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ABSTRACT

Recent state-of-the-art source-free domain adaptation (SFDA) methods have fo-
cused on learning meaningful cluster structures in the feature space, which have
succeeded in adapting the knowledge from source domain to unlabeled target
domain without accessing the private source data. However, existing methods
rely on the pseudo-labels generated by source models that can be noisy due to
domain shift. In this paper, we study SFDA from the perspective of learning with
label noise (LLN). Unlike the label noise in the conventional LLN scenario, we
prove that the label noise in SFDA follows a different distribution assumption. We
also prove that such a difference makes existing LLN methods that rely on their
distribution assumptions unable to address the label noise in SFDA. Empirical
evidence suggests that only marginal improvements are achieved when applying
the existing LLN methods to solve the SFDA problem. On the other hand, although
there exists a fundamental difference between the label noise in the two scenar-
ios, we demonstrate theoretically that the early-time training phenomenon (ETP),
which has been previously observed in conventional label noise settings, can also
be observed in the SFDA problem. Extensive experiments demonstrate significant
improvements to existing SFDA algorithms by leveraging ETP to address the label
noise in SFDA.

1 INTRODUCTION

Deep learning demonstrates strong performance on various tasks across different fields. However,
it is limited by the requirement of large-scale labeled and independent, and identically distributed
(i.i.d.) data. Unsupervised domain adaptation (UDA) is thus proposed to mitigate the distribution shift
between the labeled source and unlabeled target domain. In view of the importance of data privacy,
it is crucial to be able to adapt a pre-trained source model to the unlabeled target domain without
accessing the private source data, which is known as Source Free Domain Adaptation (SFDA).

The current state-of-the-art SFDA methods (Liang et al., 2020; Yang et al., 2021a;b) mainly focus
on learning meaningful cluster structures in the feature space, and the quality of the learned cluster
structures hinges on the reliability of pseudo labels generated by the source model. Among these
methods, SHOT (Liang et al., 2020) purifies pseudo labels of target data based on nearest centroids,
and then the purified pseudo labels are used to guide the self-training. G-SFDA (Yang et al., 2021b)
and NRC (Yang et al., 2021a) further refine pseudo labels by encouraging similar predictions to the
data point and its neighbors. For a single target data point, when most of its neighbors are correctly
predicted, these methods can provide an accurate pseudo label to the data point. However, as we
illustrate the problem in Figure 1i(a-b), when the majority of its neighbors are incorrectly predicted
to a category, it will be assigned with an incorrect pseudo label, misleading the learning of cluster
structures. The experimental result on VisDA (Peng et al., 2017), shown in Figure 1ii, further verifies
this phenomenon. By directly applying the pre-trained source model on each target domain instance

∗Equal contribution
†Corresponding author

1



Published as a conference paper at ICLR 2023

Source/Unlabeled target data
Mislabeled target data Correctly predicted data

(a) (b): existing 
SFDA

(c): ours

<latexit sha1_base64="SL153EmR9zgu8F8djgDnmvPe4UA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqBeh6MVjBdMW2lA22027dLMJuxOhlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0ylMOi6305hbX1jc6u4XdrZ3ds/KB8eNU2SacZ9lshEt0NquBSK+yhQ8naqOY1DyVvh6G7mt564NiJRjzhOeRDTgRKRYBSt5OMN9rxeueJW3TnIKvFyUoEcjV75q9tPWBZzhUxSYzqem2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzI+dkjOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8PoOpgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/JhuAtv7xKmhdV77Jae6hV6rd5HEU4gVM4Bw+uoA730AAfGAh4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/YTKOag==</latexit>

t = t1

Label Noise
<latexit sha1_base64="nPnpmxENyuuNurHMaKiIE+/9tEM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqt564NiJWjzhOuB/RgRKhYBSt9IDXbq9ccavuDGSZeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5S6qeEJZSM64B1LFY248bPZqRNyYpU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0SjYEb/HlZdI8q3oX1fP780rtJo+jCEdwDKfgwSXU4A7q0AAGA3iGV3hzpPPivDsf89aCk88cwh84nz/TSY2C</latexit>

t = 0

Source Model <latexit sha1_base64="0wQ1NM1Zt88/Hm36bPdbvGgP/d0=">AAAB9XicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6kUoevFYwX5AG8tmM2mXbjZhd6KW0P/hxYMiXv0v3vw3btsctPXBwOO9GWbm+YngGh3n2yosLa+srhXXSxubW9s75d29po5TxaDBYhGrtk81CC6hgRwFtBMFNPIFtPzh9cRvPYDSPJZ3OErAi2hf8pAzika6x0vsdRGeMAMZjHvlilN1prAXiZuTCslR75W/ukHM0ggkMkG17rhOgl5GFXImYFzqphoSyoa0Dx1DJY1Ae9n06rF9ZJTADmNlSqI9VX9PZDTSehT5pjOiONDz3kT8z+ukGF54GZdJiiDZbFGYChtjexKBHXAFDMXIEMoUN7fabEAVZWiCKpkQ3PmXF0nzpOqeVU9vTyu1qzyOIjkgh+SYuOSc1MgNqZMGYUSRZ/JK3qxH68V6tz5mrQUrn9knf2B9/gAN7JLj</latexit>

t = tend

(i) Overview of the SFDA problem and our method
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Figure 1: (i) (a) The SFDA problem can be formulated as an LLN problem. (b) The existing SFDA
algorithms using the local cluster information cannot address label noise due to the unbounded label
noise (Section 3). (c) We prove that ETP exists in SFDA, which can be leveraged to address the
unbounded label noise (Section 4). (ii) Observed Label Noise Phenomena on VisDA dataset.

(central instance), we collect its neighbors and evaluate their quality. We observed that for each class
a large proportion of the neighbors are misleading (i.e., the neighbors’ pseudo labels are different
from the central instance’s true label), some even with high confidence (e.g., the over-confident
misleading neighbors whose prediction score is larger than 0.75). Based on this observation, we can
conclude that: (1) the pseudo labels leveraged in current SFDA methods can be heavily noisy; (2)
some pseudo-label purification methods utilized in SFDA, which severely rely on the quality of the
pseudo label itself, will be affected by such label noise, and the prediction error will accumulate as
the training progresses. More details can be found in Appendix A.

In this paper, we address the aforementioned problem by formulating SFDA as learning with label
noise (LLN). Unlike existing studies that heuristically rely on cluster structures or neighbors, we
investigate the properties of label noise in SFDA and show that there is an intrinsic discrepancy
between the SFDA and the LLN problems. Specifically, in conventional LLN scenarios, the label
noise is generated by human annotators or image search engines (Patrini et al., 2017; Xiao et al.,
2015; Xia et al., 2020a), where the underlying distribution assumption is that the mislabeling rate for
a sample is bounded. However, in the SFDA scenarios, the label noise is generated by the source
model due to the distribution shift, where we prove that the mislabeling rate for a sample is much
higher, and can approach 1. We term the former label noise in LLN as bounded label noise and the
latter label noise in SFDA as unbounded label noise. Moreover, we theoretically show that most
existing LLN methods, which rely on bounded label noise assumption, are unable to address the label
noise in SFDA due to the fundamental difference (Section 3).

To this end, we leverage early-time training phenomenon (ETP) in LLN to address the unbounded
label noise and to improve the efficiency of existing SFDA algorithms. Specifically, ETP indicates
that classifiers can predict mislabeled samples with relatively high accuracy during the early learning
phase before they start to memorize the mislabeled data (Liu et al., 2020). Although ETP has been
previously observed in, it has only been studied in the bounded random label noise in the conventional
LLN scenarios. In this work, we theoretically and empirically show that ETP still exists in the
unbounded label noise scenario of SFDA. Moreover, we also empirically justify that existing SFDA
algorithms can be substantially improved by leveraging ETP, which opens up a new avenue for SFDA.
As an instantiation, we incorporate a simple early learning regularization (ELR) term (Liu et al.,
2020) with existing SFDA objective functions, achieving consistent improvements on four different
SFDA benchmark datasets. As a comparison, we also apply other existing LLN methods, including
Generalized Cross Entropy (GCE) (Zhang & Sabuncu, 2018), Symmetric Cross Entropy Learning
(SL) (Wang et al., 2019b), Generalized Jensen-Shannon Divergence (GJS) (Englesson & Azizpour,
2021) and Progressive Label Correction (PLC) (Zhang et al., 2021), to SFDA. Our empirical evidence
shows that they are inappropriate for addressing the label noise in SFDA. This is also consistent with
our theoretical results (Section 4).

Our main contribution can be summarized as: (1) We establish the connection between the SFDA
and the LLN. Compared with the conventional LLN problem that assumes bounded label noise,
the problem in SFDA can be viewed as the problem of LLN with the unbounded label noise. (2)
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We theoretically and empirically justify that ETP exists in the unbounded label noise scenario. On
the algorithmic side, we instantiate our analysis by simply adding a regularization term into the
SFDA objective functions. (3) We conduct extensive experiments to show that ETP can be utilized to
improve many existing SFDA algorithms by a large margin across multiple SFDA benchmarks.

