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Abstract

We study online and transductive online learning in settings where the learner
can interact with the concept class only via Empirical Risk Minimization (ERM)
or weak consistency oracles on arbitrary subsets of the instance domain. This
contrasts with standard online models, where the learner has full knowledge of
the concept class. The ERM oracle returns a hypothesis that minimizes the loss
on a given subset, while the weak consistency oracle returns only a binary signal
indicating whether the subset is realizable by a concept in the class. The learner’s
performance is measured by the number of mistakes and oracle calls.
In the standard online setting with ERM access, we establish tight lower bounds
in both the realizable and agnostic cases: Ω(2dLD) mistakes and Ω(

√
T2dLD)

regret, respectively, where T is the number of timesteps and dLD is the Littlestone
dimension of the class. We further show how existing results for online learning
with ERM access translate to the setting with a weak consistency oracle, at the cost
of increasing the number of oracle calls by O(T ).
We then consider the transductive online model, where the instance sequence is
known in advance but labels are revealed sequentially. For general Littlestone
classes, we show that the optimal mistake bound in the realizable case and in the
agnostic case can be achieved using O(T dVC+1) weak consistency oracle calls,
where dVC is the VC dimension of the class. On the negative side, we show that
Ω(T ) weak consistency queries are necessary for transductive online learnability,
and that Ω(T ) ERM queries are necessary to avoid exponential dependence on
the Littlestone dimension. Finally, for special families of concept classes, we
demonstrate how to reduce the number of oracle calls using randomized algorithms
while maintaining similar mistake bounds. In particular, for Thresholds on an
unknown ordering, O(log T ) ERM queries suffice, and for k-Intervals, O(T 322k)
weak consistency queries suffice.

1 Introduction

Online learning is a fundamental sequential prediction framework in which a learner receives a stream
of instances and must predict their labels one at a time, observing the true label after each prediction
[CBL06, SS+12, MRT12, SSBD14]. The goal is to minimize the number of mistakes compared to
the best concept in a fixed concept class. A closely related framework is transductive online learning,
where the entire sequence of instances is revealed in advance, removing instance uncertainty and
isolating the challenge of predicting the labels [BDKM97, KK05, CBS13, HMS23, HRSS24]. This
intermediate model retains the sequential nature of online learning while allowing the learner to
prepare for the specific instances it will encounter.

∗Institute for Data, Econometrics, Algorithms, and Learning (IDEAL), hosted by UIC and TTIC;
idanattias88@gmail.com.

†Department of Computer Science, Purdue University; steve.hanneke@gmail.com.
‡Department of Computer Science, Purdue University; ramaswa4@purdue.edu.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Both the online and transductive online settings have been studied extensively. The seminal work
of Littlestone [Lit88] characterizes the optimal mistake bound attainable in the online binary clas-
sification setting in the realizable case, that is, when there exists a concept in the class that labels
all instances correctly. This bound is expressed in terms of a complexity measure of the concept
class C known as the Littlestone dimension (denoted by dLD). In particular, the optimal mistake
bound is dLD(C) and is achieved by the Standard Optimal Algorithm (SOA). In the agnostic setting,
where labels may be arbitrary and the learner aims to minimize regret (the difference between the
learner’s cumulative mistakes and that of the best concept in the class), Ben-David et al. [BDPSS09]
and Alon et al. [ABED+21] showed that the Littlestone dimension also characterizes the optimal
regret. These results also hold trivially in the transductive online setting, since the learner has more
information than in the standard online setting. However, since the instances are known in advance, a
sequence-dependent bound of O (dVC(C) log T ) on the number of mistakes can be obtained [KK05]
by counting the number of shattered sets and applying the Halving algorithm, where dVC is the VC
dimension [VC71, VC+74] of the class and T is the length of the instance stream. It is currently
unknown whether a strict improvement can be achieved in the transductive setting for any concept
class with finite Littlestone dimension.

While the SOA achieves the optimal mistake bound and has been used as an algorithmic primitive
in many settings, implementing it efficiently poses significant computational challenges. The al-
gorithm involves computing the Littlestone dimension multiple times during its online interaction,
but even approximating the Littlestone dimension within any constant factor is computationally
intractable [FL98, MR17, Man22]. Additionally, Hasrati and Ben-David [HBD23] showed that there
exist recursively enumerable representable classes with finite Littlestone dimension that admit no
computable SOA. As a result, Assos et al. [AAD+23] and Kozachinskiy and Steifer [KS24] proposed
a more realistic computational model for online learning based on oracle access to Empirical Risk
Minimization (ERM). Given a labeled dataset, the ERM oracle returns a concept in the class that
minimizes the error on the dataset. This oracle performs a simple and well-studied task, known to be
sufficient in stochastic batch settings such as PAC learning. The central question, then, is: what is the
mistake bound (or regret) when the online learning algorithm is restricted to using only the ERM
oracle? A mistake bound that is exponential in the Littlestone dimension is attainable, as shown by
[AAD+23, KS24]. At the same time, an exponential mistake bound is also unavoidable [KS24] when
the algorithm has access only to a “restricted" ERM oracle, one that can query only instance-label
pairs generated by the adversary.

The goal of this paper is to study the power and limitations of various oracles in the online and
transductive online learning settings. Crucially, unlike in standard settings where the learner has
full access to the concept class, here the learner interacts with the class only through an oracle. The
performance of the learning algorithm is measured by two parameters: the number of mistakes (or
regret in the agnostic setting) and the number of oracle queries made, with the goal of achieving
efficient oracle complexity, where only polynomially many oracle calls are made.

We begin by considering a general ERM oracle that, given any finite subset of the instance domain
along with any labeling, returns an empirical risk minimizer. This contrasts with the more restricted
ERM oracle used in prior work [AAD+23, KS24], which allows queries only on instances and labels
provided by the adversary during the interaction. For this more powerful oracle, we investigate two
main questions:

• In online learning, can we circumvent the exponential dependence on the Littlestone dimension in
the mistake bound using the general ERM oracle?

• In the transductive online setting, where the learner has access to the full sequence of instances in
advance, can this additional information lead to improved learning guarantees?

Additionally, we consider a weaker oracle, the weak consistency oracle, which, given a labeled
dataset, returns only a binary signal indicating whether the dataset is realizable by some concept in
the class. This oracle can be viewed as solving the decision problem of realizability, in contrast to
the ERM oracle, which solves the corresponding optimization problem. Surprisingly, Daskalakis
and Golowich [DG24] recently showed that access to such an oracle can be used to construct a
randomized PAC learning algorithm for binary and multiclass classification, regression, and learning
partial concepts, with only a mild blowup in sample complexity and a polynomial number of oracle
calls. In this paper, we explore the role of this oracle in online learning:
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• Can we construct algorithms for online and transductive online learning that make only a polyno-
mial number of calls to the weak consistency oracle?

For a comprehensive literature review, see Appendix A.

1.1 Our Contribution

We first study online learning with access to an ERM oracle that can query any subset of the domain,
in contrast to the “restricted ERM" studied by [AAD+23, KS24], which can query only pairs of
instances and labels generated by the adversary throughout the interaction. We then consider learning
with a weak consistency oracle, recently introduced by [DG24] in the context of PAC learning.

Results for Online Learning (Section 3). See a summary of the results in Table 1.

• We first prove a lower bound of Ω(2dLD) mistakes in the realizable setting (where dLD is the
Littlestone dimension), which holds for any learning algorithm that makes a finite number of ERM
oracle calls. While [KS24] proved a stronger lower bound of Ω(3dLD), their result applies to the
restricted ERM. In contrast, our lower bound holds for the general ERM and introduces several
new challenges. We also prove a lower bound of Ω(

√
T2dLD) on the regret in the agnostic setting,

which is the first lower bound of its kind. These two lower bounds match the known upper bounds
of [AAD+23, KS24] in their exponential dependence on the Littlestone dimension (differing only
by a constant factor in the exponent). This demonstrates that even with access to the general ERM,
the mistake bound grows exponentially with the Littlestone dimension, unlike in standard online
learning, where the learner has full access to the concept class and the mistake bound is dLD.

• We show that any deterministic online learning algorithm using the restricted ERM can be simulated
using the weak consistency oracle, at the cost of increasing the number of oracle calls by O(T ).
Consequently, the mistake bounds in existing results [AAD+23, KS24] can be achieved with an
O(T ) blow-up when using the weak consistency oracle.

• We show a negative result for online learning of partial concept classes (concepts that may be
undefined on certain parts of the domain) with access to an ERM oracle. Specifically, we construct a
family of partial concept classes with dLD = 1 for which any algorithm must make Ω(T ) mistakes.
This stands in sharp contrast to the offline PAC setting, where learning partial concepts with a weak
consistency oracle is feasible [DG24].

ONLINE LEARNING: ORACLE COMPLEXITY–REGRET TRADEOFFS FOR LITTLESTONE CLASSES

Deterministic/Randomized
Realizability Oracle Type Oracle Calls Regret/Mistakes Reference

Algorithm
Deterministic

Realizable

Restricted ERM 2O(dLD) 2O(dLD) [AAD+23, KS24]
Deterministic Weak Consistency 2O(dLD)T 2O(dLD) Theorem 3.3
Deterministic Restricted ERM Finite Ω(3dLD ) [KS24]
Randomized Agnostic ERM Finite Ω(2dLD ) Theorem 3.1

Deterministic
Agnostic

Agnostic ERM T 2O(dLD)
Õ
(√

T2O(dLD)
)

[AAD+23]

Randomized Agnostic ERM Finite Ω(
√
T2dLD ) Theorem 3.2

Table 1: The learning model and oracles are defined in Section 2. The weak consistency oracle
outputs whether a labeled sequence is realizable. We define three ERM oracles, ordered from weakest
to strongest: the restricted ERM oracle, the ERM oracle, and the agnostic ERM oracle. T is the
number of timesteps, dLD is the Littlestone dimension and dVC is the VC dimension of the underlying
concept class.

Given the negative results in the online setting, particularly the exponential growth in the number
of mistakes, we consider the transductive online learning model, in which the instance sequence is
known at the beginning of the interaction, but the labels are revealed sequentially by the adversary.

Results for Transductive Online Learning (Section 4). See a summary of the results in Table 2.
We start with results for general concept classes.
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• We show how to discover all labelings of the concept class on a given set of instances us-
ing O(T dVC+1) weak consistency oracle calls. With this preprocessing step, we can recover
the optimal mistake bound and regret, which are currently known to be upper bounded by
O (min{dLD, dVC log T}) and Õ

(√
T min{dLD, dVC log T}

)
, respectively. This shows that the

exponential dependence on the Littlestone dimension can be circumvented in the transductive
setting using only a polynomial number of weak consistency oracle calls.

• On the other hand, we establish the following two lower bounds. We show that limiting the
learner to Ω(T ) weak consistency queries is necessary for transductive online learnability, and that
restricting the learner to Ω(T ) ERM queries is necessary to avoid exponential dependence on the
Littlestone dimension.

We proceed to studying special families of concept classes, showing improved results, which highlight
that randomization seems to be crucial for the improvements.

• Thresholds: We prove various upper bounds for deterministic and randomized algorithms using
both oracles. The main result is a randomized algorithm with the ERM oracle that achieves an
O(log T ) mistake bound and O(log T ) expected queries on the class of thresholds with unknown
ordering. This represents an exponential improvement over deterministic algorithms.

• k-Intervals: We show there exists a randomized algorithm with the weak consistency oracle that
achieves an optimal mistake bound (upper bounded by O(k log T )) with O(T 322k) expected
number of queries.

• d-Hamming Balls: For the ERM oracle with d-Hamming balls, we show a mistake bound of 2d
using a single query. We also show a mistake bound of d with 2d+1 queries.

In Section 5 we pose the main open problems for future work.

TRANSDUCTIVE ONLINE LEARNING: ORACLE COMPLEXITY–REGRET TRADEOFFS

Concept Class
Det. / Rand.

