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ABSTRACT
Global popularity (GP) bias is the phenomenon that popular items

are recommendedmuchmore frequently than they should be, which

goes against the goal of providing personalized recommendations

and harms user experience and recommendation accuracy. Many

methods have been proposed to reduce GP bias but they fail to

notice the fundamental problem of GP, i.e., it considers popularity

from a global perspective of all users and uses a single set of popular
items, and thus cannot capture the interests of individual users. As

such, we propose a user-aware version of item popularity named

personal popularity (PP), which identifies different popular items

for each user by considering the users that share similar interests.

As PP models the preferences of individual users, it naturally helps

to produce personalized recommendations and mitigate GP bias.

To integrate PP into recommendation, we design a general personal
popularity aware counterfactual (PPAC) framework, which adapts

easily to existing recommendation models. In particular, PPAC rec-

ognizes that PP and GP have both direct and indirect effects on

recommendations and controls direct effects with counterfactual

inference techniques for unbiased recommendations. Experimental

results show that PPAC consistently outperforms SOTA debiasing

methods across different datasets and base models, and the improve-

ment in NDCG is up to 61.9%. All codes and datasets are available

at https://anonymous.4open.science/r/Pop-4760/.
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Popularity. In Proceddings of ACM Web Conference (WWW ’24), May 13-17,
2024, Singapore. ACM, New York, NY, USA, 9 pages. https://doi.org/xx.xxxx/

xxxxxxx.xxxxxxx

1 INTRODUCTION
Recommender systems aim to provide personalized suggestions

to users and are prevalent in domains such as e-commerce, media,

and social networks. They typically analyze user behaviors (e.g.,

clicks and purchases) and predict a score for each user-item pair,

which indicates the chance that the user interacts with the item, and

suggest items with highest prediction scores to the user [19, 20, 32].

Recently, popularity bias (called global popularity bias in this pa-

per) attracts interests [5, 12, 32], which means that recommendation

models (e.g., MF [39] and LightGCN [20]) often suggest excessive

items with high global popularity (GP) values to users [16, 28, 54].

In particular, the GP of an item is defined as the proportion of

users that have interacted with the item in all users. An example
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Figure 1: Frequency of head and tail items appeared in the
training set and recommendation lists of two well-trained
models (i.e., MF and LightGCN) for MovieLens-1M dataset.
Head items are the top 10% of items with the most user inter-
actions in the training set, while tail items are the remaining.

of GP bias is provided in Figure 1, where we train models on the

MovieLens-1M dataset and count the frequency of head and tail

items in the top-50 recommendation lists for all users. The results

show that the head items (i.e., globally popular items) are recom-

mendedmuchmore frequently than in the training set. GP bias leads

to homogeneous recommendations to different users, which goes

against the goal of providing personalized recommendations and is

widely believed to harm user experience and recommendation accu-

racy [30, 38, 45]. Moreover, GP bias can cause the “Matthew Effect”

– popular items are recommended to many users, and they become

more popular and are suggested to even more users because of the

frequent exposure to users. Thus, many “GP-aware” solutions have

been proposed to mitigate GP bias (called debiasing) [16, 23, 46, 56].

Personal popularity (PP). Existing debiasing methods utilize

the item GP but overlook the fact that GP is defined from a “global”

perspective – it uses a single set of popular items (i.e., those with

the largest GP values) for all the users. This implies that an item

not interesting to a particular user may still be recommended due

to its high GP, which harms user experience and recommenda-

tion accuracy. Moreover, different users may receive homogeneous

recommendations because they share the same popular item set,

which causes GP bias. To tackle the problems of GP, we propose

a user-aware version of item popularity called personal popularity
(PP). In particular, for each user 𝑢, PPmeasures an item’s popularity

among the users that are similar to 𝑢, and we say that two users are

similar if they have a large overlap in their historical interacted item

sets. Compared with GP, PP considers the preferences of individual

users and allows to identify a separate popular item set for each

user. In Section 2, we show the benefits of PP using the MovieLens-

1M dataset as an example. On the one hand, items with higher PP

values tend to be rated better by users, which suggests that PP is

informative and may help to improve the recommendation process.

On the other hand, the personally popular items are different from

the globally popular ones, and thus using PP can recommend items

out of the globally popular item set and help to reduce GP bias.

The PPAC framework. To utilize PP for recommendation, we

propose the personal popularity aware counterfactual (PPAC) frame-

work with two design goals, i.e., (i) reduce GP bias of existing

1
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Figure 2: Causal graphs for existing methods (a-b) and our PPAC framework (c-d).

recommendation methods, and (2) be model-agnostic and easily

support different base models (e.g., MF and LightGCN). To illustrate

the differences between our PPAC and existing methods, we express

them as “causal graphs” in Figure 2. Note that a causal graph is a

directed acyclic graph (DAG) where the nodes represent variables,

and directed edges indicate that one variable influences another.

Most recommendation models (e.g., MF and LightGCN) are de-

signed based on the causal graph in Figure 2(a), which only utilizes

the user and item representations for recommendations. Recently,

some debiasing methods are developed according to Figure 2(b),

which incorporates GP. However, we argue that in fact, Figure 2(c)

models the real score generation process more accurately. Specifi-

cally, both PP and GP can directly impact the prediction score, as

indicated by the paths 𝑃𝑃 → 𝑆 and 𝐺𝑃 → 𝑆 . This is because users

are more likely to know both globally popular items (e.g., due to the

overall trends) and personally popular items (e.g., due to sharing

among friends). Based on Figure 2(c), we propose the PPAC frame-

work to consider the effects of both PP and GP in recommendation.

To mitigate GP bias, PPAC framework estimates and adjusts the di-

rect effects of GP and PP on the prediction score, as depicted by the

red dotted lines in Figure 2(d). Since estimating the effects of the two

paths is challenging, PPAC introduces a proxy variable [53, 60] to

combine PP and GP using techniques from counterfactual inference.

In particular, counterfactual inference imagines a counterfactual

world where some variables are assigned to reference values [43, 49]

and estimates how these variables affect the target variable.

We compare our PPAC with 10 baseline methods on 3 base mod-

els and 3 datasets. The results show that PPAC consistently outper-

forms all state-of-the-art debiasing baselines and the improvements

over the best-performing baseline are up to 46.8% and 61.9% in terms

of recall and NDCG, respectively. Moreover, experiment results also

show that PPAC effectively reduces the recommendation frequency

of globally popular items (i.e., mitigate GP bias) and suggest that

PP benefits recommendation.

