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Abstract

In the constant updates of the product dialogue001
systems, we need to retrain the natural language002
understanding (NLU) model as new data from003
the real users would be merged into the existing004
data accumulated in the last updates. Within the005
newly added data, new intents would emerge006
and might have semantic entanglement with the007
existing intents, e.g. new intents that are seman-008
tically too specific or generic are actually a sub-009
set or superset of some existing intents in the010
semantic space, thus impairing the robustness011
of the NLU model. As the first attempt to solve012
this problem, we setup a new benchmark con-013
sisting of 4 Dialogue Version Control dataSets014
(DialogVCS). We formulate the intent detec-015
tion with imperfect data in the system update016
as a multi-label classification task with positive017
but unlabeled intents, which asks the models to018
recognize all the proper intents, including the019
ones with semantic entanglement, in the infer-020
ence. We also propose comprehensive baseline021
models and conduct in-depth analyses for the022
benchmark, showing that the semantically en-023
tangled intents can be effectively recognized024
with an automatic workflow1.025

1 Introduction026

With the rapid growth of the business market for the027

task-oriented chatbots, the service providers would028

constantly upgrade their dialogue systems in order029

to be adaptable to the changing user requirements.030

Within the system update, the workflow of updating031

the existing natural language understanding (NLU)032

model is to collect a new training corpus by accu-033

mulating emerging data and merging them into the034

existing training data in the last iteration, followed035

by retraining with the updated corpus. Throughout036

the model update, new intents would emerge as037

more and more real-world user queries arrive.038

1We will open source our code and data after the anonymity
period.
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Figure 1: A motivating example for DialogVCS. In the
m-th system update, the intents colored in pink are the
existing labels while the intents colored in blue and
yellow are the emerging ones. The emerging intents
might be overlapped, e.g. being excessively specific
(yellow) or generic (blue), with the existing ones in the
semantic space.

The prior research on NLU focused on the ut- 039

terance understanding with a well-defined intent2 040

ontology, with the assumption that the entire in- 041

tents are semantically separable and organized in 042

the proper granularity3. However, the emerging 043

intents from NLU model update might be incom- 044

patible with the existing intent ontology and thus 045

violate the assumption regarding the properties of 046

being semantically non-overlapping and maintain- 047

ing well-designed granularity, e.g. the emerging 048

intents ‘play_music_on_repeat’ and ‘play_media’ 049

2“intent” refers to the underlying goal or purpose of a user’s
request or query in a dialogue. This is a commonly used con-
cept in task-oriented dialogue datasets including MultiWOZ,
CrossWOZ, SNIPS, and ATIS.

3A well-designed NLU ontology should adequately split
the entire user semantic space into the non-overlapping intents
with appropriate granularity, i.e. each intent should not be
excessively generic or specific in terms of semantics.
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are semantically too specific or generic with re-050

spect to the existing intent ‘play_music’. We cate-051

gorize the semantic overlapping problem between052

the emerging and the existing intents among the053

system upgrade into two categories, namely ver-054

sion conflict and merge friction, in which the ver-055

sion conflicts signify the emerging intents are too056

semantically specific and thus covered by the ex-057

isting intents while the merge frictions are just the058

opposite. We argue that the semantic overlapping059

problem between emerging and existing intents oc-060

curs frequently in the dialogue system updates as061

the careful human modification for each emerging062

intent would be prohibitive due to the limited labor063

budgets and the imminent product delivery dead-064

lines. The defective data would even propagate and065

accumulate through consecutive upgrades, and thus066

largely impair the robustness of the NLU models.067

We formulate the problem as a multi-label clas-068

sification task with positive but unlabeled intents4.069

As the first step towards solving this problem, we070

setup a benchmark consisting of 4 dialogue ver-071

sion control datasets (DialogVCS) to simulate the072

semantically overlapped intents. We employ a073

fully automatic workflow to create the ATIS-VCS,074

SNIPS-VCS, MultiWOZ-VCS, CrossWOZ-VCS075

datasets from 4 canonical NLU datasets, includ-076

ing ATIS (Hemphill et al., 1990), SNIPS (Coucke077

et al., 2018), MultiWOZ (Zang et al., 2020) and078

CrossWOZ (Zhu et al., 2020), by splitting the orig-079

inal intents according to the pivot entities or inten-080

tions. By leveraging existing high-quality datasets,081

it provides a distinct advantage in terms of quality082

assurance. On the other hand, manual annotation083

on real scenario data could be challenging to main-084

tain consistent quality. The most critical challenge085

of DialogVCS is the discrepancy between training086

and inference, i.e. for each training instance, only087

one intent is provided as the target label5, while in088

the testing phase, the models are expected to output089

all the ground-truth labels. Thus we setup multiple090

baselines concerning with positive but unlabeled091

(PU) learning for the proposed benchmark and find092

that the baseline models are capable of detecting093

semantically overlapped intents automatically.094

We summarize our contributions below: 1) We095

4We focus on the intent detection rather than slot filling,
as empirically we observe over 95% of bad cases associated
with NLU model update are at the intent level in a commercial
dialogue platform with a considerable market share.

5Note that we assume all the labeled intents in the training
instances are factually correct, i.e. no dataset noise (false
annotations) occurs.

model the version conflicts and merge frictions 096

of NLU models in the industrial dialogue system 097

update as a multi-label classification task with pos- 098

itive but unlabeled intents, making it accessible 099

to the research community. 2) We propose 4 di- 100

alogue version control datasets by simulating the 101

semantic overlapping problem on the ATIS, SNIPS, 102

MultiWOZ, and CrossWOZ datasets. 3) We setup 103

various baselines for the proposed benchmark and 104

show that the semantically overlapping intents can 105

be effectively detected with an automatic workflow. 106

2 Task Overview 107

Background on system updates In the product 108

conversational AI platforms with NLU function- 109

alities (Ram et al., 2018; Hoy, 2018; Meng et al., 110

2022; Zheng et al., 2022; Liang et al., 2022) based 111

on cloud computing, service providers would of- 112

fer accessible ways, i.e. easy-to-use user inter- 113

faces, low-code application programming inter- 114

faces (APIs), for users (programmers or operators) 115

to customize their task-oriented dialogue systems. 116

As one of the core components in the task-oriented 117

chatbots, the dialogue platform would provide com- 118

mon query understanding skills, such as weather 119

and traffic inquiry, music and video playing, and 120

food delivery, as the default native skills to ramp 121

up the initial product delivery. The native skills 122

would be updated periodically as more and more 123

customer data comes from real-world users. After 124

deploying the very first version of their chatbots 125

with selected native skills, the users would con- 126

stantly add new functionalities or modify existing 127

ones following the continuous integration/delivery 128

(CI/CD) routines (Duvall et al., 2007; Shahin et al., 129

2017). Except for the native skills, users would also 130

customize user skills by adding their own training 131

corpus6 to the platform. In a nutshell, the natu- 132

ral language understanding (NLU) module of the 133

task-oriented chatbots might be updated due to the 134

upgrades of the native skills or the adaptations to 135

the customized user skills. 136

Formulations To better signify the two afore- 137

mentioned challenges, suppose at first we have two 138

intents i1 and i2, the version conflict would occur 139

when the new intents iv11 , iv21 emerges where the 140

superscripts v1 and v2 imply that iv11 and iv21 are 141

different labels with respect to i1 but semantically 142

6Most AI platforms would help the users reduce the labor
cost of data annotation with automatic data augmentation,
few-shot learning capability, etc.
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identical; the merge friction would occur as the143

new intent i1&i2 appears where the ampersand em-144

phasizes the new intent is different but semantically145

affiliated to i1 and i2. Note that i1, iv11 and i1&i2146

are just the notations of the given intents rather147

than the real intent names, which means we can not148

know the relations among these intents a priori.149

3 Dataset Collection150

3.1 Raw Data Collection151

We collect data from two single-turn dialog datasets152

ATIS (Hemphill et al., 1990) and SNIPS (Coucke153

et al., 2018), and two multi-turn dialog datasets154

MultiWOZ 2.1 (Eric et al., 2019) and CrossWOZ155

(Zhu et al., 2020). ATIS is a classic dataset on156

the flight inquiry, while SNIPS was collected from157

the real-world voice assistant and covers broader158

domains. MultiWoZ is a task-oriented dataset with159

seven domains: taxi, restaurant, hotel, attraction,160

train, police, and hospital, but the last two domains161

are not in the validation or test set, so we drop them162

following the prior work (Lee et al., 2019; Kim163

et al., 2020; Moradshahi et al., 2021). CrossWOZ164

is a Chinese task-oriented dataset with the same165

domain setting as MultiWOZ’s validation/test set:166

taxi, restaurant, hotel, attraction, and train. For167

these WOZ datasets, we treat each utterance as168

an instance, rather than the whole dialog. The169

statistics of the datasets are shown in Table 1.170

3.2 Version Conflict171

We simulate the version conflict by sampling.172

Given an instance Ins with the original label l = i1173

and versions set V = {v1, v2, ..., vk}, we uni-174

formly sample the version v from V , and reset the175

label of the instance as l′ = iv1. In the real-world176

applications, a specific intent might have multiple177

versions, but to control the difficulty of the dataset,178

here we assume the maximum number of versions179

is 2, i.e. k = 2. At testing time, the model shall180

predict both versions of the label iv11 and iv21 .181

3.3 Merge Friction182

For merge friction, the label-splitting strategies on183

composite intents are different regarding single-184

intent and multi-intent datasets.185

Split Single Intent For ATIS and SNIPS, where186

each instance is annotated with one single intent187

i and several related entities E or slots, we could188

split the single intent i into two separate sub-intent189

i1 = iwith_entity_j and i2 = iwithout_entity_j , the190
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to indianapolis
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(a) Split by entity
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restaurant by 21:30, I

need the taxi to take me
to the hotel.

I'm going to need a taxi at
the hotel first, I'll be leaving

the hotel at 19:45.