2 RELATED WORK

Source-free domain adaptation. Recently, SFDA are studied for data privacy. The first branch
of research is to leverage the target pseudo labels to conduct self-training to implicitly achieve
adaptation (Liang et al., 2021; Tanwisuth et al., 2021; Ahmed et al., 2021; Yang et al., 2021b). SHOT
(Liang et al., 2020) introduces k-means clustering and mutual information maximization strategy for
self-training. NRC (Yang et al., 2021a) further investigates the neighbors of target clusters to improve
the accuracy of pseudo labels. These studies more or less involve pseudo-label purification processes,
but they are primarily heuristic algorithms and suffer from the previously mentioned label noise
accumulation problem. The other branch is to utilize the generative model to synthesize target-style
training data (Qiu et al., 2021; Liu et al., 2021b). Some methods also explore the SFDA algorithms
in various settings. USFDA (Kundu et al., 2020a) and FS (Kundu et al., 2020b) design methods
for universal and open-set UDA. In this paper, we regard SFDA as the LLN problem. We aim to
explore what category of noisy labels exists in SFDA and to ameliorate such label noise to improve
the performance of current SFDA algorithms.

Learning with label noise. Existing methods for training neural networks with label noise focus
on symmetric, asymmetric, and instance-dependent label noise. For example, a branch of research
focuses on leveraging noise-robust loss functions to cope with the symmetric and asymmetric noise,
including GCE (Zhang & Sabuncu, 2018), SL (Wang et al., 2019b), NCE (Ma et al., 2020), and GJS
(Englesson & Azizpour, 2021), which have been proven effective in bounded label noise. On the other
hand, CORES (Cheng et al., 2020) and CAL (Zhu et al., 2021) are shown useful in mitigating instance-
dependent label noise. These methods are only tailed to conventional LLN settings. Recently, Liu
et al. (2020) has studied early-time training phenomenon (ETP) in conventional label noise scenarios
and proposes a regularization term ELR to exploit the benefits of ETP. PCL (Zhang et al., 2021) is
another conventional LLN algorithm utilizing ETP, but it cannot maintain the exploit of ETP in SFDA
as memorizing noisy labels is much faster in SFDA. Our contributions are: (1) We theoretically and
empirically study ETP in the SFDA scenario. (2) Based on an in depth analysis of many existing
LLN methods (Zhang & Sabuncu, 2018; Wang et al., 2019b; Englesson & Azizpour, 2021; Zhang
et al., 2021), we demonstrate that ELR is useful for many SFDA problems.

3 LABEL NOISE IN SFDA

The presence of label noise on training datasets has been shown to degrade the model performance
(Malach & Shalev-Shwartz, 2017; Han et al., 2018). In SFDA, existing algorithms rely on pseudo-
labels produced by the source model, which are inevitably noisy due to the domain shift. The SFDA
methods such as Liang et al. (2020); Yang et al. (2021a;b) cannot tackle the situation when some
target samples and their neighbors are all incorrectly predicted by the source model. In this section,
we formulate the SFDA as the problem of LLN to address this issue. We assume that the source
domain DS and the target domain DT follow two different underlying distributions over X × Y ,
where X and Y are respectively the input and label spaces. In the SFDA setting, we aim to learn a
target classifier f(x; θ) : X → Y only with a pre-trained model fS(x) on DS and a set of unlabeled
target domain observations drawn from DT . We regard the incorrectly assigned pseudo-labels as
noisy labels. Unlike the “bounded label noise” assumption in the conventional LLN domain, we will
show that the label noise in SFDA is unbounded. We further prove that most existing LLN methods
that rely on the bounded assumption cannot address the label noise in SFDA due to the difference.

Label noise in conventional LLN settings: In conventional label noise settings, the injected noisy
labels are collected by either human annotators or image search engines (Lee et al., 2018; Li et al.,
2017; Xiao et al., 2015). The label noise is usually assumed to be either independent of instances (i.e.,
symmetric label noise or asymmetric label noise) (Patrini et al., 2017; Liu & Tao, 2015; Xu et al.,
2019b) or dependent of instances (i.e., instance-dependent label noise) (Berthon et al., 2021; Xia et al.,
2020b). The underling assumption for them is that a sample x has the highest probability of being
in the correct class y, i.e., Pr[Ỹ = i|Y = i,X = x] > Pr[Ỹ = j|Y = i,X = x], ∀x ∈ X , i ̸= j,

3



Published as a conference paper at ICLR 2023

where Ỹ is the noisy label and Y is the ground-truth label for input X . Equivalently, it assumes a
bounded noise rate. For example, given an image to annotate, the mislabeling rate for the image is
bounded by a small number, which is realistic in conventional LLN settings (Xia et al., 2020b; Cheng
et al., 2020). When the label noise is generated by the source model, the underlying assumption of
these types of label noise does not hold.

Label noise in SFDA: As for the label noise generated by the source model, mislabeling rate for
an image can approach 1, that is, Pr[Ỹ = j|Y = i,X = x] → 1, ∃S ⊂ X , ∀x ∈ S, i ̸= j. To
understand that the label noise in SFDA is unbounded, we consider a two-component Multivariate
Gaussian mixture distribution with equal priors for both domains. Let the first component (y = 1)
of the source domain distribution DS be N (µ1, σ

2Id), and the second component (y = −1) of DS

be N (µ2, σ
2Id), where µ1,µ2 ∈ Rd and Id ∈ Rd×d. For the target domain distribution DT , let

the first component (y = 1) of DT be N (µ1 +∆, σ2Id), and the second component (y = −1) of
DT be N (µ2 +∆, σ2Id), where ∆ ∈ Rd is the shift of the two domains. Notice that the domain
shift considered is a general shift and it has been studied in Stojanov et al. (2021); Zhao et al. (2019),
where we also illustrate the domain shift in Figure 9 in supplementary material.

Let fS be the optimal source classifier. First, we build the relationship between the mislabeling rate
for target data and the domain shift:

Pr
(x,y)∼DT

[fS(x) ̸= y] =
1

2
Φ(−d1

σ
) +

1

2
Φ(−d2

σ
), (1)

where d1 =
∥∥µ2−µ1

2 − c
∥∥ sign(

∥∥µ2−µ1

2

∥∥ − ∥c∥), d2 =
∥∥µ2−µ1

2 + c
∥∥, c = α(µ2 − µ1), α =

∆⊤(µ2−µ1)

∥µ2−µ1∥2 is the magnitude of domain shift, and Φ is the standard normal cumulative distribution
function. Eq. (1) shows that the magnitude of the domain shift inherently controls the mislabeling
error for target data. This mislabeling rate increases as the magnitude of the domain shift increases.
We defer the proof and details to Appendix B.

More importantly, we characterize that the label noise is unbounded among these mislabeled samples.
Theorem 3.1. Without loss of generality, we assume that the ∆ is positively correlated with the
vector µ2 − µ1, i.e., ∆⊤(µ2 − µ1) > 0. For (x, y) ∼ DT , if x ∈ R, then

Pr[fS(x) ̸= y] ≥ 1− δ, (2)

where δ ∈ (0, 1) (i.e., δ = 0.01), R = R1

⋂
R2, R1 = {x : ∥x− µ1 −∆∥ ≤ σ(

√
d
2 − log 1−δ

δ√
d

)},

and R2 = {x : x⊤1d > (σd + 2µ⊤
1 1d)/2}. Meanwhile, R is non-empty when α > (log 1−δ

δ )/d,

where α = ∆⊤(µ2−µ1)

∥µ2−µ1∥2 > 0 is the magnitude of the domain shift along the direction µ2 − µ1.

Conventional LLN methods assume that the label noise is bounded: Pr[fH(x) ̸= y] < m, ∀(x, y) ∼
DT , where fH is the labeling function, and m = 0.5 if the number of clean samples of each
component are the same (Cheng et al., 2020). However, Theorem 3.1 indicates that the label
noise generated by the source model is unbounded for any x ∈ R. In practice, region R is
non-empty as neural networks are usually trained on high dimensional data such that d ≫ 1,
so α > (log 1−δ

δ )/d → 0 is easy to satisfy. The probability measure on R = R1

⋂
R2 (i.e.,

Pr(x,y)∼DT
[x ∈ R]) increases as the magnitude of the domain shift α increases, meaning more data

points contradict the conventional LLN assumption. More details can be found in Appendix C.

Given that the unbounded label noise exists in SFDA, the following Lemma establishes that many
existing LLN methods (Wang et al., 2019b; Ghosh et al., 2017; Englesson & Azizpour, 2021; Ma
et al., 2020), which rely on the bounded assumption, are not noise tolerant in SFDA.
Lemma 3.2. Let the risk of the function h : X → Y under the clean data be R(h) =

Ex,y[ℓLLN(h(x), y)], and the risk of h under the noisy data be R̃(h) = Ex,ỹ[ℓLLN(h(x), ỹ)], where
the noisy data follows the unbounded assumption, i.e., Pr[ỹ ̸= y|x ∈ R] = 1 − δ for a subset
R ⊂ X and δ ∈ (0, 1). Then the global minimizer h̃⋆ of R̃(h) disagrees with the global minimizer
h⋆ of R(h) on data points x ∈ R with a high probability at least 1− δ.

