An Atom-Centric Perspective on Stubborn Sets

Gabriele Roger, Malte Helmert, Jendrik Seipp, Silvan Sievers
University of Basel
Basel, Switzerland
{gabriele.roeger,malte.helmert,jendrik.seipp,silvan.sievers } @unibas.ch

Abstract

Stubborn sets are an optimality-preserving pruning technique
for factored state-space search. Their applicability in classi-
cal planning is limited by their computational overhead. We
describe a new algorithm for computing stubborn sets that is
based on the state variables of the state space, while previ-
ous algorithms are based on its actions. Typical factored state
spaces tend to have far fewer state variables than actions, and
therefore our new algorithm is much more efficient than the
previous state of the art, making stubborn sets a viable tech-
nique in many cases where they previously were not.

An archival version of this paper has been published at SoCS 2020
(Roger et al. 2020a).

Introduction

Heuristic search is a common approach for classical plan-
ning. Especially in optimal planning, the search suffers from
a state explosion problem that occurs if states can be reached
by applying the same actions in different orders. Even with
close-to-perfect heuristics, the number of nodes that must
be explored by pure heuristic search (only relying on node
expansions and an admissible heuristic) can grow exponen-
tially in the size of the task (Helmert and Roger 2008).
Hence, search algorithms are often enhanced with pruning
techniques that reduce the size of the explored state space.
One family of such pruning techniques is partial order
reduction, which allows the search to ignore some paths
to the goal by not considering all permutations of the ac-
tions. Intuitively, the idea is to avoid interleaving the so-
lution of independent subproblems but instead solving one
subproblem after the other. Partial order reduction was orig-
inally introduced by Valmari (1989) for Petri nets in the con-
text of computer-aided verification. Alkhazraji et al. (2012)
transferred his concept of strong stubborn sets to classi-
cal planning. Later on, Wehrle and Helmert (2014) gener-
alized them with more fine-grained criteria that are still suf-
ficient for optimality-preserving pruning. With suitable de-
cisions at certain choice points, strong stubborn sets strictly
dominate the expansion core method (Chen and Yao 2009;
Wehrle and Helmert 2012), a partial order reduction tech-
nique introduced earlier for planning (Wehrle et al. 2013).

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A stubborn set for a state is a set of actions such that all
other actions can safely be ignored at its expansion. The con-
cept is inherently action-centric and so are the underlying
definitions and algorithms. In this paper, we adopt a more
atom-centric perspective on their computation, which gives
rise to a significantly faster algorithm. As an additional en-
hancement, we also contribute a new atom selection strategy,
which has a tendency to produce smaller stubborn sets and
leads to more pruning in our experiments.

Background

We consider SAST planning tasks (Béckstrom and Nebel
1995), extended with non-negative action costs. A task is
defined over a finite set V of variables, each associated with
a finite domain D(v). A pair (v,d) withv € Vandd € D(v)
is called an atomic proposition, or atom for short, and we
use P to denote the set of all atomic propositions (over an
implicit set of variables V). We call all atoms (v, d’) with
d' € D, \ {d} the siblings of atom (v, d).

A partial state s maps every variable v from a set
vars(s) C V to a value s[v] from D(v). If vars(s) = V,
we call s a state. When it is suitable, we also consider a par-
tial state s as the set of atoms {(v, s[v]) | v € vars(s)} and
write (v, d) € s for s[v] = d.

A task is given as a tuple IT = (V, A, s1, sg) where V is
the finite set of variables, A a finite set of actions, si a state
called the initial state and sg a partial state called the goal.
Each action a € A is defined by its cost c(a) € R{ and
two partial states pre(a) and eff(a) called its precondition
and effect. If (v,d) € eff(a) for some atom (v, d), we say
that action a achieves (v,d). If (v,d) € pre(a), we say a
depends on (v,d). W.l.o.g. we require that no action both
depends on and achieves the same atom.

An action a is applicable in state s if pre(a) C s. Then
the successor state s’ is given as s'[v] = eff(a)[v] for all
v € vars(eff(a)) and s'[v] = s[v] for all other variables.
Slightly abusing notation, we write a(s) for the successor
state resulting from applying action a in state s.

A goal state is a state s with sg C s. A plan is a sequence
of actions that are subsequently applicable in s; and where
the resulting state is a goal state. The cost of a plan is the
sum of the individual action costs. A plan is optimal if it has
minimal cost among all plans. Wehrle and Helmert (2014)
pointed out that for correct pruning it is sometimes impor-

tant to only consider so-called strongly optimal plans, which
are optimal plans with a minimal number of 0-cost actions
among all optimal plans. If there is no plan for a task, the
task is unsolvable. The aim of optimal planning is to find an
optimal plan or to prove that the task is unsolvable.

Strong stubborn sets aim to prune permuted plans from
the search. On a lower level, the permutation of actions is
related to the following notion of interference.

Definition 1 (interference, Wehrle and Helmert 2014). Let
a1 and ag be actions and let s be a state of a planning task
II. We say that a1 and as interfere in s if they are both ap-
plicable in s, and

e a; disables ay, i.e., ag is not applicable in a1 (s), or
e ao disables aq, or

e ay and ay conflict in s, i.e., az(a1(s)) and ay(az(s)) are
both defined but differ.

If two actions that are both applicable in a state s do not
interfere in s, we can apply them in any order and will in
both cases reach the same state.

