeably declines under
severe drift and requires more than 40ˆ computational time compared to FLAIR.

Table 4: Performance of data regression on concept drift.

Category Method Mild Drift Severe Drift Mean
MSEÓ R2

Ò MSEÓ R2
Ò Time(s)Ó

Classical
Method

SVR 0.591 0.230 0.691 0.210 0.081
MLP 8.762 -10.418 28.355 -49.003 10.259

Tree-based
Method

DecisionTree 0.557 0.231 0.652 0.198 0.068
RandomForest 0.315 0.570 0.458 0.475 0.942
GradientBoosting 0.325 0.577 0.396 0.487 0.355

AutoML System AutoGluon 0.267 0.682 0.399 0.632 27.438

Ours FLAIR 0.271 0.647 0.388 0.647 0.681

I. Ablation Study
I.1. Effects of Queue Size in Context Memory

We further analyze the sensitivity of FLAIR to the critical hyperparameter ϱ, the size of queues in context memory, across
various benchmarks and dynamic scenarios, as depicted in Figure 11. The results confirm that increasing the queue size
contributes to performance enhancements without escalating system latency, owing to embedding cache optimization.
Initially, performance improves significantly with an increase in queue size but eventually plateaus, indicating diminishing
returns. Notably, an oversized queue size may introduce information redundancy, potentially leading to a performance
decline. For instance, increasing the queue size to 100 results in minor deterioration in the STATS benchmark’s mild
drift scenario. In summary, the optimal queue size ϱ should be tailored based on the complexity of the data to balance
performance gains against the risk of redundancy, in order to optimize the model’s efficacy in dynamic environments.

I.2. Effects of Histogram Granularity

To evaluate the impact of histogram binning granularity in the TFM, we conduct a sensitivity analysis by varying the
number of bins δ used in data encoding. Specifically, we test δ P t10, 20, 40, 60, 80u across four scenarios involving two

26

In-Context Adaptation to Concept Drift for Learned Database Operations

3.00

3.50

4.00

4.50

5.00

GM
Q

(a) STATS (Mild)
4.00

4.50

5.00

5.50

6.00

(b) STATS (Severe)

0.00

2.50

5.00

7.50

GM
Q

(c) Job-light (Mild)
4.00

6.00

8.00

10.00

(d) Job-light (Severe)

0.10

0.20

0.30

0.40

0.10

0.20

0.30

0.40

In
fe

re
nc

e
Ti

m
e

(s
)

0.10

0.15

0.20

0.25

0.30

0.10

0.15

0.20

0.25

0.30

In
fe

re
nc

e
Ti

m
e

(s
)

ϱ =20 ϱ =40 ϱ =60 ϱ =80 ϱ =100

GMQ (lower is better) Inference Time (lower is better)

Figure 11: Sensitivity analysis of the queue size ϱ.

2.00

4.00

6.00

GM
Q

(a) STATS (Mild)
2.00

4.00

6.00

8.00

(b) STATS (Severe)

0.00

2.00

4.00

6.00

GM
Q

(c) Job-light (Mild)
4.00

6.00

8.00

10.00

(d) Job-light (Severe)

400

600

800

1000

400

600

800

1000

Tr
ai

ni
ng

 T
im

e
(s

)

200

400

600

800

200

400

600

800

Tr
ai

ni
ng

 T
im

e
(s

)

δ =10 δ =20 δ =40 δ =60 δ =80

GMQ (lower is better) Training Time (lower is better)

Figure 12: Sensitivity analysis of the bin number δ.

benchmarks under mild and severe dynamic scenarios. As shown in Figure 12, decreasing the bin number generally improves
performance in terms of GMQ but increases the training time. Notably, δ “ 40 achieves a favorable trade-off between
encoding fidelity and computational efficiency, yielding significant reductions in GMQ without incurring excessive training
time.

I.3. Effects of User Feedback

To delve into the adaptability of FLAIR in user-oriented tasks, we evaluate how varying proportions of user feedback data
ρ within queues affect model performance. We use drifted data with ground-truth outputs to simulate user-customized
feedback data, assessing the model’s conformity to user-specific requirements. Specifically, the queues comprise a certain
proportion of user feedback data combined with the model’s recent input-output pairs. We maintain the queue size at 80 and
vary the proportion of user feedback data. The results in Figure 13, demonstrate that increasing the proportion ρ within a
fixed queue size significantly enhances model performance, confirming the model’s ability to be customized by users. To
further explore the impact of integrating recent model interactions into the queue on performance, we conduct comparative
experiments using only user feedback data. We observe that mixed queues outperform those containing solely user feedback.
Additionally, integrating recent model data mitigates performance decline as the proportion ρ of user feedback decreases.

27

In-Context Adaptation to Concept Drift for Learned Database Operations

0.00

0.50

1.00

M
RE

(a) cast_info (Mild) 0.00

0.50

1.00

1.50

M
RE

(b) cast_info (Severe)

0.00
0.25
0.50
0.75
1.00

M
RE

(c) movie_keyword (Mild) 1.00

1.50

2.00

M
RE

(d) movie_keyword (Severe)

ρ =100% ρ =80% ρ =60% ρ =40% ρ =20%
Mixed (lower is better)
Suboptimal Baseline Performance

User Feedback Data Only (lower is better)

Figure 13: Sensitivity analysis of the user feedback ρ.

Still, we advise against setting ρ too low due to the risk of introducing noise. It is noteworthy that FLAIR surpasses the
suboptimal model DDUp at most times even with very low ρ, underscoring FLAIR’s capability in user-oriented applications.

28

