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Abstract

Fine-tuning a pre-trained deep neural network has become a successful paradigm
in various machine learning tasks. However, such a paradigm becomes particularly
challenging with tabular data when there are discrepancies between the feature sets
of pre-trained models and the target tasks. In this paper, we propose TABTOKEN, a
method aims at enhancing the quality of feature tokens (i.e., embeddings of tabular
features). TABTOKEN allows for the utilization of pre-trained models when the
upstream and downstream tasks share overlapping features, facilitating model fine-
tuning even with limited training examples. Specifically, we introduce a contrastive
objective that regularizes the tokens, capturing the semantics within and across
features. During the pre-training stage, the tokens are learned jointly with top-layer
deep models such as transformer. In the downstream task, tokens of the shared
features are kept fixed while TABTOKEN efficiently fine-tunes the remaining parts
of the model. TABTOKEN not only enables knowledge transfer from a pre-trained
model to tasks with heterogeneous features, but also enhances the discriminative
ability of deep tabular models in standard classification and regression tasks.

1 Introduction

Deep learning has achieved remarkable success in various domains, including computer vision [52],
and natural language processing [40]. While these fields have benefited greatly from deep learning,
the application of deep models to tabular data is difficult [18, 20]. Highly structured, tabular data is
organized with rows representing individual examples and columns corresponding to specific features.
Within domains such as finance [1], healthcare [22], and e-commerce [37], tabular data emerges as
a common format where classical machine learning methods like XGBoost [12] have showcased
strong performance. In recent years, deep models have been extended to tabular data, leveraging
the ability of deep neural networks to capture complex feature interactions and achieve competitive
results compared to boosting methods in certain tasks [13, 21, 41, 5, 18, 31, 10, 11, 25].

The “pre-training then fine-tuning” paradigm is widely adopted in deep learning. By reusing the
pre-trained feature extractor, the entire model is subsequently fine-tuned on target datasets [16,
54, 48, 49, 47]. However, when it comes to tabular data, the transferability of pre-trained deep
models faces unique challenges. The tabular features often possess semantic meanings and the model
attempts to comprehend the relationships between features and targets. Each tabular feature has
strong correspondence with model parameters, making it hard to directly transfer pre-trained deep
learning models when encountering unseen features [53, 15, 23, 39, 60]. For instance, different
branches of financial institutions may share certain features when predicting credit card fraud, but
each branch may also possess unique features associated with their transaction histories. Besides,
the scarcity of available samples for fine-tuning on new datasets further complicates the knowledge
transfer process.
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In this paper, we focus on a crucial component of tabular deep models — the feature tokenizer, which
is an embedding layer that transforms numerical or categorical features into high-dimensional vectors
(tokens). The original features correspond specifically with these tokens, which are leveraged by the
top-layer models like transformers [51] and Multi-Layer Perceptrons to extract relationships between
features [18, 19]. Through the feature tokenizer, all features are transformed in the same manner, the
tokens seem to be a tool to bridge two heterogeneous feature sets by reusing tokens of shared features
in a pre-trained model. By transferring the feature tokens, the model achieves a reduction in the size
of learnable parameters. The model may leverage knowledge acquired from pre-training data and
enhance its generalization ability on the target dataset.
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Figure 1: The toy example involves predicting
ripeness based on the color of the watermelon,
where ripe ones have a deep color and unripe ones
are pale. Semantic distributions are more discrimi-
native and possess the potential for transferability.

However, our observation reveals that the
learned tokens exhibit random behavior and lack
discriminative properties. Since learning the
feature relationships is crucial as it enables the
model to gain a deeper understanding of the un-
derlying patterns within the data, the top-layer
models encounter more difficulties in effectively
learning from the semantically deficient tokens.
As illustrated in Figure 1, if the feature tokens
corresponding to the six possible values of “skin
color” are randomly distributed, the decision
boundary becomes complex. The correlation
between skin color and ripeness needs to be
learned by a more complex top-layer model.
However, with a discriminative semantic distri-
bution, a simple classifier can achieve accurate
predictions. At this point, the tokens will con-
tain potentially transferable knowledge, which
may unlock the transferability of feature tokens.

To address this issue, we propose TABTOKEN to introduce semantics to feature tokens, improving
the transferability of feature tokenizers. Specifically, TABTOKEN aims to leverage the semantic
information provided by the instance labels to understand feature relationships. Firstly, we represent
an instance by averaging the tokens associated with all features. Based on the instance tokens, we
introduce a contrastive token regularization objective that minimizes the distance between instances
and their respective class centers. By incorporating this regularization into the pre-training stages,
TABTOKEN enables the previously randomly distributed feature tokens to reflect actual semantic
information, bolstering the model’s transferability. Furthermore, the fine-tuning stage benefits from
the enhanced pre-trained feature tokens, learning new modules under the constraint of regularization.

Our experiments demonstrate the efficacy of TABTOKEN in achieving model transfer across datasets
with heterogeneous feature sets. TABTOKEN also improves the performance of deep models in
standard tabular tasks involving classification and regression. The contributions of our paper are:

• We emphasize the significance of token quality in facilitating the transferability of tabular deep
models when there is a change in the feature set between pre-training and downstream datasets. To
the best of our knowledge, we are the first to focus on feature tokens in tabular transfer learning.

• We introduce TABTOKEN to enhance the transferability of deep tabular models by incorporating
feature semantics into the tokens and enabling their utilization in downstream tasks.

• Through experiments on real-world datasets, we demonstrate the ability of TABTOKEN to re-
veal explainable feature semantics. Furthermore, our method showcases strong performance in
heterogeneous transfer tasks as well as standard tabular tasks.

In the rest of this paper, we first describe the transfer problem and introduce our method. Subsequently,
we present experiments and conclusions. The related work is reviewed in the Appendix.

2 Preliminary and Background

In this section, we introduce the task learning with tabular data, as well as the vanilla deep tabular
models based on feature tokens. We also describe the scenario of transferring a pre-trained model to
downstream tasks with heterogeneous feature sets.
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Figure 2: Illustrations of the token-based model, transfer task, and the procedure of TABTOKEN. (a) The
token-based models f0 for tabular data can be decomposed into a feature tokenizer h0 and a top-layer model
g0. (b) In the transfer task, the downstream dataset consists of s overlapping features with the pre-training
dataset while also introducing dt − s unseen features. When the feature space changes, we expect to transfer
the pre-trained model for downstream tasks. (c) In the pre-training stage, by employing token combination and
regularization, TABTOKEN incorporates the semantics of labels into tokens. In the fine-tuning stage, TABTOKEN
freezes the overlapping feature tokens of the pre-trained tokenizer, efficiently fine-tuning other modules.

2.1 Learning with Tabular Data

Given a labeled tabular dataset D = {(xi,:, yi)}Ni=1 with N examples (rows in the table). An instance
xi,: is associated with a label yi. We consider three types of tasks: binary classification yi ∈ {0, 1},
multiclass classification yi ∈ [C] = {1, . . . , C}, and regression yi ∈ R. There are d features
(columns) for an instance xi,:, we denote the j-th feature in tabular dataset as x:,j . The tabular
features include numerical (continuous) type xnum

:,j and categorical (discrete) type xcat
:,j . Denote the

j-th feature value of xi,: as xi,j . We assume xnum
i,j ∈ R when it is numerical (e.g., the salary of a

person). While for a categorical feature (e.g., the occupation of a person) with Kj discrete choices, we
present xcat

i,j ∈ {0, 1}Kj in a one-hot form, where a single element is assigned a value of 1 to indicate
the categorical value. We learn a model f0 on D that maps xi,: to its label yi, and a generalizable
model could extend its ability to unseen instances sampled from the same distribution as D.

2.2 Token-based Methods for Tabular Data

There are several classical methods when learning on tabular data, such as logistic regression (LR)
and XGBoost. Similar to the basic feature extractor when applying deep models over images and
texts, one direct way to apply deep learning models on the tabular data is to implement model f0 with
Multi-Layer Perceptron (MLP) or Residual Network (ResNet). While for token-based deep learning
models, the model f0 is implemented by the combination of feature tokenizer h0 and top-layer deep
models g0. The prediction for instance xi,: is denoted as f0(xi,:) = g0 ◦ h0(xi,:) = g0(h0(xi,:)).
We minimize the following objective to obtain the feature tokenizer h0 and top-layer model g0:

min
f0=g0◦h0

N∑
i=1

[ℓ (g0 ◦ h0(xi,:), yi)] , (1)

where the loss function ℓ(·, ·) measures the discrepancy between the prediction and the label. Feature
tokenizer h0 performs a similar role to the feature extractor in traditional image models [17, 18]. It
maps the features to high-dimensional tokens in a hidden space, facilitating the learning process of
top-layer g0. The top-layer model g0 infers feature relationships based on the feature tokenizer h0

and then performs subsequent classification or regression tasks.

