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ABSTRACT

Recently, much attention has been drawn to learning the underlying 3D structures
of a scene from monocular videos in a fully self-supervised fashion. One of the
most challenging aspects of this task is handling the independently moving ob-
jects as they break the rigid-scene assumption. For the first time, we show that
pixel positional information can be exploited to learn SVDE (Single View Depth
Estimation) from videos. Our proposed moving object (MO) masks, which are
induced by depth variance to shifted positional information (SPI) and referred to
as ‘SPIMO’ masks, are very robust and consistently remove the independently
moving objects in the scenes, allowing for better learning of SVDE from videos.
Additionally, we introduce a new adaptive quantization scheme that assigns the
best per-pixel quantization curve for our depth discretization. Finally, we employ
existing boosting techniques in a new way to further self-supervise the depth of
the moving objects. With these features, our pipeline is robust against moving
objects and generalizes well to high-resolution images, even when trained with
small patches, yielding state-of-the-art (SOTA) results with 4 to 8× fewer pa-
rameters than the previous SOTA that learns from videos. We present extensive
experiments on KITTI and CityScapes that show the effectiveness of our method.

1 INTRODUCTION

Estimating depth from a single image has multiple applications ranging from robotics, navigation,
and computational imaging. However, learning single view depth estimation (SVDE) from monocu-
lar videos without ground truth depths is challenging as camera poses and depths are estimated up to
an unknown and inconsistent scale. In addition, by the nature of self-supervision from reprojection
error, objects moving at the same speed as the camera will have no disparities thus will be assigned
infinite depths. On the other hand, objects moving faster than the camera will have larger disparities,
resulting in implausibly closer depths. In general, dynamically moving objects are likely to cause
incorrect depths along their boundaries due to their weak or in-existent 3D self-supervision.

Traditionally, deep-learning-based pipelines (Zhou et al., 2017; Godard et al., 2019; Guizilini et al.,
2020a) for learning SVDE from videos rely on: (i) a CNN that directly estimates inverse depth; (ii) a
CNN that directly regresses relative camera poses; and (iii) a backward warping-based loss function
that measures the similarity between the target center frame and the warped reference frames. In-
dependently moving objects in such loss functions are commonly removed by moving object masks
that are computed by analyzing the reconstruction errors between the target frame and the multiple
warped reference frames (Godard et al., 2019). In contrast, we present a novel learning pipeline that
relies on pixel positional information to compute the moving object masks and forward warping-
based loss functions (image synthesis) for learning accurate SVDE from high-resolution monocular
videos. We summarize our contributions as:

Figure 1: Our method consistently learns more details and holes-free dense depths from videos.
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Figure 2: Proposed pipeline for learning SVDE from videos.

• Robust estimation of moving object masks by shifted positional information. To ignore inde-
pendently moving objects (that can break the rigid-scene assumption) we propose novel moving
object masks induced by depth variance to shifted positional information, referred to as SPIMO
masks. These masks are more robust and less sparse than the traditional auto-masks (Godard et al.,
2019), allowing for better learning of SVDE from mono-videos. In addition, SPIMO masks do not
require any additional data such as semantic masks, optical flow, nor domain specific assumptions.

• Adaptive disparity quantization. Disparity / depth discretization converts the harder regression
task into an easier classification task. However, in contrast with previous works that use linear or
exponential quantization (Xie et al., 2016; Gonzalez & Kim, 2021) for stereoscopic view synthe-
sis, we propose a novel adaptive quantization scheme for free view synthesis. In our quantization
scheme, the proposed Adaptive QUAntization network, AQUANet, automatically learns to assign
a quantization curve that dedicates more distant sampling levels if the target pixel is likely to be
far, and a quantization curve with more close-by sampling levels if it is closer to the camera,
improving the accuracy of the final aggregated depth map.

2 RELATED WORK

2.1 FULLY SUPERVISED LEARNING OF SVDE.

The early fully-supervised methods for SVDE utilized deep neural networks to perform depth map
regression. For example, in (Eigen et al., 2014), one network estimated global depth predictions,
and the other network refined the predictions with local context. To address the slow convergence
of regression models, discretizing depth values allowed the SVDE task to be an ordinal regression
problem (Fu et al., 2018). To further improve the quality of high-frequency details in SVDE, a
double-estimation method for merging depth estimations at different resolutions was proposed by
Miangoleh et al. (2021). The resulting depth maps contained high-frequency details of the image
while preserving the scene’s structural consistency. While the fully-supervised learning of the SVDE
task has been gaining lots of attention, both the tasks of depth estimation and completion have been
explored by Guizilini et al. (2021). Although many methods are proposed for fully supervised
learning of SVDE, the burden of acquiring the depth ground truths limits the scalability of the
training dataset and the generalization of models.

2.2 SELF-SUPERVISED LEARNING FROM STEREO.

Without the depth ground truths, a neural network can learn to estimate depth by minimizing a pho-
tometric loss between the right (or left) views and a synthetic view when the training data consists of
synchronized stereo images. To further supervise a CNN for SVDE from stereo, semi-global match-
ing (SGM (Hirschmuller, 2005)) pseudo-GTs have also been explored by Watson et al. (2019); Tosi
et al. (2019). In the recent work of Zhu et al. (2020), segmentation masks have also been used in
contour consistency losses to generate depth maps with more accurate borders.

The recent work of GonzalezBello & Kim (2020) proposed a multi-view occlusion module to ac-
count for the occluded regions on the reconstruction losses and an exponential disparity discretiza-
tion which led to considerable performance improvements. In (Gonzalez & Kim, 2021), the authors
introduced ‘neural positional encoding’ (NPE) and a matting laplacian loss. NPE projects per-
pixel positional information into a higher dimensional space via a fully-connected network to let
the CNN reason about location-specific image characteristics (e.g., projection distortions, ground-
vs-sky, etc.). Their matting laplacian loss guides the CNN to produce sharper depth boundaries by
exploiting the sharpening properties of natural image matting (Levin et al., 2007).
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2.3 SELF-SUPERVISED LEARNING FROM VIDEOS.

Learning self-supervised SVDE from videos is a much more challenging task. While fixed stereo im-
ages are synchronized, video sequences have temporal distances and arbitrary camera poses between
frames. This hinders the estimation of moving object depths and demands a secondary network for
camera pose estimation as proposed by Zhou et al. (2017). In their work, ‘explainability’ masks
were estimated to handle such moving objects.