To summarize, we make the following contributions:

• To tackle the problem that existing GP cannot consider indi-

vidual users, we propose a new definition of item popularity

called PP, which captures the interests of individual users.

• To jointly consider PP and GP for recommendation debias-

ing, we design the PPAC framework using counterfactual

inference techniques, which is model-agnostic.

• We conduct experiments to evaluate PPAC along with our

designs and compare with state-of-the-art baselines.

2 PERSONAL POPULARITY
We consider the classical recommendation setting. For a given user

set U, an item set I, and a set of user-item pairs R that record the

previous interactions of users (e.g., clicked, purchased) with items,

the objective is to predict the likelihood of a user 𝑢 ∈ U interacting

with an item 𝑖 ∈ I. Recommendation models typically learn a score

function 𝑓 (𝑢, 𝑖) : U × I → R, where a higher score indicates a
higher probability of interaction. Based on 𝑓 (𝑢, 𝑖), items are ranked

based on their scores in descending order, with the top-ranked ones

suggested to 𝑢. Before defining our personal popularity (PP), we

first recap the global popularity (GP) used in existing works [49, 54].

Definition 1 (Global Popularity). Given an item 𝑖 , the global
popularity (GP) is denoted by 𝑔𝑖 = |U𝑖 |/|U|, whereU𝑖 is the set of
users who have interacted with 𝑖 before.

Global popularity measures the attractiveness of an item among

all users in the user set U. As discussed before, GP fails to capture

personal interests of individual users, which can lead to homoge-

neous recommendations and GP bias. To address this problem, we

propose the PP to take user interests into account.

To calculate PP, we first define the user similarity.

Definition 2 (User Similarity). Given users 𝑢 and 𝑣 , the user
similarity, denoted by 𝑠𝑖𝑚𝑢,𝑣 , is:

| I𝑢∩I𝑣 |
| I𝑢∪I𝑣 | , where I𝑢 and I𝑣 are the

sets of interacted items for user 𝑢 and 𝑣 , respectively.

Our user similarity is essentially the Jaccard similarity [26, 29],

which measures the degree of overlap between two sets. We con-

sider two users to be similar if they share similar interests, which is

indicated by a large overlap in the items they have interacted with.

Definition 3 (Similar User Set). For a user 𝑢, the similar user
set, denoted by S𝑢 , is the set of 𝑘 users that have the highest user
similarity 𝑠𝑖𝑚𝑢,𝑣 with 𝑢. We denote a similar user as 𝑣 ∈ S𝑢 .

The number of similar users to consider, i.e., 𝑘 , is a hyper-parameter.

Definition 4 (Personal Popularity). Given a user 𝑢 and an
item 𝑖 , the personal popularity (PP), denoted by 𝑝𝑢,𝑖 , is:

𝑝𝑢,𝑖 =
|S𝑖

𝑢 |
|S𝑢 |

, (1)

where S𝑖
𝑢 denotes the users in S𝑢 that have interacted with item 𝑖 .

Note that S𝑖
𝑢 ⊆ S𝑢 , and thus 𝑝𝑢,𝑖 ∈ [0, 1]. Conceptually, 𝑝𝑢,𝑖

measures the attractiveness of item 𝑖 among a group of users that

share similar interests with 𝑢. As such, 𝑝𝑢,𝑖 reflects the personal

interests of individual users and allows different users to have

different popular item sets.

Our PP definition considers the basic collaborative filtering set-

ting [20, 31, 39], which provides only user/item IDs and their inter-

action records. Such data are required by all recommenders, and

thus our methods can be applied to any existing recommendation

model. PP definition can be extended when side information is

2
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Figure 3: Analyzing personal popularity on MovieLens-1M.

available (e.g., interaction timestamps, user profiles, item descrip-

tions), for instance, user profiles (e.g., age, gender, and geographics)

allows to define more accurate user similarity and hence PP.

Besides, we argue that even though the current definition of

PP is relatively simple, the idea of PP is generalizable that using a

separate set of popular items for each user to capture user interests.

Alternative definitions of PP are also possible, e.g., considering

multi-hop connectivity between users and items. We leave the

investigation of more sophisticated PP definitions as future work.

Analyzing PP. Given an item 𝑖 , the GP value 𝑔𝑖 is the same for

every user (Definition 1) but the PP value 𝑝𝑢,𝑖 is user-dependent

(Definition 4). As it is unlikely that two users have the same similar

user set 𝑆𝑢 (Definition 3), there is a high chance that PP values vary

among users. Moreover, PP addresses the interests of individual

users, potentially making recommendations more personalized and

reducing the recommendations of globally popular items.

We analyze PP using the MovieLens-1M dataset, which contains

user ratings (on a scale of 1-5 stars) for movies. Table 1 gives the

details of this dataset. We sorted all the items based on their average

PP values, put them in five equal-size groups, and calculated the

average user ratings for the items in each group. Figure 3(a) shows

that items with high PP values tend to receive higher ratings from

users, indicating PP can be useful for recommendation. We then

examine whether a personally popular item is also globally popular.

We extract the set 𝐼𝐺𝑃 of items with the 50 highest GP values. For

each user𝑢, we also extract the set 𝐼𝑃𝑃,𝑢 of items with the 50 highest

PP values. We then compute 𝑑𝑢 = |𝐼𝑃𝑃,𝑢 − 𝐼𝐺𝑃 |, i.e., the number of

items with 50 highest PP values that are not among the items with

the top 50 GP values. Figure 3(b) shows the result grouped by users

based on the 𝑑𝑢 values. We observe that (1) no user has 𝑑𝑢 less

than 10; (2) 𝑑𝑢 > 20 for around 85% of the users. These suggest that

PP captures user-specific preferences that may not be adequately

represented by GP.

3 PPAC FRAMEWORK
In this section, we first introduce the key concepts of counterfactual

inference (Section 3.1) and then present our PPAC framework for

debiasing from a causal view (Section 3.2). Next, we instantiate

the PPAC framework with model designs (Section 3.3) and discuss

model training and inference procedures (Section 3.4).

3.1 Preliminaries for Counterfactual Inference
To provide backgrounds for our PPAC framework, we introduce

the basics of counterfactual inference [43, 53, 55], and more details

can also be found in [36].

C
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A = 0∗ !$∗,'∗
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A
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(a) (b) (c)
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Figure 4: Causal graphs of the effect of alcohol consumption
on lung cancer, where A, C, and L stand for alcohol, cigarette,
and lung cancer. Gray nodes mean that the variables are at
reference values (e.g., 𝐴 = 𝑎∗).