Feature Tokenizer h0 transforms the input xi into a d × k matrix {x̂i,j}dj=1. In detail, for a
numerical feature value xnum

i,j ∈ R, it is transformed as x̂i,j = xnum
i,j ·Enum

j , where Enum
j is a learnable

k-dimensional vector (token) for the j-th feature. For a categorical feature xcat
i,j ∈ {0, 1}Kj , where

there are Kj discrete choices, the tokenizer is implemented as a lookup table. Given Ecat
j ∈ RKj×k as

the set of Kj tokens, the tokenizer transform xcat
i,j as x̂i,j = xcat

i,j
⊤
Ecat

j . Overall, the feature tokenizer
maps different types of features to a unified form — xi,: is transformed into a d× k matrix {x̂i,j}dj=1

with a set of k-dimensional tokens. The model learns feature tokens Enum or Ecat during the training
process. The feature tokenizer h0 is a weighted or selective representation of feature tokens.
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Deep Top-layer Models. After the tokenizer, the transformed tokens h0(xi,:) = {x̂i,j}dj=1 for
instance xi,: are feed into top-layer models. There can be various top-layer models, such as MLP,
ResNet, and transformer. When the top-layer model is MLP or ResNet, it cannot directly process the
set of tokens h0(xi,:). The common approach is to concatenate d tokens into a long dk-dimensional
vector T con

i ∈ Rdk. Then, T con
i feeds into the top-layer model g0:

f0(xi,:) = g0(T
con
i ), T con

i = concat(h0(xi,:)) . (2)
For the transformer, the token set of xi,: directly feeds into the transformer layer without the
need for concatenating. The input h0 (xi,:) and output Fi of transformer are both a set of k-
dimension tokens Fi = TransformerLayer (. . . (TransformerLayer (h0 (xi,:)))) ∈ Rd×k, where
the module TransformerLayer(·) is described in Appendix C. Based on the transformed to-
kens, the results could be obtained based on a prediction head over the averaged token f0(xi,:) =

Prediction
(

1
d

∑d
j=1 Fi,j

)
, where Fi,j is the j-th token in the output token set Fi of transformer.

The head Prediction(·) consists of an activation function ReLU and a fully connected layer.

2.3 Transfer Learning with Overlapping and Unseen Features

Given another related downstream dataset Dt = {(xt
i,:, y

t
i)}N

t

i=1 with N t examples (N t ≪ N ) and
dt features, we aim to construct a new model f for Dt borrowing the knowledge of well-trained f0.
We assume there exists heterogeneity between D and Dt, in their feature or label sets. We mainly
consider the scenario that D and Dt have the same label space but different feature spaces. We
explore more complex scenarios in subsection E.2, such as transfer between non-overlapping label
spaces. We denote the features ranging from the j-th to the m-th as {x:,j:m}. The last s features
{x:,d−s+1:d} in the pre-trained dataset are shared features (overlapping features), corresponding
to the first s features {xt

:,1:s} in the fine-tuning dataset. The unseen feature set in the downstream
dataset is {xt

:,s+1:dt
}. We pre-train h0 and g0 together on D, then we fine-tune f = g ◦ h on Dt. Our

goal (illustrated in Figure 2) is to train f with strong generalization ability in downstream tasks.

Inspired by the idea of “pre-training then fine-tuning” in traditional deep learning, since feature
tokenizer h0 is pre-trained on sufficient examples, we expect to reuse its weights {Enum

j }dj=1 or
{Ecat

j }dj=1 to construct a better fine-tuning feature tokenizer h. As each token from the tokenizer
is correspond to a specific feature and there are overlapping features {x:,d−s+1:d}, it should be
possible to reuse the token directly when the feature space changes. The knowledge acquired from
the upstream task appears to be present in the pre-trained feature tokens.

However, our observation experiments (in section 4) show that the tokens generated during the
vanilla pre-training process display stochastic patterns. These feature tokens lack sufficient semantic
information, hindering their ability to reflect discriminative feature relationships, thereby limiting
their effectiveness in aiding top-layer models and transferability in transfer learning.

3 Improve Feature Tokens for Transferable Deep Tabular Models

To address the issue that the feature tokens obtained through vanilla training are distributed in
an almost random manner, we analyze the significance of semantics in unlocking feature tokens’
transferability, and propose a pre-training then fine-tuning procedure for transfer tasks.

3.1 Token Semantics Play a Role in Transferability

Since the feature tokens are in correspondence with features, tokens should reflect the nature of
features, implying that tokens may carry semantics. However, based on our analysis in Appendix B,
feature tokenizer does not increase the model capacity. During vanilla training, different tokens
are concatenated and then predicted by different parts of the classifier. Considering an extreme
scenario, the model could accurately predict an instance even when feature tokens are generated
randomly, by only optimizing the classifier. The feature token itself is not directly used for prediction.
Consequently, as long as the top-layer model is sufficiently strong for the current task, the trained
tokens do not retain enough knowledge for transfer.

Tokens that lack semantics or even resemble randomness lack discriminative power and hold little
value for reuse. Unlike in the image or text domains, where the feature extractors capture the semantic
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meaning with their strong capacity and enable model transferability across tasks [46, 14], unlocking
the transferability of feature tokenizer in the tabular model is challenging. Without additional
information, it is not possible to directly learn semantically meaningful tokens. The downstream task
also fails to transfer the learned knowledge in overall model due to the changes of feature space. The
correspondence between tokens and features may enable token-based deep models to be transferable
for new tasks involving shared features and unseen features, so it is crucial to imbue feature tokens
with semantics.

3.2 Semantic Enriched Pre-Training

The label assigned to an instance could be additional information that help feature tokens understand
semantics. For example, for the feature “occupation” with values like “entrepreneur”, “manager”, and
“unemployed", if the label indicates whether the individual has a credit risk, typically, the labels for
“entrepreneur” and “manager” would be low risk, while “unemployed” might be associated with high
risk. By grouping instances with the same label together, semantically similar tokens corresponding
to “entrepreneur” and “manager” would cluster. Therefore, to achieve the goal of imbuing tokens
with semantics, we utilize instance labels as additional supervision.
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Figure 3: Token averaging outper-
forms combination as it aligns distinct
feature tokens, which enhances the se-
mantics.

To facilitate direct distance computation for grouping in-
stances, we need to represent each instance by one token
instead of a token set. Token combination transforms the set
of tokens h0(xi,:) = {x̂i,j}dj=1 into an instance token Ti of
xi,:. As in Equation 2, the usual combination operation is
concatenating, which makes T con

i a high-dimensional vec-
tor. However, when the order of input features is permuted,
applying concatenating to the same xi,: after the feature tok-
enizer will result in different T con

i . Besides, the vector values
at the same position in different feature tokens will corre-
spond to different weights in the subsequent predictor. This
implies that, for different features x:,m and x:,n(m ̸= n),
the meanings of x̂i,m ∈ Rk and x̂i,n ∈ Rk are not the same
in the corresponding dimension. Therefore, concatenating
fails to consider the alignment between features.

Instead, we propose utilizing averaging for token combina-
tion, which averages the vector values at the same position
in different feature tokens. Averaging also makes instance tokens remain unchanged regardless of
the order of input features. We obtain the representation T avg

i ∈ Rk for instance xi in the following
form: T avg

i = 1
d

∑d
j=1 x̂i,j . For notational clarity, we drop the superscript avg of T avg

i . We calcu-
late the the class center Syi

∈ Rk for xi,: by averaging instance tokens belong to the same class:
Syi = 1

Nyi

∑
yp=yi

Tp, where {Tp}yp=yi are the Nyi instance tokens with the same class to xi,:.
Syi

is the class center belongs to the label yi of xi,:. We anticipate that instance tokens belonging
to the same class will exhibit proximity. As instance tokens are derived from averaging the feature
tokens, the tokens that share similar semantic relevance to the class should cluster together. Therefore,
we pull instance tokens toward their class center via a contrastive regularization Ω : RN×k → R:

Ω
(
{Ti}Ni=1

)
=

1

N

N∑
i=1

∥Ti − Syi
∥22 .