In Monodepth2 (Godard et al., 2019), the authors proposed auto-masking, which selects the pixels
with the smallest projection errors to remove moving objects in the scene, improving SVDE per-
formance. However, there is still a limitation on moving objects which move faster or slower than
the camera. The recent work of Guizilini et al. (2020b) explored filtering out the sequences that
have dynamic objects using a two-stage training strategy, semantics, and the PackNet Guizilini et al.
(2020a) backbone. However, sub-sampling the training sequences can reduce the model’s general-
ization capabilities. Similarly, the work of Klingner et al. (2020) utilized a semantic masking scheme
by cross-domain training of semantic segmentation and SVDE. Moreover, several methods (Wang
et al., 2021b; Jung et al., 2021b; Wang et al., 2021a; Liu et al., 2021; Shu et al., 2020; Lyu et al.,
2020) have improved the depth estimation quality, but there is still a lot of room for improvement.
This paper suggests the SPIMO masks, which keep the model’s scalability without requiring any
additional data from different tasks. Using the SPIMO masks, we can successfully exclude moving
objects for loss calculation and achieve outperforming results.

3 PROPOSED METHOD

Our training strategy is two-staged. Firstly, we let the SVDE network learn from all pixels (static
and dynamic pixels) in the target and reference frames with an occlusion-aware synthesis loss fol-
lowing (GonzalezBello & Kim, 2020). Secondly, we devise a new method for detecting dynamically
moving objects by measuring the dispersion of multiple depth estimates from the first stage network
under several positional information perturbations (see Section 3.3). In the second training stage,
such robust moving object masks are used to effectively train an SVDE network from scratch, by
ignoring the independently moving pixels in the scene in our new occlusion and moving-object-
aware synthesis loss (see Section 3.5). Additionally, we exploit recent advances in SVDE (Mian-
goleh et al., 2021; Gonzalez Bello & Kim, 2021) to self-supervise the moving object regions with
“boosted” depth estimates, further improving our results (see Section 3.4).

3.1 NETWORK ARCHITECTURE

Our new proposed pipeline is depicted in Fig. 2. The target frame (I0) is projected via free-view
synthesis (or forward warping) onto the reference frames (I−1, I1), generating new synthetic views
seen from the reference camera positions. Forward warping is achieved by following the FAL-Net
(GonzalezBello & Kim, 2020), which can be generalized to any camera position and augmented for
adaptive inverse depth discretization (see Section 3.2 for more details). The synthetic views, denoted
by I ′−1 and I ′1 in Fig. 2, are compared against the GT reference views with geometrically inspired
reconstruction losses. Note that these losses not only consider masking the occluded contents in
the target frame that are visible in the reference views but also the moving objects in the reference
frames and the projected target frame, as denoted by the three masks in each reconstruction loss (e.
g. M1, M0→1, and O1 for frame I−1).

As depicted in Fig. 2, learning SVDE requires at least two branches: one for disparity and the other
for relative pose estimation. The first is carried out by our Adaptive QUAntization Network, referred
to as ‘AQUANet’, which takes as input a single view I0 and its corresponding pixel positional data
(U,V) and produces the disparity logit volume DL and the per-pixel adaptive quantization param-
eter β. AQUANet adopts the network backbone in (Gonzalez & Kim, 2021), which is a simple
auto-encoder with skip connections that incorporates neural positional encoding (NPE). NPE maps
pixel coordinates (u, v) to a higher dimensional space via a fully connected network to be further
processed by the CNN’s encoder. On the other hand, PoseNet (Zhou et al., 2017) is a convolutional
encoder that takes target and source images as input and maps them into relative camera extrinsics
(x, y, and z rotations and translations).
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Figure 3: Adaptive quantization. (Left) Quantization curves with adaptive parameter β. (Center)
From bottom to top: Input image, disparity, and β map. (Right) Disparity probability volume.

3.2 ADAPTIVE DISPARITY QUANTIZATION FOR VIEW SYNTHESIS

An approximation to forward warping an input image I0 into a new camera position c can be achieved
by progressively warping I0 into c by N depth planes and summing the projected images weighted
by their per-pixel depth probability distribution. We achieve this by generalizing and improving the
synthesis method in (GonzalezBello & Kim, 2020), which is originally devised for fixed stereoscopic
view synthesis, by incorporating camera intrinsics (K0 and Kc) and extrinsics (Rc and tc) into the
warping operation g(·). The synthetic view seen from camera position c can then be expressed by

I′c =
∑N−1

n=0 g (I0, dn, Rc, tc,K0,Kc)⊙ DP0→c
n , (1)

where dn is the inverse depth quantization level and ⊙ denotes the Hadamard product. DP0→c is the
disparity probability volume projected into camera c, described by

DP0→c = σ

([
g
(

DL
n , dn, Rc, tc,K0,Kc

)]N−1

n=0

)
, (2)

where σ is the channel-wise softmax operation and [·] is the channel-wise concatenation operation.
DL is the disparity logit volume which can be soft-maxed, quantized, and sum-reduced to obtain the
final disparity estimate

D̂ =
∑N−1

n=0 dnσ(DL)n. (3)

In (GonzalezBello & Kim, 2020), the authors defined dn = dmaxe
(n/N−1) ln dmax/dmin as a fixed

exponential quantization of disparity. Such quantization scheme distributes the sampling levels more
uniformly in the depth domain as described by the gray line in Fig. 3. However, this assumes that
all pixels in the input image will follow the same distribution. Properly allocating ‘depth bins’ to
each pixel can distribute probabilities more intensively in the region of interest, generating a much
more accurate disparity map. For example, a more “linear” inverse depth quantization could benefit
the depth estimation of close-by objects by assigning more sampling levels to larger disparities as
shown by the green line in Fig. 3. On the other hand, a steeper inverse depth quantization should
improve the depth estimation of distant objects, as more bins are assigned to smaller disparities, as
depicted by the red line in Fig. 3. The quantization curves depicted in Fig. 3 belong, in fact, to
the same family of curves controlled by the adaptive quantization parameter β, which we propose to
incorporate in a per-pixel (p = (u, v)) manner in our new adaptive quantization scheme, given by

d(p) =
[
dmaxe

ln(dmax/dmin)((n/N)β(p)−1)
]N
n=0

. (4)

Then, our final inverse depth estimate is described by D̂ = d · σ(DL) (5), where · denotes the
channel-wise dot product. Note that in (GonzalezBello & Kim, 2020), dn is a scalar value, while
d is a tensor in our proposed adaptive quantization. It is also worth noting that the hypothetical
inverse depth planes in Eqs. 1 and 2, that were originally single scalar values in (GonzalezBello &
Kim, 2020), become hypothetical inverse depth maps with different values per-pixel location by our
adaptive quantization scheme. Fig. 3 provides a visualization of the learned adaptive quantization.
The adaptive parameter β controls the per-pixel disparity quantization curve as depicted in the center
of Fig. 3. As can be observed, β effectively assigns the most suitable quantization curve for far and
close-by object pixels. The unquantized σ(DL), depicted to the right of Fig. 3, effectively discretizes
the estimated disparity in several levels.
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Figure 4: Moving object artifacts w/o PI. Figure 5: Perturbations for Moving object masks.