We denote ℓLLN by the existing noise-robust loss based LLN methods in Wang et al. (2019b); Ghosh
et al. (2017); Englesson & Azizpour (2021); Ma et al. (2020). When the noisy data follows the
bounded assumption, these methods are noise tolerant as the minimizer h̃⋆ converges to the minimizer
h⋆ with a high probability. We defer the details and proof of the related LLN methods to Appendix D.
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4 LEARNING WITH LABEL NOISE IN SFDA

Given a fundamental difference between the label noise in SFDA and the label noise in conventional
LLN scenarios, existing LLN methods, whose underlying assumption is bounded label noise, cannot
be applied to solve the label noise in SFDA. This section focuses on investigating how to address the
unbounded label noise in SFDA.

Motivated by the recent studies Liu et al. (2020); Arpit et al. (2017), which observed an early-time
training phenomenon (ETP) on noisy datasets with bounded random label noise, we find that ETP does
not rely on the bounded random label noise assumption, and it can be generalized to the unbounded
label noise in SFDA. ETP describes the training dynamics of the classifier that preferentially fits
the clean samples and therefore has higher prediction accuracy for mislabeled samples during the
early-training stage. Such training characteristics can be very beneficial for SFDA problems in which
we only have access to the source model and the highly noisy target data. To theoretically prove ETP
in the presence of unbounded label noise, we first describe the problem setup.

We still consider a two-component Gaussian mixture distribution with equal priors. We denote y by the
true label for x, and assume it is a balanced sample from {−1,+1}. The instance x is sampled from
the distribution N (yµ, σ1d), where ∥µ∥ = 1. We denote ỹ by the noisy label for x. We observe that
the label noise generated by the source model is close to the decision boundary revealed in Theorem
3.1. So, to assign the noisy labels, we let ỹ = yβ(x, y), where β(x, y) = sign(1{yx⊤µ > r} − 0.5)
is the label flipping function, and r controls the mislabeling rate. If β(x, y) < 1, then the data point
x is mislabeled. Meanwhile, the label noise is unbounded by adopting the label flipping function
β(x, y): Pr[ỹ ̸= y|yx⊤µ ≤ r] = 1, where R = {x : yx⊤µ ≤ r}.

We study the early-time training dynamics of gradient descent on the linear classifier. The parameter
θ is learned over the unbounded label noise data {xi, ỹi}ni=1 with the following logistic loss function:

L(θt+1) =
1

n

n∑

i=1

log
(
1 + exp

(
−ỹiθ

⊤
t+1xi

))
,

where θt+1 = θt − η∇θL(θt), and η is the learning rate. Then the following theorem builds the
connection between the prediction accuracy for mislabeled samples at an early-training time T .
Theorem 4.1. Let B = {x : ỹ ̸= y} be a set of mislabeled samples. Let κ(B; θ) be the prediction
accuracy calculated by the ground-truth labels and the predicted labels by the classifier with parame-
ter θ for mislabeled samples. If at most half of the samples are mislabeled (r < 1), then there exists a
proper time T and a constant c0 > 0 such that for any 0 < σ < c0 and n → ∞, with probability
1− op(1):

κ(B; θT ) ≥ 1− exp{− 1

200
g(σ)2}, (3)

where g(σ) =
Erf[ 1−r√

2σ
]

2(1+2σ)σ +
exp (− (r−1)2

2σ2 )
√
2π(1+2σ)

> 0 is a monotone decreasing function that g(σ) → ∞ as

σ → 0, and Erf[x] = 2√
π

∫ x

0
e−t2 dt.

The proof is provided in Appendix E. Compared to ETP found in Liu et al. (2020), where the label
noise is assumed to be bounded, Theorem 4.1 presents that ETP also exists even though the label
noise is unbounded. At a proper time T, the classifier trained by the gradient descent algorithm
can provide accurate predictions for mislabeled samples, where its accuracy is lower bounded by
a function of the variance of clusters σ. When σ → 0, the predictions of all mislabeled samples
equal to their ground-truth labels (i.e., κ(B; θT ) → 1). When the classifier is trained for a sufficiently
long time, it will gradually memorize mislabeled data. The predictions of mislabeled samples are
equivalent to their incorrect labels instead of their ground-truth labels (Liu et al., 2020; Maennel et al.,
2020). Based on these insights, the memorization of mislabeled data can be alleviated by leveraging
their predicted labels during the early-training time.

To leverage the predictions during the early-training time, we adopt a recently established method,
early learning regularization (ELR) (Liu et al., 2020), which encourages model predictions to stick to
the early-time predictions for x. Since ETP exists in the scenarios of the unbounded label noise, ELR
can be applied to solve the label noise in SFDA. The regularization is given by:

LELR(θt) = log(1− ȳ⊤t f(x; θt)), (4)
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(i) VisDA-C (ii) DomainNet (iii) Office-Home (iv) Office-31

Figure 2: Training accuracy on various target domains. The source models initialize the classifiers
and annotate unlabeled target data. As the classifiers memorize the unbounded label noise very fast,
for the first 90 steps, we evaluate the prediction accuracy on target data every batch, and one step
represents one training batch. After the 90 steps, we evaluate the prediction accuracy for every 0.3
epoch, shown as one step. We use the CE, GCE, and ELR to train the classifiers on the labeled target
data, shown in solid green lines, solid orange lines, and solid blue lines, respectively. The dotted red
line represents the accuracy of labeling target data. Eventually, the classifiers memorize the label
noise, and the prediction accuracy equals the labeling accuracy (shown in (iii-iv)). Additional results
on transfer pairs can be found in Appendix F.

where we overload f(x; θt) to be the probabilistic output for the sample x, and ȳt = βȳt−1 + (1−
β)f(x; θt) is the moving average prediction for x, where β is a hyperparameter. To see how ELR
prevents the model from memorizing the label noise, we calculate the gradient of Eq. (4) with respect
to f(x; θt), which is given by:

dLELR(θt)

df(x; θt)
= − ȳt

1− ȳ⊤t f(x; θt)
.

Note that minimizing Eq. (4) forces f(x; θt) to close to ȳt. When ȳt is aligned better with f(x; θt),
the magnitude of the gradient becomes larger. It makes the gradient of aligning f(x; θt) with ȳt
overwhelm the gradient of other loss terms that align f(x; θt) with noisy labels. As the training
progresses, the moving averaged predictions ȳt for target samples gradually approach their ground-
truth labels till the time T . Therefore, Eq. (4) prevents the model from memorizing the label noise by
forcing the model predictions to stay close to these moving averaged predictions ȳt, which are very
likely to be ground-truth labels.

Some existing LLN methods propose to assign pseudo labels to data or require two-stage training for
label noise (Cheng et al., 2020; Zhu et al., 2021; Zhang et al., 2021). Unlike these LLN methods,
Eq. (4) can be easily embedded into any existing SFDA algorithms without conflict. The overall
objective function is given by:

L = LSFDA + λLELR, (5)

where LSFDA is any SFDA objective function, and λ is a hyperparameter.

Empirical Observations on Real-World Datasets. We empirically verify that target classifiers
have higher prediction accuracy for target data during the early training and adaptation stage. We
propose leveraging this benefit to prevent the classifier from memorizing the noisy labels. The
observations are shown in Figure 2. The parameters of classifiers are initialized by source models.
Labels of target data are annotated by the initialized classifiers. We train the target classifiers on
target data with the standard cross-entropy (CE) loss and the generalized cross-entropy (GCE) loss, a
well-known noise-robust loss widely leveraged in bounded LLN scenarios. The solid green, orange
and blue lines represent the training accuracy of optimizing the classifiers with CE loss, GCE loss,
and ELR loss, respectively. The dotted red lines represent the labeling accuracy of the initialized
classifiers. Considering that the classifiers memorize the unbounded label noise very fast, we evaluate
the prediction accuracy on target data every batch for the first 90 steps. After 90 steps, we evaluate
the prediction accuracy for every 0.33 epoch. The green lines show that ETP exists in SFDA, which
is consistent with our theoretical result. Meanwhile, in all scenarios, green and orange lines show
that classifiers provide higher prediction accuracy during the first a few iterations. After a few
iterations, they start to memorize the label noise even with noise-robust loss (e.g., GCE). Eventually,
the classifiers are expected to memorize the whole datasets. For conventional LLN settings, it has
been empirically verified that it takes a much longer time before classifiers start memorizing the label
noise (Liu et al., 2020; Xia et al., 2020a). We provide further analysis in Appendix H. We highlight
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Table 1: Accuracies (%) on Office-Home for ResNet50-based methods.