Realizability Oracle Type Oracle Calls Regret/Mistakes Reference
Algorithm

Littlestone Classes

Deterministic Realizable ERM 2O(dLD) 2O(dLD) [AAD+23, KS24]
Deterministic Realizable/Agnostic Weak Consistency O(TdVC+1) Optimal Theorem 4.2
Deterministic Realizable ERM O(T ) Ω(2dLD ) Theorem 4.4
Randomized Realizable Weak Consistency O(T ) Ω(T ) Theorem 4.3

Thresholds

Deterministic Realizable ERM O(T ) O(log T )

Theorem 4.5
Randomized Realizable ERM O(log T ) O(log T )

Deterministic Realizable Weak Consistency O(T log T ) O(log T )

Randomized Realizable Weak Consistency O(T ) O(log T )

k-Intervals Randomized Realizable Weak Consistency O(T 322k) O(k log(T )) Theorem 4.6

d-Hamming Balls
Deterministic Realizable ERM O(1) O(d)

Theorem H.4
Deterministic Realizable Weak Consistency O(T ) O(d)

Table 2: The lower bound for the weak consistency oracle from Theorem 4.3 applies to all three
families of concept classes: thresholds, k-intervals, and d-Hamming balls, and is stronger than the
bound for arbitrary Littlestone classes. We use the term “optimal” to indicate that the mistake bounds
match those from standard transductive learning (where the concept class is known). In particular,
the best known bounds depend linearly on the Littlestone or VC dimensions.

2 The Learning Models: Online and Transductive Online Learning with
Oracle Access

We start with a definition of the online learning model where the interaction of the learner with the
concept class is done only through an oracle. This is in contrast to the standard online model, where
the learner knows the concept class in advance. The learning protocol is a sequential game between
a learner and an adversary. Let C ⊂ {0, 1}X be a concept class, where X is the instance space and
{0, 1} is the label space. Let F be a family of concept classes, known to the learner (e.g., classes
with finite Littlestone dimension dLD), such that C is an unknown concept class from F chosen by
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the adversary. Suppose the learner only has oracle access to C via an oracle O. The sequential game
proceeds for T rounds, as follows. For each t ∈ [T ]:

1. The adversary chooses (xt, yt) ∈ X × {0, 1}.
2. The learner observes xt, picks a distribution ∆t ∈ ∆({0, 1}), and predicts ŷt ∼ ∆t.
3. The adversary reveals yt ∈ {0, 1} and the learner suffers a loss I[ŷt ̸= yt].

We define x1:T = (x1, x2, . . . , xT ) ∈ X T as the sequence of instances and y1:T =
(y1, y2, . . . , yT ) ∈ {0, 1}T as the sequence of corresponding labels chosen by the adversary. In
the realizable setting, the adversary is subject to the constraint that the sequence (x1:T , y1:T ) is real-
izable by C, meaning that there exists c ∈ C satisfying c(xi) = yi for all i ∈ [T ]. The performance of
a learning algorithm A is measured by two metrics, the number of mistakes (or regret, in the agnostic
setting) and the number of oracle queries. The mistakes are defined as follows:

M(A,O(C), x1:T , c) =

T∑
t=1

I[ŷt ̸= c(xt)] .

The worst case number of mistakes of a learning algorithm A is defined as

M(A, T ) = sup
C∈F

sup
c∈C

sup
x1:T∈XT

E[M(A,O(C), x1:T , c)] .

Similarly, Q(A,O(C), x1:T , c) is the total number of queries, defined as

Q(A, T ) = sup
C∈F

sup
c∈C

sup
x1:T∈XT

E[Q(A,O(C), x1:T , c)] .

Here, the expectation is over the randomness of the algorithm.

We assume that the adversary is oblivious with respect to the choice of concept class C, target concept
c, and instance sequence x, meaning that these are fixed in advance and do not depend on the learner’s
predictions or queries. Note that for deterministic algorithms, an oblivious adversary is as powerful
as an adaptive adversary.

In the agnostic case, the sequence (x1:T , y1:T ) is no longer constrained to be realizable by C, and the
measure of performance is the regret, defined as

Reg(A,O(C), (x1:T , y1:T )) =

T∑
t=1

I[ŷt ̸= yt]− inf
c∈C

T∑
t=1

I[c(xt) ̸= yt]

Define the worst case regret of the algorithm A as

Reg(A, T ) = sup
C∈F

sup
(x,y)∈(X×{0,1})T

E[Reg(A,O(C), (x, y))] ,

and Q(A, T ) in the agnostic case is defined as the worst-case total number of queries, over C ∈ F
and (x, y) ∈ (X × {0, 1})T .

Crucially, the learner knows the family of concept classes F but not C ∈ F . The learner’s only access
to the concept class C is through oracles defined below. We start with a few variants of the ERM
oracle.
Definition 2.1 (Variants of ERM Oracle) We define the oracles in order of expressive strength. Let
C be the concept class we have access to.

• “Restricted ERM": At round t, given a subsequence S of the pairs generated by the adversary,
(x1:t−1, y1:t−1), if S is realizable by C, then the ERM oracle returns some c ∈ C consistent
with S. Otherwise, it returns “not realizable.” This oracle was used for the upper bounds in
[AAD+23, KS24] and for the lower bound in [KS24]. Here, it is used primarily for comparison to
our results, as well as in the upper bound in Theorem 3.3.

• ERM: Given any subset S ⊂ X ×{0, 1}, if S is realizable by C, then the ERM oracle returns some
c ∈ C consistent with S. Otherwise, it returns “not realizable”. This oracle can be thought of as a
"realizable" ERM or consistency oracle. For simplicity, we refer to it as ERM. This is the main
variant used in this paper.
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• “Agnostic" ERM: Given any subset S ⊂ X × {0, 1}, returns a a concept with the minimal
error: argminc∈C

∑
(x,y)∈S I[c(x) ̸= y]. This oracle is used for the lower bounds in Theorems 3.1

and 3.2.

Additionally, we consider the following weaker oracle, studied by [DG24] in the context of PAC
learning.

Definition 2.2 (Weak Consistency Oracle) Given a concept class C ⊆ {0, 1}X and any sequence
S = (x1, y1), ..., (xn, yn), the Weak Consistency Oracle returns “realizable" if there exists some
c ∈ C consistent with S. Otherwise, it returns “not realizable".

We also study the transductive online setting with oracle access, where the only difference is that the
adversary first selects a sequence x = (x1, x2, . . . , xT ) ∈ X T , which is revealed to the learner in
advance 4. Then, the sequential interaction begins, with the adversary revealing the labels yt one by
one. Formally, for each t ∈ [T ] :

1. The adversary chooses yt ∈ {0, 1}.

2. The learner picks a distribution ∆t ∈ ∆({0, 1}), and predicts ŷt ∼ ∆t.

3. The adversary reveals yt and suffers loss I[yt ̸= ŷt].

The notions of mistakes and regret are defined similarly and are formalized in Appendix B. The
standard transductive online learning model, in which the learner has access to the concept class in
advance, was studied by [BDKM97, HMS23].

3 Online Learning

In this section, we consider the problem of online learning with oracle access. First, we present lower
bounds on the number of mistakes in the realizable setting and a lower bound on the regret in the
agnostic setting with access to an ERM oracle. For the realizable case, a lower bound of Ω(3dLD) was
proved by [KS24], but only for an ERM restricted to querying instances and labels generated by the
adversary throughout the interaction. Here, we make no assumptions about the ERM (our result holds
for the strongest “agnostic” ERM variant, see Definition 2.1), which introduces several challenges,
and we show that the exponential dependence on dLD is unavoidable. For the agnostic case, this is
the first lower bound of its kind. It matches the upper bound of [AAD+23] up to a constant factor in
the exponential dependence on the Littlestone dimension, and up to a log(T ) factor.

Theorem 3.1 (Lower Bound for Online Learning with “Agnostic" ERM Oracle) Let F be the
family of classes with Littlestone dimension dLD. Then, any randomized algorithm that makes a finite
number of queries to the ERM oracle incurs Ω(2dLD) expected mistakes.

Proof sketch We construct a threshold function over T = 2dLD points embedded in [0, 1]T−1,
partitioning the space into T nested hyperrectangles using uniform random values z1, ..., zT−1. The
first point x1 corresponds to the entire hypercube [0, 1]T−1 except for a specific hyperplane, while
subsequent points xi correspond to increasingly smaller nested hyperrectangles, each defined by
matching more coordinates with the random values zj .

The concept class consists of random threshold functions where all concepts agree within each hyper-
rectangle equivalence class. When the adversary presents point xt, the learner cannot query points
from future equivalence classes with non-zero probability, as these classes are defined by randomly
chosen values zt, ..., zT−1 that won’t be hit by finite queries. Thus, the “agnostic" ERM oracle
provides labels for the current hyperrectangle but gives no information about nested hyperrectangles
corresponding to future points. This geometric structure forces the learner to make predictions about
points in nested regions without prior information, resulting in a mistake with probability 1/2 at each
step. This yields Ω(T/2) = Ω(2dLD) expected mistakes. ■

4A common version of the transductive online learning setting considers x as a set of T points rather than a
sequence (e.g., [SKS16]). We focus on the version where x is a sequence, though our results could extend to the
set-based formulation.
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Theorem 3.2 (Lower Bound for Agnostic Online Learning with “Agnostic" ERM Oracle) Let F
be the family of classes with Littlestone dimension dLD. Then, any randomized algorithm that makes
a finite number of queries to the ERM oracle incurs Ω(

√
T2dLD) expected regret.

The full proofs for the lower bounds can be found in Appendix D.

We now show how any deterministic online learning algorithm using the restricted ERM can be
simulated using the weak consistency oracle, at the cost of increasing the number of oracle calls by
O(T ). In particular, this applies to the ERM-based algorithms of [AAD+23, KS24].
Theorem 3.3 (Reducing Online Learning with Weak Consistency to Online Learning with
“Restricted" ERM) Consider any deterministic online learning algorithm that only has access to
the restricted ERM oracle. Furthermore, suppose that at each timestep t, for any function f returned
by the oracle, the algorithm evaluates f only on the points x1, x2, . . . , xt. If this algorithm makes
at most f(T ) mistakes and uses at most g(T ) oracle queries over T rounds, then there exists an
algorithm that uses the weak consistency oracle and makes at most f(T ) mistakes using at most
T · g(T ) queries.

The proof is provided in Appendix E. As a consequence, we obtain the following result via the
results in [AAD+23, KS24].
Corollary 3.4 There exists a learning algorithm that makes T · 2O(dLD) weak consistency oracle
calls with 2O(dLD) mistakes in the realizable setting.

Finally, we study online learning of partial concept classes. Partial concepts [AHHM22] are
concepts that may be undefined on certain parts of the domain. These concepts are particularly useful
for modeling data-dependent assumptions, such as the margin of the decision boundary. Recently,
[DG24] showed that partial concepts can be learned in the (offline) PAC setting with the weak
consistency oracle. Here, we show that such a result is impossible in the online setting, even with the
ERM oracle, let alone with the weak consistency oracle. The proof is provided in Appendix F.
Theorem 3.5 (Lower Bounds for Online Learning of Partial Concepts with ERM Oracle) There
exists a family F of partial concept classes of Littlestone dimension 1, where any algorithm that
makes a finite number of queries will have Ω(T ) mistakes.

4 Transductive Online Learning

In this section, we study the transductive online setting with oracle access, where the main goal is to
leverage the additional information given to the learner, the set of instances x1, . . . , xT at the start of
the interaction, in order to reduce the number of mistakes or regret. The proofs for this section are
provided in Appendix G.

First, we show that it is possible to recover all labelings consistent with the concept class on the given
instances x1, . . . , xT using the weak consistency oracle. With this step, we can achieve the optimal
number of mistakes in the realizable setting and optimal regret in the agnostic setting.
Lemma 4.1 (Identify Labeling with Weak Consistency Calls) For a class C ⊂ {0, 1}X , let dVC

be the VC dimension of C. Using the weak consistency oracle, one can recover all the concepts in C
using O(|X |dVC+1) queries.

Theorem 4.2 (Upper Bounds for Transductive Online Learning with Weak Consistency Oracle)
Consider any family F of concept classes with VC dimension dVC. There exists an algorithm that uses
at most O(T dVC+1) weak consistency queries and obtains optimal mistake bounds for transductive
online learning (known to be upper bounded by min{dLD, dVC log T}), and also obtains optimal
regret (known to be upper bounded by Õ(

√
T min{dLD, dVC log T})).