Figure 6: Single image inputs, disparity estimates from multiple forward passes (with N = 4
different positional information offsets), and computed SPIMO masks.

The previous work (Bhat et al., 2021) also explored adaptive discretization of depth for the fully su-
pervised case of SVDE. However, while they generate N independently adaptive depth bins globally
shared across all pixel locations, we propose a per-pixel quantization so that each output pixel has its
own quantization curve. One weakness of AdaBins (Bhat et al., 2021) is that it requires GT depths
to supervise the bin centers, making it not suitable for the task of interest in the present manuscript,
self-supervised learning of SVDE. Furthermore, note that our adaptive quantization scheme not only
serves as a disparity representation, but we can also efficiently perform forward warping with it.

3.3 COMPUTATION OF MOVING OBJECT MASKS WITH SHIFTED POSITIONAL INFORMATION

The neural positional encoding (NPE) proposed in the PLADE-Net Gonzalez & Kim (2021) was
known to be simple yet effective in learning SVDE from stereo images as it provides the network
with the means of understanding the relative location of a random crop with respect to the full image.
However, when learning from monocular videos, the NPE facilitates the network to memorize the
potential locations and appearances of independently moving objects (e.g., cars) in the scene. This
is not desirable for the generalization of SVDE as it can overly accentuate the effects of moving
objects resulting in incorrect depth estimates. These adverse effects are shown in Fig. 4 and Table 1,
where the AQUANet with positional information (PI) yields strong artifacts on the moving objects
indicated by the green boxes and slightly worse metrics than the AQUANet without PI.

However, by exploiting this behavior, we can fool a fully trained network to recover the geometries
of dynamically moving objects. We fool the network by feeding the shifted positional information
into the NPE, which enforces the network to switch from an overfitting mode into a generalization
mode, by producing different depth estimates on the regions that were exposed to a weaker 3D
self-supervision (moving objects, highly homogeneous regions, etc.).

In this paper, for the first time, we propose a novel way to compute moving object masks by ex-
ploiting the recovered geometries obtained with the shifted positional information. We propose to
measure the depth variance per-pixel to classify it as a likely moving or static object pixel in our
Shifted Positional Information Moving Object (SPIMO) masks. Interestingly, our proposed ap-
proach allows for obtaining a likely moving object mask from a single image rather than a moving
object mask from multiple images. Based on this approach, neither an extra network for estimat-
ing explainability masks (Zhou et al., 2017) nor a dedicated network for computing optical flows is
needed. Instead, the shifted positional information is alone enough to tackle the ill-posed problem
of learning SVDE from videos.

To obtain our SPIMO masks we first build a perturbed depth volume Dv , with multiple network
passes under shifted positional information, as shown in Fig. 6 and described by:

Dv =
[
AQUANetF (I, (U + ui,V + vi))

−1
]N
i=1

, (6)

where each of its N channels is a depth estimate with positional offsets (ui, vi) and AQUANetF
denotes a fixed copy of our network after the first training stage. Given normalized positional coor-
dinates (image center at (0, 0), top-left corner at (−1,−1)), we empirically set u = [0, 0.5,−0.5, 0]
and v = [0, 0, 0,−0.25] positional offsets. Note that we use depth instead of inverse depth in Dv as
the variations between close and far away estimates are more evident in depth units. The SPIMO
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Figure 7: Visual comparison between our shifted positional information moving object (SPIMO)
masks and those computed following Monodepth2 (Godard et al., 2019).

mask is then given by applying a threshold γ on the normalized channel-wise variance as given by

M =
{
1 if

∑N
i=1(D

v
i − D̄v

)2/((D̄v
)2(N − 1)) < γ, 0 o.w.

}
, (7)

which is similar to the index of dispersion. We empirically set γ = 3% for all our experiments
as it was observed to drop most moving object pixels while maintaining rigid object pixels. We
also explored other low-level perturbations and found them to be not effective in generating depth
variances correlated to moving objects (MOs). To demonstrate it, we added random noise and RGB
channel swap perturbations, but failed in masking out the MOs, as can be seen in the 2nd and 3rd
results of Fig 5. Only perturbations on PI can induce enough depth variance on the MO depths to
differentiate them, as shown in the last result of Fig.5. This is because: (i) PI shifts do not degrade
the input images; and (ii) the networks learn the potential locations and appearances of MOs.

3.4 BOOSTING AS SELF-SUPERVISION FOR MOVING OBJECTS

We observed that the quality of moving object depths (e.g., cars, bikers) produced by the second
training stage with SPIMO masks was much lower than that of the static objects (e.g., roads, trees,
traffic signs). This is due to the network not being exposed to those regions during training and
such masked regions being only penalized by the smoothness loss. To prevent this, we propose to
use a watered-down version of the boosting techniques in (Miangoleh et al., 2021; Gonzalez Bello
& Kim, 2021) to self-supervise the moving objects in the masked regions. We define the disparity
estimates from a previous-epoch copy of the AQUANet under training at full, reduced and increased
resolutions as D̂F = AQUANet′(I0, (U,V)), D̂F↓ = 4

3H(AQUANet′(H(I0, 3
4 ), H((U,V), 3

4 )),
4
3 ),

and D̂F↑ = 4
5H(AQUANet′(H(I0, 5

4 ), H((U,V), 4
5 )),

4
5 ), respectively. Where H(·) denotes the

resizing operation. Then, the boosted disparity can be computed by a selective combination of D̂F ,
D̂F↓, and D̂F↑, as

D∗ = (D̂F + D̄F ⊙ D̂F↓ + (1− D̄2
F )⊙ D̂F↑)/(1 + D̄F + (1 + D̄2

F )) (8)

where D̄F is the normalized mean disparity.