Method SFAr→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→Pr Avg
MCD (Saito et al., 2018b) ✗ 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
CDAN (Long et al., 2018) ✗ 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SAFN (Xu et al., 2019a) ✗ 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
Symnets (Zhang et al., 2019a) ✗ 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
MDD (Zhang et al., 2019b) ✗ 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
TADA (Wang et al., 2019a) ✗ 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
BNM (Cui et al., 2020) ✗ 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
BDG (Yang et al., 2020) ✗ 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7
SRDC (Tang et al., 2020) ✗ 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
RSDA-MSTN (Gu et al., 2020) ✗ 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9

Source Only ✓ 44.6 67.3 74.8 52.7 62.7 64.8 53.0 40.6 73.2 65.3 45.4 78.0 60.2
+ELR ✓ 52.4 73.5 77.3 62.5 70.6 71.0 61.1 50.8 78.9 71.7 56.7 81.6 67.3

SHOT (Liang et al., 2020) ✓ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
+ELR ✓ 58.7 78.9 82.1 68.5 79.0 77.5 68.2 57.1 81.9 74.2 59.5 84.9 72.6

G-SFDA (Yang et al., 2021b) ✓ 55.8 77.1 80.5 66.4 74.9 77.3 66.5 53.9 80.8 72.4 59.7 83.2 70.7
+ELR ✓ 56.4 77.6 81.1 67.1 75.2 77.9 65.9 55.0 81.2 72.1 60.0 83.6 71.1

NRC (Yang et al., 2021a) ✓ 56.3 77.6 81.0 65.3 78.3 77.5 64.5 56.0 82.4 70.0 57.1 82.9 70.8
+ELR ✓ 58.4 78.7 81.5 69.2 79.5 79.3 66.3 58.0 82.6 73.4 59.8 85.1 72.6

that PCL (Zhang et al., 2021) leverages ETP at every epoch, so it cannot capture the benefits of
ETP and is inappropriate for unbounded label noise due to the fast memorization speed in SFDA.
As a comparison, we choose ELR since it leverages ETP at every batch. The blue lines show that
leveraging ETP via ELR can address the memorization of noisy labels in SFDA.

5 EXPERIMENTS

We aim to improve the efficiency of existing SFDA algorithms by using ELR to leverage ETP. We
evaluate the performance on four different SFDA benchmark datasets: Office-31 (Saenko et al., 2010),
Office-Home (Venkateswara et al., 2017), VisDA (Peng et al., 2017) and DomainNet (Peng et al.,
2019). Due to the limited space, the results on the dataset Office-31 and additional experimental
details are provided in Appendix G.

Evaluation. We incorporate ELR into three existing baseline methods: SHOT (Liang et al., 2020),
G-SFDA (Zhang & Sabuncu, 2018), and NRC (Yang et al., 2021a). SHOT uses k-means clustering
and mutual information maximization strategy to train the representation network while freezing the
final linear layer. G-SFDA aims to cluster target data with similar neighbors and attempts to maintain
the source domain performance. NRC also explores the neighbors of target data by graph-based
methods. ELR can be easily embedded into these methods by simply adding the regularization term
into the loss function to optimize without affecting existing SFDA frameworks. We average the
results based on three random runs.

Results. Tables 1-4 show the results before/after leveraging the early-time training phenomenon,
where Table 4 is shown in Appendix G. Among these tables, the top part shows the results of
conventional UDA methods, and the bottom part shows the results of SFDA methods. In the tables,
we use SF to indicate whether the method is source free or not. We use Source Only + ELR to
indicate ELR with self-training. The results show that ELR itself can boost the performances. As
existing SFDA methods are not able to address unbounded label noise, incorporating ELR into these
SFDA methods can further boost the performance. The four datasets, including all 31 pairs (e.g.,
A → D) of tasks, show better performance after solving the unbounded label noise problem using the
early-time training phenomenon. Meanwhile, solving the unbounded label noise on existing SFDA
methods achieves state-of-the-art on all benchmark datasets. These SFDA methods also outperform
most methods that need to access source data.

Analysis about hyperparameters β and λ. The hyperparameter β is chosen from {0.5, 0.6,
0.7, 0.8, 0.9, 0.99}, and λ is chosen from {1, 3, 7, 12, 25}. We conduct the sensitivity study on
hyperparameters of ELR on the DomainNet dataset, which is shown in Figure 3(a-b). In each Figure,
the study is conducted by fixing the other hyperparameter to the optimal one. The performance is
robust to the hyperparameter β except β = 0.99. When β = 0.99, classifiers are sensitive to changes
in learning curves. Thus, the performance degrades since the learning curves change quickly in the
unbounded label noise scenarios. Meanwhile, the performance is also robust to the hyperparameter λ
except when λ becomes too large. The hyperparameter λ is to balance the effects of existing SFDA
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algorithms and the effects of ELR. As we indicated in Tables 1-4, barely using ELR to address the
SFDA problem is not comparable to these SFDA methods. Hence, a large value of λ makes neural
networks neglect the effects of these SFDA methods, leading to degraded performance.

Table 2: Accuracies (%) on DomainNet for ResNet50-based methods.

Method SFR→CR→PR→SC→RC→PC→SP→RP→CP→SS→RS→CS→P Avg
MCD (Saito et al., 2018b) ✗ 61.9 69.3 56.2 79.7 56.6 53.6 83.3 58.3 60.9 81.7 56.2 66.7 65.4
DANN (Ganin et al., 2016) ✗ 63.4 73.6 72.6 86.5 65.7 70.6 86.9 73.2 70.2 85.7 75.2 70.0 74.5
DAN (Long et al., 2015) ✗ 64.3 70.6 58.4 79.4 56.7 60.0 84.5 61.6 62.2 79.7 65.0 62.0 67.0
COAL (Tan et al., 2020) ✗ 73.9 75.4 70.5 89.6 70.0 71.3 89.8 68.0 70.5 88.0 73.2 70.5 75.9
MDD (Zhang et al., 2019b) ✗ 77.6 75.7 74.2 89.5 74.2 75.6 90.2 76.0 74.6 86.7 72.9 73.2 78.4

Source Only ✓ 53.7 71.6 52.9 70.8 49.5 58.3 85.2 59.6 59.1 30.6 74.8 65.7 61.0
+ELR ✓ 70.2 81.7 61.7 79.9 63.8 67.0 90.0 72.1 66.8 85.1 78.5 68.8 73.8

SHOT (Liang et al., 2020) ✓ 73.3 80.1 65.8 91.4 74.3 69.2 91.9 77.0 66.2 87.4 81.3 75.0 77.7
+ELR ✓ 78.0 81.9 67.4 91.1 75.9 71.0 92.6 79.3 68.0 88.7 84.8 77.0 79.7

G-SFDA (Yang et al., 2021b) ✓ 65.8 78.9 60.2 80.5 64.7 64.6 89.3 69.9 63.6 86.4 78.8 71.1 72.8
+ELR ✓ 69.4 80.9 60.6 81.3 67.2 66.4 90.2 73.2 64.9 87.6 82.1 71.0 74.6

NRC (Yang et al., 2021a) ✓ 69.8 81.1 62.9 83.4 74.4 66.3 90.3 73.4 65.2 88.2 82.2 75.8 76.4
+ELR ✓ 75.6 82.2 65.7 91.2 77.2 68.5 92.7 79.8 67.5 89.3 85.1 77.6 79.4

(a)
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Figure 3: (a)-(b) show the test accuracy on the DomainNet dataset with respect to hyperparameters
of ELR. (c) shows the test accuracy of incorporating various existing LLN methods into the SFDA
methods on the DomainNet dataset.
5.1 DISCUSSION ON EXISTING LLN METHODS

As we formulate the SFDA as the problem of LLN, it is of interest to discuss some existing LLN
methods. We mainly discuss existing LLN methods that can be easily embedded into the current
SFDA algorithms. Based on this principle, we choose GCE (Zhang & Sabuncu, 2018), SL (Wang
et al., 2019b) and GJS (Englesson & Azizpour, 2021) that have been theoretically proved to be robust
to symmetric and asymmetric label noise, which are bounded label noise. We highlight that a more
recent method GJS outperforms ELR in real-world noisy datasets. However, we will show that GJS
is inferior to ELR in SFDA scenarios, because the underlying assumption for GJS does not hold in
SFDA. Besides ELR, which leverages ETP, PCL is another method to leverage the same phenomenon,
but we will show that it is also inappropriate for SFDA.

To show the effects of the existing LLN methods under the unbounded label noise, we test these LLN
methods on various SFDA datasets with target data whose labels are generated by source models.
As shown in Figure 4, GCE, SL, GJS, and PCL are better than CE but still not comparable to ELR.
Our analysis indicates that ELR follows the principle of ETP, which is theoretically justified in
SFDA scenarios by our Theorem 3.1. Methods GCE, SL, and GJS follow the bounded label noise
assumption, which does not hold in SFDA. Hence, they perform worse than ELR in SFDA, even
though GJS outperforms ELR in conventional LLN scenarios. PCL (Zhang et al., 2021) utilizes
ETP to purify noisy labels of target data, but it performs significantly worse than ELR. As the
memorization speed of the unbounded label noise is very fast, and classifiers memorize noisy labels
within a few iterations (shown in Figure 2), purifying noisy labels every epoch is inappropriate for
SFDA. However, we notice that PCL performs relatively better on DomainNet than on other datasets.
The reason behind it is that the memorization speed in the DomainNet dataset is relatively slow than
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Table 3: Accuracies (%) on VisDA-C (Synthesis → Real) for ResNet101-based methods.