The second relevant notion are necessary enabling sets.
These are related to disjunctive action landmarks (Helmert
and Domshlak 2009), which are sets of actions of which at
least one must be applied in every plan. Similarly, necessary
enabling sets are sets of actions of which at least one must
be applied before a given action is applied in every action
sequence from a given set.

Definition 2 (necessary enabling set, Wehrle and Helmert
2014). Let 11 be a planning task, let a be one of its actions,
and let Seq be a set of action sequences applicable in the
initial state of 1.

A necessary enabling set for a and Seq is a set N of ac-
tions such that every action sequence in Seq which includes
a as one of its actions also includes some action ' € N
before the first occurrence of a.

For this paper, we build on the generalized definition of
strong stubborn sets by Wehrle and Helmert (2014) but for
clarity we omit the concept of envelopes, which permit to
safely ignore some actions. Empirically, the known meth-
ods for exploiting envelopes did not provide much bene-
fit (Wehrle and Helmert 2014), and they can easily be re-
integrated in our work.

Definition 3 (strong stubborn set). Let s be a state of plan-
ning task 11 = (V, A, s1, sG) and let Tl = (V, A, s, sG).
A strong stubborn set in s is a set A C A of actions that
satisfies the following conditions.

If 11, is unsolvable or s is a goal state, then every A is a
strong stubborn set. Otherwise, let Opt be the set of strongly
optimal plans for 11, and let Sop,; be the set of states that are
visited by at least one plan in Opt. The following conditions
must be true for A to be a strong stubborn set.

C1 A contains at least one action from at least one plan
from Opt.

C2 For every a € A that is not applicable in s, A contains
a necessary enabling set for a and Opt.

C3 Forevery a € A applicable in s, A contains all actions
from A that interfere with a in any state s’ € Sgp.

Wehrle and Helmert (2014) showed that the cost of an op-
timal solution does not change if for every state in the state
space we only preserve the outgoing transitions that corre-
spond to an action from a strong stubborn set. Put differently,
in each state visited during the search we can prune all ac-
tions that are not in the strong stubborn set, while preserving
the guarantee to find optimal solutions.

In practice, it is impossible to efficiently determine a min-
imal strong stubborn set because we do not know Opt and
Sopr- However, if C2 and C3 hold for an overapproximation
of these sets, they must also hold for the required sets.

Since the set Sp,; cannot be efficiently computed, for C3
it is common to use a state-independent overapproximation
of interference. Alkhazraji et al. (2012) and Wehrle et al.
(2013) use a purely syntactic criterion: actions a and a’
potentially conflict in any state if there is a variable v €
vars(eff(a)) N vars(eff(a’)) such that eff{a)[v] # eff(a’)[v].
Action a potentially disables o' if there is a variable v €
vars(eff(a)) Nvars(pre(a’)) such that eff(a)[v] # pre(a’)[v].
Two actions a and a’ then potentially interfere if they po-
tentially conflict, a potentially disables a’, or a’ potentially
disables a. With this definition, two actions potentially inter-
fere if there exists some state in which they interfere.

Wehrle and Helmert (2014) strengthen this approach with
mutex information: if the preconditions of two actions are
mutually exclusive, they cannot both be applicable in a
reachable state, so they never interfere in these states.

It is also already intractable to determine whether a given
action is an element of Opt. We can still determine a neces-
sary enabling set for a and Opt by collecting all achievers of
an atom that is not true in s but which a depends on. While
this set is not minimal, it can be computed efficiently and in-
deed this is the strategy employed by previous algorithms for
constructing strong stubborn sets in planning. Similarly, C1
is satisfied by picking an atom from the goal that is not true
in s and including all actions that achieve this atom, hence
including at least one action from every plan.

Existing Action-Centric Algorithm

To satisfy the properties of strong stubborn sets, previous
algorithms start from an action set that satisfies C1 and suc-
cessively add actions to satisfy C2 and C3 until a fixed point
is reached. We will adopt the same high-level approach but
will differ from this action-centric approach on a lower level.

Before we go into details, we first introduce and analyze
the action-centric algorithm. Previously published pseudo-
code (Alkhazraji et al. 2012; Al-Khazraji 2017) does not
have the level of detail we require for our discussion, but an
implementation by Wehrle and Helmert (2014) is available
as part of Fast Downward (Helmert 2006). We extracted the
pseudo-code as Algorithm 1 from Fast Downward 19.12.!

The algorithm collects all actions to be included in the
strong stubborn set for a non-goal state s in a collection stub-
born. The actions for which it still needs to ensure C2 and
C3 are tracked in a collection queue. To avoid clutter in the
pseudo-code, we assume that stubborn, queue and the com-
ponents of the task are globally accessible.

"http://www.fast-downward.org/Releases/19.12

Algorithm 1 Action-centric algorithm
1: function COMPUTESTUBBORNSET(S)

2: stubborn = empty collection

3: queue= empty collection

4: procedure MARKASSTUBBORN(a)
5: if a ¢ stubborn then

6: stubborn.add(a)

7: queue.add(a)

8: procedure ENQUEUEINTERFERERS(a)
9: for o’ € A potentially interfering with a do
10: MARKASSTUBBORN(a')
11: procedure ENQUEUEACHIEVERS (atom)
12: for a € A with atom € eff(a) do
13: MARKASSTUBBORN(a)
14: atom = some unsatisfied goal atom
15: ENQUEUEACHIEVERS((atom)
16: while gueue is not empty do
17: a = queue.pop() > any element
18: if a is applicable in s then
19: ENQUEUEINTERFERERS(a)
20: else
21: > Enqueue a necessary enabling set for a
22: atom = some unsatisfied atom from pre(a)
23: ENQUEUEACHIEVERS(atom)
24: return stubborn

The overall process for generating a strong stubborn set
starts with collecting a set of actions to satisfy C1 (lines 14—
15). As long as the other conditions are not yet guaranteed
for some action a (lines 16—17), it includes further actions to
ensure C2 (lines 20-23) or C3 (lines 18-19), depending on
whether a is applicable in state s or not.