D̄F = (D̂F + D̂F↓ + D̂F↑)/max(D̂F + D̂F↓ + D̂F↑). (9)

Eq. 8 effectively blends disparities from the fixed network, assigning more weights on the upscaled
estimates for faraway objects and more weights on the downscaled estimates for the close-by objects,
producing a slightly better depth map (Miangoleh et al., 2021; Gonzalez Bello & Kim, 2021).

3.5 LOSS FUNCTIONS

In the first training stage, we learn from all non-occluded image pixels with a combination of
occlusion-aware synthesis los and edge-aware disparity smoothness lds losses, as given by lst1 =
los + αdslds, where αds = 0.1 following (Godard et al., 2017).

In the second stage, we train the network from scratch with an occlusion and moving object-aware
synthesis loss lOM

s , lds, and a boosting loss lb, as given by

lst2 = loms + αdslds + αblb, (10)
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Figure 8: AQUANet results on KITTI images for 1st and 2nd training stages.

where αb = 0.1 and αds = 0.2 are set empirically. Our synthesis loss, loms = 0.5loms1 + 0.5loms−1
,

averages the contribution from previous and next reference views.

Occlusion / moving object-aware synthesis loss. Given the combination of occlusion and SPIMO
masks W1 = O1 ⊙ M1 ⊙ M0→1, where M0→1 is the target frame’s SPIMO mask projected into the
reference camera, this term is defined as

loms1 = ||W1 ⊙ (I′1 − I1)||1 + αp

∑3
l=1 ||ϕl(I′1)− ϕl(Iw1 )||22, (11)

where Iw1 = (1−W1)⊙ I′1+W1⊙ I1 is the GT view with moving objects replaced by those in I′1. The
weight αp = 0.01 is set empirically to balance the contribution between the L1 and perceptual losses
(Johnson et al., 2016) and ϕl(·) denotes the lth maxpool layer of a pre-trained VGG19 (Simonyan
& Zisserman, 2014). Note that O1 is obtained from DL following the method in (GonzalezBello &
Kim, 2020). los in lst1 is obtained by just setting W = O in loms .

Boosting loss. This loss builds on the previous works (Miangoleh et al., 2021; Gonzalez Bello &
Kim, 2021) and provides refined disparity maps D∗ to self-supervise the moving object regions by

lb =
1

max(D∗) ||(1− M0)⊙ (D̂ − D∗)||1. (12)

Note that the boosting loss is only applied to the pixel regions that are likely moving independently,
normalized by the maximum disparity value max(D∗).

4 EXPERIMENTS AND RESULTS

We trained our novel pipeline in two stages for 110 and 55 epochs for networks trained from scratch
and networks with pre-trained backbones, respectively. For the first 5 epochs, we kick-start the
PoseNet with a ‘naive disparity map’. This map is a vertical gradient image where the first and last
image rows are assigned zeros and ones, respectively. We implemented our pipeline with PyTorch
and trained it on an NVIDIA A100 GPU with a batch size of 8. We optimized our networks using the
default Adam (Kingma & Ba, 2014) optimizer with an initial learning rate of 0.0001. The learning
rate is halved at [55%, 70%, 90%] of the total iterations. We applied random cropping (for all
datasets) of 192×640 and random resizing from 0.5 to 1.5 (see Appendix A.2 for more details). We
set the disparity discretization levels as 33 or 49, which well fit our adaptive quantization scheme.

4.1 DATASETS

KITTI (K) (Geiger et al., 2012). To compare our results with a wide range of previous works,
we utilized the Eigen train and test splits (Eigen et al., 2014) of the KITTI dataset. The train split
contains 22,600 384×1208 image sequences captured at 10Hz. The test split contains 697 and 652
images with projected sparse LiDAR GTs (which we cap at 80m), respectively in its original and
improved versions (Uhrig et al., 2017). The latter aggregates multi-views for higher-quality depths.

CityScapes (CS) (Cordts et al., 2016). We utilize the train folder of the CS dataset, which contains
∼3K 384×1208 images, each surrounded by 29 frames captured at 17Hz and adding up to ∼80K
training sequences. To ensure large enough motion in the sequences, we skip every other frame,
reducing the frame rate to half.

4.2 ABLATION STUDIES

Table 1 shows the results of extensive ablation studies on the KITTI dataset to inspect the effective-
ness of each component in our method. See Appendix A.3 for additional ablation experiments.

Experiment 1 (Expmt. 1) in Table 1. We validate our SPIMO masks by training our AQUANet for
SVDE without masking any moving object, denoted as AQUANet(1st). The various KITTI metrics
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Table 1: Ablation studies of our AQUANet on KITTI(Geiger et al., 2012). Metrics defined in (Eigen
et al., 2014). Error metrics are the lower the better and accuracy metrics are the higher the better .

Expmt. Methods abs rel sq rel rmse rmselog δ1 a2 a3

1 AQUANet (1st, w/o PI) 0.118 1.157 4.099 0.164 0.890 0.974 0.988
AQUANet (1st) 0.120 1.457 4.286 0.167 0.891 0.970 0.986
AQUANet (1st-stat) 0.080 0.287 2.858 0.114 0.936 0.992 0.999

2 AQUANet (with (Godard et al., 2019) masks) 0.113 0.820 4.236 0.167 0.881 0.970 0.989
DIRNet-BW 0.098 0.579 3.910 0.149 0.900 0.976 0.992
vPLADE-Net 0.084 0.366 3.240 0.124 0.930 0.987 0.997
AQUANet 0.080 0.328 3.095 0.118 0.934 0.989 0.997

3 AQUANet(ab = 0.1) 0.078 0.320 3.117 0.117 0.935 0.989 0.997
AQUANet(full) 0.077 0.324 3.032 0.115 0.938 0.989 0.997
AQUANetR34(full) 0.070 0.285 2.988 0.107 0.946 0.991 0.998

Figure 9: Qualitative comparison among different network architectures.

(Eigen et al., 2014) are poor due to the moving objects for which infinite or incorrect depths are
often predicted, as depicted in the 2nd column of Fig. 8. We then measure the performance of
AQUANet(1st) on the non-moving objects only, by masking moving objects with computed SPIMO
masks, denoted as AQUANet(1st-stat). The better metrics of AQUANet(1st-stat) imply that our
SPIMO masks can effectively remove the scene’s moving objects.