Method SFplanebcycl bus car horseknifemcyclpersonplantsktbrd train truckPer-class
DANN (Ganin et al., 2016) ✗ 81.9 77.7 82.844.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DAN (Long et al., 2015) ✗ 87.1 63.0 76.542.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
ADR (Saito et al., 2018a) ✗ 94.2 48.5 84.072.9 90.1 74.2 92.6 72.5 80.8 61.8 82.2 28.8 73.5
CDAN (Long et al., 2018) ✗ 85.2 66.9 83.050.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
SAFN (Xu et al., 2019a) ✗ 93.6 61.3 84.170.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD (Lee et al., 2019) ✗ 90.8 82.5 81.770.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
MDD (Zhang et al., 2019b) ✗ - - - - - - - - - - - - 74.6
MCC (Jin et al., 2020) ✗ 88.7 80.3 80.571.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
STAR (Lu et al., 2020) ✗ 95.0 84.0 84.673.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
RWOT (Xu et al., 2020) ✗ 95.1 80.3 83.790.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0

Source Only ✓ 60.9 21.6 50.967.6 65.8 6.3 82.2 23.2 57.3 30.6 84.6 8.0 46.6
+ELR ✓ 95.4 45.7 89.769.8 94.1 97.1 92.9 80.1 89.7 52.8 83.3 4.3 74.6

SHOT (Liang et al., 2020) ✓ 94.3 88.5 80.157.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
+ELR ✓ 95.8 84.1 83.367.9 93.9 97.6 89.2 80.1 90.6 90.4 87.2 48.2 84.1

G-SFDA (Yang et al., 2021b) ✓ 96.0 87.6 85.372.8 95.9 94.7 88.4 79.0 92.7 93.9 87.2 43.7 84.8
+ELR ✓ 97.3 89.1 89.879.2 96.9 97.5 92.2 82.5 95.8 94.5 87.3 34.5 86.4

NRC (Yang et al., 2021a) ✓ 96.9 89.7 84.059.8 95.9 96.6 86.5 80.9 92.8 92.6 90.2 60.2 85.4
+ELR ✓ 97.1 89.7 82.762.0 96.2 97.0 87.6 81.2 93.7 94.1 90.2 58.6 85.8

(i) Office-31 (ii) Office-Home (iii) VisDA (iv) DomainNet

Figure 4: Evaluation of label noise methods on SFDA problems. We use source models as an
initialization of classifiers trained on target data and also use source models to annotate unlabeled
target data. Then we treat the target datasets as noisy datasets and use different label noise methods
to solve the memorization issue.

other datasets, which is shown in Figure 2. In conventional LLN scenarios, PCL does not suffer from
the issue since the memorization speed is much lower than the conventional LLN scenarios.

In Figure 3(c), we also evaluate the performance by incorporating the existing LLN methods into the
SFDA algorithms SHOT and NRC. Since PCL and SHOT assign pseudo labels to target data, PCL is
incompatible with some existing SFDA methods and cannot be easily embedded into some SFDA
algorithms. Hence, we only embed GCE, SL, GJS, and ELR into the SFDA algorithms. The figure
illustrates that ELR still performs better than other LLN methods when incorporated into SHOT and
NRC. We also notice that GCE, SL, and GJS provide marginal improvement to the vanilla SHOT
and NRC methods. We think the label noise in SFDA datasets is the hybrid noise that consists of
both bounded label noise and unbounded label noise due to the non-linearity of neural networks. The
GCE, SL, and GJS can address the bounded label noise, while ELR can address both bounded and
unbounded label noise. Therefore, these experiments demonstrate that using ELR to leverage ETP
can successfully address the unbounded label noise in SFDA.

6 CONCLUSION

In this paper, we study SFDA from a new perspective of LLN by theoretically showing that SFDA
can be viewed as the problem of LLN with the unbounded label noise. Under this assumption,
we rigorously justify that robust loss functions are not able to address the memorization issues of
unbounded label noise. Meanwhile, based on this assumption, we further theoretically and empirically
analyze the learning behavior of models during the early-time training stage and find that ETP can
benifit the SFDA problems. Through extensive experiments across multiple datasets, we show that
ETP can be exploited by ELR to improve prediction performance, and it can also be used to enhance
existing SFDA algorithms.
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A NEIGHBORS LABEL NOISE OBSERVATIONS ON REAL-WORLD DATASETS

This section provides more observed results and explanations of Neighbors’ label noise during the
Source-Free Domain Adaptation process on real-world datasets.

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
Class Index

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80
True Neighbors Ratio
False Neighbors Ratio

Figure 5: True/False Neighbors on Office-Home
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Figure 6: True/False Neighbors on VisDA
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Figure 7: Neighbors Label Noise Analysis on Office-Home
Currently, most SFDA methods inevitably leverage the pseudo-labels for self-supervised learning
or to learn the cluster structure of the target data in the feature space, in order to realize the domain
adaptation goal. However, the pseudo labels generated by the source domain are usually noisy and
of poor quality due to the domain distribution shift. Some neighborhood-based heuristic methods
(Yang et al., 2021a;b) have been proposed to purify these target domain pseudo labels, which use
the pseudo label of neighbors in the feature space to correct and reassign the central data’s pseudo
label. In fact, such methods rely on a strong assumption: a relatively high quality of the neighbors’
pseudo label. However, in our experimental observations, we find that at the very beginning of the
adaptation process, the similarity of two data points in the feature space can not fully represent their
label space’s connection. Furthermore, such methods are easy to provide useless and noisy prediction
information for the central data. We will show some statistical results on VisDA and Office-Home,
these two real-world datasets.

Following the neighborhood construction method in Yang et al. (2021a;b), we use the pre-trained
source model to infer the target data, extract the feature space outputs and get the prediction results.
We use the cosine similarity on the feature space to find the top k similar neighbors (e.g., k = 2)
for each data point (named as the central data point). Then, we collect the neighbors regarding the
ground truth label of central data points and study the neighbor’s quality for each class.
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Neighbors who do not belong to the correct category We define the neighbors who do not belong
to the same category as its central data point as False Neighbor, which means their ground-truth
labels are not the same: Yneighbor ̸= Ycentral. And the results of VisDA (train → validation) and
Office-Home (Pr → Cl) datasets are shown in Figure 6 and Figure 5.

Neighbors who can not provide useful prediction information We further study the prediction
information provided by such neighbors. Regardless of their true category properties, we consider
neighbors whose Predicted Label is the same as the Ground Truth Label of the central data point to
be Useful Neighbors; otherwise, they are Misleading Neighbors, as they can not provide the expected
useful prediction information. We denote the Misleading Neighbors Ratio as the proportion of noisy
neighbors among all neighbors for each class. Besides, as some methods heuristically utilize the
predicted logits as the predicted probability or confidence score in the pseudo label purification
process, we further study the Over-Confident Misleading Neighbors Ratio for each class. We defined
the over-confident misleading neighbors ratio as the number of over-confident misleading neighbors
(misleading neighbors with a high predicted logit, larger than 0.75) divided by the number of all
neighbors per class. The results on VisDA and Office-Home are shown in Figure 1ii and Figure 7.

We want to clarify that the above exploratory experiment results can only reflect the phenomenon
of unbounded noise in SFDA to some extent: the set of over-confidence misleading neighbors is
non-empty can correspond, to some extent, to the fact that R is non-empty proved in Theorem 3.1;
but the definition of misleading neighbors does not rigorously satisfies the definition of unbounded
label noise.

B RELATIONSHIP BETWEEN MISLABELING ERROR AND DOMAIN SHIFT

In this part, we focus on explaining the relationship between the label noise and the domain shift, as
illustrated in Figure 9. The following theorem characterizes the relationship between the labeling
error and the domain shift.
Theorem B.1. Without loss of generality, we assume that the ∆ is positively correlated with the
vector µ2 − µ1, i.e., ∆⊤(µ2 − µ1) > 0. Let fS be the Bayes optimal classifier for the source
domain S. Then

Pr
(x,y)∼DT

[fS(x) ̸= y] =
1

2
Φ(−d1

σ
) +

1

2
Φ(−d2

σ
), (6)

where d1 =
∥∥µ2−µ1

2 − c
∥∥ sign(

∥∥µ2−µ1

2

∥∥−∥c∥), d2 =
∥∥µ2−µ1

2 + c
∥∥, c = (µ2−µ1)

∆⊤(µ2−µ1)

∥µ2−µ1∥2 ,
and Φ is the standard normal cumulative distribution function.