How many stars, also the postcode and address?
I will also need a taxi and want it to arrive by

17:00. Contact number and car type.

(b) Split by intention

Figure 2: The examples of intent splitting while sim-
ulating the merge friction issue. (2a) For single-intent
datasets, i.e. ATIS and SNIPS, we split the intent
“Fight” into two sub-intents “Flight_with_time” and
“Flight_without_time” by the pivot entity “time”.
(2b) For multi-intent datasets, i.e. MultiWOZ and Cross-
WOZ, we split the composite intent “Hotel&Taxi”
into two atomic intents “Hotel” and “Taxi”.

classification rule of which is whether this instance 191

contains the entity_j or not, and the original in- 192

tent i becomes compositional i1&i2. For exam- 193

ple, as shown in figure 2a, given an utterance “i 194

would like to find a flight from charlotte to las 195

vegas that makes a stop in st. louis” with the in- 196

tent Flight, since it does not contain any time en- 197

tity, the sub-intent shall be Flight_without_time; 198

on the other hand, given an utterance “monday 199

morning i would like to fly from columbus to in- 200

dianapolis” with the same intent, since it contains 201

time entity “monday morning”, the sub-intent shall 202

be Flight_with_time. For training data, we ran- 203

domly relabel the instance by sub-intent i1, i2 or 204

full-intent i1&i2. While testing, the model shall 205

predict both the fine-grain and coarse-grain labels. 206

The split intents are shown in Table A3. 207

Split Multi Intent Unlike the previous situation, 208

for MultiWOZ and CrossWOZ each instance might 209

contain multiple intents, which makes splitting in- 210

tent easier. We reconsider the deduplicated multi- 211

intents as a new compositional label i1&i2, and nat- 212

urally its atomic labels are i1 and i2. An example 213

is shown in Figure 2b, each of the three instances 214

could be labeled as any of the three labels, whether 215

compositional label Hotel&Taxi, or atomic labels 216
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Hotel and Taxi. For training data, we randomly217

relabel the instance by one of the atomic intents i1218

and i2, or the compositional intent i1&i2. While219

testing, the model should predict all the ground-220

truth labels. The split intent is at Table A4.221

4 Methods222

We highlight the technical challenges of Di-223

alogVCS: 1) The discrepancy between training and224

testing due to the positive but unlabeled (PU) set-225

ting; 2) The risk of pivoting the model training with226

false negative labels; 3) The extreme 0-1 class im-227

balance of multi-label classification. We propose228

multiple baselines towards these challenges.229

4.1 Basic Classifier230

Considering the proposed task as a multi-label clas-231

sification task, we apply a linear classification at the232

head of the output of pre-trained language model233

(PLM). we use a PLM to get the representations234

for every token x in sentence: [h1,h2, ...,hn] =235

PLM([x1,x2, ...,xn]) where hi is the representa-236

tion for token xi. Then, we use linear transforma-237

tion and Sigmoid activation function at the output238

representation of [CLS] to get output distribution239

for intents: y = Sigmoid(Wh1), where W is240

trainable parameter. In practice, we use threshold241

0.5 for the output of Sigmoid to determine the242

final binary output for each intent.243

4.2 Method against False Negative Labels244

In order to alleviate the negative effect of false neg-245

ative labels, which introduce noise in training, and246

make the model perform poorly, we propose Nega-247

tive Sample method to reduce the negative effects248

of the inaccurate negative samples. For each sam-249

ple s in training set Dtrain, instead of directly using250

the labels given by dataset, we construct new labels251

by using the positive label and randomly sample252

θ ∗ |L| negative samples, where theta is a propor-253

tion and |L| is the number of labels of the dataset.254

We use the model output as the labels other than255

the positive label and the sampled negative labels,256

meaning that we do not optimize all labels other257

than positive and negative labels. And then we use258

BCE Loss (Creswell et al., 2017) for optimization.259

4.3 Method for Imbalanced Binary260

Classification261

If we consider the proposed task as intent binary262

classification, the distribution of positive and nega-263

tive sample for each class is extremely imbalanced.264

Targeting at the unbalance of positive and negative 265

sample for each intent, we propose a method based 266

on Focal Loss with label smoothing, which puts 267

more emphasis on positive samples. Specifically, 268

we add a label something on the original target l: 269

lLS = l(1− β) +
β

|L|
(1) 270

where |L| denotes the number of intent classes. 271

β is the label smoothing parameter. β/K is the 272

soft label, which represents the number of intent 273

labels. l is a vector where the positive labels equal 274

1 and the negative labels equal to 0 and pLS is the 275

modified targets, which represents a list of ground 276

truth labels. 277

We introduce Focal Loss (Lin et al., 2017) to 278

alleviate the above problems. For notational conve- 279

nience, we define pt as below: 280

pt =

{
p if y = 1

1− p otherwise,
(2) 281

To address class imbalance, we introduce a 282

weighting factor αt ∈ [0, 1] for class 1 and 1−α for 283

class −1. As the extreme class imbalance encoun- 284

tered during the training of classifier overwhelms 285

the cross entropy loss and major negative samples, 286

the easily classified negative samples comprise the 287

majority of the loss and dominate the gradient. As 288

α balances the importance of positive and negative 289

samples, we add another factor (1− pt)
γ to differ- 290

entiate between easy and hard samples and focus 291

training on hard negatives: 292

FL(pt) = −αt(1− pt)
γ log(pt). (3) 293

where α and γ are hyper parameters. Consider- 294

ing the proposed task as binary classification, there 295

are 2 hyper-parameters αpos and αneg for αt 296

4.4 Method for Imbalanced Multi-Label 297

Label Classification 298

Another method that we are interested in explor- 299

ing is to apply Cross Entropy Loss into multi-label 300

classification instead of modeling the proposed task 301

as binary classification. Cross Entropy Loss max- 302

imize the difference between the score of target 303

class and the score of other classes: 304

LCE = log

1 +
n∑

i=1,i ̸=t

esi−st

 (4) 305
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where [s1, · · · , st−1, st+1, · · · , sn] is the output306

score of non-target classes and st is the output score307

of target class. As an extension to apply CE Loss at308

multi-label classification, we still want to maximize309

the difference between the score of target classes310

and the score of other classes, so we propose a311

multi-label CE Loss:312

LmlCE = log

1 +
∑

i∈Ωneg ,j∈Ωpos

esi−sj


= log

1 +
∑
i∈Ωneg

esi
∑

j∈Ωpos

e−sj

 (5)313

where Ωneg denotes negative classes and Ωpos314

denotes positive classes. The optimized goal of315

LmlCE is to make si < sj .316

In our proposed task, the number of output317

classes is unfixed, so we need a threshold to de-318

termine which class to be positive. We introduce319

an additional threshold score x0 and optimize to320

make sj > s0 and si < s0 into Equation 5:321

LmlCE = log

es0 +
∑

i∈Ωneg

esi


+ log

e−s0 +
∑

j∈Ωpos

e−sj

 (6)322

Equation 6 is the extension of Softmax and Cross323

Entropy to multi-label classification task. Instead324

of turning multi-label classification into multiple325

binary problem, it transforms it to a two-by-two326

minimization of scores of target classes with non-327

target classes, leading to alleviation of class imbal-328

ance. As we use threshold 0.5 for the output of329

Sigmoid to determine the final binary output for330

each intent, we set s0 to be 0.331

4.5 Method of In-Context-Learning332

Large Language Models (LLMs) (Sanh et al.,333

2021; Ouyang et al., 2022; Zhang et al., 2022) have334

demonstrated impressive few-shot generalization335

abilities. We are also interested in investigating336

generation-based methods and incorporating label337

semantics as inputs for generative models. For each338

dataset, we provide one data sample for each label.339

We also provide a task description and all the avail-340

able label options and query the generative model341

to output one or more labels that match the input.342

5 Experiments 343

5.1 Datasets and Evaluation Metrics 344

We show the dataset statistics in Table 1. To com- 345

pare the baseline models, we adopt the standard 346

precision(P), recall(R), F1-score(F1) for evaluation. 347

The above metrics consider the task as a binary 348

classification task for all intents, ignoring the multi- 349

label classification nature of the task. So we present 350

the exact match ratio (EM) metrics for further eval- 351

uation. More details are shown in Appendix A.3. 352

5.2 Experiment Settings 353

For a fair comparison, we use BERT-base- 354

uncased (Devlin et al., 2019) as the text encoder 355

for all methods. We introduce a naive baseline by 356

applying a basic multi-label classifier (Section 4.1). 357

Another baseline is to train the classifier exposure 358

to all ground-truth labels, which indicate the up- 359

per bound of other models as all other models are 360

trained with partially positive labels. 361

We implement all the experiments with Huggin- 362

face Transformers (Wolf et al., 2020). We specify 363

the model_ids we used in the model repository in 364

Table A2. All the hyperparameters used in our 365

proposed methods are presented in Table A1. 366

5.3 Experiment Results 367

Main Results As shown in Table 2, due to the 368

discrepancy between the label distribution in the 369

training and testing, fine-tuning the classifier by 370

the naive method of ‘Basic Classifier’ as Sec. 4.1 371

to DialogVCS with the naive BCE Loss yields low 372

performance, especially under the metric of EM, 373

indicating the challenges of DialogVCS. The pro- 374

posed baselines significantly alleviate the negative 375

effect of inaccurate negative labels. Among the 376

three methods, Multi-Label Focal Loss as Sec. 4.4 377

generally outperforms other methods to be a robust 378

method for partial positive labels. More detailed 379

analysis and discussion are in Appendix A.7. 380

For new intents that have no semantic overlap- 381

ping with the original intents, we train them directly 382

as new samples without considering version con- 383

flicts or merge frictions. Since these new intents do 384

not overlap semantically with the original intents, 385

we can directly add to the training data. 386

We experimented with in-context learning of 387

GPT-3.5 7. We provide one sample for each intent 388

in the demonstration to form many examples (i.e., 389

7https://openai.com/blog/chatgpt
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Dataset Intent Statistics Dataset Count
VC-N VC-R(%) MF-N MF-R(%) Total Train Valid Test

ATIS-VCS 50 75.8 10 15.2 66 4455 496 876
SNIPS-VCS 24 77.4 6 19.4 31 13084 700 700
MultiWOZ-VCS 14 63.6 8 36.4 22 42342 4229 4238
CrossWOZ-VCS 10 58.8 7 41.2 17 55189 7325 7305

Table 1: The statistics of the proposed datasets. We list the label number of the intents which involve the version
conflict (VC-N) or the merge friction (MF-N) issues, the correlated ratio of concerning training instances in the
training set (VC-R and MF-R), as well as the dataset split for training, validation and testing.