Expmt. 2. We inspect our second training stage on different architectures with similar network
backbones. Firstly, we train our AQUANet with ‘auto-masks’ from (Godard et al., 2019). As can be
noted in Table 1 and Fig. 9, the auto-masks are not enough to entirely remove the moving objects
in the scene, forcing the AQUANet with auto-masking to generate holes in the estimated disparity
maps and considerably lower quantitative performance. Fig. 7 depicts our SPIMO masks for various
KITTI (Geiger et al., 2012) sequences and their corresponding auto-masks following (Godard et al.,
2019). As observed, SPIMO masks are much less sparse and remove the independently moving
objects better, while the photometric assumptions in (Godard et al., 2019) do not always manage to
remove the moving objects in the scene.

Secondly, the DIRNet-BW, which learns using backward warping-based loss functions (as in (Go-
dard et al., 2019)), but with our SPIMO masks, manages to estimate full depth maps but struggles
in estimating plausible depths for the thin objects in the scene. This is reflected in the improved
metrics in Expmt. 2 of Table 1 and qualitative results of Fig. 9. Thirdly, the vPLADE-Net, a video
extension of (Gonzalez & Kim, 2021) with our SPIMO masks yields improved metrics and more
detailed depth maps but presents disparity artifacts near the image borders (such as small holes) and
incorrect depths around the scene’s objects boundaries due to the limitations of the fixed quantiza-
tion, as shown in Table 1 and Fig. 9. Finally, our AQUANet, with SPIMO masks and pixel-wise
adaptive disparity quantization, remarkably obtains the best results in Expmt. 2, both quantitatively
and qualitatively, as depicted in Table 1 and Fig. 9. Finally, The considerable differences between
the first and second training stages on the different datasets can be observed in Fig. 8.

Expmt. 3. We ablate the effects of boosting into our training. Our AQUANet with boosting (ab =
0.1) achieves improved results in most metrics. However, we observed that even better results could
be achieved if the boosted depths D∗ are incorporated into the SPIMO mask computation process in
Eq. 6, denoted as AQUANet(full). Furthermore, we ablated the effects of adopting the Resnet-34 as
a bigger and pre-trained encoder backbone into our AQUANet(full), denoted as AQUANetR34(full).
Our AQUANetR34(full) yields the SOTA result by a large margin.

4.3 RESULTS

KITTI. A quantitative comparison between our method and existing SOTA methods that learn from
videos is presented in Table 2 (See Appendix A.5 for full table). Our AQUANet always achieves the
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Figure 10: Qualitative comparisons on KITTI. Our AQUANet consistently estimates more detailed
depths and is robust against moving objects thanks to our SPIMO masks.

Table 2: Results on the KITTI Eigen Split Eigen et al. (2014). V, Vse: Self-supervised from video
or video+semantics. Models are trained on KITTI (K) or CityScapes (CS). Par: # of params.

Reference Methods Sup Data Par abs rel sq rel rmse logrmse a1 a2 a3

Godard et al. (2019) Monodepth2 V K 14 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Guizilini et al. (2020a) PackNet V K 120 0.107 0.802 4.538 0.186 0.889 0.962 0.981

Lyu et al. (2020) HR-Depth V K 14 0.104 0.727 4.410 0.179 0.894 0.966 0.984
Proposed AQUANet V K 14 0.115 0.656 4.251 0.186 0.875 0.959 0.983

Guizilini et al. (2020a) PackNet V CS→K 120 0.104 0.758 4.386 0.182 0.895 0.964 0.982
Guizilini et al. (2020b) Guizilini et al. Vse CS→K 140 0.100 0.761 4.270 0.175 0.902 0.965 0.982O

ri
gi

na
lS

pl
it

Proposed AQUANet V K+CS 14 0.112 0.669 4.263 0.182 0.882 0.963 0.984
Proposed AQUANet(1st) V CS 14 0.179 1.881 5.396 0.240 0.790 0.933 0.969
Proposed AQUANet V CS 14 0.131 0.786 4.686 0.186 0.837 0.962 0.988

Godard et al. (2019) Monodepth2 V K 14 0.092 0.536 3.749 0.135 0.916 0.984 0.995
Guizilini et al. (2020a) PackNet V K 120 0.078 0.420 3.485 0.121 0.931 0.986 0.996

Proposed AQUANet V K 14 0.079 0.324 3.032 0.115 0.938 0.989 0.997
Proposed AQUANetR34 V K 25 0.070 0.285 2.988 0.107 0.946 0.991 0.998

Guizilini et al. (2020a) PackNet V CS→K 120 0.071 0.359 3.153 0.109 0.944 0.990 0.997
Proposed AQUANet V K+CS 14 0.076 0.301 2.921 0.111 0.943 0.991 0.998

Im
pr

ov
ed

Sp
lit

Proposed AQUANetR34 V K+CS 25 0.070 0.283 2.943 0.107 0.948 0.992 0.998

best sq rel and RMSE metrics in comparison with the previous self-supervised methods when trained
with (K) only and with (K+CS) for both the original and the improved Eigen test splits (Eigen et al.,
2014). For the improved Eigen test split (which contains much denser depths and is therefore more
reliable), our AQUANet outperforms the SOTA method of PackNet Guizilini et al. (2020a) in 4 out
of 7 metrics by a considerable margin and is comparable for the other three metrics even though the
PackNet has 8.5× more parameters than ours. On the other hand, our AQUANetR34 outperforms
all previous methods in all metrics by a large margin, showing that our method well scales-up with
network parameters. Our superior quantitative results are supported by qualitatively more consistent
depth estimates, as shown in Fig. 10.

CityScapes. Firstly, we demonstrate that our method benefits from additional data, as shown in
the (K+CS) results of Table 2. Secondly, to test the generality of our method, we train our models
on (CS) and test them on (K). The consistent improvements are observed in Table 2 from the first
training stage (RMSE: 5.396) to the second stage (RMSE: 4.686) regardless of the training data,
which implies that our method generalizes well. Additionally, as shown in the second column of
Fig. 8, our AQUANet, even with no KITTI images during training, predicts the moving car in
the KITTI scene in the first row with infinite depths and the moving cars in the second row with
implausible close-by depths. These experimental results imply that CNN’s trained for the SVDE
task from videos do not memorize moving objects but rather learn their appearances and potential
locations. More experimental results are provided in the supplementary materials.