Causal Graph. A causal graph is a directed acyclic graph (DAG),

where nodes represent random variables and edges represent the

causal-effect relations between variables. Figure 4(a) shows an ex-

ample causal graph. There, we use a capital letter (e.g., 𝐴) to denote

a random variable and a lowercase letter (e.g., 𝑎) to denote its ob-

served value. 𝐴 → 𝐿 means that there is a direct effect of alcohol
𝐴 on lung cancer 𝐿. 𝐴 → 𝐶 → 𝐿 means that 𝐴 has an indirect
effect on 𝐿 via𝐶 , which acts as a mediator [53] because people who

drink alcohol may be more likely to smoke and hence tend to get

lung cancer. The value of 𝐿 can be calculated from the values of its

ancestor nodes and formulated as:

𝐿𝑎,𝑐 = 𝐿(𝐴 = 𝑎,𝐶 = 𝑐), 𝑐 = 𝐶𝑎 = 𝐶 (𝐴 = 𝑎), (2)

where 𝐿(·) and𝐶 (·) are the structural equations of 𝐿 and𝐶 , respec-

tively. 𝐶𝑎 denotes the cigarette consumption of a person assuming

that he/she has an alcohol consumption of 𝑎. 𝐿𝑎,𝑐 is the lung can-

cer outcome of the person if he/she has alcohol consumption 𝑎

and cigarette consumption 𝑐 . To calculate direct effect and indirect

effects of𝐴 on 𝐿 separately, we should use counterfactual inference.

Counterfactual Inference. Counterfactual inference is essentially
a thinking activity that imagines the outcomes of changing the value

of a single variable [22]. For the example in Figure 4(b), it considers

"what would happen if alcohol consumption was set to another value?".
Gray nodes mean that the variables are at a reference state (i.e.,
assigned a reference value, e.g., 𝐴 = 𝑎∗), which is an intervention

independent from the facts and used to estimate causal effects [54].

Figure 4(c) shows a causal graph of the counterfactual world where

𝐶 is set to 𝑐∗ = 𝐶 (𝐴 = 𝑎∗) and 𝐿 is set to 𝐿𝑎,𝑐∗ = 𝐿(𝐴 = 𝑎,𝐶 = 𝑐∗).
Note that this is only an imagined scenario created to study the

effect of 𝐴 on 𝐿. It is called a counterfactual scenario because we

are combining the fact and assumption by setting both 𝐴 = 𝑎 and

𝐴 = 𝑎∗ simultaneously, even though it will not occur in reality [43].

Causal Effect. The causal effect of 𝐴 on 𝐿 is the extent to which

the value of the target variable 𝐿 changes when an ancestor node

𝐴 experiences a unit change [49]. For instance in Figure 4, the total
effect (TE) of 𝐴 = 𝑎 on 𝐿 is defined as:

𝑇𝐸 = 𝐿𝑎,𝑐 − 𝐿𝑎∗,𝑐∗ . (3)

TE can be decomposed into the sum of natural direct effect (ab-
breviated as NDE, i.e., effect via path𝐴 → 𝐿) and total indirect effect
(abbreviated as TIE, i.e., effect via path 𝐴 → 𝐶 → 𝐿), which can be

calculated as:

𝑁𝐷𝐸 = 𝐿𝑎,𝑐∗ − 𝐿𝑎∗,𝑐∗ ,

𝑇 𝐼𝐸 = 𝑇𝐸 − 𝑁𝐷𝐸 = 𝐿𝑎,𝑐 − 𝐿𝑎,𝑐∗ .
(4)
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3.2 Counterfactual Debiased Recommendation
In this section, we first discuss how GP and PP affect the prediction

scores via a causal graph, and then introduce the rationale of our

PPAC framework to achieve debiasing.

In Figure 5(a), we abstract the factual world recommendation into

a causal graph, where𝑈 , 𝐼 , 𝑃𝑃 , 𝐺𝑃 , 𝑆 are user representation, item

representation, personal popularity, global popularity, and user-

item prediction score, respectively. The prediction score 𝑆 models

the probability of a user-item interaction. From the perspective of

causality, both GP and PP can directly affect the prediction score

via 𝑃𝑃 → 𝑆 and𝐺𝑃 → 𝑆 because items with high GP and PP values

are more likely to be known by the users and thus be recommended.

We argue that adjusting the direct effect of these two paths is an

effective way to achieve debiasing, since it can result in a more

flexible recommendation.

It is very challenging to estimate the direct effects of 𝑃𝑃 → 𝑆

and 𝐺𝑃 → 𝑆 separately, and most of existing work handles causal

graphs with only one direct effect path [43, 49, 54]. Inspired by

proximal causal inference [53, 60], we introduce a new variable 𝑋

in Figure 5(b), which is a proxy variable that incorporates different
confounders in the single-treatment regime. In particular, we use

a single node 𝑋 , which mixes PP and GP, to calculate the causal

effects of them on 𝑆 . Note that since PP can affect both𝑈 and 𝐼 , the

proxy variable 𝑋 should also be able to affect both𝑈 and 𝐼 .

Now, the problem becomes how to estimate the direct effect

of 𝑋 on 𝑆 . Following the causal effect calculation introduced in

Section 3.1, we first construct the counterfactual world in Figure 5(c).

According to Eq. (3), the total effect (TE) of 𝑋 can be written as:

𝑇𝐸 = 𝑆𝑥,𝑢,𝑖 − 𝑆𝑥∗,𝑢∗,𝑖∗ . (5)

The indirect paths (i.e., 𝑋 → 𝑈 → 𝑆 and 𝑋 → 𝐼 → 𝑆) are

blocked by setting 𝑈 and 𝐼 to reference states, i.e., 𝐼 = 𝑖∗ = 𝐼 (𝑋 =

𝑥∗) and 𝑈 = 𝑢∗ = 𝑈 (𝑋 = 𝑥∗). After that, we can calculate the

natural direct effect (NDE) of 𝑋 as:

𝑁𝐷𝐸 = 𝑆𝑥,𝑢∗,𝑖∗ − 𝑆𝑥∗,𝑢∗,𝑖∗ . (6)

According to Eq. (4), the total indirect effect (TIE) is

𝑇 𝐼𝐸 = 𝑇𝐸 − 𝑁𝐷𝐸 = 𝑆𝑥,𝑢,𝑖 − 𝑆𝑥,𝑢∗,𝑖∗ . (7)

