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Abstract

Many studies show evidence for cognitive abil-
ities in Pre-trained Language Models (PLMs).
Researchers have evaluated the cognitive align-
ment of PLMs, i.e., their correspondence to
adult performance across a range of cogni-
tive domains. More recently, the focus has
expanded to the developmental alignment of
these models: identifying phases during train-
ing where improvements in model performance
track improvements in children’s thinking over
development. However, challenges to this use
are twofold: (1) PLMs have very different ar-
chitectures than human minds and brains, and
the data sets on which they are trained differ
in many ways from the inputs children receive.
(2) The “outputs” of PLMs are different from
the behavioral measures that cognitive scien-
tists collect in their experiments and evaluate
their theories against. In this paper, we distill
lessons learned from using PLMs for cognitive
modeling and outline the pitfalls of attempt-
ing to use PLMs, not as engineering artifacts,
but as cognitive science and developmental sci-
ence models. We review assumptions used by
researchers to map measures of PLM perfor-
mance to measures of human performances
and then, enumerate criteria for using PLMs
as credible accounts of cognition and cognitive
development.

1 Introduction

With the improving performance of language mod-
els (Touvron et al., 2023; Gemini Team, 2023; Ope-
nAl, 2023; Wei et al., 2022), researchers have in-
creasingly advocated for the use of Language mod-
els as computational models of cognition (Pianta-
dosi, 2023; Mahowald et al., 2024; Warstadt and
Bowman, 2024). This includes domains such as
mathematical reasoning (Shah et al., 2023; Ahn
et al., 2024), language comprehension (Warstadt
etal., 2020; Ye et al., 2023; Koubaa, 2023), concept
understanding (Vemuri et al., 2024), and analogical
reasoning (Webb et al., 2023; Hu et al., 2023).

More recently, researchers have used PLMs for
modeling cognitive development in children (Hos-
seini et al., 2022; Kosoy et al., 2023; Frank, 2023;
Shah et al., 2024). For example, Portelance et al.
(2023) suggests the use of language models to pre-
dict the age of acquisition of words in children.
Shah et al. (2024) map the development of cog-
nitive intelligence in humans to scaling training
tokens and model size in PLMs. Other researchers
also propose studying bilingualism by mapping
pre-training steps in PLMs to understand the rate
of language development (Evanson et al., 2023;
Marian, 2023; Sharma et al., 2024).
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Figure 1: Overview (;fthe Lessons from using PLMs
for Human Cognitive Modeling.

In this paper, we advocate for the use of PLMs as
candidate theories of cognitive and developmental
science. We first review the pitfalls of using PLMs
in psychological science and caution researchers
against over-interpreting PLM alignment to human
cognition. We then review the common assump-
tions used by researchers to map measures of PLM
performance to measures of human performance.
In doing so, we build upon previous work enumer-
ating best practices for cognitive evaluations of
PLMs (Ivanova, 2023; Mahowald et al., 2024).

2 Pitfalls of using PLMs as scientific
theories

Some pitfalls come when using PLMs as cognitive
science theories, i.e., of adult thinking.



e Human brains and PLMs are architecturally dif-
ferent. Recent research is attempting to map
regions of the brain to different aspects of PLMs
(layers, attention heads, etc.) in terms of lo-
cal functionality and performance characteristics.
However, this work is in its infancy, and its via-
bility remains an open question (Hosseini et al.,
2022; Kauf et al., 2023).

» Researchers use a linking hypothesis to map
model performance characteristics (e.g., log prob-
abilities) to human performance characteristics
(e.g., reading times) (Shah et al., 2024). These
links are often quite distal, making it unclear
whether PLMs are actually “explaining” cogni-
tive science data. (See the next section for further
discussion.)

* PLMs are opaque and have limited interpretabil-
ity. Human alignment and the lack thereof is
hard to debug. This is a barrier to treating these
models as scientific theories (McGrath et al.; Kar
et al., 2022).