5 CONCLUSIONS

We have proposed the use of positional information for the first time to aid in self-supervised learn-
ing of SVDE from videos. We showed that an SVDE network implicitly learns moving objects’ po-
tential locations and appearances. We exploited this behavior to measure depth variances to shifted
positional information to compute robust moving object masks, which we call SPIMO masks. We
used these masks in our novel learning pipeline, making it possible to remove the moving objects in
the photometric reconstruction losses robustly. Additionally, we presented adaptive disparity quan-
tization, utilized by our AQUANet, which in conjunction with the boosting of moving object depths,
yields the SOTA results for the self-supervised learning of SVDE from videos.
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A APPENDIX

A.1 INTRODUCTION

In this Appendix, we first provide details on our resize and crop data augmentations specifically
tailored for learning depth from videos. We also provide complementary ablation studies and ad-
ditional visualizations of our proposed adaptive quantization and SPIMO masks. Additionally, we
present full versions of Tables 1 and 2 of our main manuscript as well as GIFs, “GIF1-5”, that aid
in visualizing the generated disparity maps, SPIMO masks, and synthetic views that make learning
robust single-view depth estimation (SVDE) from monocular videos possible. Finally, we discuss
our currently proposed method’s inference times and limitations in these supplemental materials.

A.2 DEPTH CUE-PRESERVING DATA AUGMENTATION

We propose the use of random resize and random crop data augmentations to train our SVDE net-
work, which are well-known in fully supervised learning. In (GonzalezBello & Kim, 2020; Gonza-
lez & Kim, 2021), these data augmentations have already been exploited when learning from stereo.
However, interestingly and to the best of our knowledge, random resize and crop are commonly
avoided in most (if not all) previous works that learn from videos (Zhou et al., 2017; Godard et al.,
2019; Guizilini et al., 2020a;b). Applying these data augmentations can be achieved if the changes
in scale and cropping coordinates are properly reflected into the camera focal length and principal
points, respectively, with a few caveats.

Firstly, the pose estimation network requires to “look” at full-images, with little regard to the image
resolutions, to be able to reason about global camera motion. This is not an issue as the final outputs
of the PoseNet are just six values per reference camera. So we can feed low-res full images to the
PoseNet.

Secondly, we observed that the learning of depth can be controlled in different ways according to the
result of the random resizing and cropping operations. Re-scaling the estimated camera translations
relative to the random resizing factors can guide the SVDE network to generate disparity estimates
that are:
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Table 3: Ablation studies of our AQUANet on KITTI (Geiger et al., 2012). Metrics defined in (Eigen
et al., 2014). Error metrics are the lower the better and accuracy metrics are the higher the better .

Expmt. Methods abs rel sq rel rmse rmselog δ1 a2 a3

1 AQUANet (1st, W/o PI) 0.118 1.157 4.099 0.164 0.890 0.974 0.988
AQUANet (1st) 0.120 1.457 4.286 0.167 0.891 0.970 0.986
AQUANet (1st-stat) 0.080 0.287 2.858 0.114 0.936 0.992 0.999

2 AQUANet (with Godard et al. (2019) masks) 0.113 0.820 4.236 0.167 0.881 0.970 0.989
DIRNet-BW 0.098 0.579 3.910 0.149 0.900 0.976 0.992
vPLADE-Net 0.084 0.366 3.240 0.124 0.930 0.987 0.997
AQUANet 0.080 0.328 3.095 0.118 0.934 0.989 0.997

3 AQUANet(ab = 0.1) 0.078 0.320 3.117 0.117 0.935 0.989 0.997
AQUANet(full) 0.077 0.324 3.032 0.115 0.938 0.989 0.997
AQUANetR34(full) 0.070 0.285 2.988 0.107 0.946 0.991 0.998

4 AQUANet (no aug.) 0.098 0.532 3.923 0.146 0.902 0.978 0.993
AQUANet (inverse) 0.091 0.417 3.446 0.131 0.918 0.986 0.996
AQUANet (invariant) 0.087 0.385 3.288 0.126 0.925 0.987 0.997

5 AQUANet(per-dataset) 0.078 0.332 3.070 0.117 0.935 0.988 0.997
AQUANet(per-image) 0.085 0.362 3.373 0.128 0.921 0.985 0.997

• Invariant to image resolutions. This is the case when the estimated camera translations are not
re-scaled by the random scale factor.

• Inversely proportional. If the estimated camera translations are multiplied by the resizing scale
factor, the SVDE network will learn to generate smaller-valued disparities as the resolution of the
image grows. This is, the larger the world objects are, the farther away they are. While this might
seem to be the most reasonable approach, it breaks one of the most important cues in SVDE:
relative object size - the closer the object is, the bigger its relative size.

• Directly proportional. Dividing the camera translations by the resizing scale factor leads the
SVDE model to generate disparity values that scale with image resolutions. This seems to be
counter-intuitive, as it could suggest that the larger the world is, the closer the objects are. How-
ever, this approach effectively augments the dataset without breaking the relative object size cue.

The benefits of our proposed strategy are in: (i) Flexibility to learn depths at very-high resolutions,
(ii) Lower hardware requirements for high-resolution data, and (iii) better generalization as data is
effectively augmented. In addition to adopting disparities that scale directly proportional to image
resolutions, we also incorporate random horizontal flip, random gamma, random brightness, and
random color shifts into our training as in (Godard et al., 2017; GonzalezBello & Kim, 2020).

A.3 COMPLEMENTARY ABLATION STUDIES

Table 3 supplements Table 1 of our main manuscript with experiments 4 and 5 (Expmt. 4 and 5),
which explore the effects of our proposed data augmentation protocol and the effects of adaptive
quantization, respectively.

Expmt. 4. We ablate the effects of our proposed data augmentation protocol, for AQUANets that
are trained without random resizing and cropping augmentations, denoted as AQUANet (no aug.),
AQUANets that learn to estimate disparity values that don’t scale with image resolutions, denoted
as AQUANet (invariant), and AQUANets that learn to estimate disparities that scale inversely pro-
portional to image resolutions, denoted as AQUANet (inverse). Note that the AQUANet in Expmt.
2 learns to predict disparity values that proportionally scale with image resolutions. The networks
in Expmt. 4 achieve much lower performance than our AQUANet that learns disparity values that
scale proportional to the image resolutions as shown in Table 3. Qualitatively, these AQUANets
present blurred object borders and less detailed depth maps as shown in the zoom-boxes in Fig. 11.
On the other hand, our AQUANet that learns disparity values that scale proportional to the image
resolutions yields more consistent and sharper depth estimates as shown in the last column of Fig.
11. Note that, in addition to obtaining lower performance, the model trained without our augmenta-
tion protocol, AQUANet (no aug.), is limited to predicting depth maps at half resolution, as it was
not exposed to randomly resized and cropped patches during training.