Whenever an action should be included in the result
(marked as stubborn), the algorithm checks if it has already
been included previously and if not includes it and enqueues
it for further processing into queue (lines 4-7).

As mentioned above, necessary enabling sets are gener-
ated by starting from an atom and collecting all actions that
achieve it (lines 11-13).

Complexity Analysis
In the complexity analysis, we use pn,x for the maximal size
of a partial state occurring as precondition or effect of any
action. In typical planning tasks, this is quite a low number.
In general, it can be bounded by the number |V| of variables.

For an efficient implementation of Algorithm 1, we as-
sume that all state-independent information is precomputed
and stored once for every task (i.e., only once for the entire
search, not once for every node that is expanded). This af-
fects the set of achievers for every atom (used in line 12) and
the interference relation (used in line 9).

The achievers can be determined by one pass over all ac-
tions that scans the effect and registers the action accord-

ingly. This requires time O(].A|pmax) and the result can be
stored in space O(|P||A]).

Exploiting pre-sorted action preconditions and effects, the
interference relation can be computed in O(|.A|?*pmax), rang-
ing over all pairs of actions and syntactically testing their
potential interference in time O (pmax). With no influence on
Big-O, we can halve the effort by exploiting that the rela-
tion is symmetric. The result can be stored in O(|.A|?). Fast
Downward uses a lazy implementation that only performs
the computation for an action once it is required.

We now analyze the time complexity of a single call
of COMPUTESTUBBORNSET. With suitable data structures
for stubborn (e.g., a bitset) and queue (e.g., an array-based
stack), MARKASSTUBBORN takes constant time. Then EN-
QUEUEINTERFERERS takes time O(|.A|) because there are
at most |A| interfering actions which have been precom-
puted. Analogously, ENQUEUEACHIEVERS runs in O(|A]).

In lines 14 and 22 the algorithm selects an unsatisfied
atom from a partial state. Wehrle and Helmert (2014) dis-
cussed several such atom selection strategies—taken from
the literature and new—with different time requirements. To
stay general, we account for them with O(t), resulting in
time O(¢ + |.AJ) for lines 14-15.

Each iteration of the while loop takes time O(pmax) for
testing applicability plus O(t+|.A|) accounting for the more
expensive else-case of the if statement. As every action is
added to queue at most once, the overall runtime of COM-
PUTESTUBBORNSET is O(|A|(pmax + t + |AJ)). The space
complexity for stubborn and queue is O(|Al).

New Atom-Centric Algorithm

The original fixed-point computation from Algorithm 1
tracks (in queue) actions that have already been included in
the stubborn set but for which it is not yet sure that C2 and
C3 are satisfied.

We now reconsider the overapproximation of the inter-
ference relation and necessary enabling sets and what this
implies for the computation of strong stubborn sets. We be-
gin with potential interference. Using the notion of sibling
atoms, we can paraphrase the set of actions that potentially
interfere with action a: it consists of all actions a’ s.t.

e o/ achieves a sibling of an atom in pre(a)
(a’ potentially disables a), or

e a’ depends on a sibling of an atom in eff{a)
(a potentially disables a’), or

e a’ achieves a sibling of an atom in eff{a)
(a and o’ potentially conflict).

Observation 1: We can characterize these actions by only
considering the occurrence of individual atoms in their pre-
condition or effect.

Observation 2: The same is true for the actions in the
necessary enabling set.

Observation 3: The order in which the actions are pro-
cessed is not important for the fixed-point computation.?

The order can influence dynamic atom selection strategies, but
we are not aware of any work that aims for a specific order.

Algorithm 2 Atom-centric algorithm

1: function COMPUTESTUBBORNSET(S)
2: stubborn = empty collection
3: todo_achievers, todo_dependers=)
4: seen_for_achievers, seen _for_dependers= ()
5: procedure HANDLEACTION(a,)
6: if a ¢ stubborn then
7: stubborn.add(a)
8: if a is applicable in s then
9: ENQUEUEINTERFERERS(a)
10: else
11: > Enqueue a necessary enabling set for a
12: atom = an unsatisfied atom from pre(a)
13: ENQUEUEACHIEVERS(atont)
14: procedure ENQUEUEACHIEVERS (atom)
15: if atom ¢ seen_for_achievers then
16: todo_achievers.add(atom)
17: seen_for_achievers.add(atom)
18: procedure ENQUEUEDEPENDERS(afom)
19: if atom ¢ seen_for_dependers then
20: todo_dependers.add(atom)
21: seen_for_dependers.add(atom)

22: procedure ENQUEUEINTERFERERS(a)
23: for atom € pre(a) do

24: for all siblings atom’ of atom do
25: ENQUEUEACHIEVERS(atom’)
26: for atom € eff(a) do

27: for all siblings atom’ of atom do
28: ENQUEUEACHIEVERS(atom’)
29: ENQUEUEDEPENDERS(atom’)
30: atom = some unsatisfied goal atom

31: ENQUEUEACHIEVERS(atom)

32: while fodo_achievers is not empty or

33: todo_dependers is not empty do

34: if todo_achievers is not empty then
35: atom = todo_achievers.pop()

36: for a € A with atom € eff(a) do
37: HANDLEACTION(a, S)

38: else

39: atom = todo_dependers.pop()

40: for a € A with atom € pre(a) do
41: HANDLEACTION(a, S)

42: return stubborn

Based on these three observations, we propose the atom-
centric Algorithm 2. The core idea is to achieve synergy ef-
fects by deferring the inclusion of actions in the stubborn
set, instead tracking the atoms that characterize them.