Method ATIS-VCS SNIPS-VCS CrossWOZ-VCS MultiWOZ-VCS
P R F1 EM P R F1 EM P R F1 EM P R F1 EM

Basic classfier 66.67 0.01 0.15 0.00 99.99 5.26 10.00 14.29 98.06 23.83 38.35 3.94 91.78 37.93 53.67 6.75

Neg. Sample 87.4 86.87 87.14 76.37 94.30 93.16 93.73 85.14 97.97 49.24 65.54 42.97 86.19 87.06 86.62 82.79
LS Focal loss 84.17 88.81 86.43 77.05 95.85 95.95 95.90 92.86 97.00 88.37 92.48 80.34 88.62 86.45 87.52 85.85
Multi-label CE 91.77 85.73 88.65 79.91 94.40 80.74 87.04 65.14 98.06 28.86 44.60 14.47 94.00 81.14 87.10 80.46

ChatGPT-ICL 49.84 52.33 51.06 0.03 82.86 0.58 0.6824 31.79 11.37 16.75 0.01 42.97 60.92 51.46 55.79 1.00

Upper Bound 98.07 86.80 92.09 83.22 96.73 96.42 96.57 95.86 96.90 96.95 96.92 93.49 89.33 87.34 88.32 86.71

Table 2: Model performance on the DialogVCS. We use BERT-base as the backbone text encoder for all the
baselines. The ‘Basic Classifier’ and ‘Upper Bound’ methods signify the ‘know nothing a priori’ (no inductive bias
of positive but unlabeled (PU) learning in the training) and ‘know everything a priori’ (exposure to all ground-truth
labels in the training) settings, while other methods aim to recognize unlabeled intents in the regime of PU learning.
For each setting except ChatGPT-ICL, we report the median scores among 5 runs using different random seeds.

66 intents for ATIS-VCS, 31 intents for SNIPS-390

VCS, 22 intents for CrossWOZ-VCS, and 17 in-391

tents for MultiWOZ-VCS). We add the requirement392

of completing the multi-label classification task and393

provide all options in the prompt, which is shown394

in Table B11. Then, we determine the intent of the395

model output by matching the options provided in396

the prompt with the generated text output. Follow-397

ing Ye et al. (2023); Qin et al. (2023), we randomly398

sample 100 instances in the test set for the test.399

The performance of GPT-3.5 on in-context learn-400

ing (Kojima et al., 2022) under few-shot settings401

is satisfactory enough, which further demonstrates402

the challenging nature of the proposed benchmark.403

Analysis on how to address the problem of inten-404

tional overlap in new and old data The bench-405

mark can be seen as a unique adversarial dataset.406

It contains both test and training data, allowing for407

the analysis of model performance and trends under408

different levels of inconsistency control. This ap-409

proach helps reveal the robustness of the model. As410

demonstrated in Table 5, the classifier experiences a411

significant drop in performance as the data becomes412

more inconsistent. However, a robust model should413

ideally not exhibit such a rapid decline in accuracy.414

Instead, it should generally maintain accuracy, or415

even approach the performance upper bound. This416

benchmark aims to reveal these characteristics in 417

the tested models, contributing to the development 418

of more robust NLU models for industrial dialogue 419

systems. In addition, we make contributions to the 420

method to address this problem. Our motivation 421

for designing the method is to model the problem 422

as a PU learning problem of multi-label classifica- 423

tion. Next, we want the model to be able to identify 424

semantically overlapped intents, so we apply three 425

methods: Negative Sampling, Label-Smoothing 426

Focal Loss, and Multi-Label Cross-Entropy. 427

Model Scale Up Table 3a shows the model per- 428

formance on DialogVCS with different size of text 429

encoder. We use Label-Smoothing Focal Loss 430

method due to its high performance in Table 2. 431

Results show that scaling up generally benefits 432

the model performance. Transferring from BERT- 433

Small to BERT-Base brings up to 9 points growth 434

in the F1 score, and transferring from BERT-Base 435

to BERT-Large brings up to 5 points growth in the 436

F1 score. However, the performance of CrossWOZ- 437

VCS dataset does not follow this trend, which 438

might be caused by the insufficient training of large- 439

size Chinese BERT models. 440

Model Structure We are also interested in 441

whether the selection of text encoder is impor- 442
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Size ATIS-VCS SNIPS-VCS Cro-VCS Mul-VCS

Small 77.78 90.68 95.60 86.26
Base 86.43 95.90 92.48 87.52
Large 91.57 97.45 87.66 87.34

(a) Exploration on Model Scale

Model ATI-VCS SNI-VCS Cro-VCS Mul-VCS

BERT 86.43 95.90 92.48 87.52
RoBERTa 91.03 96.34 92.41 86.62
AlBERT 84.64 88.45 84.58 85.92
DeBERTa 91.56 90.89 95.93 86.61

(b) Exploration on Model Structures

LSR ATIS-VCS SNIPS-VCS Cross-VCS Multi-VCS

0.1 77.67 95.90 92.48 86.86
0.2 86.43 95.05 80.89 87.02
0.4 85.13 88.58 80.59 87.52

(c) Exploration on Label Smoothing Rates

Table 3: The F1 scores of the the Label-Smoothing
Focal Loss method with different model size (3a), dif-
ferent structures of the encoder (3b), and different label
smoothing rates (LSR) (3c). The full tables are provided
in Table A6, Table A7, and Table A8.

tant for the task performance. Table 3b shows443

the model performance with different model struc-444

ture for text encoder. We experiment four model445

structures of the text encoder, including BERT-446

Base, RoBERTa-Base (Liu et al., 2019), AlBERT-447

Base (Lan et al., 2019) and DeBERTa-Base (He448

et al., 2020). Results show that RoBERTa-Base449

and DeBERTa-Base generally outperform others.450

Label Smoothing Rate for Focal Loss Our451

Label-Smoothing Focal Loss method consists of a452

dedicated label smoothing strategy. Intuitively, as453

the negative samples are prone to be false negative454

in DialogVCS, smoothing the labels in this way pre-455

vents the classifier from becoming over-confident456

while determining negative outputs. Table 3c457

shows the model performance on DialogVCS when458

applying Label-Smoothing Focal Loss method with459

different label smoothing rates (LSR). The best460

practise for choosing label smoothing rate depends461

on the number of labels of the dataset, generally462

speaking a dataset with larger label set requires a463

larger label smoothing rate. As shown in table 3c,464

the numbers of labels in the ATIS-VCS dataset and465

MultiWOZ-VCS dataset are larger than those in the466

SNIPS-VCS dataset and CrossWOZ dataset, thus467

the Label-Smoothing Focal Loss method attains468

better performance with a larger label smoothing469

rate such as 0.2 and 0.4, while the best choice of470

NSN ATIS-VCS SNIPS-VCS Cross-VCS Multi-VCS

1 66.35 93.73 65.54 86.62
2 79.55 91.67 58.78 84.57
4 87.14 82.37 52.90 77.59
8 84.46 76.99 48.72 72.60

Table 4: The F1 scores of the Negative Sampling
Method under different negative sample numbers (NSN).
The full table is provided in Table A10.

label smoothing rate for the SNIPS-VCS dataset 471

and CrossWOZ-VCS dataset is 0.1. 472

Negative Sample Number There is a critical 473

hyper-parameter for the negative sampling method 474

— the negative sample number. As illustrated in Ta- 475

ble 4, we try to figure out the best hyper-parameter 476

setting in terms of the negative sample number. 477

We observe that as the negative sample number 478

increases, the performance decreases to a large 479

extent for the SNIPS-VCS, CrossWOZ-VCS and 480

MultiWOZ-VCS, with an exception that 4 negative 481

samples work the best for the ATIS-VCS dataset. 482

Difficulty Control We want to explore the model 483

performances on DialogVCS with different levels 484

of semantic entanglement. Intuitively, we can con- 485

trol the difficulty level by controlling the number 486

of conflicting labels, e.g. ‘easy’ and ‘hard’ ver- 487

sions of DialogVCS. The details of creating such 488

datasets are presented in Appendix A.6. As shown 489

in Table 5, in ATIS-VCS and SNIPS-VCS, as the 490

number of split sub-intents decreases, the dataset 491

becomes easier, and the performance improves. 492

While in CrossWOZ-VCS and MultiWOZ-VCS, as 493

the number of split atomic intents decreases, the ra- 494

tio of simple intents also decreases, thus the dataset 495

becomes harder, and the performance declines. We 496

put more details in Table A10. 497

Correlation Between Labels Due to the discrep- 498

ancy between training set and test set for the pro- 499

posed task, the key point for model success is to 500

capture the potential correlation between related 501

labels, i.e., labels of iv11 , iv21 , iv12 , iv22 and i1&i2. Fig- 502

ure 3 displays the co-occurrence matrix between 503

labels based on the model output of Multi-Label Fo- 504

cal Loss method for the test set of SNIPS-VCS. Re- 505

sults for other datasets are at Figure A2, Figure A3 506

and Figure A4. The proposed method is able to 507

capture the potential correlation between labels as 508

the model output distinctly corresponds to the re- 509

lationship between labels, i.e. the frequency of 510
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i16 PlayMusic
i17 PlayMusic_with_artist_v1
i18 PlayMusic_with_artist_v2
i19 PlayMusic_without_artist_v1
i20 PlayMusic_without_artist_v1

i11 GetWeather
i12 GetWeather_with_state_v1
i13 GetWeather_with_state_v2
i14 GetWeather_without_state_v1
i15 GetWeather_without_state_v2

i1 AddToPlaylist
i2 AddToPlaylist_with_artist_v1
i3 AddToPlaylist_with_artist_v2
i4 AddToPlaylist_without_artist_v1
i5 AddToPlaylist_without_artist_v1

i1   i2   i3    i4    i5

i11  i12  i13  i14  i15

i16  i17 i18  i19 i20

Figure 3: Display of the co-occurrence matrix between labels based on the model output of Multi-Label Focal
Loss method for the test set of SNIPS-VCS. Different colors indicate different co-occurrence frequency of labels.
The proposed method is able to capture the potential correlation between labels as the model output distinctly
corresponds to the relationship between labels, i.e. the frequency of co-occurrence between iv11 , iv21 , iv12 , iv22 and
i1&i2 is significantly higher than the other labels.