We name this contrastive regularization as “Contrastive Token Regularization (CTR)”. For token
regularization, we calculate the regularization term on instance tokens and add the term to training
loss ℓ. The objective is to minimize the following loss:

min
f0=g0◦h0

N∑
i=1

[ℓ(g0 ◦ h0(xi,:), yi)] + βΩ
(
{Ti}Ni=1

)
, (3)

where β is a hyperparameter that controls the regularization term. In the pre-training stage, we learn
the feature tokenizer h0 and the top-layer model g0 simultaneously. Different from the objective
in Equation 1, the feature tokens {Enum

j }dj=1 or {Ecat
j }dj=1 are subject to two constraints. Firstly,
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they need to be adjusted in a way that enhances the predictions of the top-layer model. Secondly, a
regularization is employed to ensure that the tokens retain their semantic.

In practice, only the samples within each batch are used to compute the center. For regression tasks,
the regularization term is computed by dividing the target values into two pseudo-classes using the
median as a threshold. For instance, if the median of the target values in the dataset is 0.5, samples
with values greater than 0.5 are labeled as class 1, while less than 0.5 are labeled as class 2. These
pseudo-labels are only utilized for computing the CTR. In Appendix E, we compare the effect of
CTR with other contrastive losses, verifying that our simple regularization has obvious advantages.

3.3 Token Reused Fine-tuning

Through the utilization of the CTR, we can enhance the feature tokenizer during the pre-training stage.
In this subsection, we elucidate the reuse process based on high-quality tokens. We pre-train g0 ◦ h0

with CTR, which is essential for the transferability of feature tokens. For the ease of expression, we
use {Epre

j }dj=1 to represent {Enum
j }dj=1 or {Ecat

j }dj=1, which are the feature tokens of the pre-training
feature tokenizer h0. In the transfer task, we expect to reuse {Epre

j }dj=1 to construct fine-tuning
feature tokenizer h, then we fine-tuning g ◦ h on downstream dataset Dt.

There are d pre-training features {x:,1:d} and dt downstream features {xt
:,1:dt

}. As illustrated
in Figure 2(b), in the downstream task, there are two feature sets: s overlapping features
{xt

:,1:s}({x:,d−s+1:d}) and dt − s unseen features {xt
:,s+1:dt

}. To construct the fine-tuning tok-
enizer h, for overlapping features, h fix the pre-trained feature tokens {Epre

j }dj=d−s+1 of h0 and
transfer. For unseen features, h firstly initializes the remaining feature tokens based on the averaging
of all pre-trained feature tokens: 1

d

∑d
j=1 E

pre
j ∈ Rk. Then h fine-tunes these learnable tokens.

After building h, we freeze the overlapping feature tokens. The learnable modules are top-layer model
g (transformer) and unseen feature tokens in h. To regularize feature tokens for unseen features, we
utilize averaging and CTR to perform fine-tuning, too. Continuing with the notations from Equation 3,
we optimize model f = g ◦ h via minimizing the following objective on downstream dataset Dt:

min
f=g◦h

Nt∑
i=1

[
ℓ(g ◦ h(xt

i,:), y
t
i)
]
+ β · 1

N t

Nt∑
i=1

∥∥∥Ti − Syt
i

∥∥∥2
2

s.t. h(xt
i,:) = H(xt

i,:), H(xt
i,j) =

{
h0(x

t
i,j), 1 ≤ j ≤ s,

x̂t
i,j , s+ 1 ≤ j ≤ dt,

where h0 remains fixed and β is a pre-defined coefficient for adjusting the regularization term.

Summary of TABTOKEN. When there is a change in the feature space, we aim to transfer the tokens
corresponding to shared features. In the pre-training stage, we enhance the quality of tokens by
introducing semantics, making them transferable. In the fine-tuning stage, we continue to constrain
new feature tokens using both the frozen pre-trained feature tokens and CTR. TABTOKEN unlocks the
tokens’ transferability through a well-designed combination of pre-training and fine-tuning processes.

4 Visualization on Token Semantics

We visualize the effect of TABTOKEN on feature tokens. Different from visualizations on the
penultimate layer’s embeddings [29], the feature tokens are feature-specific embeddings near the
input of the tabular model, which better reveals the quality of the feature tokenizer.

Semantical Relationships between Different Features. We construct a synthetic four-class classifi-
cation dataset consisting of 6 features, each feature has 4 categorical values. Thus, we get 6× 4 = 24
feature tokens in TABTOKEN. We first construct highly correlated features as follows: when we
generate an instance, a pair of features have a one-to-one correspondence on the categorical choices.
The relationship between the features and labels is closely tied to the feature values. As a result, these
semantically similar tokens come from different features. We expect these tokens to be close to each
other. Besides, we construct noise features with random values. We expect random feature tokens to
be far from those that contribute to predictions. Otherwise, random feature tokens will exert similar
influences on the subsequent top-layer model’s prediction process.
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same shape indicates similar semantics same color signifies belonging to the same feature random features

(a) Feature tokens with vanilla training. (b) Feature tokens with our CTR.

Figure 4: Feature tokens on synthetic dataset. Colors indicate which feature the tokens belong
to, and the same shapes indicate semantically similar tokens. Colorless circles represent tokens of
random features. (a): Categories with similar semantics across different features are not captured
in the tokens. Tokens from random features may come close to other tokens that are relevant to the
target, thereby influencing the prediction. (b): Tokens with similar semantics exhibit a clear clustering
phenomenon, while tokens representing random features are tightly clustered together in the center.

Figure 5: Feature tokens trained with CTR on bank-marketing dataset. The tokens of feature
“job” depict a distribution based on job types. The hierarchical pattern is in relation to the probability
associated with purchasing financial products. The distribution of tokens for the feature “education”
and feature “marital” aligns perfectly with their respective semantic order. Tokens with vanilla
training are shown in Figure 9.

We train a one-layer Linear model upon a 2-dimensional feature tokenizer. The results are in Figure 4.
We find feature tokens generated by vanilla training exhibit a random distribution without discernible
patterns. When training with CTR, all groups of tokens are separately clustered together. TABTOKEN
enables the trained feature tokens to capture the semantic correlation between different features.
Besides, some random tokens (the colorless circles) are closely located to those of semantically
meaningful features with vanilla training. However, they occupy the same region in the latent space,
staying away from other feature tokens, once with CTR. The phenomenon validates that CTR reduces
the distance between instance tokens of the same class, which helps identify noise features.

Category Relationships within Single Feature. We selected three categorical features, “job”,
“education”, and “marital”, from the real-world dataset “bank-marketing”, whose target is to predict
the success rate of a customer purchasing financial products. We aim for TABTOKEN to facilitate
the learning of semantics and help feature tokens capture the category relationships within a single
feature. We train a three-layer transformer on a 64-dimensional feature tokenizer.

Figure 5 shows the learned feature tokens, which are consistent with the arrangements within the
features, such as “tertiary” → “secondary” → “primary” in feature “education”. Besides, the tokens
associated with the feature “job” exhibit a hierarchical pattern, where certain jobs like “retired”,
“student”, and “unknown” form one layer, while jobs such as “housemaid” and “service” form another
layer. Since individuals with these high-paying jobs are highly likely to successfully purchase
financial products, those tokens align with their semantics when predicting the target of the dataset.
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Table 1: Results for 5-shot downstream tasks. TABTOKEN outperforms other baselines in the transfer
setting, reflecting the transferable nature of the tokens obtained by CTR. †: TabPFN does not support
regression tasks. ( ↑ ~ accuracy, ↓ ~ RMSE). The whole results with the standard deviation are listed
in Table 6.

Eye↑ Colon↑ Clave↑ Cardio↑ Jannis↑ Htru↑ Breast↑ Elevators↓ Super↓ Volume↓

SVM 0.3621 0.5921 0.3482 0.6036 0.3512 0.8376 0.8211 0.0088 33.9036 124.2391
XGBoost 0.3699 0.5676 0.3506 0.5703 0.3222 0.8369 0.8453 0.0090 34.6605 123.9724
FT-trans 0.3916 0.5792 0.3584 0.6064 0.3064 0.8252 0.8275 0.0081 31.3274 122.8319
TabPFN† 0.3918 0.5809 0.3733 0.5965 0.3601 0.8371 0.7438 - - -

SCARF 0.3371 0.6048 0.2144 0.5547 0.3523 0.8131 0.7063 0.0097 39.9343 124.5373
TabRet 0.3477 0.4688 0.2393 0.4329 0.3545 0.8231 0.7252 0.0094 41.2537 126.4713
XTab 0.3851 0.5964 0.3627 0.5856 0.2868 0.8363 0.8145 0.0077 38.5030 119.6656
ORCA 0.3823 0.5876 0.3689 0.6042 0.3413 0.8421 0.8242 0.0082 37.9436 121.4952

TABTOKEN 0.3982 0.6074 0.3741 0.6229 0.3687 0.8459 0.8284 0.0074 30.9636 118.7280

5 Experiments

In this section, we demonstrate the performance of the feature tokens obtained by TABTOKEN in
transfer tasks using real-world tabular data. Additional experiments are presented in Appendix E,
including standard tasks, ablation studies, and comparisons with more variants and baselines. The
implementation details are introduced in Appendix F.