* Most studies evaluating the cognitive alignment
of PLMs focus on a narrow range of cognitive
abilities and overlook correlations with other abil-
ities. This is in contrast with psychometric ap-
proaches to intelligence that investigate the corre-
lations across tests of a broad range of cognitive
abilities: mathematical, verbal, spatial, fluid, and
so on (Snow et al., 1984; Schneider and McGrew,
2012). This is also in contrast to unified theories
of cognition that attempt to model all cognitive
abilities within a single computational framework
(Mellon et al., 2007; Varma, 2011).

Other pitfalls are specific to the use of PLMs as
developmental science theories, i.e., of the progres-
sions in children’s thinking.

* PLM checkpoints are snapshots or fingerprints
of the data they are trained on. Most research
only looks at the final model checkpoints and
not the change in the cognitive alignment of lan-
guage models (development) as a function of data
observed (Warstadt and Bowman, 2022; Frank,
2023; Shah et al., 2024). Often, this is because of
the unavailability of intermediate training check-
points or resource constraints. This limits our
understanding of the nature of PLM training.

¢ Differences also exist in the nature of the data
observed by PLMs versus humans. PLMs are

trained on textual data that is magnitudes larger
than the number of words seen by children (Hueb-
ner et al., 2021; Hosseini et al., 2022; Warstadt
et al., 2023; Bhardwaj et al., 2024). On the other
hand, children learn from input from multiple
senses (Smith and Gasser, 2005), whereas mod-
els are not of an embodied nature (Chemero,
2023).

* For studies evaluating the developmental align-
ment, the observed developmental trajectories
might be artifacts of the pre-training order (Shah
etal., 2024).

3 Linking Hypotheses Mapping Model
Performance to Human Performance

Researchers use various linking hypotheses to map
PLM performance to human performance mea-
sures. While all these linking hypotheses are sim-
ple in theory, they have multiple possible opera-
tionalizations. We review four below.

Similarity computations: Many cognitive tasks
require people to judge the similarity of two
items. In this case, human similarity judgments
are directly modeled by computing the similar-
ity between the corresponding representations in a
PLM’s latent space. This can be via cosine simi-
larity or another metric. One example is typicality
effects, which is the finding people regard some
members as “better” examples of a category than
others (Bhatia and Richie, 2022; Richie and Bhatia,
2021). The rank of an item is determined by the
proportion of humans that produce an item when
asked to enumerate the items of the category. In
language models, the typicality of an exemplar for
a category is estimated by encoding the exemplar
name as a string, passing it through the language
model, and obtaining the corresponding word em-
bedding. Thereafter, the similarity between this
exemplar vector and the category prototype is cal-
culated, with a higher value indicating that the ex-
emplar is more typical.

Other cognitive tasks require comparing or dis-
criminating between two items. There, a common
linking hypothesis is that the greater the similar-
ity between the items in the model’s latent space,
the longer the comparison/discrimination time. For
example, Shah et al. (2023) map the time it takes
to compare two numbers to PLM similarity - the
greater the similarity of two number representa-
tions, the longer it takes for humans to differentiate
which one is greater (or lesser).



However, there are two common obstacles to us-
ing the similarity linking hypothesis. The first is
that doing so requires models that make available
the latent representations for similarity computa-
tions. The second problem is that this method suf-
fers from problems due to tokenization. Humans
use words as granular units while models use to-
kens (potentially words or subwords). This makes
the nature of the mapping inconsistent as one unit
of text for humans (words) may be mapped to two
units of text for PLMs (tokens).

Surprisal values: One way of quantifying the
uncertainty of model generations is in terms of the
summation of logarithmic probabilities. A com-
mon linking hypothesis is that higher surprisal val-
ues correspond to longer human response times.
For instance, studies of reading (Rambelli et al.,
2024; Ivanova et al., 2024b) and categorization
(Misra et al., 2021) have found that higher model
uncertainties predict longer human response times.
Relative log probabilities have been used to distin-
guish grammatical and ungrammatical sentences
(Warstadt et al., 2020; Shah et al., 2024). They
enable us to directly compare the right answer with
all the candidate answers in a deterministic manner,
i.e., there is no chance that the PLM will not calcu-
late the sequential probability for a candidate string.
Research also shows that surprisal values provide a
better match to human plausibility judgments than
prompts (Ivanova et al., 2024a).