Recall that our goal is to control the direct effect of 𝑋 → 𝑆 (i.e.,

NDE) in recommendation to mitigate GP bias. As such, we obtain

debiased predictions by counterfactual inference as follows:

𝑇 𝐼𝐸 + 𝜖𝑁𝐷𝐸 = 𝑆𝑥,𝑢,𝑖 − 𝑆𝑥,𝑢∗,𝑖∗ + 𝜖 (𝑆𝑥,𝑢∗,𝑖∗ − 𝑆𝑥∗,𝑢∗,𝑖∗ )
= 𝑆𝑥,𝑢,𝑖 − 𝜖𝑆𝑥∗,𝑢∗,𝑖∗ + (𝜖 − 1)𝑆𝑥,𝑢∗,𝑖∗ ,

(8)

where 𝜖 is a hyper-parameter that controls the weight of NDE. One

might argue that reducing GP bias may require shrinking the GP

effect and enlarging the PP effect from an intuitive view. However,

we employ a proxy variable to estimate the NDE by combining GP

and PP. It is important to note that the proxy variable is solely for

helping to estimate the NDE. When we make adjustments to the

NDE using models in practice, we will separately modify the GP

and PP effects, which will be detailed in next section.

3.3 Model Designs
In this section, we introduce how to instantiate counterfactual debi-

ased recommendation in Section 3.2 with model designs. According

to Eq. (8), we need to estimate 𝑆𝑥,𝑢,𝑖 , 𝜖𝑆𝑥∗,𝑢∗,𝑖∗ and (𝜖 − 1)𝑆𝑥,𝑢∗,𝑖∗ .

Estimate 𝑆𝑥,𝑢,𝑖 . Unlike traditional recommendation models that

rely solely on user and item representations to estimate prediction

scores, we explicitly consider the importance of 𝑋 in the estimation

process. To achieve the estimation of 𝑆𝑥,𝑢,𝑖 , we multiply [49] the

estimated value of 𝑋 (denoted as 𝑥𝑢,𝑖 ) with the prediction score of

the existing recommendation model 𝑓𝑅 , which we refer to as the

base model that needs to be debiased, as follows:

𝑆𝑥,𝑢,𝑖 = 𝑥𝑢,𝑖 ∗ 𝑓𝑅 (𝑈 = 𝑢, 𝐼 = 𝑖), (9)

where 𝑓𝑅 can be any existing recommendation model that needs to

be debiased. Recall that 𝑋 combines both GP and PP, so we imple-

ment 𝑥𝑢,𝑖 = 𝜎 (𝑓𝑃𝑃 (𝑈 = 𝑢, 𝐼 = 𝑖)) ∗ 𝜎 (𝑓𝐺𝑃 (𝐼 = 𝑖)), where 𝜎 is the

sigmoid function and 𝜎 (𝑓𝑃𝑃 (·)) and 𝜎 (𝑓𝐺𝑃 (·)) are the estimation

models of PP and GP, respectively. 𝑓𝑃𝑃 and 𝑓𝐺𝑃 are implemented

as Multi-layer Perceptions (MLPs) for simplicity but they can also

be replaced with any neural network. Since GP is an item-specific

property and PP is a property of both users and items, 𝑓𝐺𝑃 only

takes items as input, while 𝑓𝑃𝑃 takes both users and items as input.

The sigmoid function ensures that the estimated GP and PP values

fall within the (0, 1) range, preventing them from being equal to

zero and invalidating the other models.

Estimate 𝜖𝑆𝑥∗,𝑢∗,𝑖∗ . In this context, all the variables are considered

to be at reference states, implying that the causal effects of all paths

in Figure 5(b) are fixed. Therefore, 𝑆𝑥∗,𝑢∗,𝑖∗ represents a constant

value that is independent of the specific users and items involved.

Regardless of the value of 𝜖 , 𝜖𝑆𝑥∗,𝑢∗,𝑖∗ remains consistent for all

user-item predictions. Therefore, adding this term has no impact

on the item rankings for a user, allowing us to disregard it directly.

Estimate (𝜖 − 1)𝑆𝑥,𝑢∗,𝑖∗ . Here, 𝑢 and 𝑖 are reference states, which

means that 𝑆 is unaffected by paths 𝑋 → 𝑈 → 𝑆 and 𝑋 → 𝐼 → 𝑆 .

As explained in Section 3.1, both 𝑋 = 𝑥 and 𝑋 = 𝑥∗ can coexist

in the counterfactual world. In our context, we estimate 𝑆𝑥,𝑢∗,𝑖∗ =

𝑥𝑢,𝑖 ∗ 𝑓𝑅 (𝑈 = 𝑢∗, 𝐼 = 𝑖∗), where 𝑓𝑅 (𝑈 = 𝑢∗, 𝐼 = 𝑖∗) is a fixed

constant value that blocks the effects of𝑈 → 𝑆 and 𝐼 → 𝑆 , while

the value of 𝑥𝑢,𝑖 still depends on the specific user and item. Next,

we set 𝜏 = (𝜖 − 1) 𝑓𝑅 (𝑈 = 𝑢∗, 𝐼 = 𝑖∗), which acts as an adjustable

weight for 𝑥𝑢,𝑖 , allowing us to adjust the influence of 𝑋 (i.e., the

combination of GP and PP). For a better adjustment, we implement

(𝜖 − 1)𝑆𝑥,𝑢∗,𝑖∗ = 𝜏𝑥𝑢,𝑖

= 𝛾 ∗ 𝑝𝑢,𝑖 + 𝛽 ∗ 𝑔𝑖 ,
(10)
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Figure 6: Training and inference in PPAC framework.

where 𝛾 and 𝛽 are tunable weights for PP and GP, respectively. 𝑔𝑖
is the observed GP of item 𝑖 calculated on the training set, 𝑝𝑢,𝑖 is

the observed PP for user 𝑢 and item 𝑖 evaluated on the training set.

Note that we use the observed values of GP and PP in the es-

timation of (𝜖 − 1)𝑆𝑥,𝑢∗,𝑖∗ while using model-predicted values in

the 𝑆𝑥,𝑢,𝑖 estimation. This is because when user and item repre-

sentations are at a reference state, they cannot directly affect the

prediction scores. Nevertheless, 𝑓𝐺𝑃 and 𝑓𝑃𝑃 use user and item rep-

resentations as inputs, and their parameters change continuously

during the training process. Consequently, we replace the predicted

values with the fixed observed ones when estimating (𝜖 − 1)𝑆𝑥,𝑢∗,𝑖∗ .