On the other hand, we establish the following two lower bounds. The first shows that limiting the
learner to O(T ) weak consistency queries is not sufficient for transductive online learnability, and the
second shows that restricting to O(T ) ERM queries results in a mistake bound that is exponential in
the Littlestone dimension.
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Theorem 4.3 (Lower Bound for Transductive Online Learning with Weak Consistency Oracle
- Randomized Algorithms) Consider any family F of concept classes of the form C ⊂ {0, 1}X ,
where the family F has the property that for every labeling function f : {x1, x2, . . . , xT } → {0, 1},
there exists some concept class C ∈ F and some concept c ∈ C such that c(xt) = f(xt) for all
t ∈ [T ] (i.e., all 2T possible binary labelings of the sequence x are captured by the family F).
For T ≥ 100, any (possibly randomized) algorithm that makes at most T/20 queries to the weak
consistency oracle will incur an expected mistake bound of at least T/20.

In particular, this theorem holds for general classes like Littlestone classes, and also for special
families of classes, including thresholds, k-intervals, and d-Hamming balls (see the next section).
Proof sketch To establish the lower bound, we consider the uniform distribution over all 2T possible
concept-class pairs permitted by family F . For any deterministic algorithm making at most T/20
queries, we represent its execution as a binary decision tree where: (i) the root contains all 2T possible
concepts, (ii) internal nodes represent either oracle queries or predictions, and (iii) prediction nodes
use the majority label strategy.

The expected number of mistakes plus queries equals the expected number of oracle splits and
prediction mistakes on a random path from root to leaf. Transforming our tree to have a single "cost
edge" to the smaller subtree at each node. We analyze the expected cost using entropy arguments.
With entropy H(X) = T bits, and applying the chain rule, the entropy can be expressed as the
expected sum of binary entropy values h(p(v)) along paths from leaves to root, where p(v) is the
fraction of leaves below a node’s smaller child, and h(x) = −x log2(x) − (1 − x) log2(1 − x).
Defining a node as "balanced" if at least 0.2 of its leaves fall under its smaller child, entropy analysis
shows there must be Ω(T ) balanced nodes in expectation along a random path. Each balanced node
contributes a constant fraction to the expected cost, yielding a lower bound of Ω(T ), which gives us
the claimed T/20 lower bound. ■

Theorem 4.4 (Lower Bound for Transductive Online Learning with ERM Oracles - Determinis-
tic Algorithms) Let F be the family of all classes with Littlestone dimension dLD. For T ≥ 2dLD+1,
when having access to the ERM oracle, if fewer than T/2 queries are made, at least 2dLD −1 mistakes
will be made.

We next study specific families of concept classes, achieving stronger results than in the general
case, especially using randomized algorithms.

4.1 Thresholds, Intervals, and Hamming Balls

We start with the family of thresholds. For a set X , we consider the family of classes
F = {C⪯| ⪯ is a total ordering over X}, where each C⪯ is the threshold class corresponding to the
ordering ⪯. Specifically, C⪯ = {cz : z ∈ X}, where cz(x) = I[x ⪯ z]. When restricted to T points
x1, x2, . . . , xT , the class C⪯[{x1, x2, . . . , xT }] forms a threshold class over these T points, which
has Littlestone dimension ⌊log2(T )⌋. Our analysis focuses on both deterministic and randomized
algorithms with weak consistency and ERM oracles.
Theorem 4.5 (Upper Bounds on Transductive Online Learning of Thresholds) Consider trans-
ductive online learning where F is the family of threshold classes. The following results hold:

1. There exists a deterministic algorithm that makes O(T log T ) calls to the weak consistency oracle
and incurs at most O(log T ) mistakes.

2. There exists a randomized algorithm that makes O(T ) calls in expectation to the weak consistency
oracle and incurs at most O(log T ) mistakes.

3. There exists a deterministic algorithm that makes O(T ) calls to the ERM oracle and incurs at
most O(log T ) mistakes.

4. There exists a randomized algorithm that makes at most O(log T ) calls to the ERM oracle in
expectation and makes at most O(log T ) mistakes.

We outline the proof of the last case, the full proof is in Appendix H.1.
Proof sketch The key observation is that when randomly sampling two points from the uncertainty
region and running ERM (with one point labeled 0 and the other labeled 1), with constant probability,
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the oracle assigns label 0 to at least 1/3 of the points and label 1 to at least another 1/3. The
algorithm predicts according to this labeling. When a mistake occurs, the uncertainty region shrinks
by a constant factor, and we resample to generate a new labeling for the reduced region. Since the
uncertainty region shrinks by a constant factor (at least 1/3) with each mistake, we need at most
O(log T ) mistakes to reduce the uncertainty region to a single point. Each mistake requires only
a constant number of queries in expectation (to get a "balanced" partition), leading to a total of
O(log T ) ERM oracle calls in expectation. ■

We proceed to analyze another canonical family of concept classes: k-Intervals. For a set X , we
consider the family of classes Fint,k = {Cint,⪯,k| ⪯ is a total ordering over X}, where each Cint,⪯,k

contains concepts defined by at most k intervals under the ordering ⪯. Formally, for any total ordering
⪯ on X , and any collection of at most k disjoint intervals Z1, Z2, . . . , Zm, where m ≤ k and each
Zi = {x ∈ X : ai ⪯ x ⪯ bi} for some ai, bi ∈ X , we define the concept as follows:

cZ1,Z2,...,Zm(x) =

{
1 if x ∈ Zi for some i ∈ {1, 2, . . . ,m},
0 otherwise.

This class has VC dimension 2k and Littlestone dimension O(k log T ). It is known that this class has
VC dimension 2k, and the class defined on T points has Littlestone dimension at most T .

Theorem 4.6 (Upper Bound on Transductive Online Learning of k-Intervals with Weak Con-
sistency Oracle - Randomized Algorithm) Consider transductive online learning with the family
Fint,k. There exists a randomized algorithm that makes O(T 3 · 22k) calls to the weak consistency
oracle in expectation and makes at most O(k log T ) mistakes.

Proof sketch One key observation is that for any 2k + 1 points z1 ≺ z2 ≺ . . . ≺ z2k+1 ∈ X , there
exists exactly one non-realizable labeling, corresponding to assigning label (i mod 2) to zi. This
fact can be used to test with high probability whether a point z is an extreme point of the ordering—
repeatedly sample 2k other points, and if the label of z is consistently 1 for the non-realizable labeling
across all samplings, then it lies on an extreme end of the threshold with high probability (after O(T )
samplings and 22k+1 weak consistency oracle queries).

We apply this test to all T points to identify the two endpoints of the threshold (requiring at most
O(T 2 · 22k+1) queries). We then designate one extreme as the “minimum” and recurse (at most T
times), yielding an upper bound of O(T 3 · 22k) for the total number of queries. Since the Littlestone
dimension is O(k log T

k ) (and the VC dimension is O(k)), we can run either SOA or the halving
algorithm to achieve the O(k log T ) mistake bound. ■

We also study the class of d-Hamming Balls, which has Littlestone and VC dimensions equal to d.
We show that an algorithm can make at most 2d mistakes using just a single ERM query. Furthermore,
we show that the optimal mistake bound of d can be achieved with 2d+1 queries. Combined with
the result in Theorem 4.6, this suggests that the optimal mistake bound can be achieved for general
transductive online learning using TC2O(dVC) queries, where C is a constant independent of the
class, possibly by a randomized algorithm. See Appendix H.3 for more details.

5 Discussion

In this paper, we studied the power and limitations of various oracles in online learning settings. In
the transductive setting, there remains a gap between our general upper bound using deterministic
algorithms (Theorem 4.2) and the improved performance of our randomized algorithms for special
cases (Theorems 4.5 and 4.6). This motivates the following open problems:

• Given a family of classes F with Littlestone dimension dLD and VC dimension dVC, does there
exist a randomized algorithm that uses at most TC2O(dVC) queries and achieves O(dLD) or
O(dVC log T ) expected mistakes, for some constant C independent of the class?

• Are randomized algorithms provably more powerful than deterministic ones for online learning
with oracles?
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An additional interesting direction is to extend our oracle-based framework to more general tasks,
such as online multiclass classification and regression. In particular, it would be natural to design
oracle-efficient algorithms for these settings, analogous to our results for the binary case. Another
open question is whether the current oracle complexity bound of T 2O(dLD)

for agnostic online learning
with an ERM oracle can be improved, potentially yielding more efficient algorithms in the worst-case
scenario.

Our analysis thus far assumed a worst-case adversary. A relevant extension is to consider smoothed
adversaries – adversaries with restricted power achieved by slight randomization in their choices. For
example, Haghtalab et al. (2022) [HHSY22] developed the first oracle-efficient algorithm for online
learning under a smoothed-adversary model, which constrains the adversary to draw each instance
from a distribution of bounded density (thereby interpolating between stochastic and adversarial
regimes). Block et al. (2024) [BRS24] further showed that, in such a smoothed setting, one can
attain regret on the order of Õ(

√
comp(F) · T ) (with matching upper and lower bounds) using an

ERM oracle. Here comp(F) denotes the standard PAC-learning complexity of the class F (e.g. VC
dimension). Notably, Block et al.’s result is limited to the squared loss; extending their analysis to
other loss functions (e.g. general convex losses) remains an interesting direction for future work.
Finally, another avenue worth exploring is the use of weaker oracle models in conjunction with
smoother adversaries. For instance, one could investigate whether a weaker consistency-based oracle
(as opposed to a full ERM oracle) is sufficient to achieve low regret under smoothed adversarial
conditions, potentially reducing the oracle complexity while still leveraging the adversary’s restricted
power.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and in Section 1.1 of the introduction, we give a detailed
description of the claims and results we prove in the paper as a technical overview.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper mentions that the ERM oracle that is defined, which is considered
in several of the upper and lower bounds in this paper, is weaker than the “agnostic" ERM
oracle. Additionally, we present open problems to strengthen some of our gaps, for example,
upper and lower bounds for transductive online learning with oracles.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: In every theoretical statement, we characterize the assumptions and conditions
of the statement and then we give a proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This is a completely theoretical paper so there are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This is a completely theoretical paper so there are no experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a completely theoretical paper so there are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a completely theoretical paper so there are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a completely theoretical paper so there are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Since this is a learning theory paper focused on characterizing learnability and
complexity of learning problems, we do not see any immediate negative social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a completely theoretical paper so there are no datasets or experimental
models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This is a completely theoretical paper so we don’t have any code, data, or
models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This is a completely theoretical paper so we don’t have any code, data, or
models.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not conduct any crowdsourcing experiments or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not conduct any crowdsourcing experiments or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use any large language models as part of its research
methodology or core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Additional Related Work

Oracle-Efficient Online Learning. Oracle-efficient methods establish a powerful framework for
addressing the computational challenges of online learning. This provides an alternative to the
fact that standard online learning can be computationally intractable [FL98, HBD23]. Assos et
al. [AAD+23] and Kozachinskiy et al. [KS24] studied the online learnability of concept classes
with finite Littlestone dimension using the ERM oracle. In addition, the partial-information setting,
specifically contextual bandits, has been explored using regression oracles [FR20, SLX22] and the
ERM oracle [SKS16].

Theoretical limitations of this approach have also been investigated. Hazan and Koren [HK16]
showed that, for certain finite concept classes C, any oracle-efficient online learner must make at
least Ω̃(

√
|C|) calls to a powerful optimization oracle (an agnostic ERM oracle) to achieve sublinear

regret in the fully adversarial proper-learning setting; they also give a matching Õ(
√
|C|) upper

bound. Since the Littlestone dimension satisfies Ldim(C) ≤ log2 |C| for finite classes, this implies
an exponential dependence of total runtime on the Littlestone dimension. Our results sharpen and
generalize this picture: we give lower bounds in both the realizable and agnostic regimes, and for
general (possibly infinite) classes parameterized by VC / Littlestone dimension. Rather than targeting
mere sublinear regret, we identify conditions under which stronger, dimension-dependent rates are
unattainable for any oracle-efficient learner—e.g., Ω(2dLD) (realizable) and Ω

(√
T 2dLD

)
(agnostic).

When specialized to finite classes with |C| ≈ 2dLD , both lines of work exhibit exponential dependence
on dLD (since

√
|C| = 2dLD/2), while our results additionally showed that even in the realizable

case the required computation is exponential in dLD (and in fact cannot be done in a finite number
of queries). Altogether, these findings underscore that optimization oracles remove optimization
difficulty but not the information-theoretic hardness of fully adversarial online learning.

Additionally, Kalai and Vempala [KV05] and Dudík et al. [DHL+20] developed oracle-efficient
algorithms for various online learning problems (e.g., combinatorial decisions and auctions) by
leveraging structure or randomness (perturbed-leader methods), but their techniques assume an
efficient oracle for the specific problem at hand and do not apply to arbitrary concept classes.