Theorem B.1 indicates that the labeling error for the target domain can be represented by a function
of the domain shift ∆, which can be shown numerically in Figure 8. The projection of the domain
shift ∆ on the vector µ2 − µ1 is given by c. Since c is on the direction of µ2 − µ1, c can also be
represented by α(µ2 − µ1), where α ∈ R characterizes the magnitude of the domain shift. More
specifically, in Figure 8, we present the relationship between the mislabeling rate and α for all possible
∆. When ∆ is positively correlated with µ2 −µ1 (assumption in Theorem B.1), we have α > 0, and
when ∆ is negatively correlated with µ2 − µ1, we obtain α < 0. In both situations, we can observe
that the labeling error increases with the absolute value of α increasing, which implies that the more
severe the domain shift is, the greater the mislabeling error will be obtained. Besides, we note that
when the source and target domains are the same, the mislabeling error in Eq. (6) is minimized and
degraded to the Bayes error, which cannot be reduced (Fukunaga, 2013). This corresponds to the
situation when ∆ is perpendicular to µ2 − µ1, c = 0, and α = 0 shown in Figure 8.

B.1 PROOFS FOR THEOREM B.1

Proof. The Bayes classifier fS predicts x to the first component when

log
Pr[y = 1|X = x]

Pr[y = −1|X = x]
> 0. (7)

Since the distributions of the two components with the same priors for the source domain are given
by N (µ1, σ

2Id) and N (µ2, σ
2Id), respectively. Based on Bayes’ rule, Eq. (7) is equivalent to

log
Pr[X = x|y = 1]

Pr[X = x|y = −1]
> 0 (8)
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Figure 8: Plot of Mislabeling Rate with different α. We define c as the projection of the domain shift
∆ on the vector µ2 − µ1, and α represents the magnitude of domain shift projected on µ2 − µ1.

Solving the left hand side of Eq. (8) by using the knowledge of two multivariate Gaussian distributions,
we get

hS(x) := log
Pr[X = x|y = 1]

Pr[X = x|y = −1]
=

x⊤(µ1 − µ2)

σ2
− ∥µ1∥2 − ∥µ2∥2

2σ2
. (9)

So fS predicts x to the first component when hS(x) > 0 and fS predicts x to the second component
when hS(x) ≤ 0 The decision boundary is z such that hS(z) = 0. When there is no domain shift
∆ = 0, we have DS = DT , and the mislabeling rate is the Bayes error, which is given by:

Pr
(x,y)∼DS

[fS(x) ̸= y] =
1

2
Pr

x∼N (µ1,σ2Id)
[hS(x) < 0|y = 1] +

1

2
Pr

x∼N (µ2,σ2Id)
[hS(x) > 0|y = −1]

(10)
We first study the first term in Eq. (10):

Pr
x∼N (µ1,σ2Id)

[hS(x) < 0|y = 1]

=

∫
· · ·
∫

{x|x⊤(µ1−µ2)<
∥µ1∥2−∥µ2∥2

2 }

1

(2πσ2)
d
2

exp

(
−∥x− µ1∥2

2σ2

)
dx1dx2 · · · dxd

=

∫
· · ·
∫

{x|−∞<x1,x2,...,xd−1<∞,d0<xd}

1

(2πσ2)
d
2

exp

(
−
∑d

i=1 x
2
i

2σ2

)
dx1dx2 · · · dxd

=

∫ ∞

d0

1

2πσ2
exp

(
− x2

d

2σ2

)
dxd

=Φ(−d0
σ
),

where the second equality is because of the rotationally symmetric property for isotropic Gaussian
random vectors, Φ is the cumulative distribution function of the standard Gaussian distribution, and
d0 = ∥(µ2 − µ1)/2∥. Applying the similar mathematical steps for the second term in Eq. (10), and
take them into Eq. (10):

Pr
(x,y)∼DS

[fS(x) ̸= y] = Φ(−∥µ2 − µ1∥
2σ

). (11)

When there is no domain shift, the labeling error is the Bayes error, which is expressed by Eq. (11).

Then we consider the case when ∆ ̸= 0. The distributions of the first and the second component are
N (µ1 +∆, σ2Id) and N (µ2 +∆, σ2Id), respectively. Notice that the decision boundary z is the
affine hyperplane. Any shift paralleled to this affine hyperplane will not affect the final component
predictions. The domain shift ∆ can be decomposed into the sum of two vectors: the one is paralleled
to this affine hyperplane, and another is perpendicular to the hyperplane. It is straightforward to
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Figure 9: Illustration of noisy labels generated by the domain shift.

verify that µ2 −µ1 is perpendicular to the hyperplane. Thus, we project the domain shift ∆ onto the
vector µ2 −µ1 to get the component of ∆ that is perpendicular to the hyperplane, which is given by:

c = (µ2 − µ1)
∆⊤(µ2 − µ1)

∥µ2 − µ1∥2
. (12)

Since we assume ∆ is positively correlated to the vector µ2 −µ1, α = ∆⊤(µ2−µ1)

∥µ2−µ1∥2 can be regarded
as the magnitude of the domain shift along the direction µ2 − µ1. Note that the results also hold for
the case where ∆ is negatively correlated to µ2 −µ1. The whole proof can be obtained by following
the very similar proof steps for the positively correlated case.

The mislabeling rate of the optimal source classifier fS on target data is:

Pr
(x,y)∼DT

[fS(x) ̸= y] =
1

2
Pr

N (µ1+∆,σ2Id)
[hS(x) < 0|y = 1]+

1

2
Pr

N (µ2+∆,σ2Id)
[hS(x) > 0|y = −1]

(13)

We first calculate the first term of Eq. (13). Following the same tricks discussed above:

Pr
x∼N (µ1+∆,σ2Id)

[hS(x) < 0|y = 1]

= Pr
x∼N (µ1+c,σ2Id)

[hS(x) < 0|y = 1]

=

∫
· · ·
∫

{x|x⊤(µ1−µ2)<
∥µ1∥2−∥µ2∥2

2 }

1

(2πσ2)
d
2

exp

(
−∥x− µ1 −∆∥2

2σ2

)
dx1dx2 · · · dxd

=

∫
· · ·
∫

{x|−∞<x1,x2,...,xd−1<∞,d1<xd}

1

(2πσ2)
d
2

exp

(
−
∑d

i=1 x
2
i

2σ2

)
dx1dx2 · · · dxd

=

∫ ∞

d1

1

2πσ2
exp

(
− x2

d

2σ2

)
dxd

=Φ(−d1
σ
), (14)

where d1 =
∥∥µ2−µ1

2 − c
∥∥ sign(

∥∥µ2−µ1

2

∥∥− ∥c∥).
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Similarly, the second term is given by:

Pr
x∼N (µ2+∆,σ2Id)

[hS(x) > 0|y = −1] =Φ(−d2
σ
), (15)

where d2 =
∥∥µ2−µ1

2 + c
∥∥.

Taking Eq. (14) and Eq. (15) into Eq. (13), we have

Pr
(x,y)∼DT

[fS(x) ̸= y] =
1

2
Φ(−d1

σ
) +

1

2
Φ(−d2

σ
). (16)

C PROOFS FOR THEOREM 3.1

Proof. Without loss of generality, we choose to assume µ2 = µ1 + σ1d as the convenient way to
present our results. From the proof for Theorem B.1, we know that x0 = µ1+µ2

2 + ∆ is at the
decision boundary such that hT (x0) = 0, where

hT (x) =
x⊤(µ1 − µ2)

σ2
− ∥µ1 +∆∥2 − ∥µ2 +∆∥2

2σ2
.

Let fT be the optimal Bayes classifier for the target domain, which can be obtained the same way as
fS mentioned in B.1. The equation hT (x0) = 0 implies that

Pr
(x,y)∼DT

[y = 1|X = x0] = Pr
(x,y)∼DT

[y = −1|X = x0].

Note that x0 is on the affine hyperplane z where hT (z) = 0. Any data points on this hyperplane will
have the equal probabilities to be correctly classified. We start from this hyperplane and calculate
another point x1, where Pr(x,y)∼DT

[y = 1|X = x1] is at least 1−δ
δ Pr(x,y)∼DT

[y = −1|X = x1].
Thus, for any points that are mislabeled and far away from x1 will result in Pr(x,y)∼DT

[y = 1|X =
x1] ≥ 1− δ. We first aim to find such a data point x1. Let x1 = x0 −m0σ1d, where m0 is the scalar
measures the distance between the point x1 to the hyperplane z. We need to find m0 such that

PT (x1|y = 1)

PT (x1|y = −1)
≥1− δ, (17)

where

PT (x1|y = 1)

PT (x1|y = −1)

= exp
(
− ∥x1 − µ1 −∆∥2

2σ2
+

∥x1 − µ2 −∆∥2
2σ2

)

=exp
(
−
∥∥µ2−µ1

2 −m0σ1d

∥∥2

2σ2
+

∥∥µ2−µ1

2 +m0σ1d

∥∥2

2σ2

)

=exp (m0d) (18)

Taking Eq. (18) into Eq. (17), we get m0 ≥ (log 1−δ
δ )/d. Since the isotropic Gaussian random

vectors has the rotationally symmetric property, we can transform the integration of multivariate
normal distribution to standard normal distribution with different intervals of integration. Then any
data points from a region that have at most ∥x1 − µ1 −∆∥ distance to its mean µ1 +∆ will have
at least 0.99 probability coming from the first component. Let the region R1 be:

R1 = {x : ∥x− µ1 −∆∥ ≤ ∥x1 − µ1 −∆∥}
Equivalently, taking R1 can be simplified:

R1 = {x : ∥x− µ1 −∆∥ ≤ σ(

√
d

2
− log 1−δ

δ√
d

)}
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The region R1 is valid when data dimension d is large. This is realistic in practice. Since neural
networks are usually dealing with high dimension data, for example d ≫ (1), the region R1 is valid.