Datasets. We conduct experiments on 10 open-source tabular datasets from various fields, including
medical, physical and traffic domains. The datasets we utilized encompass both classification and
regression tasks, as well as numerical and categorical features. The details are in Table 2.

Experimental setups. To explore transfer challenges in the presence of feature overlaping, we follow
the data split process in [38, 28, 9, 55]. We split the tabular dataset into pre-training dataset and
fine-tuning dataset. The detailed split property and evaluation process for each datasets are shown
in Table 3 and subsection D.3. From the downstream dataset, we randomly sample subsets as few-
shot tasks. For instance, the dataset Eye has 3 classes, we split 5 samples from each class, obtaining a
5-shot downstream dataset with 3× 5 samples. For regression tasks, each 5-shot downstream dataset
consists of 5 samples. We report the average of 300 (30 subsets × 10 random seeds) results. In
the fine-tuning stage, we are not allowed to utilize the validation set and pre-training set due to the
constraints of limited data.

Baselines. We use four types of baselines: (1) The methods that train models from scratch on down-
stream datasets. We choose Support Vector Machine (SVM), XGBoost [12], and FT-trans [18] which
have strong performance on tabular data. TabPFN [25] specifically designed for small classification
datasets is also compared. (2) The methods that use contrastive learning for pre-training: SCARF [8].
(3) Pre-training and fine-tuning methods designed specifically for tabular data with overlapping
features: TabRet [39]. (4) The methods that transfer large-scale pre-trained transformers for tabular
data: XTab [60] and ORCA [45]. We compare more baselines in Appendix E.

Results. Table 1 shows the results of different methods in the downstream tasks. For non-transfer
methods, our advantage lies in the reuse of high-quality tokens. Self-supervised transfer method
SCARF struggles to adapt well to changes in the feature space. Although TabRet aims at transfer
setting with overlapping features, it does not perform well on limited data. Both XTab and ORCA,
which utilize large-scale datasets or pre-trained models, are unable to surpass TABTOKEN.

6 Conclusion

Transferring a pre-trained tabular model effectively can enhance the learning of a downstream tabular
model and improve its efficiency. In this paper, we propose TABTOKEN to improve the transferability
of deep tabular models by addressing the quality of feature tokens, which is a crucial component in
various deep tabular models. We introduce a contrastive objective that regularizes the tokens and
incorporates feature semantics into the token representations. Experimental results on diverse tabular
datasets validate the effectiveness of our approach in bridging the gap between heterogeneous feature
sets and improving the performance of deep learning models for tabular data.
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We highlight the significance of feature tokens when reusing a pre-trained deep tabular model from a
task with an overlapping feature set. Our proposed method, TABTOKEN, focuses on improving the
quality of feature tokens and demonstrates strong performance in both cross-feature-set and standard
tabular data experiments. The Appendix consists of six sections:

• Appendix A: We introduce the related work of TABTOKEN.
• Appendix B: We demonstrate that the feature tokenizer does not increase the model capacity,

which emphasizes the importance of enhancing the quality of tokens.
• Appendix C: We describe the architectures of several top-layer models in tabular deep learning,

including MLP, ResNet, and Transformer.
• Appendix D: We provide details on generating synthetic datasets and real-world datasets. We

specify how to split the dataset for evaluation.
• Appendix E: Additional experiments are presented, including standard tasks, comparisons with

more variants and baselines, and ablation studies. We extend our approach to more complex
scenarios with different label spaces and non-overlapping features.

• Appendix F: Implementation details of baseline methods and TABTOKEN are provided.

Appendix A Related Work

Standard Tabular Data Learning. Tabular data is a prevalent data format in numerous real-world
applications, spanning click-through rate prediction [43], fraud detection [6], and time-series forecast-
ing [2]. Traditional machine learning methods for tabular data mainly focus on feature engineering
and hand-crafted feature selection. Popular algorithms encompass decision trees, random forests,
and gradient boosting machines. Among them, XGBoost [12], LightGBM [32], and CatBoost [42]
are widely employed tree-based models that exhibit comparable performance for tabular data. Deep
learning models have shown promise in automatically learning feature representations from raw
data and have achieved competitive performance across diverse tabular data applications, such as
click-through rate prediction [57] and time-series forecasting [35].

Deep Tabular Data Learning. Recently, a large number of deep learning models for tabular
data have been developed [13, 21, 41, 5, 31, 18, 10, 11, 25]. These models either imitate the
tree structure or incorporate popular deep learning components. They have demonstrated superior
performance compared to traditional machine learning methods, especially in sparse and high-
dimensional feature spaces. However, deep learning models for tabular data struggle to learn
high-order feature interactions [20], which are crucial in many tabular data applications, and require
substantial amounts of training data. Boosting methods [12, 32, 42] can effectively capture these
interactions and are more robust to data limitations. While deep models may not surpass tree-based
models entirely on tabular data, they offer greater flexibility and can be customized for complex and
specific tasks, especially when faced with changing factors such as features and labels.

Transferring Tabular Models across Feature Spaces. Transferring knowledge from pre-trained
models across feature spaces can be challenging but also beneficial, as it reduces the need for extensive
data labeling and enables efficient knowledge reuse [28, 58, 55, 26, 27]. In real-world applications
such as healthcare, there are numerous medical diagnostic tables. These tables usually have some
features in common such as blood type and blood pressure. For rare diseases with limited data,
knowledge transfer from other diagnostic tables with overlapping features becomes beneficial. When
feature space changes, language-based methods assume there are semantic relationships between the
descriptions of features [53, 15, 23], and rely on large-scale language models.

However, sufficient textual descriptions are not always the case in tabular data. Without the require-
ment for language, Pseudo-Feature method [34] utilize pseudo-feature models individually for each
new feature, which is computationally expensive in our broader feature space adaptation scenario.
TabRet [39] utilizes masked autoencoding to make transformer work in downstream tasks. XTab [60]
is dedicated to enhancing the transferability of the transformer (one type of the top-layer models),
while we discover the untapped potential in improving the feature tokens and aim to develop a
tokenizer with stronger transferability. To transfer pre-trained large language models to tabular tasks,
ORCA [45] trains an embedder to align the source and target distributions. Our approach, on the
other hand, centers on how to directly transfer the embedder (tokenizer). In contrast to prior work,
our emphasis lies in enhancing the quality of feature tokens and unlocking their transferability.
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Appendix B The Tokenizer Does Not Increase The Model Capacity

Unlike directly handling input data with a deep neural network, the token-based deep models add
another embedding layer, which transforms the raw feature into a set of high-dimensional embeddings.
In particular, given a labeled tabular dataset D = {(xi, yi)}Ni=1 with N instances (rows in the table),
the feature tokenizer maps both categorical and numerical feature value xi,j to a k-dimensional
vector. One of the main motivations of the feature tokenizer is to replace a sparse feature (e.g., the
one-hot coding of a categorical feature) with a dense high-dimensional vector with rich semantic
meanings [56, 21, 29, 36, 59, 4]. However, in this section, we analyze the feature tokenizer and show
that they cannot increase the capacity of deep tabular models.

Following the same notation in the main text, we denote the j-th feature of the data as x:,j . Then we
take the classification task as an example and analyze both numerical and categorical features.

Numerical Features. If the j-th feature is numerical, then the j-th element of an instance xi is
xi,j ∈ R. When we classify the label of xi directly, we learn a classifier w0 ∈ R for xi,j , which
predicts xi,j with w⊤

0 ·xi,j . While based on the feature tokenizer, we allocate a learnable embedding
Ej ∈ R1×k for the feature x:,j , and transform xi,j with x̂i,j = xi,j · Ej ∈ R1×k. Based on the
tokenized numerical feature x̂i,j , the classifier becomes a vector w ∈ Rk, and the prediction works
as follows:

f(xi,j) = w⊤(xi,j ·Ej)
⊤ = (w⊤E⊤

j ) · xi,j = w′⊤ · xi,j ,

where w′⊤ = w⊤E⊤
j ∈ R. Therefore, it has the same effect as the original learning approach w0.

