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Abstract
Many studies show evidence for cognitive abil-001
ities in Pre-trained Language Models (PLMs).002
Researchers have evaluated the cognitive align-003
ment of PLMs, i.e., their correspondence to004
adult performance across a range of cogni-005
tive domains. More recently, the focus has006
expanded to the developmental alignment of007
these models: identifying phases during train-008
ing where improvements in model performance009
track improvements in children’s thinking over010
development. However, challenges to this use011
are twofold: (1) PLMs have very different ar-012
chitectures than human minds and brains, and013
the data sets on which they are trained differ014
in many ways from the inputs children receive.015
(2) The “outputs” of PLMs are different from016
the behavioral measures that cognitive scien-017
tists collect in their experiments and evaluate018
their theories against. In this paper, we distill019
lessons learned from using PLMs for cognitive020
modeling and outline the pitfalls of attempt-021
ing to use PLMs, not as engineering artifacts,022
but as cognitive science and developmental sci-023
ence models. We review assumptions used by024
researchers to map measures of PLM perfor-025
mance to measures of human performances026
and then, enumerate criteria for using PLMs027
as credible accounts of cognition and cognitive028
development.029

1 Introduction030

With the improving performance of language mod-031

els (Touvron et al., 2023; Gemini Team, 2023; Ope-032

nAI, 2023; Wei et al., 2022), researchers have in-033

creasingly advocated for the use of Language mod-034

els as computational models of cognition (Pianta-035

dosi, 2023; Mahowald et al., 2024; Warstadt and036

Bowman, 2024). This includes domains such as037

mathematical reasoning (Shah et al., 2023; Ahn038

et al., 2024), language comprehension (Warstadt039

et al., 2020; Ye et al., 2023; Koubaa, 2023), concept040

understanding (Vemuri et al., 2024), and analogical041

reasoning (Webb et al., 2023; Hu et al., 2023).042

More recently, researchers have used PLMs for 043

modeling cognitive development in children (Hos- 044

seini et al., 2022; Kosoy et al., 2023; Frank, 2023; 045

Shah et al., 2024). For example, Portelance et al. 046

(2023) suggests the use of language models to pre- 047

dict the age of acquisition of words in children. 048

Shah et al. (2024) map the development of cog- 049

nitive intelligence in humans to scaling training 050

tokens and model size in PLMs. Other researchers 051

also propose studying bilingualism by mapping 052

pre-training steps in PLMs to understand the rate 053

of language development (Evanson et al., 2023; 054

Marian, 2023; Sharma et al., 2024). 055
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Figure 1: Overview of the Lessons from using PLMs
for Human Cognitive Modeling.

In this paper, we advocate for the use of PLMs as 056

candidate theories of cognitive and developmental 057

science. We first review the pitfalls of using PLMs 058

in psychological science and caution researchers 059

against over-interpreting PLM alignment to human 060

cognition. We then review the common assump- 061

tions used by researchers to map measures of PLM 062

performance to measures of human performance. 063

In doing so, we build upon previous work enumer- 064

ating best practices for cognitive evaluations of 065

PLMs (Ivanova, 2023; Mahowald et al., 2024). 066

2 Pitfalls of using PLMs as scientific 067

theories 068

Some pitfalls come when using PLMs as cognitive 069

science theories, i.e., of adult thinking. 070
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• Human brains and PLMs are architecturally dif-071