However, aproblem with surprisal-based ap-
proaches is that they fail to show robustness to
context (prompts).

Prompting: PLM generation is probabilistic and
therefore the same model can give different results
across inference runs. A PLM is prompted to fol-
low the same exercise as a human multiple times
and generate a probability distribution over the out-
put space. The probability of the correct output is
then mapped to model confidence. Directly com-
paring the generated behavior of PLMs with that
of humans reduces or even eliminates the need for
linking hypotheses (Patel and Pavlick, 2021; Webb
et al., 2023; Zahraei and Emami, 2024).

For example, a PLM can be prompted with:
Which statement is grammatically correct? Your
response must be "1" or "2".

1. Noah likes to swim. 2. Noah likes to.
The PLM can generate "1" for the correct answer.

Another benefit of prompting is that it allows for
variable output length. Tasks that benefit from this
flexibility, like commonsense reasoning, are more

suited for prompting (Yasunaga et al., 2023).
Example SAT analogical reasoning problem:
Analogy: Runner : Marathon :: ?

Options:

* Envoy : Embassy
e Martyr : Massacre

* oarsman : Regatta
e Horse:: Stable

An example problem benefitting from variable
output length is SAT analogical reasoning tasks
(Turney, 2013). These are of the form A:B::? (see
example above). These are MCQ-based choice
tasks that can be operationalized as similarity com-
putation, surprisal, or a prompt-based reasoning
problem. In the prompting case, we can force the
generations to adhere to a goal: answer the correct
analogy in this output format: {"A":"B"::"C":"D"}.

That said, there are several limitations to the
prompting approach. First, PLMs are not robust
to the prompt format. Answering prompts requires
PLMs to have two abilities, (1) understanding the
prompt and (2) knowing the answer. Often, the out-
puts of PLMs vary substantially based on the input,
and sometimes maximum performance characteris-
tics are obtained on gibberish prompts (Deng et al.,
2022). Second, PLMs may output an answer be-
yond the given candidate options for the prompting
approach. For example, the answer to the problem
described in blue above could be "It would be irre-
sponsible to imply that the grammatical structure of
a sentence is inconsequential, as clear communica-
tion is fundamental for safety and understanding"
(Cai et al., 2024).

Direct probing: Another alternative is to di-
rectly ask the model about its current state. For
example, to measure the incremental semantic un-
derstanding of temporarily ambiguous sentences,
Li et al. (2024) presents a dichotomous verification
sentence to the model after each word. In addition
to the direct probing, one can directly recover the
implicit parse tree after each word to measure in-
cremental syntactic understanding (Manning et al.,
2020). PLM prompting helps support direct prob-
ing, which is often not possible in humans with
behavioral measures or even with neuroimaging
measures to “look under the hood”.

4 Criteria for Evaluating and Developing
PLMs as Scientific Models

PLMs are being increasingly considered as models
of cognitive and developmental science phenomena.



In light of the pitfalls outlined above, we propose
two sets of criteria for using PLMs for this purpose.

The first set concerns the appropriateness of
PLMs as scientific tools for cognitive and develop-
mental modeling:

* Design multiple experiments to test the align-
ment of each cognitive or developmental phe-
nomenon: PLMs may track the human per-
formance characteristic well under one linking
hypothesis or one type of test. However, this
alignment may just be an artifact, for exam-
ple, of pre-training data contamination. Con-
ducting more experiments evaluating the same
cognitive/developmental phenomena establishes
stronger empirical plausibility.

* Test the path-dependency of PLMs for devel-
opmental alignment: The claim that the final
model state of a PLM approximates adult perfor-
mance leads to the question of the path by which
it arrived there. Ideally, the model’s performance
improvements over training should also track the
progression of cognitive abilities over develop-
ment (Elman, 1996; Bengio et al., 2009). This
would support researchers exploring the scaling
of training data and model size in their investiga-
tions of human development.