Categorical Features. If the j-th feature is categorical with Kj choices, we rewrite xi,j in the
one-hot coding form, i.e., xi,j ∈ {0, 1}Kj ∈ RKj . Assume the classifier for the one-hot feature
is η0 ∈ RKj , which predicts xi,j with η⊤

0 xi,j . The tokenizer for a categorical feature works as a
lookup table. Given Ej = {ep}

Kj

p=1 ∈ RKj×k is the set of candidate tokens for the j-th feature, then
we have x̂i,j = x⊤

i,jEj ∈ R1×k, which selects the corresponding token based on the index of the
categorical feature value set. The classifier for the tokenized feature is η ∈ Rk and the prediction is:

f(xi,j) = η⊤(x⊤
i,jEj)

⊤ = η⊤E⊤
j xi,j =

[
η⊤e1,η

⊤e2, . . . ,η
⊤eKj

]
xi,j = η′⊤xi,j ,

where η′⊤ =
[
η⊤e1,η

⊤e2, . . . ,η
⊤eKj

]
∈ R1×Kj . Therefore, the representation ability of the

token-based model is the same as the original one η0.

Summary. The feature tokenizer does not increase the model capacity. Training with feature tokens
cannot automatically associate the feature semantics with the tokens. Therefore, we incorporate the
feature semantics into the tokens with a contrastive regularization in TABTOKEN, which makes the
learned tokens facilitate the reuse of tabular deep models across feature sets.

Appendix C Top-layer Models

Based on the transformed tokens, deep tabular models implement the classifier with various top-layer
models, e.g., MLP, ResNet, and Transformer. In this section, we formally describe the details of
these models, whose architectures mainly follow the designs in [18]. However, instead of applying
MLP and ResNet on raw features, we treat MLP and ResNet as the top-layer model upon the feature
tokenizer. It is notable that the output of the feature tokenizer is a set of vectors. The main procedure
is illustrated in Figure 6.

C.1 MLP

Given a set of tokens, we transform them into a vector via token averaging or concatenating as
described in the main text. With a bit of abuse of notation, we denote the processed token as x, whose
dimension is k or dk when we average or concatenate the tokens, respectively. The MLP architecture
is designed as follows based on x:

MLP(x) = Linear(MLPBlock(. . . (MLPBlock(x))),

MLPBlock(x) = Dropout(ReLU(Linear(x))),
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Figure 6: The feature tokenizer and top-layer models. (a) The Multi-Layer Perceptron needs the
feature combination to process the input set of vectors. (b) The same to MLP, the Residual Network
needs the feature combination to utilize a feature tokenizer. (c) A set of vectors can feed into the
Transformer layer directly. The output is also a set of vectors, different from using a class token, we
take the average of these vectors to obtain the vector used for the final prediction.

where Linear(·) is a fully connected layer, which performs a linear transformation on the input
data by applying a matrix multiplication followed by an optional bias addition. Dropout(·) is a
regularization technique, which works by randomly deactivating a certain percentage of neurons
during each training step. ReLU(·) is a simple and computationally efficient non-linear function that
introduces non-linearity into the networks.

C.2 ResNet

The same as MLP, we employ ResNet on the feature tokens, and the architecture is:

ResNet(x) = Prediction (ResNetBlock (. . . (ResNetBlock (Linear(x))))) ,

ResNetBlock(x) = x+Dropout(Linear(Dropout(ReLU(Linear(BatchNorm(x)))))),

Prediction(x) = Linear (ReLU (BatchNorm (x))) ,

where BatchNorm(·) is a technique used in neural networks during training [30]. BatchNorm(·)
normalizes the activations of a specific layer by adjusting and scaling them based on the statistics of
the mini-batch.

C.3 Transformer

Different from MLP or ResNet, Transformer processes the set of tokens simultaneously, and the
output of Transformer is a set of tokens with the same form as the input one. Assume the input matrix
X is the set of k-dimensional vectors X ∈ Rd×k, the general prediction flow of Transformer-based
deep tabular model is:

Transformer(X) = Prediction(TransformerLayer(. . . (TransformerLayer(X)))),

Prediction(X) = Linear(ReLU(mean(X))),

where the Transformer layer is implemented as

TransformerLayer(X) = LayerNorm(Residual(FFN, Residual(MultiheadAttention,X))),

Residual(Module,X) = X +Dropout(Module(X)),

FFN(X) = Linear(Dropout(ReGLU(Linear(X)))),

where LayerNorm(·) is a normalization layer that performs layer normalization on the input [7].
It computes the mean and standard deviation along specified axes and normalizes the tensor using
these statistics. It is an alternative to BatchNorm(·) and is commonly used in Transformer where
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Table 2: Descriptions of full datasets. There are different feature types and task types. These full
datasets will be divided into pre-training datasets and fine-tuning datasets.
Properties Eye Colon Clave Cardio Jannis Htru Breast Elevators Super Volume

Feature type num cat cat num num num cat num num num
Feature num 26 18 16 11 54 8 29 18 81 53
Task type multiclass binary multiclass binary multiclass binary binary regression regression regression
Size of full 10.9K 3.0K 10.8K 70.0K 83.7K 17.9K 3.9K 16.6K 21.3K 50.9K
Size of train 7.0K 1.8K 6.9K 44.8K 53.6K 11.5K 2.3K 10.6K 13.6K 32.8K
Size of val 1.8K 0.6K 1.7K 11.2K 13.4K 2.9K 0.8K 2.7K 3.4K 8.1K
Size of test 2.2K 0.6K 2.2K 14.0K 16.7K 3.6K 0.8K 3.3K 4.3K 10.0K
Source OpenML Datasphere UCI Kaggle AutoML UCI Datasphere OpenML UCI UCI

batch statistics are inappropriate. MultiheadAttention(·) is a key component of Transformer-based
architectures, allowing the model to attend to multiple parts of the input sequence simultaneously and
capture diverse patterns and relationships. ReGLU(·) is a GLU variant designed for Transformer [44].

Appendix D Data

In this section, we introduce the detailed properties of source datasets and describe how to construct
the synthetic datasets. We also introduce how to split real-world datasets into heterogeneous pre-
training and fine-tuning datasets.

D.1 Data Preprocessing

For the sake of fair comparison, almost identical preprocessing steps are applied to all methods. In the
case of categorical datasets, missing values are treated as a new discrete choice within each feature.
As for numerical datasets, missing values are filled with the mean value of each respective feature.
Standardization, involving mean subtraction and scaling, is applied to normalize each numerical
dataset. To handle categorical features, encoding methods are employed to assist baselines that lack
direct support. In the case of TabPFN [25], an ordinal encoder is utilized to ensure a limited quantity
of encoded features for the method to work well on gpu. For other baselines, one-hot encoding is
employed when necessary.

D.2 Synthetic Datasets

We aim to construct a synthetic four-class classification dataset with semantically similar features and
random features. As described in the main text, the dataset consists of six features {x:,i}6i=1, each
feature with four categorical choices. When constructing each sample in the dataset, the feature value
is as follows (p is the probability) :

• x:,1 ∈ {A,B,C,D}, p = 0.25 is assigned to each choice.
• x:,2 ∈ {E,F,G,H}, p = 0.25 is assigned to each choice.
• x:,3 ∈ {A′, B′, C ′, D′}, x:,3 = x:,1 with p = 0.8; random choices otherwise.
• x:,4 ∈ {E′, F ′, G′, H ′}, x:,4 = x:,2 with p = 0.8; random choices otherwise.
• x:,5 and x:,6 are comletely random choices.

The label y ∈ {1, 2, 3, 4} of a sample is assigned following the rules:

• when x:,1 ∈ {C,D} and x:,2 ∈ {E,F}, y = 1 with p = 0.8; random choices otherwise.
• when x:,1 ∈ {A,B} and x:,2 ∈ {G,H}, y = 2 with p = 0.8; random choices otherwise.
• when x:,1 ∈ {A,B} and x:,2 ∈ {E,F}, y = 3 with p = 0.8; random choices otherwise.
• when x:,1 ∈ {C,D} and x:,2 ∈ {G,H}, y = 4 with p = 0.8; random choices otherwise.

It is clearly shown in the rules of construction that, within 80% probability, x:,1 and x:,3, x:,2 and
x:,4 have a one-to-one correspondence with the categorical choices, they are semantically similar
features, while x:,5 and x:,6 are random noise features. We expect the feature tokens of A′ to be close
to A, B′ close to B, etc. Besides, we aim at identifying the random features x:,5 and x:,6 from the
feature tokens. As demonstrated in the main text, TABTOKEN incorporates these semantics into the
feature tokens, fulfilling our aforementioned objectives.
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Table 3: Descriptions of transferring datasets and fine-tuning datasets. We maintain an overlap of
approximately 50% between the overlapping features and the fine-tuning features, which corresponds
to the “medium” level among different overlapping ratios. “# Pre-training feature” denotes the
number of pre-training features.