ferent. Recent research is attempting to map072

regions of the brain to different aspects of PLMs073

(layers, attention heads, etc.) in terms of lo-074

cal functionality and performance characteristics.075

However, this work is in its infancy, and its via-076

bility remains an open question (Hosseini et al.,077

2022; Kauf et al., 2023).078

• Researchers use a linking hypothesis to map079

model performance characteristics (e.g., log prob-080

abilities) to human performance characteristics081

(e.g., reading times) (Shah et al., 2024). These082

links are often quite distal, making it unclear083

whether PLMs are actually “explaining” cogni-084

tive science data. (See the next section for further085

discussion.)086

• PLMs are opaque and have limited interpretabil-087

ity. Human alignment and the lack thereof is088

hard to debug. This is a barrier to treating these089

models as scientific theories (McGrath et al.; Kar090

et al., 2022).091

• Most studies evaluating the cognitive alignment092

of PLMs focus on a narrow range of cognitive093

abilities and overlook correlations with other abil-094

ities. This is in contrast with psychometric ap-095

proaches to intelligence that investigate the corre-096

lations across tests of a broad range of cognitive097

abilities: mathematical, verbal, spatial, fluid, and098

so on (Snow et al., 1984; Schneider and McGrew,099

2012). This is also in contrast to unified theories100

of cognition that attempt to model all cognitive101

abilities within a single computational framework102

(Mellon et al., 2007; Varma, 2011).103

Other pitfalls are specific to the use of PLMs as104

developmental science theories, i.e., of the progres-105

sions in children’s thinking.106

• PLM checkpoints are snapshots or fingerprints107

of the data they are trained on. Most research108

only looks at the final model checkpoints and109

not the change in the cognitive alignment of lan-110

guage models (development) as a function of data111

observed (Warstadt and Bowman, 2022; Frank,112

2023; Shah et al., 2024). Often, this is because of113

the unavailability of intermediate training check-114

points or resource constraints. This limits our115

understanding of the nature of PLM training.116

• Differences also exist in the nature of the data117

observed by PLMs versus humans. PLMs are118

trained on textual data that is magnitudes larger 119

than the number of words seen by children (Hueb- 120

ner et al., 2021; Hosseini et al., 2022; Warstadt 121

et al., 2023; Bhardwaj et al., 2024). On the other 122

hand, children learn from input from multiple 123

senses (Smith and Gasser, 2005), whereas mod- 124

els are not of an embodied nature (Chemero, 125

2023). 126

• For studies evaluating the developmental align- 127

ment, the observed developmental trajectories 128

might be artifacts of the pre-training order (Shah 129

et al., 2024). 130

3 Linking Hypotheses Mapping Model 131

Performance to Human Performance 132

Researchers use various linking hypotheses to map 133

PLM performance to human performance mea- 134

sures. While all these linking hypotheses are sim- 135

ple in theory, they have multiple possible opera- 136

tionalizations. We review four below. 137

Similarity computations: Many cognitive tasks 138

require people to judge the similarity of two 139

items. In this case, human similarity judgments 140

are directly modeled by computing the similar- 141

ity between the corresponding representations in a 142

PLM’s latent space. This can be via cosine simi- 143

larity or another metric. One example is typicality 144

effects, which is the finding people regard some 145

members as “better” examples of a category than 146

others (Bhatia and Richie, 2022; Richie and Bhatia, 147

2021). The rank of an item is determined by the 148

proportion of humans that produce an item when 149

asked to enumerate the items of the category. In 150

language models, the typicality of an exemplar for 151

a category is estimated by encoding the exemplar 152

name as a string, passing it through the language 153

model, and obtaining the corresponding word em- 154

bedding. Thereafter, the similarity between this 155

exemplar vector and the category prototype is cal- 156

culated, with a higher value indicating that the ex- 157

emplar is more typical. 158

Other cognitive tasks require comparing or dis- 159

criminating between two items. There, a common 160

linking hypothesis is that the greater the similar- 161

ity between the items in the model’s latent space, 162

the longer the comparison/discrimination time. For 163

example, Shah et al. (2023) map the time it takes 164

to compare two numbers to PLM similarity - the 165

greater the similarity of two number representa- 166

tions, the longer it takes for humans to differentiate 167

which one is greater (or lesser). 168
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However, there are two common obstacles to us-169