Difficulty ATIS-VCS SNIPS-VCS

Easy 1 96.17 98.50
Easy 2 96.46 95.93
Easy 4 93.15 96.72
Normal 86.43 95.90

Difficulty CrossWOZ-VCS MultiWOZ-VCS

Hard 1 76.07 84.96
Hard 2 80.89 85.41
Hard 4 80.59 86.29
Normal 92.48 87.52

Table 5: The F1 scores of the Label-Smoothing Fo-
cal Loss method with different levels of difficulty. We
control the dataset difficulty by controlling the group
numbers of label versions, i.e. k in “Easy k” or “Hard
k” (Appendix A.6).

co-occurrence between iv11 , iv21 , iv12 , iv22 and i1&i2511

is significantly higher than the other labels. We512

also visualize the model’s prediction on different513

version labels in the test set of SNIPS-VCS in Ap-514

pendix A.8.515

6 Related Work516

Robust NLU Recently, the topics concerning the517

NLP robustness and debiasing have attracted board518

attention (Liu et al., 2020b,a; Wang et al., 2021).519

To the best of our knowledge, this study is the first520

to investigate the non-robustness of NLU systems521

caused by overlapping and conflicting labels result-522

ing from continuous system updates.523

Multi-label classification Multi-label classifica- 524

tion (Tsoumakas et al., 2006; Zhang and Zhou, 525

2013; Liu et al., 2021b; Wang et al., 2022) is a 526

well-studied problem that allows each sample as- 527

signed multiple labels simultaneously. The label 528

assignments can be incomplete in many real-world 529

scenarios, especially with a large label set. 530

PU Learning The label incomplete problem is 531

related to positive and unlabeled (PU) learning 532

(Bekker and Davis, 2020). Many works focus on 533

identifying reliable negative examples from the un- 534

labeled dataset and utilize the estimated labels to 535

improve the classification performances (Chaud- 536

hari and Shevade, 2012; Ienco et al., 2012; Basile 537

et al., 2017; He et al., 2018). 538

7 Conclusion 539

The version conflicts and merge frictions of intents 540

occur frequently due to the semantic overlapping 541

between emerging and existing intents in the indus- 542

trial dialogue system updates, but are unexplored 543

in the research community. We take a first step 544

to model the version conflict problem as a multi- 545

label classification with positive but unlabeled in- 546

tents, and propose a dialogue version control (Di- 547

alogVCS) benchmark with extensive baselines. We 548

find that the overlapping intents can be effectively 549

detected with an automatic workflow. We leave the 550

construction of real-scenario data for future works. 551
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Limitations552

In this paper, we focused on the version conflicts of553

the intents in the NLU model update, without con-554

sidering dataset noise or skewed intent distribution555

(extreme long-tail intents). In the real-world appli-556

cations, other problems would appear in the same557

time as the version conflicts, thus largely impeding558

the robustness of NLU models. We call for more559

realistic, product-driven datasets for more in-depth560

analyses of the robustness of NLU models.561

Ethics Statement562

The raw data we used to create the dialogue ver-563

sion control datasets (DialogVCS) are all publicly564

available. We employ automatic data process to565

simulate the semantic overlapping problem as new566

intents emerge in the NLU model update, without567

introducing new user utterances. We guarantee that568

no user privacy or any other sensitive data were569

exposed, and no gender/ethnic biases, profanities570

would appear in the proposed DialogVCS bench-571

mark. The model trained with the benchmark is572

used to identify the overlapping intents and would573

not generate any malicious content.574

References575

Teresa Basile, Nicola Di Mauro, Floriana Esposito, Ste-576
fano Ferilli, and Antonio Vergari. 2017. Density577
estimators for positive-unlabeled learning. In Inter-578
national Workshop on New Frontiers in Mining Com-579
plex Patterns, pages 49–64. Springer.580

Jessa Bekker and Jesse Davis. 2020. Learning from581
positive and unlabeled data: A survey. Machine582
Learning, 109(4):719–760.583

Sneha Chaudhari and Shirish Shevade. 2012. Learning584
from positive and unlabelled examples using maxi-585
mum margin clustering. In International Conference586
on Neural Information Processing, pages 465–473.587
Springer.588

Elijah Cole, Oisin Mac Aodha, Titouan Lorieul, Pietro589
Perona, Dan Morris, and Nebojsa Jojic. 2021. Multi-590
label learning from single positive labels. In Pro-591
ceedings of the IEEE/CVF Conference on Computer592
Vision and Pattern Recognition, pages 933–942.593

Alice Coucke, Alaa Saade, Adrien Ball, Théodore594
Bluche, Alexandre Caulier, David Leroy, Clément595
Doumouro, Thibault Gisselbrecht, Francesco Calt-596
agirone, Thibaut Lavril, Maël Primet, and Joseph597
Dureau. 2018. Snips voice platform: an embedded598
spoken language understanding system for private-599
by-design voice interfaces. CoRR, abs/1805.10190.600

Antonia Creswell, Kai Arulkumaran, and Anil A 601
Bharath. 2017. On denoising autoencoders trained 602
to minimise binary cross-entropy. arXiv preprint 603
arXiv:1708.08487. 604

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 605
Kristina Toutanova. 2019. BERT: Pre-training of 606
deep bidirectional transformers for language under- 607
standing. In Proceedings of the 2019 Conference of 608
the North American Chapter of the Association for 609
Computational Linguistics: Human Language Tech- 610
nologies, Volume 1 (Long and Short Papers), pages 611
4171–4186, Minneapolis, Minnesota. Association for 612
Computational Linguistics. 613

Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. 614
Continuous integration: improving software quality 615
and reducing risk. Pearson Education. 616

Mihail Eric, Rahul Goel, Shachi Paul, Adarsh Kumar, 617
Abhishek Sethi, Peter Ku, Anuj Kumar Goyal, San- 618
chit Agarwal, Shuyang Gao, and Dilek Hakkani-Tur. 619
2019. Multiwoz 2.1: A consolidated multi-domain 620
dialogue dataset with state corrections and state track- 621
ing baselines. arXiv preprint arXiv:1907.01669. 622

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and 623
Xiaowei Xu. 1996. A density-based algorithm for 624
discovering clusters in large spatial databases with 625
noise. In Proceedings of the Second International 626
Conference on Knowledge Discovery and Data Min- 627
ing, KDD’96, page 226–231. AAAI Press. 628

Anjie Fang, Simone Filice, Nut Limsopatham, and Oleg 629
Rokhlenko. 2020. Using phoneme representations 630
to build predictive models robust to asr errors. In 631
Proceedings of the 43rd International ACM SIGIR 632
Conference on Research and Development in Infor- 633
mation Retrieval, pages 699–708. 634

Abbas Ghaddar, Phillippe Langlais, Mehdi Reza- 635
gholizadeh, and Ahmad Rashid. 2021. End-to-end 636
self-debiasing framework for robust NLU training. 637
In Findings of the Association for Computational 638
Linguistics: ACL-IJCNLP 2021, pages 1923–1929, 639
Online. Association for Computational Linguistics. 640

Yunchao Gong, Yangqing Jia, Alexander Toshev, 641
Thomas Leung, and Sergey Ioffe. 2014. Deep con- 642
volutional ranking for multilabel image annotation. 643
In International Conference on Learning Representa- 644
tions. 645

Zayd Hammoudeh and Daniel Lowd. 2020. Learning 646
from positive and unlabeled data with arbitrary posi- 647
tive shift. Advances in Neural Information Process- 648
ing Systems, 33:13088–13099. 649

Yufei Han, Guolei Sun, Yun Shen, and Xiangliang 650
Zhang. 2018. Multi-label learning with highly in- 651
complete data via collaborative embedding. In Pro- 652
ceedings of the 24th ACM SIGKDD international 653
conference on knowledge discovery & data mining, 654
pages 1494–1503. 655

9

http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.findings-acl.168
https://doi.org/10.18653/v1/2021.findings-acl.168
https://doi.org/10.18653/v1/2021.findings-acl.168


Fengxiang He, Tongliang Liu, Geoffrey I Webb, and656
Dacheng Tao. 2018. Instance-dependent pu learn-657
ing by bayesian optimal relabeling. arXiv preprint658
arXiv:1808.02180.659

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and660
Weizhu Chen. 2020. Deberta: Decoding-enhanced661
bert with disentangled attention. In International662
Conference on Learning Representations.663

Charles T. Hemphill, John J. Godfrey, and George R.664
Doddington. 1990. The ATIS spoken language sys-665
tems pilot corpus. In Speech and Natural Language:666
Proceedings of a Workshop Held at Hidden Valley,667
Pennsylvania, June 24-27,1990.668

Matthew B Hoy. 2018. Alexa, siri, cortana, and more:669
an introduction to voice assistants. Medical reference670
services quarterly, 37(1):81–88.671