Properties Eye Colon Clave Cardio Jannis Htru Breast Elevators Super Volume

# Pre-training feature 17 13 11 7 36 6 20 12 54 35
# Fine-tuning feature 17 12 10 7 36 5 19 12 54 35
# Overlapping feature 8 7 5 3 38 3 10 6 27 17

Table 4: Different overlapping ratios of transferring datasets. (l: low, m: medium, h: high). The
overlapping ratios are calculated by dividing “# Overlapping feature” by “# Fine-tuning feature”.

Properties Jannis (l) Jannis (m) Jannis (h) Eye (l) Eye (m) Eye (h)

# Pre-training feature 34 36 38 16 17 19
# Fine-tuning feature 34 36 38 15 17 18
# Overlapping feature 14 18 22 5 8 11
Overlapping ratio (%) 41 50 69 33 47 61

D.3 Real-world Datasets and evaluation setups

To get datasets in different domains, the real-world datasets are from OpenML [50], UCI, AutoML,
Kaggle, and Projectdatasphere. The descriptions are shown in Table 2.

We randomly sample 20% instances to construct the test set. The remaining 80% instances are used
for training. In the training set, we randomly hold out 20% of instances as the validation set. We
split the remaining training set into two parts. The first part consists of 80% of instances, which are
utilized as pre-training (upstream) dataset. The second part is used for sampling few-shot downstream
datasets. Expect for standard tabular tasks, the validation set is only used in the pre-training stage for
saving the best checkpoint as the pre-training model.

To obtain a clearer explanation, consider a tabular dataset with nine features: f1 to f9. The upstream
dataset comprises features f1 to f6, while the downstream dataset includes features f4 to f9.

The details of transferring dataset are shown in Table 3.

(1) The number of shots is the sample size for each class. For instance, a 5-shot dataset for binary
classification consists of 5× 2 samples. (2) The overlapping ratio is defined as the ratio between
the number of overlapping features and the total number of features used for fine-tuning. The
low, medium, and high overlapping ratios are shown in Table 4. In the main text, we investigate the
cases with different number of shots or different overlapping ratios.

Appendix E Additional Analyses and Experiments

E.1 Additional Analyses and Comparisons

Token Matters in Improving Deep Models. We investigate whether the token-based deep model
can be improved through CTR. We directly evaluate the deep models in the full pre-training dataset
as standard tasks. We use Optuna [3] library and search hyperparameters for 30 iterations on
the validation set. Table 5 shows the mean results over 10 random seeds. Different deep model
architectures can achieve better prediction performance by coupling with TABTOKEN. TABTOKEN
enhances the discriminative ability of deep models in standard tabular tasks. The results validate the
potential of TABTOKEN beyond transfer tasks.

Different Forms of Contrastive Token Regularization. In CTR, we aim to incorporate the semantics
of features into tokens. One main intuition is that the tokens with similar feature semantics should be
close while those tokens corresponding to different features may be far away from each other. Given
a target dataset Dt = {(xt

i, y
t
i)}N

t

i=1 with N t examples and dt features, the feature tokenizer h and
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Table 5: We investigate the ability of TABTOKEN in standard tasks. We train deep models on the full pre-training
data. TABTOKEN improves different deep models with either numerical or categorical features. (↑ ~ accuracy).

Eye↑ Colon↑ Clave↑ Cardio↑ Jannis↑ Htru↑ Breast↑

MLP 0.4633 0.6299 0.7345 0.7317 0.5210 0.9801 0.8855
+ CTR 0.4849 0.6222 0.7412 0.7333 0.5373 0.9823 0.8772

ResNet 0.4670 0.6206 0.7310 0.7318 0.5124 0.9779 0.8771
+ CTR 0.4725 0.6222 0.7326 0.7340 0.5195 0.9803 0.8783

Trans. 0.4638 0.6414 0.7375 0.7325 0.5052 0.9807 0.8686
+ CTR 0.4698 0.6448 0.7467 0.7366 0.5215 0.9813 0.8804

Table 6: The whole results in Table 1. †: TabPFN does not support regression tasks. ( ↑ ~ accuracy,
↓ ~ RMSE).

Eye↑ Colon↑ Clave↑ Cardio↑ Jannis↑ Htru↑ Breast↑ Elevators↓ Super↓ Volume↓

SVM 0.3621 0.5921 0.3482 0.6036 0.3512 0.8376 0.8211 0.0088 33.9036 124.2391
± 0.0044 ± 0.0028 ± 0.0094 ± 0.0027 ± 0.0048 ± 0.0029 ± 0.0049 ± 0.0003 ± 1.0362 ± 1.3914

XGBoost 0.3699 0.5676 0.3506 0.5703 0.3222 0.8369 0.8453 0.0090 34.6605 123.9724
± 0.0035 ± 0.0074 ± 0.0027 ± 0.0047 ± 0.0063 ± 0.0028 ± 0.0092 ± 0.0002 ± 1.7548 ± 1.6470

FT-trans 0.3916 0.5792 0.3584 0.6064 0.3064 0.8252 0.8275 0.0081 31.3274 122.8319
± 0.0075 ± 0.0028 ± 0.0083 ± 0.0013 ± 0.0047 ± 0.0028 ± 0.0018 ± 0.0003 ± 0.9462 ± 1.0277

TabPFN† 0.3918 0.5809 0.3733 0.5965 0.3601 0.8371 0.7438 - - -
± 0.0064 ± 0.0082 ± 0.0016 ± 0.0037 ± 0.0045 ± 0.0027 ± 0.0029

SCARF 0.3371 0.6048 0.2144 0.5547 0.3523 0.8131 0.7063 0.0097 39.9343 124.5373
± 0.0125 ± 0.0152 ± 0.0127 ± 0.0094 ± 0.0081 ± 0.0058 ± 0.0083 ± 0.0004 ± 1.4749 ± 2.1749

TabRet 0.3477 0.4688 0.2393 0.4329 0.3545 0.8231 0.7252 0.0094 41.2537 126.4713
± 0.0017 ± 0.0048 ± 0.0082 ± 0.0038 ± 0.0037 ± 0.0037 ± 0.0085 ± 0.0002 ± 1.4772 ± 1,2734

XTab 0.3851 0.5964 0.3627 0.5856 0.2868 0.8363 0.8145 0.0077 38.5030 119.6656
± 0.0085 ± 0.0045 ± 0.0074 ± 0.0047 ± 0.0092 ± 0.0037 ± 0.0019 ± 0.0002 ± 1.7463 ± 0.8743

ORCA 0.3823 0.5876 0.3689 0.6042 0.3413 0.8421 0.8242 0.0082 37.9436 121.4952
± 0.0037 ± 0.0074 ± 0.0018 ± 0.0041 ± 0.0082 ± 0.0048 ± 0.0054 ± 0.0003 ± 2.1852 ± 1.2876

TABTOKEN 0.3982 0.6074 0.3741 0.6229 0.3687 0.8459 0.8284 0.0074 30.9636 118.7280
± 0.0054 ± 0.0061 ± 0.0023 ± 0.0024 ± 0.0015 ± 0.0034 ± 0.0013 ± 0.0002 ± 1.5274 ± 1.0285

feature combination (averaging or concatenating) process instance xt
i to instance token Ti. Assume

there are C classes in total, we denote the class center belonging to the target label yi of instance xt
i

as Syi
, while the class centers of different labels as Sj ̸=yi

. Recall that h is the feature tokenizer and
g is the top-layer model. The CTR is usually optimized with the following objective:

min
h,g

Nt∑
i=1

[
ℓ(g ◦ h(xt

i), y
t
i)
]
+ βΩ

(
{Ti}Ni=1

)
.

Here are possible implementations of the token regularization Ω:

• Vanilla CTR: the implementation that we used in TABTOKEN, which minimizes the distance
between an instance token with its target class center:

ΩTabToken

(
{Ti}Ni=1

)
=

1

N t

Nt∑
i=1

∥Ti − Syi∥
2
2 .

• Hardest: the objective is to push Ti away from the nearest center of the different classes, which
aims at moving instances away from the centers of the most easily misclassified labels.

Ωhardest

(
{Ti}Ni=1

)
=

1

N t

Nt∑
i=1

min({∥Ti − Sj∥22}j ̸=yi).

• All-hard: the objective is to push Ti away from all the centers of the different classes, which
minimize the average distance between the instance and the centers of all other labels. (while in
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Table 7: Test accuracy on fine-tuning datasets for different forms of contrastive token regularization.
We use TABTOKEN with different token regularization techniques on the pre-training dataset. We
reuse the pre-trained feature tokenizer and apply token regularization during fine-tuning on the 5-shot
downstream dataset. TABTOKEN is considered better overall, but in certain cases such as Jannis and
Htru, further improvement can be achieved by incorporating another token regularization that focuses
on pushing apart the centers of different classes. (↑ ~ accuracy, ↓ ~ RMSE).