We use two collections for this purpose: fodo_achievers
contains atoms for which all achievers should get included in
the stubborn set, todo_dependers contains atoms for which
all actions that depend on the atom should get included.

We ensure that every atom gets added to each of
these collections at most once by tracking in sets
seen_for_achievers and seen_for_dependers what has already
been included earlier. ENQUEUEACHIEVERS demonstrates
this for fodo_achievers.

ENQUEUEINTERFERERS and ENQUEUEACHIEVERS
play exactly the same role as in the action-centric algo-
rithm, with the only difference that they do not directly
mark actions stubborn but instead mark the corresponding
atoms for further processing. This directly translates to the
initialization of the algorithm in lines 30 and 31.

The main loop (lines 33-41) processes the atoms from
todo_achievers and todo_dependers, initiating the previously
deferred handling of actions. HANDLEACTION adds the ac-
tion to the stubborn set and triggers the later inclusion of
interfering actions and necessary enabling sets to satisfy C2
and C3.

Theorem 1. Function COMPUTESTUBBORNSET(s) re-
turns a strong stubborn set for s.

Proof sketch. Including all achievers of an unsatisfied goal
atom ensures Cl. Whenever set stubborn is extended in

HANDLEACTION, this procedure initiates the inclusion of
actions to satisfy C2 and C3. The overall fixed-point compu-
tation guarantees that these are indeed included before ter-
mination. O

Complexity Analysis
For the analysis, we use pyx as before and dp,x for the max-
imal size of all variable domains.

An efficient implementation of the algorithm precom-
putes the achievers and dependers of each atom (used in
lines 36 and 40) once for the entire search. As discussed
in the analysis of the action-centric algorithm, this requires
time O(|.A|pmax) and space O(|P||.A|) for storing the result.
In contrast to the action-centric algorithm, we do not need to
compute and store the interference relation.

With suitable data structures, ENQUEUEACHIEVERS and
ENQUEUEDEPENDERS take constant amortized time. As
each outer loop of ENQUEUEINTERFERERS iterates over at
most Pnax atoms and the inner loop over all but one atom for
each of these variables, the procedure runs in O(pmax@max)-
Again using ¢ for the variable selection time, it is then easy
to see that HANDLEACTION runs in time O(pmaxdmax + t)
for actions that are not yet contained in stubborn and O(1)
for actions already contained in stubborn.

For the fixed-point iteration, each atom can be inserted
into todo_achievers at most once and into fodo_dependers at
most once, causing runtime O(|P|) for all parts of the fixed-
point loop except the inner loops (lines 36-37 and 40—41).

The runtime for the inner loops can be bounded by the
total time spent inside HANDLEACTION. Every action can

time Action-centric Atom-centric

Precomp. O(|AI* pmax) O(|Alpmax)
Per node O(|A|2 + ‘A|(pmax + t)) O(‘A|(pmaxdmax + t) + |7D|)

space Action-centric Atom-centric
Precomp. O(JA]? + |P|A]) O(|P||Al])
Per node O(|A)]) O(|Al +|P])

Table 1: Overview of complexity results.

only be added to stubborn once, giving an upper bound of
O(]A|(Pmaxdmax + t)) for the calls to HANDLEACTION that
add actions to the stubborn set. Each other call takes con-
stant time, and we can bound the total number of such calls
by O(|A||pmax|): across the execution of the algorithm, ev-
ery action is considered in lines 36—37 at most once for each
of its effects and in lines 40—41 at most once for each of its
preconditions. Hence, the overall runtime of COMPUTES-
TUBBORN is O(|A|(Pmaxdmax + 1)) + |P|.

The space complexity for todo_achievers,
todo_dependers, seen_for_achievers and seen_for_dependers
is O(|P]), for stubborn it is O(|.A|).

Table 1 shows an overview of all complexity results. The
new algorithm clearly dominates the old one in the time and
space requirements for the precomputation. For the actual
computation of stubborn sets, the new algorithm needs more
space, but only linearly in the number of atoms. In the time
requirements the algorithms exhibit a very different profile,
which lets us expect that the new atom-centric algorithm
works better if variable domains are not too large and the
task has many more actions than atoms.

Enhancements

In this section, we discuss two possible enhancements of Al-
gorithm 2. The first one is based on the observation that the
algorithm frequently enqueues all siblings of an atom, the
second one is a new atom selection strategy.

Shortcut Handling of all Siblings

Since we frequently add all siblings of an atom to one of
the queues, we can expect a number of duplicates. Avoiding
this overhead should be particularly beneficial if variable do-
mains are large.

From the perspective of a variable, we can track some
compact (incomplete) information on what has already been
enqueued, for example in fodo_achievers. For this purpose,
we use a datastructure marked_achieved that stores for each
variable v one of the following values:

d € D(v) representing that all siblings of (v, d) have been
enqueued,

T representing that all atoms for this variable have been en-
queued, or

1 representing that we do not have any such information.