Dino Ienco, Ruggero G Pensa, and Rosa Meo. 2012.672
From context to distance: Learning dissimilarity for673
categorical data clustering. ACM Transactions on674
Knowledge Discovery from Data (TKDD), 6(1):1–25.675

Atsushi Kanehira and Tatsuya Harada. 2016. Multi-676
label ranking from positive and unlabeled data. In677
Proceedings of the IEEE conference on computer678
vision and pattern recognition, pages 5138–5146.679

Ting Ke, Bing Yang, Ling Zhen, Junyan Tan, Yi Li,680
and Ling Jing. 2012. Building high-performance681
classifiers using positive and unlabeled examples for682
text classification. In International symposium on683
neural networks, pages 187–195. Springer.684

Sungdong Kim, Sohee Yang, Gyuwan Kim, and Sang-685
Woo Lee. 2020. Efficient dialogue state tracking686
by selectively overwriting memory. In Proceedings687
of the 58th Annual Meeting of the Association for688
Computational Linguistics, pages 567–582, Online.689
Association for Computational Linguistics.690

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-691
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-692
guage models are zero-shot reasoners. arXiv preprint693
arXiv:2205.11916.694

Xiangnan Kong, Zhaoming Wu, Li-Jia Li, Ruofei Zhang,695
Philip S Yu, Hang Wu, and Wei Fan. 2014. Large-696
scale multi-label learning with incomplete label as-697
signments. In Proceedings of the 2014 SIAM Interna-698
tional Conference on Data Mining, pages 920–928.699
SIAM.700

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,701
Kevin Gimpel, Piyush Sharma, and Radu Soricut.702
2019. Albert: A lite bert for self-supervised learning703
of language representations. In International Confer-704
ence on Learning Representations.705

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019.706
SUMBT: Slot-utterance matching for universal and707
scalable belief tracking. In Proceedings of the 57th708
Annual Meeting of the Association for Computational709
Linguistics, pages 5478–5483, Florence, Italy. Asso-710
ciation for Computational Linguistics.711

Hua Liang, Tianyu Liu, Peiyi Wang, Mengliang Rao, 712
and Yunbo Cao. 2022. Smartsales: Sales script 713
extraction and analysis from sales chatlog. arXiv 714
preprint arXiv:2204.08811. 715

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, 716
and Piotr Dollár. 2017. Focal loss for dense object 717
detection. In Proceedings of the IEEE international 718
conference on computer vision, pages 2980–2988. 719

Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and 720
Philip S Yu. 2003. Building text classifiers using 721
positive and unlabeled examples. In Third IEEE 722
international conference on data mining, pages 179– 723
186. IEEE. 724

Jiexi Liu, Ryuichi Takanobu, Jiaxin Wen, Dazhen Wan, 725
Hongguang Li, Weiran Nie, Cheng Li, Wei Peng, 726
and Minlie Huang. 2021a. Robustness testing of 727
language understanding in task-oriented dialog. In 728
Proceedings of the 59th Annual Meeting of the Asso- 729
ciation for Computational Linguistics and the 11th 730
International Joint Conference on Natural Language 731
Processing (Volume 1: Long Papers), pages 2467– 732
2480, Online. Association for Computational Lin- 733
guistics. 734

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yim- 735
ing Yang. 2017. Deep learning for extreme multi- 736
label text classification. In Proceedings of the 40th 737
international ACM SIGIR conference on research 738
and development in information retrieval, pages 115– 739
124. 740

Tianyu Liu, Zheng Xin, Baobao Chang, and Zhifang 741
Sui. 2020a. Hyponli: Exploring the artificial patterns 742
of hypothesis-only bias in natural language inference. 743
In Proceedings of the 12th Language Resources and 744
Evaluation Conference, pages 6852–6860. 745

Tianyu Liu, Zheng Xin, Xiaoan Ding, Baobao Chang, 746
and Zhifang Sui. 2020b. An empirical study on 747
model-agnostic debiasing strategies for robust natural 748
language inference. In Proceedings of the 24th Con- 749
ference on Computational Natural Language Learn- 750
ing, pages 596–608. 751

Weiwei Liu, Haobo Wang, Xiaobo Shen, and Ivor W 752
Tsang. 2021b. The emerging trends of multi-label 753
learning. IEEE transactions on pattern analysis and 754
machine intelligence, 44(11):7955–7974. 755

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 756
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 757
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 758
Roberta: A robustly optimized bert pretraining ap- 759
proach. arXiv preprint arXiv:1907.11692. 760

Haoran Meng, Zheng Xin, Tianyu Liu, Zizhen Wang, 761
He Feng, Binghuai Lin, Xuemin Zhao, Yunbo Cao, 762
and Zhifang Sui. 2022. DialogUSR: Complex dia- 763
logue utterance splitting and reformulation for multi- 764
ple intent detection. In Findings of the Association 765
for Computational Linguistics: EMNLP 2022, pages 766
3214–3229, Abu Dhabi, United Arab Emirates. As- 767
sociation for Computational Linguistics. 768

10

https://aclanthology.org/H90-1021
https://aclanthology.org/H90-1021
https://aclanthology.org/H90-1021
https://doi.org/10.18653/v1/2020.acl-main.53
https://doi.org/10.18653/v1/2020.acl-main.53
https://doi.org/10.18653/v1/2020.acl-main.53
https://doi.org/10.18653/v1/P19-1546
https://doi.org/10.18653/v1/P19-1546
https://doi.org/10.18653/v1/P19-1546
https://doi.org/10.18653/v1/2021.acl-long.192
https://doi.org/10.18653/v1/2021.acl-long.192
https://doi.org/10.18653/v1/2021.acl-long.192
https://aclanthology.org/2022.findings-emnlp.234
https://aclanthology.org/2022.findings-emnlp.234
https://aclanthology.org/2022.findings-emnlp.234
https://aclanthology.org/2022.findings-emnlp.234
https://aclanthology.org/2022.findings-emnlp.234


Mehrad Moradshahi, Victoria Tsai, Giovanni Cam-769
pagna, and Monica S. Lam. 2021. Contextual seman-770
tic parsing for multilingual task-oriented dialogues.771
CoRR, abs/2111.02574.772

Yaroslav Nechaev, Weitong Ruan, and Imre Kiss. 2021.773
Towards nlu model robustness to asr errors at scale.774

Mateusz Ochal, Massimiliano Patacchiola, Jose775
Vazquez, Amos Storkey, and Sen Wang. 2023. Few-776
shot learning with class imbalance. IEEE Transac-777
tions on Artificial Intelligence, 4(5):1348–1358.778

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-779
roll L Wainwright, Pamela Mishkin, Chong Zhang,780
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.781
2022. Training language models to follow in-782
structions with human feedback. arXiv preprint783
arXiv:2203.02155.784

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao785
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is786
chatgpt a general-purpose natural language process-787
ing task solver? arXiv preprint arXiv:2302.06476.788

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu789
Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,790
Behnam Hedayatnia, Ming Cheng, Ashish Nagar,791
et al. 2018. Conversational ai: The science behind792
the alexa prize. arXiv preprint arXiv:1801.03604.793

Victor Sanh, Albert Webson, Colin Raffel, Stephen H794
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine795
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun796
Raja, et al. 2021. Multitask prompted training en-797
ables zero-shot task generalization. arXiv preprint798
arXiv:2110.08207.799

Mojtaba Shahin, Muhammad Ali Babar, and Liming800
Zhu. 2017. Continuous integration, delivery and801
deployment: a systematic review on approaches,802
tools, challenges and practices. IEEE Access, 5:3909–803
3943.804

Yu-Yin Sun, Yin Zhang, and Zhi-Hua Zhou. 2010.805
Multi-label learning with weak label. In Twenty-806
fourth AAAI conference on artificial intelligence.807

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vla-808
havas. 2006. A review of multi-label classification809
methods. In Proceedings of the 2nd ADBIS workshop810
on data mining and knowledge discovery (ADMKD811
2006), pages 99–109.812

Laurens van der Maaten and Geoffrey Hinton. 2008.813
Visualizing data using t-sne. Journal of Machine814
Learning Research, 9(86):2579–2605.815

Peiyi Wang, Runxin Xun, Tianyu Liu, Damai Dai,816
Baobao Chang, and Zhifang Sui. 2021. Behind the817
scenes: An exploration of trigger biases problem in818
few-shot event classification. In Proceedings of the819
30th ACM International Conference on Information820
& Knowledge Management, pages 1969–1978.821

Zihan Wang, Peiyi Wang, Tianyu Liu, Binghuai Lin, 822
Yunbo Cao, Zhifang Sui, and Houfeng Wang. 2022. 823
HPT: Hierarchy-aware prompt tuning for hierarchical 824
text classification. In Proceedings of the 2022 Con- 825
ference on Empirical Methods in Natural Language 826
Processing, pages 3740–3751, Abu Dhabi, United 827
Arab Emirates. Association for Computational Lin- 828
guistics. 829

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 830
Chaumond, Clement Delangue, Anthony Moi, Pier- 831
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 832
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 833
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 834
Teven Le Scao, Sylvain Gugger, Mariama Drame, 835
Quentin Lhoest, and Alexander Rush. 2020. Trans- 836
formers: State-of-the-art natural language processing. 837
In Proceedings of the 2020 Conference on Empirical 838
Methods in Natural Language Processing: System 839
Demonstrations, pages 38–45, Online. Association 840
for Computational Linguistics. 841

Yixing Xu, Chang Xu, Chao Xu, and Dacheng Tao. 842
2017. Multi-positive and unlabeled learning. In 843
IJCAI, pages 3182–3188. 844

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, 845
Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao Gong, 846
Yang Shen, et al. 2023. A comprehensive capability 847
analysis of gpt-3 and gpt-3.5 series models. arXiv 848
preprint arXiv:2303.10420. 849

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, 850
Raghav Gupta, Jianguo Zhang, and Jindong Chen. 851
2020. MultiWOZ 2.2 : A dialogue dataset with 852
additional annotation corrections and state tracking 853
baselines. In Proceedings of the 2nd Workshop on 854
Natural Language Processing for Conversational AI, 855
pages 109–117, Online. Association for Computa- 856
tional Linguistics. 857