Several works have identified structural conditions that enable oracle-efficient online learning despite
the general lower bounds. Dudík et al.[DHL+20] studied the conditions under which oracle-efficient
algorithms can succeed, and Haghtalab et al. [HHSY22] provided such algorithms for online learning
with smoothed adversaries, introduced in Haghtalab et al. [HRS24]. Haghtalab et al. (2022) gave
the first oracle-efficient online learner in the smoothed adversary model, achieving regret bounds
O(

√
T · d/σ) that depend only on the hypothesis class’s VC dimension d and the smoothness

parameter σ. Their result shows that when the adversary is constrained to draw instances from a
σ-smooth distribution (i.e., no individual example can have too large a probability mass), online
learning becomes computationally as easy as offline learning for any VC class. More recently,
Block et al. [BRS24] considered the realizable case under smooth adversaries and show that even a
simple repeated-ERM strategy can attain no-regret. In particular, they proved that if the marginal
distribution is σ-smooth, then empirical risk minimization achieves sublinear error on the order of
Õ(

√
comp(F) · T ), where comp(F) is the standard PAC-learning complexity of the class. These

works underscore that smoothness assumptions, now widely used as a testbed for the robustness
of impossibility results – can circumvent the brittle worst-case constructions, enabling efficient
online learning of VC classes in practice. However, studying the models for general VC / Littlestone
classes is necessary for gaining more fundamental insights into the computational-statistical tradeoffs
that govern all concept classes. Studying general classes reveals which properties are universal
versus which depend on special structure. While [HHSY22] and [HRS24] establish oracle-efficient
algorithms under smoothness assumptions, oracle efficiency in the fully adversarial setting has yet to
be resolved.

PAC Learning with Weak Oracles. ERM has long been a foundational principle in PAC learning,
particularly for binary classification, where the sample complexity is characterized by the VC
dimension. However, in settings like learning partial concepts, while PAC learning is possible,
it can be shown that uniform convergence, which analysis of ERM depends on, does not hold
[AHHM22, Lon01]. Recently, Daskalakis et al. [DG24] introduced a weaker form of oracle, the
weak consistency oracle, that suffices for learning any binary concept class with a sample complexity
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that scales polynomially (roughly cubically) in dVC, where dVC is the VC dimension. They also
extend this framework to multiclass classification, regression, and partial concept classes. Their
work suggests that such weak oracles could be a powerful abstraction in PAC learning, and raises the
question of whether a similar approach can succeed in online learning, a question we explore in this
paper.

Online and Transductive Online Learning. Online learning, as introduced by Littlestone [Lit88]
and studied in related query models by Angluin [Ang88], is characterized by worst-case mistake
bounds determined by the Littlestone dimension. The Standard Optimal Algorithm (SOA), also
due to Littlestone [Lit88], achieves minimax-optimal guarantees in this model and, as such, plays a
central role in the theory of online binary classification.

A related but distinct model is transductive online learning, where all unlabeled instances are revealed
in advance, but labels are queried sequentially. This setting was implicitly studied in earlier work on
"offline learning" [BDKM97]. The transductive online model [HMS23, HRSS24] lies between batch
PAC learning and traditional online learning, and often admits more favorable learning guarantees
than the latter due to the known instance sequence. Hanneke et al. [HMS23, HRSS24] provided a
trichotomy characterization and multiclass extensions for this setting.

Batch Transductive Learning. Batch Transductive Learning is the foundational setting introduced
by Vapnik [VC+74, Vap82], where both labeled training data and unlabeled test instances are
available at training time, and the goal is to predict labels only for the given test set rather than
learn a general hypothesis. Kakade and Kalai [KK05] established connections between batch and
transductive online learning, showing how efficient batch learning algorithms can be converted to
efficient transductive online algorithms with regret scaling as O(T 3/4) over T rounds. Cesa-Bianchi
and Shamir [CBS13] improved upon this result, achieving the optimal O(

√
T ) regret rate for a wide

class of losses using a novel randomized rounding approach.

B Preliminaries

Definition B.1 (Littlestone Dimension [Lit88]) Given a concept class C, a d-depth Littlestone tree is
a set of {xy : y ∈ Yt, t ∈ {0, d− 1}} ⊂ X (interpreting Y0 = {()}, where for all y1, y2, . . . , yd ∈
Y , there’s a c ∈ C such that (c(x()), c(xy1), c(xy1:2), . . . , c(xy1:(d−1)

)) = (y1, y2, . . . , yd). The
Littlestone dimension of C is the maximum n such that there exists a Littlestone tree of depth n.

Definition B.2 (VC Dimension [VC71]) Given a concept class C, a set of n points x1, . . . , xn ⊂ X
is shattered if {(c(x1), . . . , c(xn)) : c ∈ C} = {0, 1}n. The VC dimension of C is the largest n such
that there exist n shattered points in X .

Transductive Online Learning with Oracle Access. The learning protocol is a sequential game
between a learner and an adversary. Let C ⊂ {0, 1}X be a concept class, where X is the instance
space and {0, 1} is the label space. Let F be a family of concept classes (e.g., classes with finite
Littlestone dimension) such that C is an unknown concept class from F chosen by the adversary.
Suppose the learner only has oracle access to C via an oracle O. First, the adversary selects a concept
class C ∈ F and a sequence of instances x1:T = (x1, x2, ..., xT ) ∈ X T . The sequence x is revealed
to the learner5 and the sequential game proceeds for T rounds, as follows. For each t ∈ [T ]:

1. The learner selects a distribution ∆t ∈ ∆({0, 1}), and predicts ŷt ∼ ∆t.

2. The adversary reveals yt ∈ {0, 1} and the learner suffers a loss I[ŷt ̸= yt].

We define y1:T ∈ {0, 1}T as the sequence of labels chosen by the adversary corresponding to x1:T . In
the realizable setting, the adversary is subject to the constraint that the sequence (x1, y1), . . . , (xt, yt)
is realizable by C, meaning that there exists c ∈ C satisfying c(xi) = yi for all i ∈ [T ]. The

5There exist variants of this setting. One variant involves the adversary revealing a set to the learner opposed
to a sequence – see [SKS16]. Our results hold for that setting as well.
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performance of a learning algorithm A is measured by two metrics, the number of mistakes and the
number of oracle queries. The mistakes are defined as follows:

M(A,O(C), x1:T , c) =

T∑
t=1

I[ŷt ̸= c(xt)] .

The worst case number of mistakes of a learning algorithm A is defined as

M(A, T ) = sup
C∈F

sup
c∈C

sup
x1:T∈XT

E[M(A,O(C), x1:T , c)] .

Similarly, Q(A,O(C), x1:T , c) is the total number of queries, defined as

Q(A, T ) = sup
C∈F

sup
c∈C

sup
x1:T∈XT

E[Q(A,O(C), x1:T , c)] .

Here, the expectation is over the randomness of the algorithm.

We assume that the adversary is oblivious with respect to the choice of concept class C, target concept
c, and instance sequence x, meaning that these are fixed in advance and do not depend on the learner’s
predictions or queries.

In the agnostic case, the sequence (x1:T , y1:T ) is no longer constrained to be realizable by C, and the
measure of performance is the regret, defined as

Reg(A,O(C), (x1:T , y1:T )) =

T∑
t=1

I[ŷt ̸= yt]− inf
c∈C

T∑
t=1

I[c(xt) ̸= yt]

Define the worst case regret of the algorithm A as

Reg(A, T ) = sup
C∈F

sup
(x,y)∈(X×{0,1})T

E[Reg(A,O(C), (x, y))] ,

and Q(A, T ) in the agnostic case is defined as the worst-case total number of queries, over C ∈ F
and (x, y) ∈ (X × {0, 1})T .
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C Mistakes-Oracle Calls Pareto Frontier

C.1 Pareto Frontier for Online Learning with ERM for Littlestone Classes
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C.2 Pareto Frontier for Transductive Online Learning with ERM for Littlestone Classes

D Online Learning with ERM Oracle: Lower Bounds for Realizable and
Agnostic Settings

D.1 ERM Oracle Lower Bound for the Realizable Case

We now cover the details for proving Theorem 3.1, the lower bound of 2dLD mistakes for online
learning in the realizable setting.
Theorem 3.1 (Lower Bound for Online Learning with “Agnostic" ERM Oracle) Let F be the
family of classes with Littlestone dimension dLD. Then, any randomized algorithm that makes a finite
number of queries to the ERM oracle incurs Ω(2dLD) expected mistakes.
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Proof We prove this by constructing a hard instance where any algorithm using a finite number of
ERM queries must make Ω(2dLD) expected mistakes.

First, let T = 2dLD and set X = [0, 1]T−1. We’ll define a family of concept classes parameterized by
two vectors:

• z = (z1, . . . , zT−1) ∈ [0, 1]T−1, which defines the geometry of our construction

• b = (b1, . . . , bT ) ∈ {0, 1}T , which defines the labeling pattern

For each (z, b), we define T special points in X :

x1 = (0, 0, . . . , 0)

x2 = (z1, 0, . . . , 0)

x3 = (z1, z2, 0, . . . , 0)

...
xT = (z1, z2, . . . , zT−1)

These points partition X into T “cells” C1, . . . , CT , where:

• C1 contains all points (w1, . . . , wT−1) where w1 ̸= z1

• C2 contains all points where w1 = z1 but w2 ̸= z2

• Ci contains all points matching the first i − 1 coordinates of z but differing at the i-th
coordinate

• CT contains only the point xT

Now we define our concept class Cz,b as the set of all functions that:

1. Label all points in the same cell consistently

2. Assign labels to cells according to a threshold function determined by b

The threshold function determined by b is determined as follows. b determines an ordering over the
points x1, . . . , xT in the following sense. If b1 = 0, then x1 is the leftmost point in the ordering, and
if b1 = 1, then x1 is the rightmost point in the ordering. Keep repeating for b2, . . . , bT to construct
the rest of the ordering.

The adversary works as follows:

1. Choose z uniformly at random from [0, 1]T−1, and construct x1, x2, . . . , xT from z.

2. Choose b uniformly at random from {0, 1}T

3. Set the target concept c such that c(xi) = bi for all i.

4. Present instances x1, x2, . . . , xT in order

It’s sufficient to show that any algorithm incurs Ω(T ) expected mistakes – by the probabilisic method,
this will imply that any algorithm incurs Ω(T/2) expected mistakes on at least one instance of
(concept class, target concept, first T instances).

In the first timestep, the learner is given x1, which is in C1. After finitely many ERM queries, the
probability that any queries of the learner will be at some point Ci for some i > 1 will be zero – this
is because zi values are chosen uniformly at random from [0, 1], so the probability of querying any
specific real value is zero. Thus, with probability 1, all the points in all the queries of the learner
will be in C1. The “agnostic” ERM oracle will return a concept that minimizes the error over the
query points. Since the ERM oracle can return any function that minimizes this error, the adversary
can choose which of these error-minimizing functions to return. Specifically, the adversary will
select an error-minimizing function that provides no information about the labels of points not yet
queried, especially about x1. Thus, the adversary can choose the ERM to label all points in X as a
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majority vote over the labels of the points in the query. Since b1 is chosen uniformly at random from
{0, 1} and the learner has gained no information about this choice, the learner incurs a mistake with
probability 1/2.

For the tth timestep, the learner is given xt, which is in Ct. After finitely many ERM queries, the
probability that any queries of the learner will be at some point Ci for some i > t will be zero.
The agnostic ERM could return any function that minimizes the error over the points in the query.
Since the points in the query were only among C1, C2, . . . , Ct, the adversary can choose the ERM
to label all points in Ct, . . . , CT the same, giving the learner no information about the locations of
Ct+1, . . . , CT , or about bt. Thus, the learner incurs a mistake with probability 1/2 at the tth timestep.

Thus, over T timesteps, the expected number of mistakes is T/2, giving the desired lower bound of
Ω(2dLD) expected mistakes. ■

D.2 ERM Oracle Lower Bound for the Agnostic Case

The lower bound for the realizable case in Theorem 3.1 can be extended to the agnostic case, with a
regret that scales with

√
T .

Theorem 3.2 (Lower Bound for Agnostic Online Learning with “Agnostic" ERM Oracle) Let F
be the family of classes with Littlestone dimension dLD. Then, any randomized algorithm that makes
a finite number of queries to the ERM oracle incurs Ω(

√
T2dLD) expected regret.