Experiments in Section 4.3 show the effectiveness of this design.

3.4 Training and Inference
Next, we proceed to present our procedures for model training and

inference. Figure 6 provides an overview of these processes.

Training. According to the above-mentioned estimation processes,

we need to train 𝑓𝑅 , 𝑓𝑃𝑃 and 𝑓𝐺𝑃 .

To train 𝑓𝑅 , note that the objective of training is to make the

model predictionsmatch the distribution of the training set, which is

heavily biased, rather than conducting recommendations for users.

Therefore, we use different methods to estimate the user-item in-

teraction probability in training and inference phases. Specifically,

since the training set is created via the causal graph in the factual

world (Figure 5(a)) where all the causal effects have not been reg-

ulated. Therefore, to estimate the interaction probability 𝑦𝑢,𝑖 of a

user 𝑢 and an item 𝑖 in the historical training set, we adhere to the

estimation procedure of the prediction score 𝑆𝑥,𝑢,𝑖 , which assumes

that all paths in Figure 5(a) are unconstrained and can affect the

prediction score. That is

𝑦𝑢,𝑖 = 𝑥𝑢,𝑖 ∗ 𝑓𝑅 (𝑈 = 𝑢, 𝐼 = 𝑖)
= 𝜎 (𝑝𝑢,𝑖 ) ∗ 𝜎 (𝑔𝑖 ) ∗ 𝑟𝑢,𝑖 .

(11)

Here, 𝑟𝑢,𝑖 = 𝑓𝑅 (𝑈 = 𝑢, 𝐼 = 𝑖) represents the prediction of the base
model. 𝜎 (𝑝𝑢,𝑖 ) = 𝜎 (𝑓𝑃𝑃 (𝑈 = 𝑢, 𝐼 = 𝑖)) and 𝜎 (𝑔𝑖 ) = 𝜎 (𝑓𝐺𝑃 (𝐼 = 𝑖))
are the model-predicted PP and GP values, respectively. Then, we

apply the Bayesian Personalized Ranking (BPR) loss [20, 33, 39]

that is widely used in recommendations to train them:

𝐿𝑅 =
∑︁

(𝑢,𝑖+,𝑖− ) ∈O
− ln𝜎 (𝑦𝑢,𝑖+ − 𝑦𝑢,𝑖− ), (12)

where O = {(𝑢, 𝑖+, 𝑖−) | (𝑢, 𝑖+) ∈ R, (𝑢, 𝑖−) ∈ R−} denotes the train-
ing set and (𝑢, 𝑖+, 𝑖−) is a training sample. Here, R is the set of

observed user-item interactions, 𝑖+ is a positive sample that 𝑢 has

interacted. The set R−
contains randomly sampled unobserved

user-item pairs; 𝑖− is a randomly sampled negative sample that 𝑢

has not interacted before.

Table 1: Statistics of the experimental datasets.
MovieLens-1M Gowalla Yelp2018

#User 6,038 29,858 31,668

#Item 3,883 40,981 38,048

#Interaction 1,000,209 5,946,257 8,827,696

To train 𝑓𝑃𝑃 and 𝑓𝐺𝑃 (i.e., PP and GP estimation models), we

regard them as regression tasks and use observed values as ground

truth, then apply the Mean Squared Error (MSE) loss [40, 50]:

𝐿𝑃 =
1

|R |
∑︁

(𝑢,𝑖 ) ∈R
(𝑝𝑢,𝑖 − 𝜎 (𝑝𝑢,𝑖 ))2,

𝐿𝐺 =
1

|I |
∑︁
𝑖∈I

(𝑔𝑖 − 𝜎 (𝑔𝑖 ))2 .
(13)

Putting them all together, the final loss function is

𝐿 = 𝐿𝑅 + 𝛼 (𝐿𝑃 + 𝐿𝐺 ) + 𝜆∥Θ∥2
2
, (14)

where 𝛼 is a tunable hyper-parameter, Θ denotes all trainable pa-

rameters in the model, 𝜆 is the weight of 𝐿2 regularization.

Inference. Instead of relying on the predictions in the factual world,
we adjust the NDE and apply Eq. (8) to make recommendations as

explained in Section 3.2. By combining the previous estimations,

we obtain the following inference formulation.

𝜎 (𝑝𝑢,𝑖 ) ∗ 𝜎 (𝑔𝑖 ) ∗ 𝑟𝑢,𝑖 + 𝛾 ∗ 𝑝𝑢,𝑖 + 𝛽 ∗ 𝑔𝑖 . (15)

Here, 𝛾 and 𝛽 act as the adjustable weights for PP and GP, respec-

tively. We also explain this counterfactual inference by an intuitive

example. Consider two items 𝑖 and 𝑗 that are equally popular among

all users (i.e., 𝑔𝑖 = 𝑔 𝑗 ) but 𝑖 is more popular than 𝑗 among users

who share similar interests with user 𝑢 (i.e., 𝑝𝑢,𝑖 > 𝑝𝑢,𝑗 ). If Eq. (11)

estimates the ranking scores as 𝑦𝑢,𝑖 < 𝑦𝑢,𝑗 , 𝑗 will be ranked higher

than 𝑖 . By counterfactual inference, we can tune the 𝛾 ∗ 𝑝𝑢,𝑖 term,

resulting in a more accurate ranking where 𝑖 is ahead of 𝑗 . In our

experiments, we observe that a positive value for 𝛾 and a negative

value for 𝛽 are effective in mitigating GP bias. These values amplify

PP effects and decrease GP effects, making recommendation models

combat GP bias better and predict user interests more precisely.

4 EXPERIMENTAL EVALUATION
In this section, we conduct extensive experiments to evaluate our

PPAC framework and answer the following research questions:

• RQ1: Can PPAC outperform state-of-the-art debiasing methods?

• RQ2: How do the key designs of PPAC affect accuracy?

• RQ3: Does PPAC successfully mitigate global popularity bias?

• RQ4: How do different hyper-parameters affect PPAC?

4.1 Experiment Settings

Datasets. We conduct experiments on three publicly available

datasets, i.e., MovieLens-1M
1
, Gowalla

2
, and Yelp2018

3
, and their

statistics are reported in Table 1. They cover three different recom-

mendation applications, i.e., movie, location, and business.