The information is incomplete in the sense that we do not
track the inclusion of individual atoms, so the value can for
example be L or some d € D(v) although we have already

seen all atoms for the variable. To update and exploit the
stored information, we do not simply enqueue all siblings of
atom in lines 24-25 and 27-28 of Algorithm 2 but proceed
instead as follows:
1: (v,d) = atom
2: if marked_achieved[v] = L then
3: for all siblings a of atom do
ENQUEUEACHIEVERS(a)
marked_achieved|v] = d
else if marked_achievedv) = d’ ¢ {d, T} then
ENQUEUEACHIEVERS((v, d’))
marked_achieved[v] = T

AN

If we do not have sufficient information, we add all sib-
lings of atom as before, but remember that all values apart
from the one from atom have been added (lines 2-5). If we
know that all atoms (value T) or all siblings of atom (value
d) have already been added, we do not have to do anything.
Otherwise, we add the only missing sibling (whose value is
stored in marked_achieved[v]) and remember that we now
have added all atoms (lines 6-8).

We proceed analogously when enqueueing all siblings of
an atom with ENQUEUEDEPENDERS in lines 27 and 29.

Atom Selection Strategy

If an action from the stubborn set is inapplicable, we need
to choose an unsatisfied atom from the action precondition
as seed for the inclusion of a necessary enabling set. Wehrle
and Helmert (2014) already discussed and evaluated several
strategies for this choice point.

We want to propose a new strategy, called quick skip. It
is easy to see that if the chosen atom has already been seen
(included in seen_for_achievers), the algorithm does not en-
queue anything within ENQUEUEACHIEVERS. This saves
computational effort and—maybe even more importantly—
it can potentially lead to more pruning because we do not
unnecessarily grow the stubborn set. Therefore, in line 12 of
Algorithm 2 the quick skip strategy chooses some atom from
pre(a) N seen_for_achievers whenever this set is not empty.

This selection strategy is related to the static small and
dynamic small strategies by Wehrle and Helmert, both of
which aim to keep the resulting stubborn set small. The static
strategy prefers variables that appear in the effects of fewer
actions, the dynamic one prefers atoms with a minimal num-
ber of achieving actions that have not yet been included in
the stubborn set. Our proposed strategy is closer to dynamic
small but less specific. If there is an atom for which all
achieving actions have already been scheduled for inclusion,
the strategies are equal. Otherwise, our strategy can be com-
bined with any other strategy, leaving another choice point.

Experimental Evaluation

We implemented the atom-centric algorithm on top of Fast
Downward 19.12, which already contains an implementa-
tion of the action-centric algorithm (called “simple stub-
born sets” there). For the evaluation, we use the benchmarks
of all optimal tracks of all International Planning Compe-
titions from 1998 to 2018, amounting to 1827 tasks from
65 domains. Experiments were run on Intel Xeon Silver

AL N R R AR AL JPTTT, T TTTI

104

103

10%

Number of atoms
Lol v vl ranl

LRRARLY

10t

2 7 Al Al il il 1l
10t 102 100 10* 10° 10°
Number of actions

Figure 1: Number of atoms vs. actions for all tasks in the
benchmark set. Each mark represents one task. Dashed di-
agonals show factors 2, 5, 10, and 100.

4114 CPUs using Downward Lab (Seipp et al. 2017). Each
planner run is limited to 1800 seconds and 3.5 GiB. The
benchmarks, code and experimental data are published on-
line (Roger et al. 2020b).

Before we compare different algorithms and configura-
tions, we evaluate whether the different time complexity of
the atom-centric algorithm is promising at all. For this pur-
pose, in Figure 1, we plot the number of atoms against the
number of actions in the SAS™ planning tasks produced by
Fast Downward. We see that the actions frequently outnum-
ber the atoms, often by several orders of magnitude, so the
trade-off looks promising indeed.

Action- vs. Atom-Centric Algorithm

In the first experiment, we examine how the plain action-
centric and atom-centric algorithms compare when they
compute the same information. Towards this end, we do not
use the mutex-based strengthening of interference and use
the same strategy for choosing unsatisfied atoms for both al-
gorithms, namely always picking the first unsatisfied atom
according to the fixed variable ordering of Fast Downward.

Blind Search With blind search, node expansions are ex-
tremely fast, so the relative overhead of computing stub-
born sets for each expansion is high. For this reason, we can
only expect to benefit from partial order reduction if it leads
to significant pruning. On our benchmark set, blind search
without pruning solves 710 instances, whereas coverage in-
creases by 26 instances with the atom-centric algorithm (cf.
left part of Table 2). Interestingly, computing the same in-
formation with the action-centric algorithm leads to a sig-
nificant coverage decline to 680 instances. As expected, in
both cases the total number of expansions is the same and
decreases by 17.9% compared to no pruning across all tasks
solved by all three configurations.