Proof We extend the construction from Theorem 3.1 to the agnostic setting.

Let T ′ = 2dLD and set X = [0, 1]T
′−1. Choose a parameter S such that T = ST ′, where S is

sufficiently large for concentration bounds to apply.

We define the same special points as in the previous proof:

x̂1 = (0, 0, . . . , 0)

x̂2 = (z1, 0, . . . , 0)

x̂3 = (z1, z2, 0, . . . , 0)

...
x̂T ′ = (z1, z2, . . . , zT ′−1)

where z = (z1, . . . , zT ′−1) ∈ [0, 1]T
′−1 is chosen uniformly at random.

These points partition X into T ′ cells C1, . . . , CT ′ as defined earlier. We consider the concept class
Cz as defined earlier.

The adversary works as follows:

1. Choose z uniformly at random from [0, 1]T
′−1, and construct x̂1, x̂2, . . . , x̂T ′ .

2. For each i = 1, . . . , T ′ and j = 1, . . . , S, present instance x(i−1)S+j = x̂i.

3. Generate labels y1, y2, . . . , yT i.i.d. uniformly from {0, 1}.

Now consider the performance of the best hypothesis in Cz . This hypothesis can assign an optimal
label to each cell Ci based on the majority of labels seen in phase i. For each phase i consisting
of S copies of x̂i, let mi denote the number of mistakes made by the best hypothesis. By standard
concentration bounds for the binomial distribution, we have E[mi] ≤ S

2 − c
√
S for some constant

c > 0.

Summing over all T ′ phases, the expected total error of the best hypothesis is at most

T

2
− c T ′

√
S =

T

2
− c 2dLD

√
T

2dLD
=

T

2
− c

√
T2dLD .

Therefore, the expected regret of any algorithm that makes a finite number of queries to the ERM
oracle is at least c

√
T2dLD , which is Ω(

√
T2dLD).
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■

E Online Learning with Weak Consistency Oracle: Upper Bounds

The following theorem enables proving upper bounds for online learning with the weak consistency
oracle, assuming the existence of an ERM-based algorithm satisfying certain assumptions.
Theorem 3.3 (Reducing Online Learning with Weak Consistency to Online Learning with
“Restricted" ERM) Consider any deterministic online learning algorithm that only has access to
the restricted ERM oracle. Furthermore, suppose that at each timestep t, for any function f returned
by the oracle, the algorithm evaluates f only on the points x1, x2, . . . , xt. If this algorithm makes
at most f(T ) mistakes and uses at most g(T ) oracle queries over T rounds, then there exists an
algorithm that uses the weak consistency oracle and makes at most f(T ) mistakes using at most
T · g(T ) queries.

Proof Let A be a deterministic online learning algorithm that uses a restricted ERM oracle, makes
at most f(T ) mistakes, and uses at most g(T ) oracle queries over T rounds. We will construct an
algorithm A′ that uses the weak consistency oracle and maintains the same mistake bound.

At each timestep t, algorithm A may make a query to the ERM oracle using the set
{(x1, y1), (x2, y2), . . . , (xt−1, yt−1)}. Let’s denote by ft the function that would be returned by this
ERM query. By assumption, A only evaluates ft on points x1, x2, . . . , xt.

Algorithm A′ will simulate A as follows:

• Let Ht be the set of functions returned by the ERM oracle in algorithm A up to timestep t.

• For each function f ∈ Ht−1 that A would evaluate at point xt, algorithm A′ needs to
determine f(xt). To do this, A′ will make one query to the weak consistency oracle:
{(x1, y1), (x2, y2), . . . , (xt−1, yt−1), (xt, 0)}. If it returns “realizable”, extend the function
to have value 0 at xt and add it to Ht. If it returns “not realizable”, extend the function to
have value 1 at xt and add it to Ht.

• For any new ERM query that A would make at timestep t, A′ needs to simulate this by
finding a function consistent with {(x1, y1), (x2, y2), . . . , (xt−1, yt−1)}. This can be done
by using the weak consistency oracle to check all possible labelings of future points that A
might evaluate.

The key insight is that algorithm A is deterministic and, by assumption, only evaluates functions on
points x1, x2, . . . , xt at timestep t. This means that the behavior of A depends only on the values of
these functions on these specific points, not on their values for unseen points xt+1, . . . , xT . Therefore,
A′ makes at most f(T ) mistakes, just as A does. Furthermore, for each ERM query in A, A′ makes
at most T weak consistency queries, so A′ makes at most T · g(T ) weak consistency queries. ■

We can apply the above Theorem with the algorithm by [AAD+23] to get the following.

Corollary 3.4 There exists a learning algorithm that makes T · 2O(dLD) weak consistency oracle
calls with 2O(dLD) mistakes in the realizable setting.

F Online Learning with ERM Oracle: Lower Bounds for Partial Concepts

The idea of learning partial concept classes was formalized recently by Alon, Hanneke, Holzman, and
Moran [AHHM22], who demonstrated fundamental differences from the learning of total concept
classes, for example, that ERM fails to learn partial concepts, even though the VC dimension still
characterizes learnability. Learning with partial concepts provides a natural framework for modeling
data-dependent assumptions, such as margin conditions or cases where the target function is only
defined on a subset of the input space.

Some of these ideas were previously studied implicitly in the context of regression [Lon01, BL98].
Partial concept classes have many applications, including adversarially robust learning [AKM22,

28



AHM22], learning with fairness constraints [HP22], multiclass classification [KVK22], and online
learning [CHHH23].

Let a partial concept class C ⊆ {0, 1, ⋆}X . For c ∈ C and input x such that c(x) = ⋆, we say that c is
undefined on x. The support of a partial concept c : X → {0, 1, ⋆} is supp(c) = {x ∈ X : c(x) ̸= ⋆}.
A sequence S = ((x1, y1), . . . , (xm, ym)) is realizable by C if there exists c ∈ C such that c(xi) = yi
for all i ∈ [m] and xi ∈ supp(c) for all i ∈ [m].

The Littlestone dimension of a partial class C is the maximum depth d such that there exists a d-depth
Littlestone tree where for each path from root to leaf, there exists some concept c ∈ C that realizes the
path and is defined on all points along that path (see Definition B.1 for the definition of a Littlestone
tree). The VC dimension of a partial class C is defined as the maximum size of a shattered set
S ⊆ X , where S is shattered by C if the projection of C on S contains all possible binary patterns:
{0, 1}S ⊆ C|S .
Theorem 3.5 (Lower Bounds for Online Learning of Partial Concepts with ERM Oracle) There
exists a family F of partial concept classes of Littlestone dimension 1, where any algorithm that
makes a finite number of queries will have Ω(T ) mistakes.

Proof Let X = [0, 1], Construct a family of partial concept classes F as follows:

Letting z = (z1, z2, . . . , zT ), and b ∈ {0, 1}T , define Cz,b as a collection of the functions
c1, c2, . . . cT where 

ci(zj) = bj if j < i

ci(zj) = 1− bj if j = i

ci(x) = ⋆ if x ̸∈ {z1, z2, . . . , zi} .

The Littlestone dimension of Cz,b is 1.

The strategy of the adversary is as follows:

• Choose z and b (sample zi uniformly from [0, 1] and bi uniformly from {0, 1} for all i).

• At each timestep t, present point xt = zt to the algorithm

At timestep t, when the learner makes a query to the ERM oracle, the learner won’t discover any of
the points among xt+1, xt+2, . . . , xT with probability 1, and thus, the queries will only be among
points in X − {xt+1, xt+2, . . . , xT }. If any points outside of {x1, . . . , xT } the ERM oracle will
return “not realizable” (since any target concept will return ⋆ on such points).

Thus, suppose the queries are all among points in {x1, . . . , xT }. When the learner makes ERM
queries on any subset of points from {z1, z2, . . . , zt}, there are always two valid extensions of the
concept - one where bt = 0 and one where bt = 1. This is because:

1. For any j < t, both ct and ct+1 agree on zj (both output bj).

2. For zt itself, ct outputs 1− bt while ct+1 outputs bt.

Since this is the case, the learner won’t gain any information about bt, so the adversary will make a
mistake with probability 1/2 at each timestep since bt is chosen uniformly at random from {0, 1},
independently of the learner’s prediction. Thus, over T timesteps, the expected number of mistakes is
T/2, giving the desired lower bound of Ω(T ) expected mistakes. ■

G Transductive Online Learning: General Concept Classes

Here we present the details for upper bounds and lower bounds for transductive online learning on
general concept classes.

G.1 Upper Bounds with the Weak Consistency Oracle

We first start with a lemma which discusses a “preprocessing" step that the learner can choose to
perform to gain knowledge of the concept class.
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Lemma 4.1 (Identify Labeling with Weak Consistency Calls) For a class C ⊂ {0, 1}X , let dVC

be the VC dimension of C. Using the weak consistency oracle, one can recover all the concepts in C
using O(|X |dVC+1) queries.

Proof Let N = |X |. Let X be expressed as x1, x2, . . . xN . Since C has VC dimension dVC, the
number of distinct labelings it can realize on N points is O(NdVC) by Sauer’s Lemma [SSBD14].

For each point xi, where i ∈ [N ], we check which labelings are consistent with the data seen so far.
Specifically, for each prefix (x1, y1), . . . , (xi−1, yi−1) that has been determined to be realizable, we
query the weak consistency oracle twice: once with the additional labeled example (xi, 0) and once
with (xi, 1). We maintain a tree of realizable labeled prefixes, expanding it level by level.

At each level, each realizable prefix may branch into two new prefixes, depending on whether labeling
xi with 0 or 1 is consistent. Since the total number of distinct full labelings is O(NdVC), there are at
most O(N ·NdVC) possible prefixes. Since each step involves up to two queries per prefix, the total
number of oracle calls is at most O(NdVC+1). ■

Theorem 4.2 (Upper Bounds for Transductive Online Learning with Weak Consistency Oracle)
Consider any family F of concept classes with VC dimension dVC. There exists an algorithm that uses
at most O(T dVC+1) weak consistency queries and obtains optimal mistake bounds for transductive
online learning (known to be upper bounded by min{dLD, dVC log T}), and also obtains optimal
regret (known to be upper bounded by Õ(

√
T min{dLD, dVC log T})).

Proof Let C be the unknown concept class. Consider C[{x1, . . . , xT }], the class of C restricted
to {x1, . . . , xT }. This class has VC dimension at most dVC. Apply this to Lemma 4.1 to get all
realizable labelings using O(T dVC+1) weak consistency queries.

Once we have identified all realizable labelings on {x1, . . . , xT }, we are now in the transductive
online learning setting where the class is known. Thus, one can use any standard (non-oracle)
transductive online learning algorithm to get a mistake bound equivalent to in the non-oracle setting,
for example by using the SOA algorithm [Lit88] (to get an O(dLD) mistake bound) or a halving
algorithm on the number of shattered sets [KK05] (to get an O(dVC log T ) mistake bound). ■

G.2 A Lower Bound with the Weak Consistency Oracle

We prove a general randomized lower bound of Ω(T ) queries needed to attain o(T ) regret for the
setting with the weak consistency oracle. We express it via the following lemma.

Theorem 4.3 (Lower Bound for Transductive Online Learning with Weak Consistency Oracle
- Randomized Algorithms) Consider any family F of concept classes of the form C ⊂ {0, 1}X ,
where the family F has the property that for every labeling function f : {x1, x2, . . . , xT } → {0, 1},
there exists some concept class C ∈ F and some concept c ∈ C such that c(xt) = f(xt) for all
t ∈ [T ] (i.e., all 2T possible binary labelings of the sequence x are captured by the family F).
For T ≥ 100, any (possibly randomized) algorithm that makes at most T/20 queries to the weak
consistency oracle will incur an expected mistake bound of at least T/20.

Informally, with the weak consistency oracle, O(T ) queries correspond to Ω(T ) mistakes for any
concept class for any family of classes that capture all 2T labelings. Notice here that this allows
us to have a lower bound for general families of classes, including general Littlestone classes and
general VC classes. Additionally, by the conditions in the theorem, this lower bound holds for settings
including those in Appendix H.1(thresholds, k-intervals) and Appendix H.3 (d-Hamming balls).

To prove Theorem 4.3, we make use of the following lower bound.