Eye↑ Colon↑ Clave↑ Cardio↑ Jannis↑ Htru↑ Breast↑ Elevators↓ Super↓ Volume↓

Ωhardest 0.3803 0.5895 0.3577 0.6155 0.3462 0.8422 0.8121 0.0083 35.8297 121.2847
Ωall−hard 0.3792 0.5895 0.3596 0.6155 0.3483 0.8422 0.8121 0.0083 35.8297 121.2847
Ωsupcon 0.3904 0.5976 0.3701 0.6041 0.3204 0.8293 0.8233 0.0077 34.8366 119.9927
Ωtriplet 0.3993 0.5983 0.3675 0.6055 0.3049 0.8431 0.8178 0.0082 33.1726 120.8255

ΩTabToken 0.3982 0.6074 0.3741 0.6229 0.3687 0.8459 0.8284 0.0074 30.9636 118.7280
ΩTabToken+hard 0.3911 0.6032 0.3678 0.6204 0.3936 0.8625 0.8253 0.0076 32.1836 118.7364

Table 8: Test accuracy of different methods on the 5-shot fine-tuning datasets with the help of pre-
training. The construction of transferring datasets is shown in Table 3. Token loss allows tokens to
gain potential for prediction, but the transferability of feature tokens is not as strong as in TABTOKEN.
OPID, by utilizing model ensemble, has achieved better performance on Jannis and Htru. TABTOKEN
shows superior performance on most datasets. (↑ ~ accuracy, ↓ ~ RMSE).

Eye↑ Colon↑ Clave↑ Cardio↑ Jannis↑ Htru↑ Breast↑

Token head 0.3863 0.6058 0.3683 0.6225 0.3675 0.8497 0.8059
LR transfer 0.3661 0.6001 0.3561 0.5947 0.3552 0.6834 0.7817
OPID 0.3903 0.5942 0.3689 0.6091 0.3754 0.8784 0.8143

TABTOKEN 0.3982 0.6074 0.3741 0.6229 0.3687 0.8459 0.8284

the binary classification task, “All-hard” and “Hardest” are the same).

Ωall−hard

(
{Ti}Ni=1

)
=

1

N t · (C − 1)

Nt∑
i=1

∑
j ̸=yi

(∥Ti − Sj∥22).

• Supcon: the supervised contrastive loss [33]. The objective remains the same, which is to bring
instances of the same label closer together while keeping instances of different labels far apart.
However, this approach requires more calculations based on the distances of instance tokens.
We use the default configuration of official implementation.

• Triplet: the triplet contrastive loss with margin [24]. The objective is to ensure that the positive
examples are closer to the anchor than the negative examples by at least the specified margin.
We use the default configuration of official implementation.

• TABTOKEN + hard: the objective is the combination of CTR and All-hard:

ΩTabToken+hard =
1

N t

Nt∑
i=1

∥Ti − Syi
∥22 −

1

C − 1

∑
j ̸=yi

∥Ti − Sj∥22

 .

We use TABTOKEN with different token regularization techniques. We reuse the pre-trained feature
tokenizer and apply token regularization during fine-tuning on the 5-shot downstream dataset. The
results in the Table 7 shows the test accuracy for downstream tasks with 5-shot. The same to
the evaluation in the main text, for each method and dataset, we train on 30 randomly sampled
few-shot subsets, reporting the performance averaged over 30 subsets and 10 random seeds. The
only difference in training is the type of token regularization. Although ΩTabToken is the simplest
objective, it allows the feature tokens of the pre-trained model to obtain better transferability.

Real-world medical applications with overlapping features. We collect pre-training dataset on
Kaggle, the Behavioral Risk Factor Surveillance System. We choose the dataset from 2015 with
340057 samples. We also collect two fine-tuning datasets, Diabetes and Stroke. We conduct 5-shot
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Table 9: We collect pre-training dataset on Kaggle, the Behavioral Risk Factor Surveillance System
with 340057 samples. We also collect two fine-tuning datasets, Diabetes and Stroke. We conduct
5-shot fine-tuning experiments as in the main text. The average results of 5-shot downstream tasks
over {30 subsets × 10 random seeds} are compared.TABTOKEN outperforms other baselines in
medical applications with overlapping features.

Dataset Diabetes Stroke

Task type binary binary
Feature num 21 10

XGBoost 0.6252± 0.0237 0.5382± 0.0125

FT-trans 0.6126± 0.0163 0.5725± 0.0087

SCARF 0.6014± 0.0285 0.5697± 0.0178

TabRet 0.6259± 0.0134 0.5834± 0.0201

TabToken 0.6343 ± 0.0113 0.5845± 0.0082

Table 10: Test accuracy on the 5-shot fine-tuning datasets when the instance distributions are changed.
(SD: same distribution, DD: different distributions). We add Gaussian noise to pre-training datasets
to change the instance distributions. ∆ is the average absolute change in prediction accuracy for the
three methods when there is a distribution shift across five datasets. TABTOKEN can maintain its
transferability and significantly outperform the other two transfer methods.

Eye Cardio Jannis Htru ∆

SCARF (SD) 0.3371 0.5547 0.3523 0.5938 0.0288SCARF (DD) 0.3561 0.5320 0.3547 0.4958

TabRet(SD) 0.3477 0.4329 0.3545 0.6305 0.0484TabRet (DD) 0.3661 0.5063 0.3189 0.5175

TABTOKEN (SD) 0.3982 0.6229 0.3678 0.8459 0.0037TABTOKEN (DD) 0.3989 0.6189 0.3629 0.8479

fine-tuning experiments as in the main text. We conducted data cleaning and feature selection, result-
ing in a feature overlapping ratio of approximately 50% between pre-training data and downstream
data. Experimental results are listed in Table 9.

Different Methods for Feature Overlapping. We compare baselines suitable for overlapping
features, the descriptions are as follows:

• “Token loss” simultaneously train a linear classifier on the instance tokens during the training
process of TABTOKEN and incorporating its loss into the final loss instead of CTR, the quality
of feature tokens is expected to be improved by direct predicting based on the tokens.

• In “LR transfer”, the logistic regression classifier obtained from the pre-training set is directly
used to initialize the fine-tuning classifier with the overlapping part. For features that are unseen
in the fine-tuning phase, their corresponding weights are initialized to zero.

• In “OPID” [28], during the pre-training phase, a sub-classifier is jointly trained on overlapping
features, and the output of this sub-classifier is treated as knowledge from the pre-training set.
This knowledge, in the form of new features, is concatenated with the fine-tuning dataset. During
the fine-tuning phase, the sub-classifier and the new classifier are jointly trained, and the final
prediction is the weighted sum of their predictions.

The results for these three baselines are in Table 8. Although OPID shows advantages in two datasets,
when pre-training, it need the information about which features will be overlapping features in
downstream task. While all features are treated equally during pre-training in TABTOKEN. Besides,
OPID benefits from the ensemble of classifiers.

20



Table 11: Test accuracy for different feature and label space. We conduct experiments on 5-shot
Eye datasets with different feature numbers (shown in Table 4). We pre-train feature tokenizer with
Transformer on full Jannis, fine-tuning on 20 randomly sampled few-shot subsets. re-weighting based
TABTOKEN can benefit from pre-trained feature tokens, especially when the number of fine-tuning
features is not large.

Eye (l) Eye (m) Eye (h)

XGBoost 0.3719 0.3699 0.3909
CatBoost 0.3759 0.3791 0.3974
FT-trans 0.3857 0.3916 0.3922
TabPFN 0.3885 0.3918 0.4081
TABTOKEN 0.3923 0.3977 0.3974

E.2 Extension to More Complex Scenarios

Different Instance Distributions. To explore the scenario where the feature space is the same, but
the pre-training instance distribution differs from the fine-tuning distribution, we first split the full
training set into two halves. In the first part, we construct the pre-training dataset by adding Gaussian
noise. The standard deviation of noise is 10% of the feature’s standard deviation. In the second part,
we extract 30 5-shot sub-datasets as downstream tasks. To facilitate the addition of Gaussian noise,
we conduct experiments on numerical datasets. The results are in Table 10. TABTOKEN is robust to
the deviation of instance distributions, achieving the least changes in prediction performance.

Different Feature and Label Space. We explored transferring scenarios where the pre-training
dataset and fine-tuning dataset are completely different. We use CTR to pre-train Transformer on
Jannis, which owns a large number of features. We expect the downstream task to select feature tokens
from these completely non-overlapping but semantically meaningful tokens using a re-weighting
mechanism. By incorporating n learnable new feature tokens {Enew

j }nj=1 and a matching layer
W ∈ Rdt×(d+n), we adapt TABTOKEN for scenarios with non-overlapping features.