Expmt. 5. To further support the effectiveness of per-pixel adaptive quantization we provide addi-
tional ablation studies on per-dataset and per-image adaptive quantization. In Expmt. 5 of Table 3,
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Figure 11: Effects of the proposed data augmentation protocol.

Figure 12: Full images, image crops, and estimated adaptive quantization maps and disparities.

in the AQUANet (per-dataset), we optimize a single adaptive parameter β shared among all image
pixels and images in the KITTI dataset. As expected, AQUANet(per-dataset) achieves lower per-
formance than our AQUANet(full) in Expmt. 3 in Table 3, which implemented per-pixel adaptive
quantization.

On the other hand, AQUANet(per-image) learns to estimate a single β adaptive parameter per im-
age shared among the image pixels. Interestingly, AQUANet(per-image) yields considerably much
lower performance than AQUANet(per-dataset) and AQUANet(full). This is potentially due to the
low correlation between the input image and the single adaptive parameter β. In contrast, as depicted
in Fig. 12, our adaptive quantization per pixel seems to correlate well to the input image.

A.4 ADDITIONAL VISUALIZATIONS

A.4.1 ADAPTIVE QUANTIZATION

Fig. 12 provides a visualization of the estimated adaptive quantization maps β and disparities by
our AQUANet for some training inputs. As described in the Proposed Method Section of our main
manuscript, a single channel feature map controls the per-pixel disparity quantization. As can be
observed, our adaptive quantization network, the AQUANet, automatically learns to estimate an
adaptive quantization map that effectively assigns the most suitable quantization curve for far and
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Figure 13: Visual comparison between our shifted positional information moving object (SPIMO)
masks and those computed following Monodepth2 (Godard et al., 2019).

close by object pixels. In Fig. 12, lighter pixels denote a quantization curve with more depth levels
for distant objects, and darker pixels indicate a quantization curve with more quantization levels for
close-by depths.

Interestingly, the adaptive quantization map β is less detailed than the final estimated disparity map,
implying that the disparity probability volume (quantized per-pixel by the curves defined by β) is
responsible for the fine details in the final depth maps.

Additionally, Fig. 12 depicts the complete images from which random crops are obtained to train
our AQUANet. As can be observed, our training strategy allows for learning SVDE from randomly
resized and cropped patches.

A.4.2 SPIMO MASKS VS AUTO-MASKS

Figure 13 depicts additional comparisons between the proposed SPIMO masks and their correspond-
ing auto-masks (Godard et al., 2019) for various KITTI (Geiger et al., 2012) sequences. As can be
observed, our SPIMO masks are much less sparse and do a better job removing the moving objects
in the scene.

A.4.3 SYNTHETIC VIEWS

Our AQUANet learns SVDE via forward warping, that is, by synthesizing the input image seen from
the previous and next frames’ camera positions. For this reason, it is worthwhile observing those in-
termediate synthetic views along with their corresponding SPIMO masks and disparities, as depicted
in Fig. 14. Even when our AQUANet only learns view synthesis as a pre-text task, the novel views
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Figure 14: Additional visualizations of our SPIMO masks, estimated disparities, and synthetic
views. Top four rows depict KITTI (Geiger et al., 2012) samples and bottom four rows depict
CityScapes (Cordts et al., 2016) samples.

are photo-realistic. Again, our SPIMO masks demonstrate to be very robust and capable of remov-
ing the moving objects in the scene. Finally, it is worth noting that the boosted disparities(obtained
by loosely following (Gonzalez Bello & Kim, 2021)) are slightly more consistent than the network
estimated disparities, which allows for a progressive improvement during training.

To ease the visualization of Figure 14, we provide a GIF, “GIF1”, in the supplementary materials.
We also provide “GIF2-5” which show synthesized novel views from the KITTI Eigen Test Split
Eigen et al. (2014). Note that even when these views are generated from a single image input, they
display realistic appearances.

A.5 FULL RESULTS TABLE

Table 4 supplements Table 2 in our main manuscript by adding other recent works for quantitative
comparison. Again, our AQUANet yields the best RMSE and sq rel in both the original (Eigen
et al., 2014) and improved (Uhrig et al., 2017) Eigen test splits when trained either on KITTI (K)
or KITTI+CityScapes (K+CS). Note that our proposed method yields the state-of-the-art result even
without the use of semantics (as in (Guizilini et al., 2020b; Jung et al., 2021a)) and without exploding
number of network parameters (as in Guizilini et al. (2020a)).
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Table 4: Comparison to Existing SVDE Methods on the KITTI Eigen Split (Eigen et al., 2014).
DoF: depth of field supervision. D: Fully-supervised. V, Vse, S, and SSGM: Self-supervised from
video, video+semantics, stereo, and stereo+SGM. Models train on KITTI (K) or CityScapes (CS).
PP: post-processing. Par: # of params. V models use median scaling.

Reference Methods Sup Data Par abs rel sq rel rmse logrmse a1 a2 a3

Luo et al. (2018) Luo et al. D+S K - 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Gur & Wolf (2019) Gur et al. DoF K - 0.110 0.666 4.186 0.168 0.880 0.966 0.988
Watson et al. (2019) DepthHints(PP) SSGM K 35 0.096 0.710 4.393 0.185 0.890 0.962 0.981

GonzalezBello & Kim (2020) FAL-net S K+CS 17 0.091 0.562 4.016 0.178 0.894 0.964 0.983
Gonzalez & Kim (2021) PLADE-Net S K+CS 15 0.090 0.577 3.880 0.170 0.903 0.968 0.985

Gordon et al. (2019) Gordon et al. V K - 0.128 0.959 5.230 0.212 0.845 0.947 0.976
Zhou et al. (2019) Zhou et al. V K 34 0.121 0.837 4.945 0.197 0.853 0.955 0.982

Godard et al. (2019) Monodepth2 V K 14 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Shu et al. (2020) FeatDepth V K 73 0.104 0.729 4.481 0.179 0.893 0.965 0.984