Lemma G.1 (Lower Bound for Binary Tree Costs) There exists a universal constant C such that
the following is true. Given an integer n > 10, construct any binary tree, with labeled nodes such
that the following conditions are satisfied:

• The root node has value n
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• For any node with value x strictly greater than 1, its two children have positive integer
values y and z such that x = y + z.

• The depth of the tree is at most 1.05 log2(n)

For an internal node with children y and z, define the cost of the node to be min(y, z). Define the
cost of the tree as the sum of the costs of the internal nodes. Then, the tree has cost ≥ C log2(n).

Proof Consider the random variable X , which is taken uniformly at random over all the leaves. The
idea is to relate the entropy H(X) to the cost.

For each internal node v, define p(v) to be the fraction of leaves in its subtree that are in the subtree
of the smaller child:

p(v) = min(|vL|, |vR|)/|v|
where vL and vR are the left and right children of v. Additionally, let h(x) be the binary-entropy
function (h(x) = −x log2 x− (1− x) log2(1− x)).

By the chain rule of entropy, we can decompose H(X) as follows. For the root node r, let Xr be the
random variable corresponding to which side of the root X will lie on (Xr = 0 if it lies on the subtree
of the smaller child, and Xr = 1 otherwise). The chain rule (H(Z1, Z2) = H(Z1) +H(Z2|Z1))
gives that:

H(X) = H(Xr) +H(X|Xr) = h(p(r)) + Ec∼Xr
[H(X|Xr = c)]

= h(p(r)) + p(r)H(X|Xr = 0) + (1− p(r))H(X|Xr = 1)

We can continue this decomposition recursively through the tree. At each internal node v, we get a
term h(p(v)) weighted by the probability that X reaches node v, which is |v|

n . Thus, we have:

H(X) =
∑

v internal

|v|
n
h(p(v))

Equivalently, we can view this summation from the perspective of a randomly chosen leaf. For each
leaf l, let path(l) be the set of internal nodes on the path from the root to l. Then:

H(X) = El∼X

 ∑
v∈path(l)

h(p(v))


.

Since X is uniformly distributed over the leaves, each leaf contributes equally to this expectation.

Also the cost of the tree (divided by n) is equal to∑
v

|v|
n
p(v) = El∼X

[ ∑
v∈path(l)

p(v)

]
.

Consider a threshold t, and define a node v to be unbalanced if p(v) < t, and balanced otherwise.
For balanced nodes, we have h(p(v)) ≤ 1, and for unbalanced nodes, we have h(p(v)) ≤ h(t). Let
b(l) and u(l) be the number of balanced and unbalanced nodes, respectively, on the path from the
root to leaf l.

Since b(l) + u(l) ≤ 1.05 log2(n) by the depth constraint, the above is at most:
El∼X [b(l) + (1.05 log2(n)− b(l))h(t)]

Setting log2 n ≤ this and rearranging gives:
log2 n(1− 1.05h(t)) ≤ El∼X [b(l)(1− h(t))]

⇒ El∼X [b(l)] ≥ log2(n)
1− 1.05h(t)

1− h(t)
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Additionally, the cost divided by n is at least:

cost
n

≥ El∼X [t · b(l)]

This is because each balanced node v contributes at least t to the cost ratio (by definition of being
balanced).

Combining these results gives that the cost is at least:

cost ≥ n log2(n)
t(1− 1.05h(t))

1− h(t)

Setting t = 0.2 gives that the cost is at least 0.1n log2 n, which establishes our claim with constant
C = 0.1.

■

Proof of Theorem 4.3 Consider all 2T concepts over {x1, . . . , xT }, each paired with a concept
class that contains it, permitted by the family F . Consider the uniform distribution over all these 2T

(concept, concept class) pairs. Consider any deterministic algorithm that makes at most T/20 queries
on any input. For any deterministic algorithm that makes at most T/20 queries on any input, we will
show that the expected number of mistakes plus queries is at least T/10.

We can represent the algorithm’s execution as a binary decision tree. The root node contains all 2T
possible (concept, concept class) pairs. The tree branches in one of two ways:

1. At a query node: The algorithm queries the weak consistency oracle, creating two children
corresponding to the possible responses (yes/no). Both edges are colored red to represent
oracle queries.

2. At a prediction node: The algorithm makes a prediction for some example. To minimize
mistakes, the optimal strategy is to predict the majority label among remaining concepts.
When a mistake occurs (prediction differs from the true concept’s label), we draw a blue
edge to the corresponding child node. This child will contain fewer leaves than its sibling,
as it represents the minority prediction.

The leaf nodes each correspond to a single (concept, concept class) pair, uniquely identified through
the algorithm’s execution path.

The expected cost (mistakes plus queries) equals the expected number of red and blue edges encoun-
tered on a random path from root to leaf, where the randomness comes from uniformly selecting
among all possible concepts. This cost can be lower-bounded by considering a modified tree where
each query node has only one red edge pointing to the child with fewer leaves (rather than two red
edges to both children).

By applying Lemma G.1 to this modified tree, with each node labeled by the number of leaves in
its subtree, we obtain a lower bound of Ω(T ) on the expected cost. Specifically, with the constant
derived in Lemma G.1, the expected number of mistakes plus queries is at least T/10.

Since a randomized algorithm is simply a distribution over deterministic algorithms, by Yao’s
minimax principle, the expected cost of any randomized algorithm against our uniform distribution
over concepts is also at least T/10. Therefore, any algorithm making at most T/20 queries must
incur at least T/20 expected mistakes.

■

G.3 A Lower Bound with the ERM Oracle

A lower bound for mistakes that is exponential in the Littlestone dimension can additionally be
shown for the ERM Oracle in the transductive online setting. The following theorem complements
Theorem 3.1 from the online setting, but is a lower bound on deterministic algorithms, with an
assumption on the number of queries made (o(T )).
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Theorem 4.4 (Lower Bound for Transductive Online Learning with ERM Oracles - Determinis-
tic Algorithms) Let F be the family of all classes with Littlestone dimension dLD. For T ≥ 2dLD+1,
when having access to the ERM oracle, if fewer than T/2 queries are made, at least 2dLD −1 mistakes
will be made.

Proof We consider the family of classes Ftr,k, which consists of threshold functions partitioned into
k equivalence classes, defined as follows:

For every partition of X into X1 ⊔ X2 ⊔ . . . ⊔ Xk, we construct a class C containing k + 1 concepts
c0, c1, . . . , ck, where:

ci(x) =

{
0 if x ∈ Xj for some j ≤ i

1 otherwise

We specifically consider Ftr,2dLD . All concepts in this family have Littlestone dimension at most dLD,
so Ftr,2dLD ⊂ F . Therefore, proving a lower bound for Ftr,2dLD will establish a lower bound for F .

The key property is that classes in this family can be viewed as thresholds on 2dLD points, where the
points are divided into 2dLD equivalence classes. Our adversarial strategy will reveal information
about these equivalence classes one at a time, with each mistake forcing the learner to move to a new
equivalence class.

For each timestep t = 1, . . . , T , after q queries have been processed during timestep t, we maintain
three sets:

• O
(q)
t : Old threshold points whose labels are definitively known

• C
(q)
t : Copies of the current threshold point (all having the same known label)

• U
(q)
t : Uncertainty region (points whose labels are unknown)

We initialize O
(0)
1 := ∅, C(0)

1 := ∅, U (0)
1 = {x1, x2, . . . , xT }.

Let K be an integer denoting how many equivalence classes of the threshold have been currently
observed. Initially, K = 0.

At the beginning of timestep 1, the learning algorithm will either make a prediction or a query:

• If a query is made: The learner cannot gain information by assigning the same label to all
points in the query. Thus, the query must contain both a point labeled 0 and a point labeled 1.
Let z0 be the earliest indexed point in the query labeled 0, and let z1 be the earliest indexed
point labeled 1.

The adversary returns “not realizable" and designates z1 as the first point of the first
equivalence class with label one on the extreme right end of the threshold (increment K to 1

and set yc = 1). Update C
(1)
1 := {z1}, O(1)

1 := ∅, and U
(1)
1 = U

(0)
1 \ {z1}.

• If a prediction ŷ1 is made for x1: The adversary makes this prediction incorrect by setting
y1 = 1− ŷ1, and designates x1 as the first point of the first equivalence class, and places x1

on the extreme end of the threshold corresponding to y1 (increment K to 1 and set yc = y1).
Update C

(1)
1 := {x1}, O(1)

1 := ∅, and U
(1)
1 = U

(0)
1 \ {x1}.

Let K be an integer, which denotes how many equivalence classes of the threshold have been currently
seen. After the above, only (part of) one equivalence class has been seen, so set K = 1.

For subsequent operations, suppose we are at timestep t, having made q queries in this timestep.
This corresponds to sets O(q)

t , C(q)
t , U (q)

t , where points in C
(q)
t have label yc and belong to the K-th

equivalence class. The algorithm proceeds as follows:

• If the learner makes a query:
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– Including points from O
(q)
t in queries provides no additional information. This is

because points in O
(q)
t have fixed, known labels that constrain the possible labelings of

U
(q)
t , but do not provide new information beyond what is already known.

– Suppose the query includes points from C
(q)
t and U

(q)
t . The query points from C

(q)
t

must always have label equal to yc (otherwise, all points in U
(q)
t will be forced to have

label 1− yc, in which case the queries will give no information). Furthermore, for the
query to provide new information, there must exist some point z ∈ U

(q)
t assigned label

1− yc in the query.
The adversary returns "not realizable" and selects z to be the earliest indexed point
in U

(q)
t labeled 1 − yc in the query. The adversary then designates z as another

point in the current equivalence class: C(q+1)
t := C

(q)
t ∪ {z}, U (q+1)

t := U
(q)
t \ {z},

O
(q+1)
t := O

(q)
t .

– If the query includes only points from U
(q)
t : If all labels in the query are identical,

the ERM can satisfy the query without providing useful information (by labeling all
elements in U

(q)
t the same. Therefore, the query must include both a point labeled 0

and a point labeled 1.
Let z0 be the earliest indexed element of U (q)

t labeled 0 in the query, and let z1 be
the earliest indexed element labeled 1. The adversary returns "not realizable" and
designates z1−yc

as a copy of the elements in C
(q)
t : C

(q+1)
t := C

(q)
t ∪ {z1−yc

},
U

(q+1)
t := U

(q)
t \ {z1−yc

}, O(q+1)
t := O

(q)
t .

• If the learner makes a prediction for xt:

– If xt ∈ O
(q)
t ∪ C

(q)
t , then the learner already knows the correct label. Update O

(0)
t+1 :=

O
(q)
t , C(0)

t+1 := C
(q)
t , U (0)

t+1 := U
(q)
t .

– If xt ∈ U
(q)
t and the learner predicts ŷt: The adversary sets yt = 1 − ŷt, forcing a

mistake, and increments K by 1 (moving to a new equivalence class, and placing xt on
an extreme end of U (q)

t in the ordering corresponding to yt). The point xt becomes the
first representative of this new class.
If K < 2dLD , update C

(0)
t+1 := {xt}, U (0)

t+1 := U
(q)
t \ {xt}, O(0)

t+1 := O
(q)
t ∪ C

(q)
t , and

set yc = yt for the new equivalence class.
If K = 2dLD , then all remaining points in U

(q)
t belong to the same final equivalence

class with label yt. Update O
(0)
t+1 = {x1, . . . , xT }, C(0)

t+1 = ∅, U (0)
t+1 = ∅.

An essential property is that each query provides information about at most one point. Since the
learner makes fewer than T/2 queries, there are at least ⌈T/2⌉ points about which no information is
gained through queries. Let these points, in order of their indices, be z1, z2, . . . , z⌈T/2⌉.

Given that T/2 ≥ 2dLD , the adversary can force mistakes on at least the first 2dLD − 1 of these points,
with each mistake corresponding to the discovery of a new equivalence class. Therefore, the learner
makes at least 2dLD − 1 mistakes.

■

H Transductive Online Learning: Thresholds, Intervals, and Hamming Balls

To gain deeper insight into learning Littlestone classes using ERM oracle queries, we analyze two
characteristic examples of Littlestone classes: d-Hamming Balls and thresholds. We additionally
study unions of k intervals.

H.1 Thresholds

We restate our results for transductive online learning with thresholds.
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Theorem 4.5 (Upper Bounds on Transductive Online Learning of Thresholds) Consider trans-
ductive online learning where F is the family of threshold classes. The following results hold:

1. There exists a deterministic algorithm that makes O(T log T ) calls to the weak consistency oracle
and incurs at most O(log T ) mistakes.