Min-Ling Zhang and Kun Zhang. 2010. Multi-label 858
learning by exploiting label dependency. In Pro- 859
ceedings of the 16th ACM SIGKDD international 860
conference on Knowledge discovery and data mining, 861
pages 999–1008. 862

Min-Ling Zhang and Zhi-Hua Zhou. 2013. A review on 863
multi-label learning algorithms. IEEE transactions 864
on knowledge and data engineering, 26(8):1819– 865
1837. 866

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 867
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 868
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 869
Opt: Open pre-trained transformer language models. 870
arXiv preprint arXiv:2205.01068. 871

Xinliang Frederick Zhang. 2021. Towards more ro- 872
bust natural language understanding. arXiv preprint 873
arXiv:2112.02992. 874

Xin Zheng, Tianyu Liu, Haoran Meng, Xu Wang, Yufan 875
Jiang, Mengliang Rao, Binghuai Lin, Zhifang Sui, 876
and Yunbo Cao. 2022. Dialogqae: N-to-n question 877

11

http://arxiv.org/abs/2111.02574
http://arxiv.org/abs/2111.02574
http://arxiv.org/abs/2111.02574
https://doi.org/10.1109/TAI.2023.3298303
https://doi.org/10.1109/TAI.2023.3298303
https://doi.org/10.1109/TAI.2023.3298303
http://jmlr.org/papers/v9/vandermaaten08a.html
https://aclanthology.org/2022.emnlp-main.246
https://aclanthology.org/2022.emnlp-main.246
https://aclanthology.org/2022.emnlp-main.246
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13


answer pair extraction from customer service chatlog.878
arXiv preprint arXiv:2212.07112.879

Feng Zhu, Hongsheng Li, Wanli Ouyang, Nenghai Yu,880
and Xiaogang Wang. 2017a. Learning spatial regular-881
ization with image-level supervisions for multi-label882
image classification. In Proceedings of the IEEE con-883
ference on computer vision and pattern recognition,884
pages 5513–5522.885

Qi Zhu, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and886
Minlie Huang. 2020. CrossWOZ: A large-scale Chi-887
nese cross-domain task-oriented dialogue dataset.888
Transactions of the Association for Computational889
Linguistics, 8:281–295.890

Yue Zhu, James T Kwok, and Zhi-Hua Zhou. 2017b.891
Multi-label learning with global and local label cor-892
relation. IEEE Transactions on Knowledge and Data893
Engineering, 30(6):1081–1094.894

12

https://doi.org/10.1162/tacl_a_00314
https://doi.org/10.1162/tacl_a_00314
https://doi.org/10.1162/tacl_a_00314


A Appendix895

A.1 Related Work896

Robust NLU In the recent years, the topics con-897

cerning the NLP robustness and debiasing have898

attracted board attention. (Liu et al., 2020b,a;899

Wang et al., 2021) For NLU models, Nechaev900

et al. (2021) studied data-efficient techniques to901

make NLU models robust to ASR errors, includ-902

ing data augmentation, adversarial training, and903

a confidence-aware layer. Fang et al. (2020) pro-904

posed novel phonetic-aware text representations905

which represent ASR transcriptions at the phoneme906

level, aiming to capture pronunciation similarities.907

Besides ASR, there are other factors that affect the908

robustness of the NLU systems. Liu et al. (2021a)909

analyzed different factors affecting the robustness910

of NLU models including language variety, speech911

characteristics, and noise perturbation. Ghaddar912

et al. (2021) proposed a debiasing framework to913

slove out-of-distribution (OOD) problem in NLU.914

Zhang (2021) discussed three robustness problems,915

namely poor generalization across domains, inher-916

ently ambiguous training samples, and unreliable917

datasets. To the best of our knowledge, this study918

is the first to investigate the non-robustness of NLU919

systems caused by overlapping and conflicting la-920

bels resulting from continuous system updates.921

Multi-label classification Multi-label classifica-922

tion (Tsoumakas et al., 2006; Zhang and Zhou,923

2013; Liu et al., 2021b; Wang et al., 2022) is a well-924

studied problem that allows each sample assigned925

multiple labels simultaneously. The simplest so-926

lution is converting the multi-label problem into927

multiple independent binary classifications (one for928

each label) (Liu et al., 2017). But different labels929

are generally correlated with each other, instead of930

being independent. Some methods are proposed931

to exploit label correlations in multi-label classifi-932

cation (Zhang and Zhang, 2010; Sun et al., 2010;933

Kong et al., 2014; Zhu et al., 2017b). Addition-934

ally, there are some studies treating the task as a935

ranking problem, trying to rank all positive labels936

higher than other labels for each sample (Gong937

et al., 2014; Kanehira and Harada, 2016). All of938

these works assume that each instance in training939

data is fully assigned without any missing labels.940

However, the label assignments can be incomplete941

in many real-world scenarios, especially with a942

large label set.943

PU Learning The label incomplete problem is 944

related to positive and unlabeled (PU) learning 945

(Bekker and Davis, 2020). PU learning aims to 946

train a classifier from a set of positive samples 947

and an additional set of unlabeled samples. Many 948

works focus on identifying reliable negative exam- 949

ples from the unlabeled dataset and utilize the es- 950

timated labels to improve the classification perfor- 951

mances (Chaudhari and Shevade, 2012; Ienco et al., 952

2012; Basile et al., 2017; He et al., 2018). Biased 953

PU learning methods treat the unlabeled samples as 954

negative samples with noise, and use higher penal- 955

ties on misclassified positive samples to accommo- 956

date noise (Liu et al., 2003; Ke et al., 2012). Most 957

studies on PU learning concentrate on binary classi- 958

fication problems which are not sufficient to cover 959

the wide range of real-world applications. Xu et al. 960

(2017) proposed a one-step method that directly 961

enables a multi-class model to be trained using 962

the given multi-class PU data. Furthermore, there 963

are relatively few studies that explore PU learning 964

for multi-label tasks (Sun et al., 2010; Kong et al., 965

2014; Kanehira and Harada, 2016; Han et al., 2018). 966

Cole et al. (2021) addressed the hardest multi-label 967

version in which there is only a single positive label 968

available for each sample in training time, and the 969

model needs to predict all proper labels at test time. 970

A.2 Hyper Parameters 971

We list the detailed hyperparameters in Table A1. 972

All experiments are run on a NVIDIA-A40. In 973

Table A2, we list the models used in this paper 974

and their mapping with the hugginface model_ids. 975

We use a NVIDIA-A40 for 80 hours to get all the 976

reported results. 977

A.3 Metrics 978

We show the dataset statistics in Table 1. To com- 979

pare the baseline models, we adopt the standard 980

precision(P), recall(R), F1-score(F1) for evaluation. 981

The above metrics consider the task as a binary 982

classification task for all intents, ignoring the multi- 983

label classification nature of the task. So we present 984

the exact match ratio (EM) metrics for further eval- 985

uation. 986

All the above metrics are under the setting that a 987

label is predicted as positive if its estimated proba- 988

bility is greater than 0.5 (Zhu et al., 2017a). Among 989

these metrics, F1 and EM are the most representa- 990

tive metrics. 991
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Name ATIS-VCS SNIPS-VCS CrossWOZ-VCS MultiWOZ-VCS

Learning Rate 2e-5 2e-5 2e-5 2e-5
Batch Size 512 512 512 512
Max Sequence Length 32 32 32 32
Sample Number in Sec.4.2 4 1 1 1
β in Eq.1 0.2 0.1 0.1 0.4
γ in Eq.3 4 4 4 4
αneg in Eq.3 0.00001 0.00001 0.00001 0.00001
αpos in Eq.3 0.99999 0.99999 0.99999 0.99999
s0 in Eq.6 0 0 0 0

Table A1: All hyper parameters used in Table 2.

Model_name Hugginface_ModelID
BERT-small (English) bert-small
BERT-base (English) bert-base-uncased
BERT-large (English) bert-large-uncased

RoBERTa-base (English) roberta-base
ALBERT-base (English) albert-base-v2
DeBERTa-base (English) deberta-base

BERT-small (Chinese) bert-tiny
BERT-base (Chinese) bert-base-chinese
BERT-large (Chinese) bert-large-chinese

RoBERTa-base (Chinese) chinese-roberta-wwm-ext

ALBERT-base (Chinese) albert-base-chinese
-cluecorpussmall

DeBERTa-base (Chinese) deberta-base-chinese

Table A2: The model mapping between model names
and hugginface model ids used in this paper.