Base models. To prove the versatility of PPAC on different base

models, we experiment with three representative models, namely

1
https://grouplens.org/datasets/movielens/

2
https://snap.stanford.edu/data/loc-gowalla.html

3
https://www.yelp.com/dataset
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Table 2: Overall performance. we mark the highest results in bold and the second highest with underline. Impr. is the improve-
ment of PPAC over the best-performing existing baseline (NOT including our proposed MostPPop). "*" denotes a statistically
significant improvement over the best-performing existing baseline at the significance level of 0.05 on the paired t-test.

Base MostPop IPS IPS_C LapDQ INRS DICE PDA MACR MostPPop PPAC Impr.

MovieLens-1M

BPRMF

Recall 0.2967 0.1349 0.3077 0.3089 0.3149 0.3074 0.3060 0.2885 0.3058 0.3347 0.3789* 20.3%

NDCG 0.1864 0.0751 0.1920 0.1922 0.1935 0.1902 0.1836 0.1688 0.1826 0.1929 0.2294* 18.6%

NCF

Recall 0.3366 0.1349 0.3381 0.3389 0.3391 0.3387 0.3362 0.3429 0.3446 0.3347 0.3921* 13.8%

NDCG 0.1985 0.0751 0.1983 0.1998 0.2002 0.2003 0.1989 0.2049 0.2089 0.1929 0.2365* 13.2%

LightGCN

Recall 0.3757 0.1349 0.3759 0.3768 0.3807 0.3811 0.3816 0.3846 0.3867 0.3347 0.4056* 4.9%

NDCG 0.2295 0.0751 0.2297 0.2301 0.2334 0.2339 0.2291 0.2333 0.2381 0.1929 0.2481* 4.2%

Gowalla

BPRMF

Recall 0.1313 0.0023 0.1296 0.1308 0.1221 0.1223 0.1115 0.0985 0.1349 0.1461 0.1661* 23.1%

NDCG 0.0480 0.0008 0.0468 0.0478 0.0443 0.0444 0.0398 0.0340 0.0518 0.0571 0.0675* 30.3%

NCF

Recall 0.1022 0.0023 0.1046 0.1062 0.0986 0.1000 0.1006 0.1086 0.1125 0.1461 0.1535* 46.8%

NDCG 0.0384 0.0008 0.0397 0.0405 0.0364 0.0380 0.0380 0.0401 0.0430 0.0571 0.0643* 61.9%

LightGCN

Recall 0.1480 0.0023 0.1639 0.1641 0.1540 0.1572 0.1468 0.1536 0.1662 0.1461 0.1885* 13.4%

NDCG 0.0544 0.0008 0.0607 0.0608 0.0575 0.0585 0.0536 0.0573 0.0654 0.0571 0.0780* 19.3%

Yelp2018

BPRMF

Recall 0.0634 0.0051 0.0712 0.0721 0.0712 0.0681 0.0664 0.0525 0.0764 0.0793 0.0885* 24.3%

NDCG 0.0233 0.0017 0.0269 0.0272 0.0269 0.0263 0.0250 0.0190 0.0281 0.0314 0.0361* 34.2%

NCF

Recall 0.0662 0.0051 0.0652 0.0662 0.0639 0.0615 0.0621 0.0772 0.0853 0.0793 0.1024* 20.0%

NDCG 0.0248 0.0017 0.0253 0.0263 0.0246 0.0232 0.0234 0.0310 0.0358 0.0314 0.0434* 21.2%

LightGCN

Recall 0.0852 0.0051 0.0868 0.0884 0.0879 0.0882 0.0867 0.0907 0.0884 0.0793 0.1031* 13.7%

NDCG 0.0326 0.0017 0.0333 0.0346 0.0338 0.0337 0.0328 0.0358 0.0341 0.0314 0.0414* 15.6%

matrix factorization (MF)-basedmodel (BPRMF [39]), neural network-
based model (NCF [21]), and graph-based model (LightGCN [20]).

• BPRMF [39] trains an MF model using the BPR loss.

• NCF [21] replaces the inner product in MF models with neural

networks when computing user-item scores.

• LightGCN [20] performs graph convolution [25] on the user-

item interaction graph without linear activation functions.

Baselines. For a comprehensive comparison, we use 10 baselines,

i.e., the vanillaBasemodel, 2 ranking-basedmethods (MostPop [23],

MostPPop), and 7 existing state-of-the-art debiasing methods, in-

cluding 2 Inverse Propensity Score (IPS)-based methods (IPS [40],

IPS-C [7]), 2 regularization-based methods (LapDQ [2], INRS [24]),
3 causal graph-based methods (DICE [58], PDA [54],MACR [49]).

• MostPop [35] directly ranks all items by their GP and recom-

mends the top items. This method does not consider debiasing,

and we use it to provide reference results.

• MostPPop directly recommends items with top PP for each user.

This method is designed by us to show the effectiveness of PP.

This is our proposed method to provide reference results.

• IPS [40] adds a weight to each item to adjust it score, and the

weight is negatively correlated with its GP.

• IPS-C [7] applies max-capping to the weights to reduce variance.

• LapDQ [2] reorders items in the predicted recommendation lists

to trade-off recommendation accuracy and tail item coverage.

• INRS [24] proposes a constraint on the recommendation of glob-

ally popular items to enhance recommendation diversity.

• DICE [58] disentangles user interests and user conformity by

splitting the user embeddings into two different embeddings that

learn user interests and conformity, respectively.

• PDA [54] predicts user-item interaction using both user-item

matching (i.e., the base model) and global popularity.

• MACR [49] disentangles global popularity and user conformity

to handle GP bias.

Evaluation method. Note that the conventional evaluation strat-

egy that randomly selects a sub-dataset to test cannot reflect the

users’ true preference distribution [49], since test data still exhibits

severe GP bias. To measure the debiasing capabilities of models, we

conduct experiments on an intervened test set following existing

methods [6, 49, 58]. Specifically, we sample 10% interactions as the

test set from the dataset in amanner that ensures all items receive an

equal number of interactions, and another 10% as the validation set

using the same way. The remaining interactions are used for train-

ing. By doing so, we create a counterfactual environment where

the influence of GP bias is eliminated, allowing it to better reflect

user preferences. We adopt the all-ranking protocol [20, 49, 54] and

report two commonly used metrics, i.e., Recall [33] and NDCG [56].

Here, the performance is computed based on the top 50 results for

each metric (i.e., Recall@50 and NDCG@50).

Implementation details.We implement all models using PyTorch

and set the dimension of both user and item embeddings as 64.