2. There exists a randomized algorithm that makes O(T ) calls in expectation to the weak consistency
oracle and incurs at most O(log T ) mistakes.

3. There exists a deterministic algorithm that makes O(T ) calls to the ERM oracle and incurs at
most O(log T ) mistakes.

4. There exists a randomized algorithm that makes at most O(log T ) calls to the ERM oracle in
expectation and makes at most O(log T ) mistakes.

Proof Deterministic + weak consistency oracle (Part 1): The key insight is that for any two points
xi, xj , we can determine their relative ordering in ⪯ using a single query to the weak consistency
oracle. Specifically, we check if the dataset {(xi, 0), (xj , 1)} is realizable by C⪯. If it is realizable,
then xi ⪯ xj ; otherwise, xj ⪯ xi.

To determine the complete ordering of all T points, we employ a comparison-based sorting algorithm
requiring O(T log T ) oracle calls. Once the points are sorted according to ⪯, we can run standard
online learning algorithms (such as the Standard Optimal Algorithm or the Halving Algorithm) on
the sorted sequence, incurring at most O(log T ) mistakes, which matches the Littlestone dimension
of the class.

Randomized + weak consistency oracle (Part 2): We present a randomized algorithm that efficiently
learns the threshold by maintaining boundary points and strategically sampling points with unknown
labels.

For each time step t, we maintain two boundary points:

• rt: the rightmost point in {x1, x2, . . . , xt−1} labeled 0

• ℓt: the leftmost point in {x1, x2, . . . , xt−1} labeled 1

Initially, we set r1 = −∞ and ℓ1 = ∞ as sentinel values to represent the entire range.

When presented with a new point xt, we first determine its position relative to our current boundaries
using two weak consistency oracle queries:

• Query 1: Is {(xt, 1), (rt, 0)} realizable? If not realizable, then xt ⪯ rt, so xt must be
labeled 0.

• Query 2: Is {(ℓt, 1), (xt, 0)} realizable? If not realizable, then ℓt ⪯ xt, so xt must be
labeled 1.

If either query resolves the label, we predict accordingly. Otherwise, xt falls in the uncertainty region
Ut = (rt, ℓt). To predict efficiently, we estimate xt’s relative position within Ut as follows:

In the initial case when r1 = −∞ and ℓ1 = ∞, these comparisons are not well-defined. For the
first few points until both boundary points are properly established, we employ a simple strategy:
predict 0 until observing the first 1, then predict 1 until observing the first 0 (if ever). This approach
guarantees at most 2 mistakes during this initialization phase, after which our boundary points become
well-defined and the main algorithm takes over.

We sample m = ⌈36 log(1/δ)⌉ points uniformly at random from Ut, where δ is a small constant
probability of error. For each sampled point zi, we query whether zi ⪯ xt and record the indicator
Bi = 1[zi ⪯ xt]. Let p̂ = 1

m

∑m
i=1 Bi be our estimate of the true fraction p = Pz∼Ut [z ⪯ xt],

which represents xt’s relative position in Ut.

By Hoeffding’s inequality:

P[|p̂− p| > 1/6] ≤ 2 exp(−2m(1/6)2) ≤ δ

Therefore, with probability at least 1− δ, we have one of the following cases:
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• If p̂ ≤ 1/3: xt likely lies in the first third of Ut, so we predict label 0

• If p̂ ≥ 2/3: xt likely lies in the last third of Ut, so we predict label 1

• Otherwise: We can predict either label (for concreteness, predict 0)

If our prediction is incorrect, the threshold must lie in at most 2/3 of the original interval Ut. After
each mistake, we update rt or ℓt based on the observed label, further constraining the uncertainty
region. Since each mistake reduces the length of the uncertainty region by a factor of at least 3/2,
the total number of mistakes is bounded by ⌈log3/2 T ⌉ = O(log T ). Once the true label yt is known,
one can perform a constant number of queries to update rt+1 and ℓt+1 based on the value of yt.

In practice, we cannot directly sample from Ut since we don’t know which unlabeled points lie
within it. Instead, we sample from all unlabeled points and test each sampled point z using the weak
consistency oracle:

• Query if z ⪯ rt: If true, z is to the left of Ut (and label z as 1 and discard it from the set of
unlabeled points)

• Query if ℓt ⪯ z: If true, z is to the right of Ut (and label z as 0 and discard it from the set of
unlabeled points)

• Otherwise, z ∈ Ut and can be used in our estimation

Samplings of the first and second types will happen at most once, since it can only be discarded at
most once from the set of unlabeled points. Thus, the first and second types of samples contribute
O(T ) calls to the weak consistency oracle. The analysis for the third type carries from earlier. Thus,
the total number of oracle calls is O(T ), with O(log T ) mistakes.

Deterministic + ERM Oracle (Part 3): We present a deterministic algorithm that uses the ERM
oracle to efficiently learn the total ordering of all points, then applies a standard online learning
algorithm.

First, we employ a divide-and-conquer approach to sort all points:

1. Select two arbitrary points z1 and z2 from the current set.

2. Make two ERM oracle queries: one with the labeled set {(z1, 0), (z2, 1)} and another with
{(z1, 1), (z2, 0)}.

3. Exactly one of these queries will be realizable by the threshold class. If {(z1, 0), (z2, 1)} is
realizable, then z1 ⪯ z2; otherwise, z2 ⪯ z1.

4. Consider the concept c defined by the ERM oracle query that is realizable. This concept
partitions the points into two sets: S0 = {x : c(x) = 0} and S1 = {x : c(x) = 1}.

5. By the nature of threshold functions, all points in S0 must precede all points in S1 in the
underlying total order. Recursively sort S0 and S1 using the same approach.

For the base case (when a subset has size 1 or 0), no sorting is needed.

Let T (n) be the number of ERM oracle calls needed to sort n points. We have: T (n) = T (|S0|) +
T (|S1|) + 2, where |S0|+ |S1| = n

In the worst case, this recurrence solves to T (n) = O(n), meaning our algorithm makes O(T ) calls
to the ERM oracle.

Once the points are sorted, we can run a standard online algorithm just as was done in the (determin-
istic + weak consistency oracle) case, incurring at most O(log T ) mistakes.

Randomized + ERM Oracle (Part 4): We present a randomized algorithm that efficiently learns the
threshold by maintaining and updating a partitioning of the input space.

We maintain three disjoint sets throughout the algorithm:

• Lt: Points known to be to the left of the threshold (labeled 0)
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• Rt: Points known to be to the right of the threshold (labeled 1)

• Ut: Points with unknown labels (i.e., points between Lt and Rt)

Initially, we set L1 = ∅, R1 = ∅, and U1 = {x1, x2, . . . , xT }.

At the beginning of each time step t, if we need to make a prediction for point xt, we first check if
we already know its label:

• If xt ∈ Lt, predict ŷt = 0

• If xt ∈ Rt, predict ŷt = 1

If xt ∈ Ut, we need to make a prediction based on our current understanding of the threshold location.
We proceed as follows:

1. Base Case: If |Ut| ≤ 5, we determine the exact ordering of the remaining points with
a constant number of ERM oracle calls using a simple sorting algorithm, and predict
accordingly.

2. Partitioning Step: If |Ut| > 5 and we haven’t already computed a partition (UL,t, UR,t) of
Ut, we compute one as follows:

(a) Sample two points z1, z2 uniformly at random from Ut

(b) Call the ERM oracle with the labeled pair {(z1, 0), (z2, 1)}
(c) If this labeling is realizable, the oracle returns a concept cz ∈ C with a threshold

between z1 and z2. We define:
• UL,t = {x ∈ Ut : cz(x) = 0} (points labeled 0 by concept cz)
• UR,t = {x ∈ Ut : cz(x) = 1} (points labeled 1 by concept cz)

(d) If min(|UL,t|, |UR,t|) < 1
3 |Ut| (i.e., the partition is too imbalanced), we repeat sam-

pling and partitioning
(e) By random sampling properties, after O(log(1/δ)) attempts, we find a balanced parti-

tion with probability at least 1− δ

3. Prediction using Partition: Once we have a valid partition (UL,t, UR,t):

• If xt ∈ UL,t, predict ŷt = 0

• If xt ∈ UR,t, predict ŷt = 1

4. Update Rule: After receiving the true label yt:

• If our prediction was correct, we maintain the current partitioning
• If we predicted ŷt = 0 for xt ∈ UL,t but received yt = 1 (a mistake), then:

– All points in UR,t must have label 1
– Update: Rt+1 = Rt ∪ UR,t

– Update: Lt+1 = Lt

– Update: Ut+1 = UL,t

– Invalidate the current partition for the next time step
• If we predicted ŷt = 1 for xt ∈ UR,t but received yt = 0 (a mistake), then:

– All points in UL,t must have label 0
– Update: Lt+1 = Lt ∪ UL,t

– Update: Rt+1 = Rt

– Update: Ut+1 = UR,t

– Invalidate the current partition for the next time step

For mistake analysis, each mistake reduces the size of the unknown region Ut by a factor of at least
2/3, since we ensure that min(|UL,t|, |UR,t|) ≥ 1

3 |Ut| and at least one of these regions is moved
to either Lt+1 or Rt+1 after a mistake. Since |U1| = T and each mistake reduces |Ut| by a factor
of at least 2/3, after O(log3/2 T ) = O(log T ) mistakes, we have |Ut| ≤ 5, at which point we can
determine the exact threshold with a constant number of additional mistakes.
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For oracle complexity, we make O(log(1/δ)) ERM oracle calls per mistake to find a balanced
partition, where δ is a small constant. With O(log T ) mistakes, this results in a total of O(log T ·
log(1/δ)) = O(log T ) ERM oracle calls in expectation.

Therefore, our randomized algorithm makes O(log T ) mistakes and requires O(log T ) ERM oracle
calls in expectation. ■

H.2 Intervals

We now go into the results for k-Intervals (Fint,k)

Proposition H.1 (VC Dimension of k-Intervals) Given an instance space X with |X | ≥ 2k + 1,
for any C ∈ F , the VC Dimension of C is equal to 2k + 1.

Proof For the lower bound of 2k, consider any 2k points z1 ≺ z2 ≺ . . . ≺ z2k under the ordering ⪯.
Any labeling of these points is realizable because it requires at most k intervals to separate regions
labeled 1, as each maximal contiguous sequence of 1s forms one interval.

For the upper bound, observe that any set of 2k+1 points cannot be shattered. Specifically, for points
z1 ≺ z2 ≺ . . . ≺ z2k+1, the alternating labeling c(zi) = i mod 2 would require k + 1 intervals to
realize, which exceeds the capacity of the class. ■

Theorem 4.6 (Upper Bound on Transductive Online Learning of k-Intervals with Weak Con-
sistency Oracle - Randomized Algorithm) Consider transductive online learning with the family
Fint,k. There exists a randomized algorithm that makes O(T 3 · 22k) calls to the weak consistency
oracle in expectation and makes at most O(k log T ) mistakes.

Our approach to proving this theorem consists of two phases: (1) determining the unknown ordering
⪯ that defines the concept class, and (2) applying standard online learning algorithms once the
concept class is identified. The key insight is that we can efficiently identify the relative ordering of
points by testing which points are at the extremes of the ordering.

Lemma H.2 (Testing for extreme points) Let C ∈ Fint,k be an unknown concept class, and consider
a set U ⊂ X with |U | ≥ 2k + 2. For any z ∈ U , it requires O(|U | · 22k) weak consistency oracle
queries to determine, with high probability, whether z is one of the two endpoints (minimum or
maximum) in U with respect to the ordering ⪯ corresponding to C.

To prove the lemma, we also make use of the following lemma:

Lemma H.3 (Lower bound on mis-labeling probability for non-endpoints) Let z ∈ U be a
point that is not an endpoint in the ordering ⪯ over U , where |U | ≥ 2k + 2. When 2k points are
sampled uniformly at random from U \{z} without replacement and construct the unique unrealizable
alternating labeling over the resulting set of 2k + 1 points, the probability that z receives label 0 is
at least 1

|U | .

Proof of Lemma H.3 Let n := |U | and s := 2k. Since z is not an endpoint, its rank in the total
ordering on U is some r ∈ {2, . . . , n− 1}. This means there are A := r − 1 ≥ 1 points below z and
B := n− r ≥ 1 points above z. Since both endpoints in the ordering are in the odd position, let’s
assume without loss of generality that r ≤ n+1

2 , i.e. r is on the “left half" of the ordering.