We concatenate the new tokens with d pre-trained feature tokens, constructing a “token library”(
{Epre

j }dj=1 ∪ {Enew
j }nj=1

)
∈ R(d+n)×k. The expression for re-weighting based TABTOKEN is as

follows:
{Efine

j }dt
j=1 = W

(
{Epre

j }dj=1 ∪ {Enew
j }nj=1

)
∈ Rdt×k.

where {Efine
j }dt

j=1 is the feature tokens for fine-tuning feature tokenizer h, {Epre
j }dj=1 is the pre-trained

feature tokens of h0. W is the re-weighting matrix for selecting feature tokens.

Overlapping feature transfer methods like TabRet may not be suitable for scenarios where there are
non-overlapping features. TABTOKEN constructs a feature tokenizer by re-weighting the feature
tokens in the pre-training set. We expect to obtain more useful feature tokens by training fewer
parameters. Table 11 reports the performance with different number of fine-tuning features. Despite
the disparity between the pre-training and the fine-tuning dataset, re-weighting is a token search-like
mechanism to enable the target task to benefit from the heterogeneous pre-trained feature tokens.

Summary. Among various contrastive token regularizations, simple CTR has demonstrated superior
performance in transferring tasks. Compared to other methods, TABTOKEN is capable of obtaining
easily transferable feature tokens during the pre-training phase. TABTOKEN maintains its transfer-
ability even when there are differences in instance distributions. Re-weighting based TABTOKEN
proves to be effective when there is a non-overlapping feature set.

E.3 Ablation study

Different Shots and Overlapping Ratios. In order to fully verify the robustness of TABTOKEN,
we conduct experiments on {3, 5, 10, 20}-shot and adjust the overlapping ratio to three levels {low,
medium, high}. Figure 7 shows that TABTOKEN can maintain the transfer effect in different shots
and overlapping ratios. The specific number of features for different overlapping ratios is in Table 4.
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Figure 7: Results for different shots and overlapping ratios. TABTOKEN outperforms other baselines with
different degrees of data limitations. When the overlapping feature ratio improves, TABTOKEN can leverage a
larger proportion of pre-trained feature tokens, leading to improved performance.

Table 12: Test accuracy for different tuning modules. We pre-train Transformer on pre-training
datasets in Table 3. When we fix certain part of the pre-trained Transformer and fine-tune, the
pre-training model have lower transferring effect than TABTOKEN. The frozen pre-trained top-layer
model is not suitable for overlapping transfer scenarios. Feature tokens with semantics should be
used for transfer. The best choice is to directly fine-tune the entire top-layer model as TABTOKEN.

Eye Cardio

Tune last layer 0.3907 0.6155
Tune attention 0.3894 0.6217
Tune linear 0.3886 0.6153
Fix top-layer 0.3770 0.5983

TABTOKEN 0.3982 0.6229

MLP ResNet Transformer
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Figure 8: The results of 5-shot downstream tasks
in Jannis. “Vanilla” means transferring feature
tokens obtained by vanilla pre-training.

Different Top-layer Model Types. In the pre-
training process, we combine the tokenizer with dif-
ferent top-layer models, and transfer the pre-trained
feature tokens to a new transformer for the down-
stream task. We report the results of different
pre-training strategies and pre-trained model types:
{MLP, ResNet, Transformer}. Figure 8 shows that
even when the pre-training and downstream model
types are different , the feature tokens trained with
CTR gain transferability. Averaging also plays a role
in TABTOKEN. Therefore, token matters in transfer.

Tuning Modules. In TABTOKEN, we do not fix the top-layer model when fine-tuning, while tuning
all the Transformer, which indicates that feature tokens matter. We compare various tuning choices.
When we train the fine-tuning tokenizer using TABTOKEN, we tune the last TransformerLayer(·),
tune the MultiheadAttention(·), and tune the Linear(·) in Transformer layer while keeping other
modules in Transformer frozen (the final prediction linear head is trainable). Besides, we conduct
experiments on tuning the entire fine-tuning tokenizer with fixed top-layer model. The results in
Table 12 show that token matters in transferring, we need to tune the entire top-layer model.

Tuning Token Dimension and Pre-training Size. In our other experiments, we use a default token
dimension of 64. Now, we will conduct experiments with token dimensions of 16, 32, 64, 128, and
256. Conventional transfer methods typically require a large amount of pre-training data. In our study,
we randomly sample 20%, 40%, 60%, 80%, and 100% of the pre-training dataset to investigate the
impact of data volume on the transfer performance of TABTOKEN. The results in Table 13 show that
the larger dimension of tokens is not always better. TABTOKEN exhibits stable transfer performance
even when the data volume decreases. TABTOKEN does not need a large amount of pre-training data
to achieve the transfer effect.
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Figure 9: Feature tokens with vanilla training on bank-marketing dataset.

Table 13: Test accuracy for different token dimension and pre-training size. The transferring task
is the same to Table 12. Left: The influence of token dimension. We change the dimension of
feature tokens in tokenizer. We find that increasing the dimension of tokens does not lead to better
transfer effect. Right: The transferring results with different size of pre-training dataset. We sample
subsets from the pre-training dataset based on different proportions. TABTOKEN does not need a
large amount of pre-training data to achieve the transfer effect.

Eye Cardio

16 0.3909 0.5859
32 0.3999 0.6258
64 0.3982 0.6229
128 0.3977 0.6182
256 0.3949 0.6060

Eye Cardio

20% 0.3836 0.6205
40% 0.3878 0.6207
60% 0.3992 0.6179
80% 0.3962 0.6185
100% 0.3982 0.6229

E.4 Visualization of feature tokens with vanilla training on bank-marketing dataset

As shown in Figure 9, withour our CTR, the distribution of feature tokens is random.

Appendix F Implementation

In this section, we present the experimental configurations employed for the baselines and TABTO-
KEN. Given the absence of a validation dataset in the downstream few-shot task, we adopt default
configurations to ensure a fair comparison. For standard tabular task, we follow the hyper-parameter
space in [18]. All hyper-parameters are selected by Optuna library1 with Bayesian optimization over
30 trials. The best hyper-parameters are used and the average accuracy over 10 different random
seeds is calculated.

MLP and ResNet. We use three-layer MLP and set dropout to 0.2. The feature token size is set to 64
for MLP, ResNet, and Transformer. The default configuration of ResNet is in the left of Table 14.

Transformer. The right tabular of Table 14 describes the configuration of FT-trans [18] and
Transformer layer in TABTOKEN.

1https://optuna.org/
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Table 14: The parameters of ResNet and Transformer for top-layer models. Left: Default con-
figuration used for ResNet. Right: Default configuration used for Tranformer which is also the
configuration for implementing FT-trans.

Layer count 3
Feature token size 64

Token bias False
Layer size 168

Hidden factor 2.9
Hidden dropout 0.5

Residual dropout 0.0
Activation ReLU

Normalization BatchNorm

Optimizer AdamW
Pre-train Learning rate 1e-3

Weight decay 2e-4

Layer count 3
Feature token size 64

Token bias False
Head count 8

Activation & FFN size factor ReGLU, 4/3
Attention dropout 0.08

FFN dropout 0.3
Residual dropout 0.1

Initialization Kaiming

Optimizer AdamW
Pre-train Learning rate 1e-3

Fine-Tune Learning rate 5e-4
Weight decay 2e-4

TabPFN. We use the official implementation: https://github.com/automl/TabPFN and use the default
configuration.

SCARF and TabRet. We use the default configutation in https://github.com/pfnet-research/tabret,
which is also the official implementation of TabRet [39]. To ensure a fair comparison, we set the
number of pre-training epochs to 200, patience to 20, fine-tuning epochs to 20. We modified the
implementations to prevent the use of the validation set during the fine-tuning process.

XTab. We reuse the checkpoint with the highest number of training epochs from the official
implementation of XTab [60]: https://github.com/BingzhaoZhu/XTab. We perform evaluations on
the target datasets using XTab’s light fine-tuning approach.

ORCA. We follow the configurations of ORCA [45] for OpenML11 datasets: text for embed-
der_dataset and roberta for pre-training model. (https://github.com/sjunhongshen/ORCA).

TABTOKEN. The configuration of feature tokenizer and top-layer models are described in Table 14.
During pre-training, the learning rate is set to 1e-3, the batch size is set to 1024. During fine-tuning,
the learning rate is set to 5e-4. We fine-tuning models in 10 epochs.
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https://github.com/automl/TabPFN
https://github.com/pfnet-research/tabret
https://github.com/BingzhaoZhu/XTab
https://github.com/sjunhongshen/ORCA
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