We tune all hyper-parameters by a grid search to obtain the best

results. Specifically, we configure the number of graph convolution

layers to 3 for graph-based models. The learning rate is 0.01, the

training batch size is 8092 for all experiments. By default in PPAC,

PP coefficient 𝛾 is 256 and GP coefficient 𝛽 is -128. The regression

loss weight 𝛼 is 0.1 and 𝐿2 regularization coefficient 𝜆 is 1e-4. The

number of similar users to consider for PP calculation (i.e., 𝑘) is 30.

4.2 Main Results (RQ1)
Table 2 shows the performance of PPAC compared with differ-

ent baselines on different base models in terms of Recall@50 and

NDCG@50. Key observations are as follows.

• PPAC consistently outperforms all baselines across various met-

rics, datasets, and base models. Compared to the best-performing

existing debiasing method, improvements obtained by PPAC are

statistically significant, with gains of up to 46.8% and 61.9% in

terms of Recall and NDCG, respectively. It demonstrates the

effectiveness of PPAC across different base models and datasets.

• Our proposed MostPPop is usually ranked second when BPRMF

is the base model, suggesting that PP is very powerful and effec-

tive for recommendations. Moreover, MostPPop (i.e., recommend

items with higher PP) consistently outperforms MostPop (i.e.,
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Table 3: Effect of different model components on PPAC.
MovieLens-1M Gowalla Yelp2018

Recall NDCG Recall NDCG Recall NDCG

BPRMF

Base 0.2967 0.1864 0.1313 0.0480 0.0634 0.0233

w/o CI 0.3459 0.2089 0.1394 0.0495 0.0706 0.0270

w/o PP 0.3525 0.2129 0.1139 0.0429 0.0641 0.0250

w/o GP 0.3718 0.2251 0.1518 0.0587 0.0814 0.0323

PPAC 0.3789 0.2294 0.1661 0.0675 0.0885 0.0361

NCF

Base 0.3366 0.1985 0.1022 0.0384 0.0662 0.0248

w/o CI 0.3425 0.1998 0.1135 0.0442 0.0745 0.0285

w/o PP 0.3424 0.2041 0.0901 0.0415 0.0804 0.0391

w/o GP 0.3755 0.2254 0.1141 0.0542 0.0869 0.0527

PPAC 0.3921 0.2365 0.1535 0.0643 0.1024 0.0634

LightGCN

Base 0.3757 0.2295 0.1480 0.0544 0.0852 0.0326

w/o CI 0.3877 0.2378 0.1642 0.0614 0.0931 0.0357

w/o PP 0.3840 0.2312 0.1604 0.0632 0.0905 0.0346

w/o GP 0.3428 0.1951 0.1660 0.0635 0.0910 0.0353

PPAC 0.4056 0.2481 0.1885 0.0780 0.1031 0.0414

recommend items with higher GP) by a large margin in all cases,

showing that PP is more potent than GP.

• The improvement of PPAC is usually more significant for BPRMF

and NCF than LightGCN. This is because LightGCN achieves

the highest accuracy among the base models, and thus the room

for improvement is smaller. Considering different datasets, the

improvement of PPAC is smaller on MovieLens-1M than Gowalla

and Yelp2018. This is because MovieLens-1M contains fewer

interactions and thus is easier to learn for the models.

4.3 Ablation Study (RQ2)

Effect of different components. To gain deeper insights into the

design of PPAC, we conduct ablation studies by disabling specific

components. Specifically, we develop three variants:

• w/oCI disables counterfactual inference and uses the factual-
world predictions for recommendations (i.e., Eq. (11)).

• w/o PP removes the PP estimation model (i.e., 𝑓𝑃𝑃 ) and all

the terms about PP during training and inference.

• w/o GP removes the GP estimation model (i.e., 𝑓𝐺𝑃 ) and

all the terms about GP during training and inference.

We compare these variants with the vanilla basemodel and PPAC.

The results are reported in Table 3 and several observations can

be made. (1) PPAC consistently performs better than all variants,

indicating the correctness and effectiveness of all of our estimations

and designs in debiasing recommendations. (2) w/o CI outperforms

the base model in all cases, highlighting the necessity of our coun-

terfactual inference, which can control the direct effects of PP and

GP in recommendation effectively. (3) w/o PP usually leads to worse

performance compared with w/o GP (only a few exceptions for

LightGCN on MovieLens-1M — a strong model on a small dataset),

indicating that PP is more potent than GP in debiasing and remov-

ing PP will result in a large performance drop.

Effect of observed and predicted popularity. Recall that in the

estimation of 𝑆𝑥,𝑢,𝑖 and (𝜖 − 1)𝑆𝑥,𝑢∗,𝑖∗ in Section 3.3, we utilize the

predicted values of PP and GP in 𝑆𝑥,𝑢,𝑖 but the observed ones in (𝜖−
1)𝑆𝑥,𝑢∗,𝑖∗ . Besides the theoretical explanations in Section 3.3, we also

conduct experiments to showcase the effectiveness of this design.

Specifically, we compare the performance of using only model-

predicted popularity (i.e., 𝜎 (𝑝𝑢,𝑖 ) and 𝜎 (𝑔𝑖 )) or observed popularity
(i.e., 𝑝𝑢,𝑖 and 𝑔𝑖 ) in both estimations and modify the training and

Table 4: Effect of predicted and observed values on PPAC.
MovieLens-1M Gowalla Yelp2018

Recall NDCG Recall NDCG Recall NDCG

BPRMF

PPAC-Pred 0.2997 0.1792 0.0985 0.0371 0.0573 0.0222

PPAC-Obs 0.3472 0.2123 0.1585 0.0652 0.0798 0.0331

PPAC 0.3789 0.2294 0.1661 0.0675 0.0885 0.0361

NCF

PPAC-Pred 0.3454 0.2088 0.0891 0.0310 0.0653 0.0253

PPAC-Obs 0.3459 0.1967 0.1471 0.0571 0.0674 0.0247

PPAC 0.3921 0.2365 0.1535 0.0643 0.1024 0.0634

LightGCN

PPAC-Pred 0.2847 0.1518 0.1504 0.0558 0.0831 0.0324

PPAC-Obs 0.3479 0.2114 0.1554 0.0665 0.0701 0.0304

PPAC 0.4056 0.2481 0.1885 0.0780 0.1031 0.0414

inference steps correspondingly. Due to space constraints, we only

report the results on the Gowalla dataset in Table 4. PPAC-Pred
represents only using model-predicted GP and PP values while

PPAC-Obs denotes only using observed ones.