After sampling s points without replacement from U \ {z}, let L denote the number of sampled
points that lie below z in the ordering. Then L follows a hypergeometric distribution:

P[L = ℓ] =

(
A
ℓ

)(
B
s−ℓ

)(
n−1
s

) .

In the alternating labeling pattern of the 2k + 1 points, z receives label 0 if and only if it occupies an
even position in the sorted order, which occurs precisely when L is odd.
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Define Peven =
∑

ℓ odd P[L = ℓ] and Podd =
∑

ℓ even P[L = ℓ]. By the alternating Vandermonde
identity [JSJ+15], we have:

Peven − Podd =
(−1)s

(
B−A−1

s

)(
n−1
s

) .

Since A,B ≥ 1, we have |B −A− 1| ≤ n− 3, which gives us:

|Peven − Podd| ≤
(
n−3
s

)(
n−1
s

) =
(n− 1− s)(n− 2− s)

(n− 1)(n− 2)
≤ 1− s

n− 1
.

Therefore:

Peven =
1

2
(1 + (Peven − Podd)) ≥

1

2
(1− |Peven − Podd|)

≥ 1

2

(
1−

(
1− s

n− 1

))
=

s

2(n− 1)
=

k

n− 1
.

Since n = |U | ≥ 2k + 2 and k ≥ 1, we conclude that Peven ≥ k
|U |−1 ≥ 1

|U | . ■

We prove Lemma H.2 below.
Proof of Lemma H.2 We first establish a critical property of k-interval concept classes: For any
sequence of 2k + 1 points z1 ≺ z2 ≺ . . . ≺ z2k+1 arranged according to the underlying ordering
⪯, the alternating labeling c(zi) = i mod 2 is the unique labeling that cannot be realized by any
concept in the class. This is because any k-interval concept can create at most k label transitions
when moving from one point to the next in the ordered sequence, but the alternating labeling requires
2k transitions.

Now, consider performing the following process:

1. Randomly sample 2k points from U \ {z} without replacement.

2. Consider the set S consisting of these 2k sampled points together with z.

3. Using the weak consistency oracle, test all 22k+1 possible labelings of S to identify the
unique unrealizable labeling.

4. Observe the label assigned to z in this unrealizable labeling.

The key insight is that in the unique unrealizable labeling (the alternating pattern), the position of z
in the ordering determines its label:

• If z is the minimum element in S (i.e., z ≺ z′ for all z′ ∈ S \ {z}), it will be labeled 1 in
the unrealizable labeling.

• If z is the maximum element in S (i.e., z′ ≺ z for all z′ ∈ S \ {z}), it will be labeled 1 in
the unrealizable labeling.

• If z is neither the minimum nor maximum in S, its label in the unrealizable labeling depends
on its position in the sequence and will be either 0 or 1, depending on whether the position
is odd or even.

We now analyze the probability of correctly identifying whether z is an endpoint:

• If z is truly an endpoint (minimum or maximum) in U , then in every sample S, z will be at
the same extreme position in the ordering of S. Consequently, z will receive the same label
(either consistently 1 for the minimum, or consistently 1 for the maximum since |S| = 2k+1
is odd) in the unrealizable labeling across all samples.

• If z is not an endpoint in U , then in different random samples, the probability that z is
labeled as 0 in a realizable labeling, by Lemma H.3, is at least 1

|U | .
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To ensure correctness with high probability (at least 1− δ for some small constant δ), we repeat this
sampling process O(|U | · log 1

δ ) times. By the properties of independent trials, if z is not an endpoint,
we will observe a contradictory label with high probability after these repetitions.

The total number of weak consistency oracle queries required is:

O(|U | · log 1

δ
· 22k+1) = O(|U | · 22k) (1)

when setting δ to be a small constant. ■

Now we prove the theorem.
Proof of Theorem 4.6 Our approach consists of two phases: (1) determining the unknown ordering
⪯ that defines the concept class with high probability, and (2) applying a standard online learning
algorithm once the concept class is identified.

Phase 1: Determining the ordering. We will identify the ordering of the input points {x1, . . . , xT }
by successively identifying extreme points:

1. Initialize U = {x1, . . . , xT } and an empty sequence S.

2. While |U | > 2k + 1:

(a) Identify extreme points z1, z2 using Lemma H.2 by iterating over all T points.
• If it’s the first iteration (i.e. |U | = T ), designate z2 as z∗. z∗ will be the same fixed

point for the remaining iterations.
• For whichever i ∈ {1, 2} such that zi ̸= z∗, append z to S and remove it from U .

3. The remaining points in U (at most 2k + 1) can be placed in any order at the end of S.

This procedure yields a sequence S = (z1, z2, . . . , zT−|U |, . . .) which, with high probability, repre-
sents either the correct ordering ⪯ or its reverse. Since the definition of the interval concept class is
symmetric with respect to ordering direction, we can arbitrarily choose one direction.

To analyze the number of queries, when identifying the extreme points z1 and z2 using Lemma H.2,
at most T points are tested, which involves O(T 222k) queries. There are T iterations in the algorithm,
giving that there are O(T 322k) queries.

Phase 2: Learning with the determined ordering. Once we have determined the ordering ⪯ with
high probability, we know that the target concept belongs to the class Cint,⪯,k. This class has VC
dimension 2k and Littlestone dimension O(k log T ). We thus know the concept class for all but at
most 2k points. We can now apply the Standard Optimal Algorithm (SOA) or the halving algorithm
for this concept class. When seeing one of the 2k points for where the ordering is uncertain, predict
arbitrarily. These algorithms guarantee a mistake bound of O(k log T ) in the realizable case, and the
2k uncertain points contribute at most 2k points, resulting in an O(k log T ) mistake bound. ■

H.3 Hamming Balls

For a set X , we define the family of concept classes Fd = {Cf,d | f : X → {0, 1}}, where each Cf,d
represents the set of concepts that differ from f on at most d points:

Cf,d = {g : X → {0, 1} | |{x ∈ X : g(x) ̸= f(x)}| ≤ d}

These classes have several important properties. First, each Cf,d has Littlestone dimension exactly d.
To establish the lower bound, we can select any d distinct points x1, x2, . . . , xd ∈ X and construct
a Littlestone tree of depth d by placing xi at level i. By definition of Cf,d, all 2d possible labelings
of these points are achievable by some concept in the class, thus confirming that the Littlestone
dimension is at least d.

For the upper bound, suppose for contradiction that there exists a Littlestone tree of depth d + 1
that is shattered by Cf,d. Let z1 be the root node of this tree. For each i ∈ {1, 2, . . . , d}, define
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zi+1 recursively as follows: if f(zi) = 0, let zi+1 be the right child of zi; otherwise, let zi+1 be the
left child of zi. This construction yields a concept c ∈ Cf,d that must satisfy c(zi) ̸= f(zi) for all
i ∈ {1, 2, . . . , d + 1}. But this implies that c disagrees with f on d + 1 points, contradicting the
definition of Cf,d. Therefore, the Littlestone dimension is exactly d.
Theorem H.4 (Transductive Online Learning Bounds for d-Hamming Balls) Let Fd be the family
of d-Hamming Balls as defined above. Then:

1. There exists a deterministic algorithm that makes O(1) calls to the ERM oracle and incurs
at most O(d) mistakes.

2. There exists a deterministic algorithm that makes O(T ) calls to the weak consistency oracle
and incurs at most O(d) mistakes.

Before proving the theorem, we comment that in the transductive online learning setting, one can
make a reduction from the weak consistency oracle to ERM, achieving the same mistake bound, but
with an additional O(T ) factor. This comes from the observation that ERM solves a search problem
(it searches for a concept), while the weak consistency oracle solves a decision problem (it determines
whether or not a dataset is realizable), and ERM to return a function restricted to T points can be
solved by running our decision problem T times. This is captured via the following lemma.
Lemma H.5 (Reducing ERM Oracle to Weak Consistency Oracle) Consider a transductive online
learning algorithm that makes at most Q ERM oracle calls where each call only uses points from the
set {x1, . . . , xT } as inputs, only evaluates the returned concepts on these points, and makes at most
M mistakes. Then there exists an algorithm that uses at most TQ weak consistency oracle calls and
makes at most M mistakes.

Proof We simulate each ERM call using at most T weak consistency calls. For each ERM query
on a set S = {(xi1 , yi1), . . . , (xik , yik)} with k ≤ T and all xij ∈ {x1, . . . , xT }, we construct a
concept c as follows:

First, we check if S is realizable by making a weak consistency call on S. If S is not realizable, we
return "not realizable" as the ERM oracle would.

If S is realizable, we construct a concept c ∈ C consistent with S by determining the values of c on
each point in {x1, . . . , xT }:

• For points already in S, we set c(xij ) = yij for all j ∈ [k].

• For each xj ∈ {x1, . . . , xT } \ {xi1 , . . . , xik}, we query the weak consistency oracle with
S ∪ {(xj , 1)}. If the result is true, we set c(xj) = 1; otherwise, we set c(xj) = 0 (as there
must exist a concept in C consistent with S that assigns 0 to xj).

This procedure uses at most T weak consistency calls per ERM query (one initial call to check
realizability, and at most T −k additional calls for the remaining points). Since the original algorithm
makes at most Q ERM calls, the total number of weak consistency calls is at most TQ.

Furthermore, since we accurately simulate each ERM call by returning a concept consistent with
the query set whenever such a concept exists, and the original algorithm only evaluates the returned
concepts on points in {x1, . . . , xT }, the mistake bound M of the original algorithm is preserved. ■

Now we prove the theorem.
Proof of Theorem H.4 For the ERM oracle bound, the algorithm begins by querying the oracle with
the empty set to obtain a function c ∈ Cf,d. By definition, both c and the target concept are at most d
away from the center function f , so by the triangle inequality, they can disagree on at most 2d points.
The algorithm simply uses c to make all its predictions, resulting in at most 2d mistakes with just a
single ERM oracle query.

For the weak consistency oracle bound, we apply Lemma H.5. Since our ERM-based algorithm only
evaluates the returned concept on the points x1, . . . , xT and makes O(1) ERM calls, we can simulate
it using O(T ) weak consistency oracle calls while maintaining the same mistake bound of O(d). ■

Furthermore, it is possible to get the optimal transductive mistake bound, if one relaxes the number
of queries needed.
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Theorem H.6 (d-Hamming Balls, Optimal Mistake Bound) Consider transductive online learning
with Fd, the family of d-Hamming balls. Then, optimal mistake bounds can be achieved using at
most 2d+1 queries using the ERM oracle.

Proof Consider x1, x2, . . . , xd+1, and let the unknown concept class be Cf,d There is exactly one
non-realizable labeling of these d+ 1 points (since every other labeling disagrees with f by at most
d points). Then, one can recover f(x1), f(x2), . . . , f(xd+1) via flipping the labels in the realizable
labeling. Perform an ERM query with inputs {(x1, 1− f(x1)), . . . (xd, 1− f(xd))}. The oracle will
output the value of f for xd+1, . . . , xT , allowing the learner to gain knowledge of the concept class,
from which they can perform standard transductive online learning. ■

42


	Introduction
	Our Contribution

	The Learning Models: Online and Transductive Online Learning with Oracle Access
	Online Learning
	Transductive Online Learning
	Thresholds, Intervals, and Hamming Balls

	Discussion
	Additional Related Work
	Preliminaries
	Mistakes-Oracle Calls Pareto Frontier 
	Pareto Frontier for Online Learning with ERM for Littlestone Classes
	Pareto Frontier for Transductive Online Learning with ERM for Littlestone Classes

	Online Learning with ERM Oracle: Lower Bounds for Realizable and Agnostic Settings
	ERM Oracle Lower Bound for the Realizable Case
	ERM Oracle Lower Bound for the Agnostic Case

	Online Learning with Weak Consistency Oracle: Upper Bounds 
	Online Learning with ERM Oracle: Lower Bounds for Partial Concepts
	Transductive Online Learning: General Concept Classes
	Upper Bounds with the Weak Consistency Oracle
	A Lower Bound with the Weak Consistency Oracle
	A Lower Bound with the ERM Oracle

	Transductive Online Learning: Thresholds, Intervals, and Hamming Balls
	Thresholds
	Intervals
	Hamming Balls