ing the similarity linking hypothesis. The first is170

that doing so requires models that make available171

the latent representations for similarity computa-172

tions. The second problem is that this method suf-173

fers from problems due to tokenization. Humans174

use words as granular units while models use to-175

kens (potentially words or subwords). This makes176

the nature of the mapping inconsistent as one unit177

of text for humans (words) may be mapped to two178

units of text for PLMs (tokens).179

Surprisal values: One way of quantifying the180

uncertainty of model generations is in terms of the181

summation of logarithmic probabilities. A com-182

mon linking hypothesis is that higher surprisal val-183

ues correspond to longer human response times.184

For instance, studies of reading (Rambelli et al.,185

2024; Ivanova et al., 2024b) and categorization186

(Misra et al., 2021) have found that higher model187

uncertainties predict longer human response times.188

Relative log probabilities have been used to distin-189

guish grammatical and ungrammatical sentences190

(Warstadt et al., 2020; Shah et al., 2024). They191

enable us to directly compare the right answer with192

all the candidate answers in a deterministic manner,193

i.e., there is no chance that the PLM will not calcu-194

late the sequential probability for a candidate string.195

Research also shows that surprisal values provide a196

better match to human plausibility judgments than197

prompts (Ivanova et al., 2024a).198

However, aproblem with surprisal-based ap-199

proaches is that they fail to show robustness to200

context (prompts).201

Prompting: PLM generation is probabilistic and202

therefore the same model can give different results203

across inference runs. A PLM is prompted to fol-204

low the same exercise as a human multiple times205

and generate a probability distribution over the out-206

put space. The probability of the correct output is207

then mapped to model confidence. Directly com-208

paring the generated behavior of PLMs with that209

of humans reduces or even eliminates the need for210

linking hypotheses (Patel and Pavlick, 2021; Webb211

et al., 2023; Zahraei and Emami, 2024).212

For example, a PLM can be prompted with:213

Which statement is grammatically correct? Your214

response must be "1" or "2".215

1. Noah likes to swim. 2. Noah likes to.216

The PLM can generate "1" for the correct answer.217

Another benefit of prompting is that it allows for218

variable output length. Tasks that benefit from this219

flexibility, like commonsense reasoning, are more220

suited for prompting (Yasunaga et al., 2023). 221

Example SAT analogical reasoning problem: 222

Analogy: Runner : Marathon :: ? 223

Options: 224

• Envoy : Embassy 225

• Martyr : Massacre 226

• oarsman : Regatta 227

• Horse : Stable 228

An example problem benefitting from variable 229

output length is SAT analogical reasoning tasks 230

(Turney, 2013). These are of the form A:B::? (see 231

example above). These are MCQ-based choice 232

tasks that can be operationalized as similarity com- 233

putation, surprisal, or a prompt-based reasoning 234

problem. In the prompting case, we can force the 235

generations to adhere to a goal: answer the correct 236

analogy in this output format: {"A":"B"::"C":"D"}. 237

That said, there are several limitations to the 238

prompting approach. First, PLMs are not robust 239

to the prompt format. Answering prompts requires 240

PLMs to have two abilities, (1) understanding the 241

prompt and (2) knowing the answer. Often, the out- 242

puts of PLMs vary substantially based on the input, 243

and sometimes maximum performance characteris- 244

tics are obtained on gibberish prompts (Deng et al., 245

2022). Second, PLMs may output an answer be- 246

yond the given candidate options for the prompting 247

approach. For example, the answer to the problem 248

described in blue above could be "It would be irre- 249

sponsible to imply that the grammatical structure of 250

a sentence is inconsequential, as clear communica- 251

tion is fundamental for safety and understanding" 252

(Cai et al., 2024). 253

Direct probing: Another alternative is to di- 254

rectly ask the model about its current state. For 255

example, to measure the incremental semantic un- 256

derstanding of temporarily ambiguous sentences, 257

Li et al. (2024) presents a dichotomous verification 258

sentence to the model after each word. In addition 259

to the direct probing, one can directly recover the 260

implicit parse tree after each word to measure in- 261

cremental syntactic understanding (Manning et al., 262

2020). PLM prompting helps support direct prob- 263

ing, which is often not possible in humans with 264

behavioral measures or even with neuroimaging 265

measures to “look under the hood”. 266

4 Criteria for Evaluating and Developing 267

PLMs as Scientific Models 268

PLMs are being increasingly considered as models 269

of cognitive and developmental science phenomena. 270
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In light of the pitfalls outlined above, we propose271