For the results, we find that PPAC outperforms both variants in

all cases, indicating that our estimation procedures are correct and

effective. From an intuitive view, the observed popularity is more

accurate and hence more suitable for fine-tuning popularity effects,

while predicting popularity plays a crucial role in learning better

user/item embeddings, resulting in more accurate predictions.

4.4 Model Analysis

Debiasing Analysis (RQ3). To comprehend the debiasing ability

of PPAC, we divide the items into different groups based on the

number of interactions they received in the training set, and Fig-

ure 7 reports the average recommendation frequency and accuracy

(i.e., recall) for different item groups. The blue bars show the item

proportion in each item group and the lines show the trends of

frequency/recall of different baseline methods. Due to the limited

space, we present the results on the Gowalla dataset. Note that

the observations are similar for other datasets. We also include

MACR for comparison as it usually ranks second among all existing

baselines. From the results, we have the following observations.

• PPAC shows a reduced frequency of recommending items from

the most globally popular item group compared to base mod-

els and MACR, as depicted in Figure 7(a-b). This suggests that

PPAC is more effective in mitigating the influence of GP bias.

Furthermore, Figure 7(c-d) illustrates that PPAC achieves the

highest recall across all item groups, indicating its ability to

better match users’ true preferences and make more accurate

recommendations compared to other baseline methods.

• The least globally popular item group (items with 0-10 interac-

tions) experiences the largest increase in recall and receives more

recommendations. This implies that traditional recommendation

models are susceptible to GP bias and tend to recommend more

items that are already globally popular. However, PPAC effec-

tively avoids recommending items solely based on their high GP

and instead focuses on recommending items to relevant users,

thereby enhancing the recommendation of long-tail items.

Hyper-parameters (RQ4). We investigate how hyper-parameters

(i.e., 𝛾 , 𝛽 , and 𝑘) affect recommendations. Due to the limited space,

we only present the results based on BPRMF model and Gowalla

dataset but the results are similar under other configurations.

In Figures 8(a-b), we report recall@50 under different PP and GP

coefficients 𝛾 and 𝛽 . Note that when adjusting 𝛾 (resp. 𝛽), we keep
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Figure 7: Recommendation frequency and recall for different groups of items on Gowalla dataset.
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Figure 8: Effect of hyper-parameters on Gowalla dataset.

𝛽 (resp. 𝛾 ) 0 in this experiment, which is different from the joint

tuning in other experiments. Here, we also report PRU@K [56, 61]

and PPRU@K, which measure how well the item rankings accord-

ing to the model-predicted scores agree with the item rankings

according to GP and PP, respectively. The results show that recall

first increases but then decreases for both coefficients, suggesting

that it is essential to adjust the effect of GP and PP by counterfac-

tual inference as in Eq. (15). Moreover, both PRU@K and PPRU@K

increase with the corresponding popularity weight, showing that

our counterfactual inference is effective—the final item ranking

agrees better with the popularity ranking under a larger weight.

We plot the number of similar users𝑘 used to compute PP against

recall in Figure 8(c). The results show that there exists an optimal 𝑘 ,

and switching to either smaller or larger values degrades accuracy.

This is because using a large 𝑘 will include users who are not

similar to the target user while a small 𝑘 means that not all users

with similar interests are considered.

5 RELATEDWORK

Popularity bias in recommendation. Due to the feedback loop

of recommender systems (i.e., exposure affects interaction) [9],

bias will be amplified and get increasingly serious. Several meth-

ods [4, 18, 27, 41, 51] are proposed to mitigate the global popularity

bias since it has been proven to hinder user exploration and drive

the users to homogenization [1, 3, 8, 10]. These methods can be

classified into three categories. (1) Inverse propensity score (IPS)-
based methods: IPS [40] weighs each interaction record using the

reciprocal of the item’s GP such that the interactions of globally

popular items have a smaller influence on training. IPS-CN [18]

adds weight normalization to IPS-C but introduces additional bias.

(2) Ranking adjustment or regularization: LapDQ [2] re-ranks items

in the predicted recommendation list to trade-off between accu-

racy and globally unpopular item coverage. ESAM [13] leverages

regularization to transfer the knowledge learned from globally

popular items to globally unpopular items to tackle the problem

that globally unpopular items do not have sufficient interactions.

r-Adj [56] controls the normalization strength in the neighbor ag-

gregation process of graph neural network [25, 44]-based models.

(3) Causal methods: PDA [54] adopts the causal graph model and

considers GP when computing the ranking scores. DICE [58] splits

the user embeddings into two different embeddings that represent

user interests and conformity, respectively, and learns user interests

without the impact of user conformity. MACR [49] performs multi-

task learning to estimate user interests, user conformity, and GP.

TIDE [57] considers the change in GP over time. All these methods

only consider GP, which applies a single set of popular items to

all users and thus fails to model the interests of individual users.

In contrast, our PP considers the interests of individual users by

using a separate set of popular items for each user, which naturally

combats GP bias and yields better recommendations.

Causal recommendation. The causal inference techniques have
found applications in various fields, including computer vision [11,

34, 42], natural language processing [15, 17, 37], and information

retrieval [6, 14, 52]. In recommender systems, causal inference can

help understand the inherent causal mechanism of user behav-

ior [55]. For instance, CR [47] addresses the click-bait issue [47]

by intervening in the exposure effects. COR [48] handles user fea-

ture shifts and out-of-distribution recommendations by controlling

the user features. HCR [59] adopts a front-door adjustment-based

method to decompose the causal effects of user feedback and item

features. MCMO [60] models recommendation as a multi-cause

multi-outcome inference problem and handles exposure bias. We

focus on the GP bias, which is a different problem from the afore-

mentioned works, and develop a causal graph that incorporates

both PP and GP to improve recommendation models.

6 CONCLUSIONS
This paper proposes a new notion of item popularity termed per-

sonal popularity (PP), which finds different sets of popular items

for each user by considering individual user’s interests, while exist-

ing global popularity (GP) only finds a single set of popular items

for all users. Therefore, PP can naturally mitigate GP bias and

conduct better recommendations. Furthermore, we propose the Per-

sonal Popularity Aware Counterfactual (PPAC) framework, which

achieves debiasing by incorporating PP and GP and controls their

direct effects on recommendations using counterfactual inference

techniques. Extensive experiments show that PPAC significantly

outperforms existing recommendation debiasing methods.
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