P =

∑
i N

c
i∑

i N
p
i

,

R =

∑
i N

c
i∑

i N
g
i

,

F1 =
2× P× R

P+ R
,

EM =
1

m

m∑
j=1

I (pj == lj)
(7)992

where N c
i is the number of intents that are cor-993

rectly predicted to be true for the i-th label, Np
i is994

the number of intents predicted to be true for the995

i-th label, Ng
i is the number of ground truth intents996

for the i-th label, m is the number of instances997

in test dataset Dtest, pj is the model output of all998

intent labels for sample sj , lj is the ground truth999

intent labels for sample sj and I() is an indicator1000

function, which will output 1 when the distribution1001

of pj is equivalent to lj .1002

A.4 Split Intent in Proposed Datasets1003

For single-intent datasets ATIS and SNIPS, we1004

split the intent into two sub-intents by critical en-1005

tity, which is listed in Table A3. For multi-intent1006

datasets MultiWOZ and CrossWOZ, we split the1007

composite intent into several atomic intents, which1008

is listed in Table A4.1009

Intent Split Entity
flight time
abbreviation fare_basis_code
aircraft loc
airfare cost_relative
airline airline_code
capacity aircraft_code
city airline_name
flight_no airline_name
flight_time depart
ground_service airport_name

(a) ATIS-VSC
Intent Split Entity
AddToPlaylist artist
BookRestaurant restaurant_name
GetWeather state
PlayMusic artist
SearchCreativeWork object_type
SearchScreeningEvent object_type

(b) SNIPS-VSC

Table A3: Split intent of ATIS (A3a) and SNIPS (A3b)

A.5 Extended Experiment Results 1010

We list the full experiment scores of the analyses on 1011

model scale up, model structure, label smoothing 1012

for Label-Smoothing Focal Loss, negative sample 1013

number in Table A6, A7, A8, A9, respectively. 1014

A.6 Difficulty Control 1015

We introduce version conflict and merge friction to 1016

every possible label, but in practice, we may not 1017

see version labels in such a high proportion. To bet- 1018

ter simulate the actual scenario and also have better 1019

control over the difficulty of the datasets, we limit 1020

the number of version labels to 1, 2, and 4. For 1021

ATIS-VCS and SNIPS-VCS, more version labels 1022

would be more difficult, since intent splitting cre- 1023

ates sub-intents that need to check both the original 1024

intent and the critical entity. For example, checking 1025

the sub-intent “Flight_with_time” requires more 1026

computation than full-intent “Flight”.However, 1027

for MultiWOZ-VCS and CrossWOZ-VCS, more 1028

version labels would not be more difficult, because 1029
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Composite Intent Atomic Intent
attraction&hotel attraction,hotel
attraction&restaurant attraction,restaurant
attraction&train attraction,train
hotel&restaurant hotel,restaurant
hotel&taxi hotel,taxi
hotel&train hotel,train
restaurant&taxi restaurant,taxi
restaurant&train restaurant,train

(a) MultiWOZ-VSC
Composite Intent Atomic Intent
General&Inform General,Inform
General&Inform&Request General,Inform,Request
General&Inform&Select General,Inform,Select
General&Request General,Request
Inform&Request Inform,Request
Inform&Request&Select Inform,Request,Select
Inform&Select Inform,Select

(b) CrossWOZ-VSC

Table A4: Split intent of MultiWOZ (A4a) and Cross-
WOZ (A4b)

Dataset Difficulty VC-N MF-N Total
ATIS_1 Easy 1 4 1 20
ATIS_2 Easy 2 8 2 24
ATIS_4 Easy 4 16 4 32
ATIS Normal 50 10 66
SNIPS_1 Easy 1 4 1 11
SNIPS_2 Easy 2 8 2 15
SNIPS_4 Easy 4 16 4 23
SNIPS Normal 24 6 31
MultiWOZ_1 Hard 1 4 1 17
MultiWOZ_2 Hard 2 6 2 18
MultiWOZ_4 Hard 4 10 4 20
MultiWOZ Normal 14 8 22
CrossWOZ_1 Hard 1 4 1 15
CrossWOZ_2 Hard 2 6 2 17
CrossWOZ_ Hard 4 8 4 17
CrossWOZ Normal 10 7 17

Table A5: The number of version conflict labels (VC-N),
merge friction labels (MF-N), and the total labels (To-
tal) of the proposed datasets according to the difficulty
levels. The difficulty levels are paired with the ones in
Table 5. “Easy k” or “Hard k” means there are k group
of version labels.

composite-intent splitting creates atomic intents1030

that are easier to check. Fore example, checking1031

the composite intent “Hotel&Taxi” requires more1032

computation them simply checking atomic intent1033

“Hotel” or “Taxi”. The statistics is shown in Table1034

A5.1035

A.7 More Analysis1036

Performance variance under different datasets1037

Generally, LS Focal loss is the most powerful1038

method, but it performs poorly when available data1039

is small. As presented in Table 1, four datasets1040

used in our experiments have varied label types1041

and instance amounts (Ochal et al., 2023). Since 1042

ATIS has 66 initial intents but only 4455 training 1043

samples, and Multi-label CE is less data-hungry, 1044

Multi-label CE slightly outperforms LS Focal Loss 1045

in this setting. 1046

Similarly, the basic classifier has very low re- 1047

call on the dataset of ATIS-VCS and SNIPS-VCS, 1048

since they have a larger number of labels than 1049

MultiWOZ-VCS and CrossWOZ-VCS. A larger 1050

number of labels in a dataset results in a harder 1051

difficulty, which is proved in the performance gap 1052

in 4 datasets. The basic classifier is trained with 1053

the data using the data that each sample is only 1054

provided with only one label. Even with a model 1055

structure that can perform multi-label classifica- 1056

tion, the basic classifier generally only outputs one 1057

intent because of the data. Intuitively, larger candi- 1058

date pools (ATIS and SNIPS) will make the recall 1059

worse, because the model output intent will be less 1060

likely to hit the ground truth. 1061

Beyond the amount of training data and labels, 1062

the length of input utterance could also affect the 1063

results. Multi-WOZ-VCS contains samples with 1064

very short sentences, so different models and sizes 1065

do not make a great difference in Multi-WOZ. This 1066

dataset does not need models with strong seman- 1067

tics understanding ability. For ATIS-VCS and 1068

SNIPS-VCS, sentences are long, so the task be- 1069

comes harder. Also, a stronger model with more 1070

parameters has better performance. 1071

Challenges of detecting semantic overlap The 1072

results of Table 2 show that the proposed bench- 1073

mark is hard for the basic classifier. And the pro- 1074

posed methods of overlapping intents detection are 1075

effective. However, these methods are only effec- 1076

tive in Precision, Recall, and F1. In real products, 1077

EM is the most important metric. The proposed 1078

methods are far from the Upper Bound in EM met- 1079

rics. Thus we believe that the benchmark is chal- 1080

lenging and more powerful methods need to be 1081

proposed. 1082

Also, the experiment results of Table 3c and Ta- 1083

ble A10 provide a comparison of results under the 1084

different numbers of conflict labels and merge fric- 1085

tion labels. We change the ratio of updated labels 1086

to control the degree of update. The difficulty is 1087

controlled by the ratio of updated labels. A harder 1088

degree means a larger ratio of updated labels. This 1089

result can help us see the details of before and 1090

after adding entangled intents. As we can see, a 1091

larger degree of updating entangled intents makes 1092
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Size ATIS-VCS SNIPS-VCS CrossWOZ-VCS MultiWOZ-VCS
P R F1 EM P R F1 EM P R F1 EM P R F1 EM

BERT-small 66.28 94.10 77.78 47.37 85.67 96.32 90.68 76.57 93.60 97.70 95.60 90.23 82.68 90.16 86.26 81.73
BERT-base 84.17 88.81 86.43 77.05 95.85 95.95 95.90 92.86 97.00 88.37 92.48 80.34 88.62 86.45 87.52 85.85
BERT-large 87.14 96.46 91.57 79.34 97.32 97.58 97.45 96.71 97.35 79.72 87.66 68.69 88.60 86.11 87.34 85.85

Table A6: Additional study on different size of BERT including BERT-Small, BERT-Base and BERT-Large. We use
Label-Smoothing Focal Loss method to get all the results. Metrics in this table are Precision, Recall, F1-Score and
Exact Match Ratio.

Model ATIS-VCS SNIPS-VCS CrossWOZ-VCS MultiWOZ-VCS
P R F1 EM P R F1 EM P R F1 EM P R F1 EM

BERT-base 84.17 88.81 86.43 77.05 95.85 95.95 95.90 92.86 97.00 88.37 92.48 80.34 88.62 86.45 87.52 85.85
RoBERTa-base 87.37 95.02 91.03 79.91 96.42 96.26 96.34 95.43 94.90 90.04 92.41 79.80 85.94 87.30 86.62 83.86
AlBERT-base 88.10 81.43 84.64 68.95 91.69 85.42 88.45 74.71 96.83 75.08 84.58 68.69 86.35 85.50 85.92 84.27
DeBERTa-base 90.52 92.62 91.56 85.39 96.90 85.58 90.89 75.14 96.40 95.46 95.93 88.08 88.99 84.3 86.61 80.75

Table A7: Results of four models including BERT, RoBERTa, AlBERT and DeBERTa. We Label-Smoothing Focal
Loss method to get all the reported results. Metrics in this table are Precision, Recall, F1-Score and Exact Match
Ratio.

LSR ATIS-VCS SNIPS-VCS CrossWOZ-VCS MultiWOZ-VCS
P R F1 EM P R F1 EM P R F1 EM P R F1 EM

0.1 65.99 94.37 77.67 47.72 95.85 95.95 95.90 92.86 97.00 88.37 92.48 80.34 85.26 88.53 86.86 83.75
0.2 84.17 88.81 86.43 77.05 96.63 93.53 95.05 89.00 95.53 70.14 80.89 40.66 86.88 87.16 87.02 84.58
0.4 91.59 79.53 85.13 73.63 97.41 81.21 88.58 65.86 95.34 69.79 80.59 40.23 88.62 86.45 87.52 85.85

Table A8: Results of different label smoothing rate used in Label-Smothing Focal Loss including 0.1, 0.2, and
0.4. We use Label-Smoothing Focal Loss method to get all the reported results. Metrics in this table are Precision,
Recall, F1-Score, and Exact Match Ratio.

NSN ATIS-VCS SNIPS-VCS CrossWOZ-VCS MultiWOZ-VCS
P R F1 EM P R F1 EM P R F1 EM P R F1 EM

1 50.46 96.84 66.35 55.59 94.30 93.16 93.73 85.14 97.97 49.24 65.54 42.97 86.19 87.06 86.62 82.79
2 69.95 92.20 79.55 67.92 95.97 87.74 91.67 74.71 97.88 42.01 58.78 35.61 88.28 81.15 84.57 74.50
4 87.40 86.87 87.14 76.37 97.00 71.58 82.37 41.14 97.81 36.25 52.90 28.41 90.15 68.10 77.59 50.65
8 93.00 77.36 84.46 71.23 96.96 63.84 76.99 32.57 97.67 32.45 48.72 22.42 91.34 60.23 72.60 35.71

Table A9: Results of five Negative Sample number including 1, 2, 4 and 8. We use NS method to get all the reported
results. Metrics in this table are Precision, Recall, F1-Score, and Exact Match Ratio.