On the other hand, we aim to find a region R2 where all data points are mislabeled. From the proof
for Theorem 1, the source classifier hS is given by

hS(x) =
x⊤(µ1 − µ2)

σ2
− ∥µ1∥2 − ∥µ2∥2

2σ2
. (19)

Any data points are classified to the second component if hS(x) < 0. Hence

R2 = {x : x⊤1d >
σd+ 2µ⊤

1 1d

2
}

We take the intersection of R1 and R2, all data points from this intersection are (1) having at least
1− δ probability coming from the first component, and (2) being classified to the second component.
Formally, for (x, y) ∼ DT , if x ∈ R1

⋂
R2, then

Pr[fS(x) ̸= y] ≥ 1− δ, (20)

We note that x ∈ R1

⋂
R2 is non-empty when (log 1−δ

δ )/d < α, where α = ∆⊤(µ2−µ1)

∥µ2−µ1∥2 is the
magnitude of the domain shift along with the direction µ2 − µ1. Since x1 is chosen from R1, to
verify that R1

⋂
R2 is non-empty, we only need to verify that x1 also belongs to R2.

x1 ∈ R2 if and only if:

x⊤
1 1d >

σd+ 2µ⊤
1 1d

2

(µ1 + c+
σ

2
1d −m0σ1d)

⊤1d >
σd+ 2µ⊤

1 1d

2

(µ1 + ασ1d +
σ

2
1d −m0σ1d)

⊤1d >
σd+ 2µ⊤

1 1d

2
(α−m0)σd >0,

where c = (µ2 − µ1)
∆⊤(µ2−µ1)

∥µ2−µ1∥2 .

Therefore, if α > m0 ≥ (log 1−δ
δ )/d, R1

⋂
R2 is non-empty.

Next, we show Pr(x,y)∼DT
[x ∈ R] increases as α increases.

Let event A0 be a set of x such that they are mislabeled by fS (i.e. fS(x) ̸= y). Let event A1 be a
set of x such that they are from the first component but are mislabeled to the second component with
a probability Pr[fS(x ̸= y)] < 1− δ. Let event A2 be a set of x such that they are from the second
component but are mislabeled to the first component with a probability Pr[fS(x ̸= y)] < 1− δ. Thus

Pr
(x,y)∼DT

[x ∈ R] = Pr
(x,y)∼DT

[A0]− Pr
(x,y)∼DT

[A1]− Pr
(x,y)∼DT

[A2] (21)

Let event A3 be a set of x such that they are from the first component such that Pr[fS(x ̸= y)] < 1−δ
or Pr[fS(x = y)] < 1− δ. Let event A4 be a set of x such that they are from the second component
but are mislabeled to the first component. For Pr[A3],

Pr
(x,y)∼N (µ1+∆,σ2Id)

[A3] = Pr
(x,y)∼N (µ1+∆,σ2Id)

[R∁
1],

which does not change as the domain shift ∆ varies. Meanwhile,

Pr
(x,y)∼N (µ2+∆,σ2Id)

[A4] = Φ(−
∥∥µ2−µ1

2 + c
∥∥

σ
),

which is given by Eq. (15). By our assumption, the domain shift ∆ is positively correlated with the
vector µ2 − µ1. So when α increases, Pr(x,y)∼N (µ2+∆,σ2Id)[A4] decreases.
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Since A1 ⊆ A3 and A2A4, the probability measure on R is given by:
Pr

(x,y)∼DT

[x ∈ R] = Pr
(x,y)∼DT

[A0]− Pr
(x,y)∼DT

[A1]− Pr
(x,y)∼DT

[A2]

≥ Pr
(x,y)∼DT

[A0]− Pr
(x,y)∼DT

[A3]− Pr
(x,y)∼DT

[A4], (22)

where the first term is the mislabeling rate that increases as α increases (given by Theorem B.1); the
second term is a constant; the third term decreases as as α increases. The equality in Eq. (22) holds
when α → ∞. Therefore, when the magnitude of the domain shift α increases, the lower bound of
Pr(x,y)∼DT

[x ∈ R] increases, which forces more points to break the conventional LLN assumption.

D BACKGROUND INTRODUCTION AND PROOFS FOR LEMMA 3.2

Learning with label noise is an important task and topic in deep learning and modern artificial
intelligence research. The main idea behind it is robust training, which can be further divided into
fine-grained categories, such as robust architecture, robust regularization, robust loss design, and
simple selection (Song et al., 2022). For example, for the robust architecture-based methods, they
propose to modify the deep model’s architecture, including adding an adaptation layer or leveraging
a dedicated module, to learn the label transition process and to tackle the noisy label. In addition, the
robust regularization approaches usually enforce the DNN to overfit less to false-labeled examples
by adopting a regularizer, explicitly or implicitly. For instance, Yi et al. (2022) proposed to utilize
a contrastive regularization term to learn a noisy-label robust representation. Recently, with the
widespread implementation of AI technologies, the topics of trustworthiness and fairness have drawn
a lot of interest (Liu et al., 2019; Shui et al., 2022a;b). How to provide trustworthy and fair learning
in LLN problems is a significant research direction. In this paper, we will, however, develop our
discussion based on the robust loss methods in LLN.

In this section, we will first introduce the concepts and technical details of some noise-robust loss
based LLN methods, including GCE (Zhang & Sabuncu, 2018), SL (Wang et al., 2019b), NCE (Ma
et al., 2020), and GJS (Englesson & Azizpour, 2021). Then, we will present the proof details of
Lemma 3.2.

D.1 NOISE-ROBUST LOSS FUNCTIONS IN LLN METHODS

Among the numerous studies of LLN methods, loss correction is a major branch of research. The
main idea of loss correction is to modify the loss function and make it robust to noisy labels.

As indicated in Ma et al. (2020), the loss function ℓ is defined to be noise robust if
∑K

k=1 ℓ(h(x), k) =
C, where C is a positive constant and K is the overall class number of label space. For example,
the most widely utilized Cross-Entropy (CE) loss is unbounded and therefore is not robust to the
label noise. Some LLN studies show that existing loss functions such as mean absolute error (MAE)
(Ghosh et al., 2017), reverse cross entropy (RCE) (Wang et al., 2019b), normalized cross entropy
(NCE) (Ma et al., 2020), and normalized focal loss (NFL) are noise-robust and that combining them
with CE can help mitigate the sensitivity of the model to noisy labels.

More specifically, for a given data (x,y) and a classifier h(x), GCE (Zhang & Sabuncu, 2018)
leverages the negative Box-Cox transformation as a loss function, which can exploit the benefits of
both the noise-robustness provided by MAE and the implicit weighting scheme of CE:

ℓGCE(h(x), ek) =
(1− hk(x)

q)

q

where q ∈ (0, 1] is a hyperparameter to be decided.

Another noise-robust loss based method SL (Wang et al., 2019b) proposes combining the reverse
cross entropy (RCE) loss, which is noise tolerant, with CE loss and obtain the LSL:

ℓSL = αℓCE + βℓRCE

= −(α

K∑

k=1

q(k|x)logp(k|x) + β

K∑

k=1

p(k|x)logq(k|x))
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where p(k|x) is the predicted distribution over labels by classifier h(x) and q(k|x) is the ground
truth class distribution conditioned on sample x.

GJS (Zhang & Sabuncu, 2018) utilizes the multi-distribution generalization of Jensen-Shannon
Divergence as loss function, which has been proven noise-robust and is in fact a generalization of CE
and MAE. Concretely, the generalized JS divergence and GJS loss are defined as:

DGJSπ
=

M∑

i=1

πiDKL

(
p(i)
∣∣∣
∣∣∣

M∑

j=1

πjp
(j)
)

ℓGJS(x,y, h) =
DGJSπ

(y, h(x̃(2)), ..., h(x̃(M)))

Z
where π, p(i) are categorical distributions over K classes, x̃(i) ∼ A(x), a random perturbation of
sample x, and Z = −(1− π1)log(1− π1)

Further, Ma et al. (2020) shows a simple loss normalization scheme which can be applied for any
loss L:

ℓNORM =
ℓ(h(x),y)

∑K
k=1 ℓ(h(x), k)

The study found that the normalized loss can indeed satisfy the robustness condition. However, it
will also cause an underfitting problem in some situations.

Note that generalized cross entropy (GCE (Zhang & Sabuncu, 2018)) extends MAE and symmetric
loss (SL (Wang et al., 2019b)) extends RCE. So we study GCE and SL in our experiments instead
studying MAE and RCE. Besides, GJS (Englesson & Azizpour, 2021) is shown to be tightly bounded
around

∑K
k=1 ℓ(h(x), k). All these methods have shown to be noise tolerant under either bounded

random label noise or bounded class-conditional label noise with additional assumption that R(h⋆) =
0. We show that under the same assumption with unbounded label noise datasets, these methods are
not noise tolerant in section D.2.