Guizilini et al. (2020a) PackNet V K 120 0.107 0.802 4.538 0.186 0.889 0.962 0.981
Lyu et al. (2020) HR-Depth V K 14 0.104 0.727 4.410 0.179 0.894 0.966 0.984

Jung et al. (2021a) FSRE-Depth (R18) Vse K 25 0.105 0.722 4.547 0.182 0.886 0.964 0.984
Jung et al. (2021a) FSRE-Depth (R50) Vse K 25 0.102 0.675 4.393 0.178 0.893 0.966 0.984

Proposed AQUANet V K 14 0.115 0.656 4.251 0.186 0.875 0.959 0.983
Proposed AQUANetR34 V K 25 0.105 0.621 4.227 0.179 0.889 0.964 0.984

Gordon et al. (2019) Gordon et al. V K+CS - 0.124 0.930 5.120 0.206 0.851 0.950 0.978
Klingner et al. (2020) SG-Depth V K+CS 16 0.107 0.768 4.468 0.186 0.891 0.963 0.982
Guizilini et al. (2020a) PackNet V CS→K 120 0.104 0.758 4.386 0.182 0.895 0.964 0.982
Guizilini et al. (2020b) Guizilini et al. Vse CS→K 140 0.100 0.761 4.270 0.175 0.902 0.965 0.982

Proposed AQUANet V K+CS 14 0.112 0.669 4.263 0.182 0.882 0.963 0.984
Proposed AQUANetR34 V K+CS 25 0.108 0.649 4.224 0.181 0.890 0.964 0.984
Proposed AQUANet(PP) V K+CS 14 0.110 0.637 4.170 0.179 0.885 0.964 0.984
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Proposed AQUANetR34(PP) V K+CS 14 0.103 0.601 4.137 0.176 0.892 0.965 0.984
Yin et al. (2019) Yin et al. D K 113 0.072 - 3.258 0.117 0.938 0.990 0.998
Fu et al. (2018) DORN D K 51 0.072 0.307 2.727 0.120 0.932 0.984 0.995

Guizilini et al. (2021) PackNet-SAN D K >120 0.052 0.175 2.233 0.083 0.970 0.996 0.999
Godard et al. (2019) Monodepth2 V+S K 14 0.087 0.479 3.595 0.131 0.916 0.984 0.996
Watson et al. (2019) DepthHints(PP) SSGM K 35 0.074 0.364 3.202 0.114 0.936 0.989 0.997

GonzalezBello & Kim (2020) FAL-net(PP) S K+CS 17 0.068 0.276 2.906 0.106 0.944 0.991 0.998
Gonzalez & Kim (2021) PLADE-Net S K+CS 15 0.066 0.263 2.726 0.102 0.949 0.992 0.998

Proposed AQUANet(1st) V CS 14 0.179 1.881 5.396 0.240 0.790 0.933 0.969
Proposed AQUANet V CS 14 0.131 0.786 4.686 0.186 0.837 0.962 0.988

Godard et al. (2019) Monodepth2 V K 14 0.092 0.536 3.749 0.135 0.916 0.984 0.995
Jung et al. (2021a) FSRE-Depth (R18) Vse K 25 0.084 0.436 3.740 0.129 0.919 0.985 0.996

Guizilini et al. (2020a) PackNet V K 120 0.078 0.420 3.485 0.121 0.931 0.986 0.996
Proposed AQUANet(1st) V K 14 0.120 1.457 4.286 0.167 0.891 0.970 0.986
Proposed AQUANet V K 14 0.077 0.324 3.032 0.115 0.938 0.989 0.997
Proposed AQUANetR34 V K 25 0.070 0.285 2.988 0.107 0.946 0.991 0.998

Guizilini et al. (2020a) PackNet V+v CS→K 120 0.075 0.384 3.293 0.114 0.938 0.984 0.995
Guizilini et al. (2020a) PackNet V CS→K 120 0.071 0.359 3.153 0.109 0.944 0.990 0.997

Proposed AQUANet(1st) V K+CS 14 0.114 1.171 4.055 0.162 0.898 0.975 0.988
Proposed AQUANet V K+CS 14 0.076 0.301 2.921 0.111 0.943 0.991 0.998
Proposed AQUANetR34 V K+CS 25 0.070 0.283 2.943 0.107 0.948 0.992 0.998
Proposed AQUANet(PP) V K+CS 14 0.073 0.279 2.813 0.107 0.946 0.992 0.998
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Proposed AQUANetR34(PP) V K+CS 25 0.067 0.262 2.844 0.102 0.951 0.993 0.998

It is worth noting that we provide results for our AQUANet with post-processing, denoted as (PP) in
Table 4. In this case, the post-processing is the boosting process detailed in Section 3.4 of our main
manuscript. The slightly higher performance of the AQUANets with (PP) allows for incremental
improvements in the moving object regions when employed in the boosting loss, as described in
Sections 3.4 and 3.5 of our main manuscript.

A.6 RUN-TIME ANALYSIS

Our 14 million parameters AQUANet sits on the lower spectrum for depth estimation networks re-
garding the number of parameters. In terms of inference times, our AQUANet is comparable to
other light depth estimation networks (Godard et al., 2017; 2019). Our network performs dispar-
ity inference of a full KITTI image of 1242×375 pixels in 66ms, and 22ms for a half-resolution

17



Under review as a conference paper at ICLR 2023

KITTI image of 621×187 resolution on the vanilla PyTorch on a Titan XP GPU, leaving room for
improvements when implementing real-time libraries such as TensorRT.

When performing view synthesis on a full KITTI image, our AQUANet has a latency of 90ms or
33ms for half-resolution images. This is due to the additional computations (e.g., 2N warping, soft-
max, and dot-product operations, where N is the number of quantization levels) needed to perform
free-view synthesis, as described in Section 3.2 of our main manuscript.

A.7 LIMITATIONS

Although our SPIMO masks effectively remove moving objects in the scene, their computation is
easily affected by γ in Eq. 7 of our main manuscript. We empirically demonstrated the handcrafted
threshold of γ = 3%, but this might not be optimal for all image cases. Thus, exploring adaptive
thresholds for SPIMO masks is an interesting problem for future work. Furthermore, the additional
fixed-network forward passes needed to compute the depth variances to shifted positional infor-
mation lead to an increased training time, which could be considered a limitation. However, this
additional learning time can be eliminated if the moving object masks are pre-computed before the
second training stage.
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