two sets of criteria for using PLMs for this purpose.272

The first set concerns the appropriateness of273

PLMs as scientific tools for cognitive and develop-274

mental modeling:275

• Design multiple experiments to test the align-276

ment of each cognitive or developmental phe-277

nomenon: PLMs may track the human per-278

formance characteristic well under one linking279

hypothesis or one type of test. However, this280

alignment may just be an artifact, for exam-281

ple, of pre-training data contamination. Con-282

ducting more experiments evaluating the same283

cognitive/developmental phenomena establishes284

stronger empirical plausibility.285

• Test the path-dependency of PLMs for devel-286

opmental alignment: The claim that the final287

model state of a PLM approximates adult perfor-288

mance leads to the question of the path by which289

it arrived there. Ideally, the model’s performance290

improvements over training should also track the291

progression of cognitive abilities over develop-292

ment (Elman, 1996; Bengio et al., 2009). This293

would support researchers exploring the scaling294

of training data and model size in their investiga-295

tions of human development.296

• Use multiple methods to interpret PLM suc-297

cesses and failures: PLMs lack explainability298

and interpretability due to their large size (Mc-299

Grath et al.). Some methods for PLM interpre-300

tation are often better than others. For example,301

in the experiments conducted by Li et al. (2024),302

incrementally constructed parse trees provided a303

better account of PLM alignment than the infor-304

mation from attention weights.305

• Control for tuning techniques: PLMs are often306

tuned on specific data and in different manners307

like Instruction Tuning, Reinforcement Learning308

from Human Feedback, etc. These tuning tech-309

niques influence model behavior and the model’s310

output centers around tuning goals rather than311

developing a representation of world knowledge.312

• Remember the linking hypothesis: Adaptation313

of human experimental materials to textual coun-314

terparts requires certain assumptions (refer to315

different operationalization in section 3). These316

assumptions need to be well documented and317

understood based on the experiment type.318

The second set of criteria is for guiding the devel- 319

opment of PLMs as credible accounts of cognition 320

and its development. This is a more open-ended 321

task, and the following can be considered as mere 322

suggestions to researchers: 323

• Evaluation techniques should follow the appropri- 324

ateness criteria above. PLMs should be evaluated 325

at regular intervals of pre-training to assess their 326

potential developmental alignment, which is of- 327

ten overlooked in studies of cognitive alignment. 328

• PLMs can be tuned with specific cognitively im- 329

portant tasks and evaluated on a breadth of cog- 330

nitively relevant tasks. For example, typicality 331

experiments (Vemuri et al., 2024; Misra et al., 332

2021) could be used to preference-tune PLMs 333

using reinforcement learning techniques. This 334

may lead to better cognitive alignment of PLMs 335

across a broader set of tasks. 336

• Pre-training data may benefit from developmen- 337

tally plausible corpora (Bhardwaj et al., 2024; 338

Warstadt and Bowman, 2022; Frank, 2023). This 339

includes training on a curriculum based on hu- 340

man skill acquisition, for example, the age-of- 341

acquisition of a word (Huebner et al., 2021; Porte- 342

lance et al., 2023). Informed pre-training will 343

allow us to better understand the developmental 344

alignment of models. 345

5 Conclusion 346

This paper advocates for the use of Pre-trained 347

Language Models (PLMs) as theoretical tools for 348

investigating human cognition and its development 349

In this advocacy, we are not alone (Warstadt and 350

Bowman, 2022; McGrath et al.; Frank, 2023; Ma- 351

howald et al., 2024). At the same time, we cau- 352

tion researchers towards the informed use of PLMs 353

in psychological sciences. We have highlighted, 354

common pitfalls, reviewed the different linking hy- 355

potheses used by researchers to map PLM perfor- 356

mance to human performance, and outlined criteria 357

for evaluating and developing PLMs as credible 358

models of cognition and cognitive development. 359

These criteria are intended to guide researchers in 360

designing robust experiments, interpreting PLM 361

behaviors accurately, and increasing fidelity to hu- 362

man data. Given the constantly evolving nature of 363

the field, we call for researchers to continuously 364

refine and expand these guidelines to match new 365

advancements in NLP and Cognitive Science. 366
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6 Limitations367

(1) The paper highlights common pitfalls, link-368

ing hypotheses, and evaluative criteria while using369

PLMs for cognitive modeling. These constitute a370

set of sound views to aid new researchers in the371

field. They do not exhaustively cover every pitfall,372

hypothesis, or criterion. (2) The suggestions in this373

work are good-to-have practices that support the374

use of PLMs for open cognitive and developmental375

science. There is no one-answer-fits-all approach376

for these tasks. Natural Language Processing is377

a developing field and we recommend articulat-378

ing newer guidelines and practices as more PLMs379

are built and deployed. (3) Our work calls for the380

use of language technologies for the psychologi-381

cal sciences and provides criteria for developing382

credible accounts of cognition and cognitive devel-383

opment. Despite providing general guidelines, our384

work does not conduct experiments or offer any385

empirical evidence of performance comparisons or386

other quantitative measures.387

7 Ethical Considerations388

There are no major risks associated with conduct-389

ing this research beyond those associated with390

working with PLMs. There may be risks in mis-391

interpreting the criteria enlisted in this study. The392

suggestions in this study are one-way: we wish to393

find human performance characteristics and behav-394

iors in PLMs to help model psychological sciences395

to aid people with cognitive impairments. We do396

not advocate for developing PLMs to replace hu-397

mans or suggest ways to reach Artificial General398

Intelligence. PLMs are experimental technologies399

and future work using these models should proceed400

with caution.401
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