A closer look at the results per domain reveals that even
with our more efficient algorithm, using strong stubborn set
pruning is not always beneficial, losing 1-3 tasks in 11 do-
mains and even 5 instances in the freecell domain. The posi-
tive net benefit stems from the two parcprinter domains with
a coverage increase of 20 and 14 and the two woodworking
domains with an increase of 8 and 7 tasks. So it seems that

blind LM-cut SCp

s £ 9 88 3 £ 2

8 8 3 8 8 3 2 & =
airport (50) 22 21 21 28 28 28 24 24 24
data-network (20) 7 6 7 12 12 12 14 13 14
freecell (80) 20 9 15 15 15 15 68 49 ol
hiking (20) 1 8 11 9 9 9 14 11 13
miconic (150) 55 50 55141141 141 143 144 144
mprime (35) 19 18 19 22 22 22 31 30 31
nomystery (20) 8§ 7 8 15 14 15 20 20 20

openstacks-08 (30) 22 20 22 22 20 22 22 20 22
openstacks-11 (20) 17 15 17 17 15 17 17 15 17
org.-synth.-split2o) 10 9 9 16 15 15 10 9 9
parcprinter-08 (30) 10 30 30 19 30 30 19 30 30
parcprinter-11 (20) 6 20 20 14 20 20 15 20 20

parking-11 (20 0o 0 o 3 3 3 7 4 7
parking-14 (20) 0 0 0 4 3 4 6 4 6
pegsol-08 (30) 27 27 27 29 28 28 30 30 30
pegsol-11 (20) 17 17 17 19 18 18 20 20 20
petri-net-align. (20) 4 2 4 9 9 9 0 0 0
pipesworld-not. 50y 17 14 16 18 18 18 24 24 24
pipesworld-t. (50) 12 8 11 12 12 12 17 12 16
rovers (40) 6 7 7 9 10 10 8 9 9
satellite (36) 6 6 6 7 12 12 7 8 9
scanalyzer-08 (30) 12 8 9 16 14 15 18 16 18
scanalyzer-11 (20) 9 5 6 13 11 12 15 13 15
snake (20) 1 4 9 7 6 7 13 7 11
spider (20) 1 6 9 11 11 11 16 13 15
termes (20) 9 6 9 6 5 6 13 11 13
tetris (17) 9 6 7 6 6 5 11 9 10
tidybot-11 (20) 13 5 12 14 14 14 15 13 14
tidybot-14 (20) 6 0 4 9 8 8 10 5 9
transport-11 (20) 6 6 6 6 6 6 13 12 13
transport-14 (20) 7 6 7 6 6 6 9 8 8
trucks (30) 6 5 6 10 10 10 12 12 12
woodworking-08 30y 8 16 16 18 27 27 26 30 30
woodworking-11 200 3 10 10 12 19 19 19 20 20
zenotravel (20) 8§ 7 8 13 13 13 13 13 13
sum (1088) 414 384 440 587 610 619 719 678 727

other domains (739) 296 296 296 373 373 373 417 417 417
710 680 736 960 983 992 1136 1095 1144

total (1827)

Table 2: Coverage of A* with the blind (left), LM-cut (mid-
dle), and SCP (right) heuristics, comparing vanilla search
(base) with the addition of plain action-centric (action) and
atom-centric (atom) pruning. We highlight maximum cover-
age separately for each heuristic.

these domains are especially suitable for partial order reduc-
tion, whereas in other domains the additional overhead does
not pay off. Indeed, in woodworking the goal is to process
a set of work pieces, each basically corresponding to an in-
dependent subtask. In parcprinter, the aim is to print a set
of pages using several components of an involved printing
system. The actions for the different pages can often be ar-
bitrarily interleaved, which can be avoided with partial order
reduction.

104

102 -

100 |

Atom-centric

.
1074
(o

| | |
107 1072 10° 102 10*
Action-centric

Figure 2: Comparison of pruning time (within an A* search
with the SCP heuristic) of the action-centric and the atom-
centric algorithm for tasks solved by both approaches. Num-
bers are in seconds and specify the total time spent comput-
ing stubborn sets over all node expansions.

LM-Cut Wehrle and Helmert (2014) used A* search with
the LM-Cut heuristic (Helmert and Domshlak 2009) for
their evaluation. In this setting, stubborn set pruning is use-
ful overall (cf. middle part of Table 2). 960 tasks are solved
without pruning, 983 with the action-centric algorithm and
992 with the atom-centric computation. In a per-domain
comparison to the baseline without pruning we never lose
more than one task, but coverage increases in six domains.
However, this is again most prominent in the parcprinter
(+11 and +6) and the woodworking (+9 and +7) domains.
The advantage in comparison to the action-centric algorithm
stems from eight domains. Conversely, the action-centric
variant only solves one more instance in tetris.

Saturated Cost Partitioning We also conducted an anal-
ogous experiment for A* with a saturated cost partitioning
(SCP) heuristic (Seipp, Keller, and Helmert 2020) over pat-
tern databases (Edelkamp 2001) and Cartesian abstractions
(Seipp and Helmert 2018). The pattern databases were gen-
erated systematically up to pattern size 2 and via hill climb-
ing (Haslum et al. 2007). This SCP heuristic yields state-of-
the-art performance for optimal classical planning, because
it is both accurate and very fast to evaluate (much faster than
LM-cut, for example).

Similarly to the results for blind search, using the action-
centric algorithm decreases coverage (cf. right part of Ta-
ble 2). In contrast to the results for LM-cut, using the atom-
centric algorithm increases the total coverage by only 2
tasks, with a decrease by 1 task in 8 domains, by 2 in snake
and even by 7 in freecell. However, if we compare the action-
centric against the atom-centric algorithm, we see a clear ad-
vantage of the new one in 19 domains, while the opposite is
never the case.