Difficulty ATIS-VCS SNIPS-VCS
P R F1 EM P R F1 EM

Easy 1 93.90 98.55 96.17 91.44 98.34 98.67 98.50 98.43
Easy 2 94.47 98.32 96.46 92.35 96.42 95.45 95.93 94.71
Easy 3 88.15 98.75 93.15 82.99 96.98 96.47 96.72 95.29
Normal 84.17 88.81 86.43 77.05 95.85 95.95 95.90 92.86

Difficulty CrossWOZ-VCS MultiWOZ-VCS
P R F1 EM P R F1 EM

Hard 1 94.50 63.65 76.07 44.10 81.28 88.98 84.96 82.20
Hard 2 95.53 70.14 80.89 40.66 82.93 88.04 85.41 83.36
Hard 3 95.34 69.79 80.59 40.23 84.68 87.96 86.29 83.51
Normal 97.00 88.37 92.48 80.34 88.62 86.45 87.52 85.85

Table A10: Results of 3 difficulty including 1, 2 and 4 in the four datasets: ATIS, SNIPS, CrossWOZ and MultiWOZ.
Metrics in this table are F1-Score, Exact Match Ratio and Zero One Loss. 1 is the easiest and 4 is hardest.
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the model perform worse.1093

A.8 Visualization and Error Analysis1094

In Figure 3, Figure A2, Figure A3, and Figure A4,1095

we present the co-occurrence matrix between pre-1096

dictions on the Multi-Label Focal Loss method1097

for ATIS-VCS, SNIPS-VCS. From Figure A2, we1098

can see that it’s challenging to capture the seman-1099

tic overlap of labels under diverse intents but lim-1100

ited training instances, as the occurrence matrix1101

is more noisy than that of SNIPS-VCS. Similarly,1102

compare with Figure A3 and Figure A4, we can1103

see a clearer pattern of grasping version conflict1104

and merge frictions under the dataset of Cross-1105

WOZ than MultiWOZ, as the performance is also1106

slightly better in Table 2. From Figure A3, we can1107

discover a minor bias in the model’s prediction,1108

which is the imbalance occurrence between “Re-1109

quest_v1” and “Request_v2”. While in Figure A4,1110

the model does not handle the compound intents1111

“hotel&taxi” and “restaurant&train”, as the corre-1112

lation between “hotel&taxi” and “hotel” is weak,1113

and the co-occurrence between “restaurant&train”1114

and “train” is very low.1115

In Figure A1, we visualize the model’s “behav-1116

ior” on different version labels in the test set of1117

SNIPS-VCS. Different colors represent different1118

labels, while different shapes represent different1119

clusters. From the figure, we can see that differ-1120

ent versions of the same intent family are clustered1121

together. We first use t-SNE (van der Maaten and1122

Hinton, 2008) to reduce the co-occurrence matrix1123

to two dimensions, then use DBSCAN (Ester et al.,1124

1996) to cluster the labels.1125

B Detailed Explanation of the Setting1126

B.1 Definition of the Setting1127

Our setting is not a scenario where each sample is1128

provided with ground truth. If that were the case,1129

we would not encounter semantic duplications (i.e.1130

version conflict) and semantic overlap (i.e. merge1131

friction). The objective of the benchmark is to eval-1132

uate if a model trained with imperfect data (i.e.,1133

samples labeled only with one of the ground truth1134

values) can achieve perfect predictions (i.e., accu-1135

rately predict all ground truth values, including1136

l1&l2, l1 and l2). The primary goal of this setup is1137

to address the real-world issue where users intro-1138

duce new labels during version upgrades without1139

considering the correlations between existing and1140

newly added labels. In this case, the models are1141

trained using positive but unlabeled data and then 1142

tested using ground truth. 1143

The objective of this setting is to ensure that the 1144

model efficiently utilizes both existing and newly 1145

added data, enabling it to perform well on both 1146

types of data while minimizing costs. The pro- 1147

posed benchmark primarily focuses on investigat- 1148

ing strategies for effectively leveraging both pre- 1149

upgrade and post-upgrade data, which may contain 1150

inconsistent labels (i.e. positive but unlabeled data), 1151

and building a cost-effective model that performs 1152

well on both data. 1153

B.2 Positive and Unlabeled Data 1154

Regarding positive and unlabeled data (Ham- 1155

moudeh and Lowd, 2020; Bekker and Davis, 2020), 1156

a common definition of positive and unlabeled data 1157

refers to the presence of unlabeled data where the 1158

positive labels are not explicitly identified as pos- 1159

itive. In our setting, positive and unlabeled data 1160

means that not all positive labels are provided in 1161

the training set. Only one of the ground truth val- 1162

ues is designated as positive, while all other labels 1163

are considered negative. Consequently, only the 1164

positive label can be relied upon as trustworthy, as 1165

the other negative labels may mistakenly include 1166

positive labels. 1167

B.3 ChatGPT In-context Learning 1168

Our template contains exemplars and candidate 1169

options. Regarding the selection of exemplars, we 1170

randomly select one single exemplar for each label. 1171

We use five random seeds to select exemplars and 1172

present the order of the exemplars. Then we will 1173

provide all candidate options, then ask ChatGPT to 1174

choose one or more than one option. We use five 1175

random seeds to select the present order of options, 1176

which is to prevent potential order bias. We report 1177

their average performance. About post-processing, 1178

we use Python split to get multiple outputs from 1179

the generated string, then we use string matching 1180

to match each output with candidates. 1181
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Figure A1: t-SNE dimensionality reduction and DBSCAN clustering for SNIPS. Different colors represent different
intents while different shape reperesent differt clusters.
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Figure A2: Display of the co-occurrence matrix between labels based on the model output of Multi-Label Focal
Loss method for the test set of ATIS-VCS. Different colors indicate different co-occurrence frequency of labels.
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Figure A3: Display of the co-occurrence matrix between labels based on the model output of Multi-Label Focal
Loss method for the test set of CrossWOZ-VCS. Different colors indicate different co-occurrence frequency of
labels. For better visualization, We remove the labels that have fewer than 10 instances in the test set.

20



at
tra

ct
io

n&
ho

te
l

at
tra

ct
io

n&
re

st
au

ra
nt

at
tra

ct
io

n_
v1

at
tra

ct
io

n_
v2

ge
ne

ra
l_v

1

ge
ne

ra
l_v

2

ho
te

l&
re

st
au

ra
nt

ho
te

l&
tra

in

ho
te

l_v
1

ho
te

l_v
2

no
ne

_v
1

no
ne

_v
2

re
st

au
ra

nt
&t

ax
i

re
st

au
ra

nt
&t

ra
in

re
st

au
ra

nt
_v

1

re
st

au
ra

nt
_v

2

ta
xi

_v
1

ta
xi

_v
2

tra
in

_v
1

tra
in

_v
2

attraction&hotel

attraction&restaurant

attraction_v1

attraction_v2

general_v1

general_v2

hotel&restaurant

hotel&train

hotel_v1

hotel_v2

none_v1

none_v2

restaurant&taxi

restaurant&train

restaurant_v1

restaurant_v2

taxi_v1

taxi_v2

train_v1

train_v2

10

20

30

40

50

60

70

Figure A4: Display of the co-occurrence matrix between labels based on the model output of Multi-Label Focal
Loss method for the test set of MultiWOZ-VCS. Different colors indicate different co-occurrence frequency of
labels. For better visualization, We remove the labels that have fewer than 10 instances in the test set.
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Dialogue:
what is the cost of the air taxi operation at philadelphia international airport.
Question:
What is the intent of this dialogue?
Answer: ground_fare

... (Other 65 examples for each intent)

Given a dialogue, please answer the intent of the dialogue from options:
abbreviation, abbreviation_with_fare_basis_code_v1, abbreviation_with_fare_basis_code_v2, abbrevia-
tion_without_fare_basis_code_v1, abbreviation_without_fare_basis_code_v2, aircraft, aircraft_with_loc_v1, air-
craft_with_loc_v2, aircraft_without_loc_v1, aircraft_without_loc_v2, airfare, airfare_with_cost_relative_v1,
airfare_with_cost_relative_v2, airfare_without_cost_relative_v1, airfare_without_cost_relative_v2, air-
line, airline_with_airline_code_v1, airline_with_airline_code_v2, airline_without_airline_code_v1, air-
line_without_airline_code_v2, airport, airport_v1, airport_v2, capacity, capacity_with_aircraft_code_v1, ca-
pacity_with_aircraft_code_v2, capacity_without_aircraft_code_v1, capacity_without_aircraft_code_v2, city,
city_with_airline_name_v1, city_with_airline_name_v2, city_without_airline_name_v1, city_without_airline_name_v2,
distance, distance_v1, distance_v2, flight, flight_no, flight_no_with_airline_name_v1, flight_no_with_airline_name_v2,
flight_no_without_airline_name_v1, flight_no_without_airline_name_v2, flight_time, flight_time_with_depart_v1,
flight_time_with_depart_v2, flight_time_without_depart_v1, flight_time_without_depart_v2, flight_with_time_v1,
flight_with_time_v2, flight_without_time_v1, flight_without_time_v2, ground_fare, ground_fare_v1,
ground_fare_v2, ground_service, ground_service_with_airport_name_v1, ground_service_with_airport_name_v2,
ground_service_without_airport_name_v1, ground_service_without_airport_name_v2, meal, meal_v1, meal_v2, quantity,
quantity_v1, quantity_v2, restriction.
You can answer 1 to 3 intents.

{Dialogue}

Table B11: Prompt template for ChatGPT for in-context learning. Our template contains exemplars and candidate
options. Regarding the selection of exemplars, we randomly select one single exemplar for each label. We use
five random seeds to select exemplars and present the order of the exemplars. Then we will provide all candidate
options. We use five random seeds to select the present order of options.
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