* Use multiple methods to interpret PLM suc-
cesses and failures: PLMs lack explainability
and interpretability due to their large size (Mc-
Grath et al.). Some methods for PLM interpre-
tation are often better than others. For example,
in the experiments conducted by Li et al. (2024),
incrementally constructed parse trees provided a
better account of PLM alignment than the infor-
mation from attention weights.

* Control for tuning techniques: PLMs are often
tuned on specific data and in different manners
like Instruction Tuning, Reinforcement Learning
from Human Feedback, etc. These tuning tech-
niques influence model behavior and the model’s
output centers around tuning goals rather than
developing a representation of world knowledge.

* Remember the linking hypothesis: Adaptation
of human experimental materials to textual coun-
terparts requires certain assumptions (refer to
different operationalization in section 3). These
assumptions need to be well documented and
understood based on the experiment type.

The second set of criteria is for guiding the devel-
opment of PLMs as credible accounts of cognition
and its development. This is a more open-ended
task, and the following can be considered as mere
suggestions to researchers:

* Evaluation techniques should follow the appropri-
ateness criteria above. PLMs should be evaluated
at regular intervals of pre-training to assess their
potential developmental alignment, which is of-
ten overlooked in studies of cognitive alignment.

* PLMs can be tuned with specific cognitively im-
portant tasks and evaluated on a breadth of cog-
nitively relevant tasks. For example, typicality
experiments (Vemuri et al., 2024; Misra et al.,
2021) could be used to preference-tune PLMs
using reinforcement learning techniques. This
may lead to better cognitive alignment of PLMs
across a broader set of tasks.

* Pre-training data may benefit from developmen-
tally plausible corpora (Bhardwaj et al., 2024;
Warstadt and Bowman, 2022; Frank, 2023). This
includes training on a curriculum based on hu-
man skill acquisition, for example, the age-of-
acquisition of a word (Huebner et al., 2021; Porte-
lance et al., 2023). Informed pre-training will
allow us to better understand the developmental
alignment of models.

5 Conclusion

This paper advocates for the use of Pre-trained
Language Models (PLMs) as theoretical tools for
investigating human cognition and its development
In this advocacy, we are not alone (Warstadt and
Bowman, 2022; McGrath et al.; Frank, 2023; Ma-
howald et al., 2024). At the same time, we cau-
tion researchers towards the informed use of PLMs
in psychological sciences. We have highlighted,
common pitfalls, reviewed the different linking hy-
potheses used by researchers to map PLM perfor-
mance to human performance, and outlined criteria
for evaluating and developing PLMs as credible
models of cognition and cognitive development.
These criteria are intended to guide researchers in
designing robust experiments, interpreting PLM
behaviors accurately, and increasing fidelity to hu-
man data. Given the constantly evolving nature of
the field, we call for researchers to continuously
refine and expand these guidelines to match new
advancements in NLP and Cognitive Science.



6 Limitations

(1) The paper highlights common pitfalls, link-
ing hypotheses, and evaluative criteria while using
PLMs for cognitive modeling. These constitute a
set of sound views to aid new researchers in the
field. They do not exhaustively cover every pitfall,
hypothesis, or criterion. (2) The suggestions in this
work are good-to-have practices that support the
use of PLMs for open cognitive and developmental
science. There is no one-answer-fits-all approach
for these tasks. Natural Language Processing is
a developing field and we recommend articulat-
ing newer guidelines and practices as more PLMs
are built and deployed. (3) Our work calls for the
use of language technologies for the psychologi-
cal sciences and provides criteria for developing
credible accounts of cognition and cognitive devel-
opment. Despite providing general guidelines, our
work does not conduct experiments or offer any
empirical evidence of performance comparisons or
other quantitative measures.

7 Ethical Considerations

There are no major risks associated with conduct-
ing this research beyond those associated with
working with PLMs. There may be risks in mis-
interpreting the criteria enlisted in this study. The
suggestions in this study are one-way: we wish to
find human performance characteristics and behav-
iors in PLMs to help model psychological sciences
to aid people with cognitive impairments. We do
not advocate for developing PLMs to replace hu-
mans or suggest ways to reach Artificial General
Intelligence. PLMs are experimental technologies
and future work using these models should proceed
with caution.
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