Overall As both stubborn set algorithms compute the
same information, the difference in performance must be at-
tributed to the different computational overhead. Figure 2
compares the total time spent for computing stubborn sets

ds ss FD gs

+sib +sib +sib +sib
airport (50) 25 25 24 24 24 24 24 24
data-network (20) 13 13 14 14 14 14 14 14
freecell (80) 42 43 60 60 61 61 59 60
ged (20) 15 15 19 19 19 19 19 19
hiking (20) 1 11 12 12 13 13 12 12
logistics98 (35) 12 12 12 12 12 12 13 13
miconic (150) 144 143 144 144 144 144 143 144
mprime (35) 30 30 30 30 31 30 30 30
mystery (30) 18 18 19 19 19 19 19 19

openstacks-08 (30) 20 20 22 22 22 22 23 23
openstacks-11 (20) 5 15 17 17 17 17 18 18
openstacks-14 (20) 3 3 3 3 3 3 4 4
parcprinter-08 (30) 30 30 28 28 30 30 30 30
parcprinter-11 (20) 20 20 18 18 20 20 20 20
parking-11 (20) 4 4 7 7 7 7 7 7
parking-14 (20 4 4 6 6 6 6 6 6
pipesworld-not. 50) 21 21 24 24 24 24 24 24
pipesworld-t. (50) 1 11 13 13 16 16 14 16
rovers (40) 1 11 10 10 9 9 9 9
scanalyzer-08 (30) 15 15 18 18 18 18 18 18
scanalyzer-11 (20) 12 12 15 15 15 15 15 15

snake (20) 4 4 10 10 11 11 10 11
spider (20) 12 12 14 14 15 15 15 15
termes (20) 10 10 12 12 13 13 13 13
tetris (17) 8 g 10 10 10 10 10 10
tidybot-11 (20) 12 13 14 14 14 14 14 14
tidybot-14 (20) 4 4 8 8 9 9 9 9
transport (20) 10 10 13 13 13 13 13 13
sum (927) 536 537 596 596 609 608 605 610

other domains (900) 535 535 535 535 535 535 535 535
1071 1072 1131 1131 1144 1143 1140 1145

total (1827)

Table 3: Coverage of A* with the SCP heuristic, comparing
atom selection strategies ds, ss, FD, and gs, and the combi-
nation with shortcut handling of siblings (sib).

for each task. This data stems from the experiment with the
SCP heuristic; the plots for the other configurations (blind
and LM-Cut) look similar. We see that with the atom-centric
algorithm we can obtain the same pruning power much
faster, often by more than an order of magnitude.

Enhancements to the Action-Centric Algorithm

In the second experiment, we evaluate the two enhancements
to the atom-centric algorithm. The shortcut handling of sib-
lings (sib) does not change the behavior of the algorithm
and should hence only have an impact on runtime. The new
atom selection strategy quick skip (gs) should have a ten-
dency to produce smaller stubborn sets, so we would also
hope for more pruning. We compare the gs strategy to the
default strategy (FD) and the two strategies dynamic small
(ds) and static small (ss) by Wehrle and Helmert (2014), all
of them with and without the sib enhancement.

Table 3 shows that with the SCP heuristic, the dynamic
small and static small strategies solve many fewer tasks than

e elevators
0.8 | |elogistics
. e movie

mystery

& 0.6 L1y _| | openstacks
= ’ ‘ . o . y « parcprinter
= © rovers
S| . i .
[} . e satellite
S 04F — .
& i « woodworking
3 HA . s other domains
= HES * N —
H
< 02f §~,-: |
.

| | |
0 02 04 06 038
Atom-centric FD

Figure 3: Comparison of pruning ratio of the atom-centric
algorithm with strategies FD and gs, using A* with SCP.

the Fast Downward and quick skip strategies. While the Fast
Downward strategy solves 4 more tasks in total than quick
skip, quick skip is better than Fast Downward with the LM-
cut and blind heuristics (+3 and +2, not shown in Table 3).
The shortcut handling of siblings only has a very mild im-
pact on coverage, sometimes negative, sometimes positive,
except for the new strategy quick skip where it is exclusively
beneficial (except for transport-14 with the blind heuris-
tic, not shown in Table 3). The combination of quick skip
with shortcut handling of siblings achieves the highest total
coverage with all three heuristics, and dominates the other
strategies also in a per-domain comparison, except for 7 do-
mains when using blind search, 3 domains when using A*
with LM-cut, and 5 domains when using A* with SCP.

To analyze the pruning ratio of the different methods, we
run the search with pruning and accumulate the number of
successors of all expanded states as n,y; and sum up the size
of the corresponding stubborn sets as nge,. The pruning ra-
tio is then defined as 1 — ngen /M, giving values between 0
and 1, where O represents no pruning and 1 would mean that
all successors were pruned. Figure 3 plots the pruning ratio
of the atom-centric algorithm with the FD strategy (the best
previous selection strategy according to Table 3) to the new
quick skip strategy (both with SCP), highlighting domains
with larger differences. We observe consistent positive im-
pact on the pruning power, which is particularly pronounced
in the logistics and woodworking domains.

Comparison to the State of the Art

In the third experiment, we compare our best configuration
(atom-centric algorithm with gs and sib) to the configura-
tion reported as state of the art for computing strong stub-
born sets by Wehrle and Helmert (2014), namely “SSS-EC
full/mutex” (EC), which computes stubborn sets in a way
that dominates the expansion core method (Chen and Yao
2009) and enhances action interference with mutexes. With
our best configuration, total coverage increases significantly
for all three heuristics, in particular for the two faster-to-
compute ones (+51 with blind search, +9 with LM-Cut, +38
with SCP). A deeper analysis reveals that our configuration

10
0.8 e
10% |-
0.6 ¢ 1

100 |-

best
best

0.4 g

N // s
// ';;T\- R

| 10741 ¥ b
Pl -

Il Il
04 06 08 10°% 1072 10° 102 10*
EC EC

Figure 4: Comparison of pruning ratio (left) and pruning
time (right) of EC vs. our best configuration with SCP.

is on-par with respect to pruning power, but requires a much
lower computation time. To illustrate this, we compare the
pruning ratio and pruning time for A* with SCP in Figure 4.
For the other heuristics the results look qualitatively similar.

Since not all domains are equally suited for partial-order
reduction, many recent IPC planners (e.g., Alkhazraji et al.
2014) disable pruning if after 1000 expanded states the prun-
ing ratio is at most 20%. We evaluated the impact of this
approach on our best configuration (atom-centric algorithm
with both enhancements) and on the previous state of the art
(EC). The method has only a mild impact on our algorithm:
overall, coverage increases, but in some domains fewer tasks
are solved. This is very different for the slower EC method,
which greatly benefits from this approach, bringing it almost
on par with our configuration.

Discussion and Future Work

We proposed an atom-centric algorithm that computes the
same stubborn sets as an earlier action-centric algorithm
with a different profile time and space complexity profile.
The new algorithm requires less space, and we saw that it
is much faster on common planning benchmarks. One lim-
itation of our algorithm is that it is no longer possible to
enhance the interference relation with mutex information.
However, already without any enhancements, our algorithm
outperforms the best previous algorithm (EC), which makes
use of such mutex information (1145 vs. 1107 solved tasks
with A* + SCP). The new atom selection strategy quick skip
does not only further speed up the computation but also leads
to smaller stubborn sets and thus to more pruning.

In classical planning, stubborn sets have not only been
used for state-space search but have also been adapted for
fork-decoupled search (Gnad, Hoffmann, and Wehrle 2019).
Beyond the classical planning fragment, they have been ap-
plied to fully observable non-deterministic planning (Win-
terer et al. 2017), planning with resources (Wilhelm, Stein-
metz, and Hoffmann 2018) as well as for goal recognition
design (Keren, Gal, and Karpas 2018). In future work, it
would be interesting to examine whether the general idea of
an atom-centric perspective can also be beneficially applied
in these settings.

Acknowledgments

We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639).

References

Al-Khazraji, Y. 2017. Analysis of Partial Order Reduc-
tion Techniques for Automated Planning. Ph.D. Disserta-
tion, University of Freiburg.

Alkhazraji, Y.; Wehrle, M.; Mattmiiller, R.; and Helmert, M.
2012. A stubborn set algorithm for optimal planning. In
Proc. ECAI 2012, 891-892.

Alkhazraji, Y.; Katz, M.; Mattmiiller, R.; Pommerening, F.;
Shleyfman, A.; and Wehrle, M. 2014. Metis: Arming Fast
Downward with pruning and incremental computation. In
IPC-8 planner abstracts, 88-92.

Backstrom, C., and Nebel, B. 1995. Complexity results
for SAS™ planning. Computational Intelligence 11(4):625—-
655.

Chen, Y., and Yao, G. 2009. Completeness and optimal-
ity preserving reduction for planning. In Proc. IJCAI 2009,
1659-1664.

Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 84-90.

Gnad, D.; Hoffmann, J.; and Wehrle, M. 2019. Strong
stubborn set pruning for star-topology decoupled state space
search. JAIR 65:343-392.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc. AAAI
2007, 1007-1012.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162-169.

Helmert, M., and Roger, G. 2008. How good is almost
perfect? In Proc. AAAI 2008, 944-949.

Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191-246.

Keren, S.; Gal, A.; and Karpas, E. 2018. Strong stubborn
sets for efficient goal recognition design. In Proc. ICAPS
2018, 141-149.

Roger, G.; Helmert, M.; Seipp, J.; and Sievers, S. 2020a.
An atom-centric perspective on stubborn sets. In Proc. SoCS
2020, 57-65.

Roger, G.; Helmert, M.; Seipp, J.; and Sievers, S. 2020b.
Code, benchmarks and experiment data for the SoCS 2020
paper “An Atom-Centric Perspective on Stubborn Sets”.
https://doi.org/10.5281/zenodo.3744571.

Seipp, J., and Helmert, M. 2018. Counterexample-guided
Cartesian abstraction refinement for classical planning. JAIR
62:535-5717.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.

Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated cost
partitioning for optimal classical planning. JAIR 67:129—
167.

Valmari, A. 1989. Stubborn sets for reduced state space
generation. In Proc. APN 1989, 491-515.

Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proc. ICAPS 2012, 297-305.

Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Proc.
ICAPS 2014, 323-331.

Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmiiller, R.
2013. The relative pruning power of strong stubborn sets
and expansion core. In Proc. ICAPS 2013, 251-259.
Wilhelm, A.; Steinmetz, M.; and Hoffmann, J. 2018. On
stubborn sets and planning with resources. In Proc. ICAPS
2018, 288-297.

Winterer, D.; Alkhazraji, Y.; Katz, M.; and Wehrle, M. 2017.
Stubborn sets for fully observable nondeterministic plan-
ning. In Proc. ICAPS 2017, 330-338.