D.2 PROOFS FOR LEMMA 3.2

Proof. Let ηyk(x) be the Pr[Ỹ = k|Y = y,X = x] probability of observing a noisy label k given
the ground-truth label y and a sample x. Let ηy(x) =

∑
k ̸=y ηyk(x). The risk of h under noisy data

is given by

R̃(h) =Ex,ỹ[ℓLLN(h(x), ỹ)]

=ExEy|xEỹ|x,y[ℓLLN(h(x), ỹ)]

=Ex,y

[
(1− ηy(x))ℓLLN(h(x), y) +

∑

k ̸=y

ηyk(x)ℓLLN(h(x), k)

]

=Ex,y

[
(1− ηy(x))

( K∑

k=1

ℓLLN(h(x), k)−
∑

k ̸=y

ℓLLN(h(x), k)
)
+
∑

k ̸=y

ηyk(x)ℓLLN(h(x), k)

]

=Ex,y

[
(1− ηy(x))

(
C −

∑

k ̸=y

ℓLLN(h(x), k)
)
+
∑

k ̸=y

ηyk(x)ℓLLN(h(x), k)

]

=Ex,y

[
(1− ηy(x))C

]
− Ex,y

[∑

k ̸=y

(
1− ηy(x)− ηyk(x)

)
ℓLLN(h(x), k)

]
. (23)

Since Eq. (23) holds for both h̃⋆ and h⋆, we have

R̃(h̃⋆) = Ex,y

[
(1− ηy(x))C

]
− Ex,y

[∑

k ̸=y

(
1− ηy(x)− ηyk(x)

)
ℓLLN(h̃

⋆(x), k)

]
(24)

and

R̃(h⋆) = Ex,y

[
(1− ηy(x))C

]
− Ex,y

[∑

k ̸=y

(
1− ηy(x)− ηyk(x)

)
ℓLLN(h

⋆(x), k)

]
. (25)
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As h̃⋆ is the minimizer of R̃(h), R̃(h̃⋆) ≤ R̃(h⋆). Then we combine Eq. (24) and Eq. (25), we have

Ex,y

[∑

k ̸=y

(
1− ηy(x)− ηyk(x)

)(
ℓLLN(h

⋆(x), k)− ℓLLN(h̃
⋆(x), k)

)]
≤ 0. (26)

We note that ℓLLN(h̃
⋆(x), k) ≥ ℓLLN(h

⋆(x), k) implies pk(x) = 0 and py(x) = 1 for k ̸= y, where
pk(x) is the probability output by h̃⋆ for predicting the sample x to be the class k. This argument
is proved given by Wang et al. (2019b); Ghosh et al. (2017); Yang et al. (2021b); Ma et al. (2020)
(Theorem 1&2 in Ghosh et al. (2017), Theorem 1 in Wang et al. (2019b), Lemma 1&2 in Ma et al.
(2020) and Theorem 1&2 in Englesson & Azizpour (2021)).

To let ℓLLN(h̃
⋆(x), k) ≥ ℓLLN(h

⋆(x), k) holds for all inputs x, previous studies assume the bounded
label noise, which is given by

1− ηy(x)− ηyk(x) > 0 ∀x s.t. P (X = x) > 0. (27)

For random label noise which assumes that the mislabeling probability from the ground-truth label
to any other label is the same for all inputs, i.e. ηji(x) = a0 ∀i ̸= j, where a0 is a constant. Let
η = (K − 1)a0, then Eq. (27) is degraded to

1− η − η

K − 1
> 0

1 >
K

K − 1
η

η < 1− 1

K
.

This bounded assumption is commonly assumed by Wang et al. (2019b); Ghosh et al. (2017); Yang
et al. (2021b); Ma et al. (2020) (Theorem 1 in Ghosh et al. (2017), Theorem 1 in Wang et al. (2019b),
Lemma 1 in Ma et al. (2020) and Theorem 1 in Englesson & Azizpour (2021)).

For class-conditional label noise, which assumes the ηji(x1) = ηji(x2) for any inputs x1 and x2.
Let ηji(x) = ηji, Then the bounded assumption Eq. (27) is degraded to

ηyk < 1− ηy.

This bounded assumption is also commonly assumed, and it can be found in Theorem 2 in Ghosh
et al. (2017), Theorem 1 in Wang et al. (2019b), 2 in Ma et al. (2020) and Theorem 2 in Englesson &
Azizpour (2021).

However, in SFDA, we proved that the following event B holds with a probability at least 1− δ:

1− ηy(x)− ηyk(x) < 0 ∀x ∈ R. (28)

Indeed, we first denote B1 = {ỹ ̸= y|x ∈ R} by the event that x ∈ R is mislabeled. Then

Pr[B] = Pr[B|B1] + Pr[B|B∁
1] Pr[B

∁
1]

≥ Pr[B|B1] Pr[B1]

≥ 1− δ

Given the result in Eq. (28), and combined it with the Eq. (26), we have

ℓLLN(h̃
⋆(x), k) ≤ ℓLLN(h

⋆(x), k).

When the event B holds, the condition ℓLLN(h̃
⋆(x), k) ≤ ℓLLN(h

⋆(x), k) holds.

Note that only ℓLLN(h̃
⋆(x), k) ≥ ℓLLN(h

⋆(x), k) means pk(x) = 0 for k ̸= y and py(x) = 1 for
k ̸= y. It means that the optimal classifier h̃⋆ from noisy data can make correct predictions on any
inputs, which is consistent with the optimal classifier h⋆ obtained from clean data.

As for the condition ℓLLN(h̃
⋆(x), k) ≤ ℓLLN(h

⋆(x), k), we can get pk(x) = 1 for a k ̸= y, which
means that the optimal classifier h̃⋆ from noisy data cannot make correct predictions on samples
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x ∈ R. To verify this, we use the robust loss function RCE ℓRCE as an example, and it can be easily
generalized to other robust los functions mentioned above. Based on the definition of the RCE loss
(Wang et al., 2019b), we have

ℓRCE(h̃
⋆(x), k) =CRCE(1− pk(x))

ℓRCE(h
⋆(x), k) =CRCE,

where CRCE > 0 is a constant. The above equations show that any 0 ≤ pk(x) ≤ 1 can make the
condition ℓLLN(h̃

⋆(x), k) ≤ ℓLLN(h
⋆(x), k) hold. Meanwhile, h̃⋆ is the global minimizer of the risk

over the noisy data, which makes h̃⋆ memorize the noisy dataset.

Therefore, h̃⋆ makes incorrect predictions for x ∈ R such that pk(x) = 1 for a k ̸= y, and h⋆ is the
global optimal over clean data, which gives correct predictions for x ∈ R such that pk(x) = 1 for a
k = y. That completes the proof as h⋆ makes different predictions on x ∈ R compared to h̃⋆.

E PROOFS FOR THEOREM 4.1

The proof for Theorem 4.1 is partially adopted from Liu et al. (2020). Note that we are dealing
with unbounded label noise, whereas the bounded label noise is considered in Liu et al. (2020). As
indicated in Liu et al. (2020), T is set as the smallest positive integer such that θ⊤T µ ≥ 0.1, and
T = Ω(1/η) with high probability. Parameters θ is initialized by Kaiming initialization (He et al.,
2015) that θ0 ∼ N (0, 2

dId), and |θ⊤0 µ| converges in probability to 0. For simplicity, we assume
θ0 = 0 without loss of generality. The proof consists of two parts. The first part is to show that θT−1

is highly positively correlated with the ground truth classifier. The second part is to show that the
prediction accuracy on mislabeled samples can be represented as the correlation between the learned
classifier and the ground truth classifier.

Proof. To begin with, we show the first part. Let samples xi = yi(µ− σzi), where z ∼ N (0, Id).
The gradient of the logistic loss function with respect to the parameter θ is given by:

∇θL(θt) =
1

2n

n∑

i=1

xi

(
tanh(θ⊤t xi)− ỹi

)

=− 1

2n

n∑

i=1

ỹixi

︸ ︷︷ ︸
①

+
1

2n

n∑

i=1

xitanh(θ
⊤
t xi)

︸ ︷︷ ︸
②

(29)

Then we will show that −µ⊤∇θL(θt) is lower bounded by a positive number. We first show the
bound on ①in Eq. (29). Since xi is sampled from standard normal distribution, 1

n

∑n
i=1 ỹiµ

⊤xi has
limited variance. By the law of large number, 1

n

∑n
i=1 ỹiµ

⊤xi converges in probability to its mean.
Therefore,

E[ỹx⊤µ] =E[ỹµ⊤x1{yx⊤µ ≤ r}] + E[ỹµ⊤x1{yx⊤µ > r}]
=E[E[ỹµ⊤x1{yx⊤µ ≤ r}]|y]
+ E[E[ỹµ⊤x1{yx⊤µ > r}]|y]

=E[−µ⊤x1{x⊤µ ≤ r}|y = 1] + E[µ⊤x1{x⊤µ > r}|y = 1]
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Note that x|y = 1 is a Gaussian random vector with independent entries, we have x⊤µ
d
= w + 1,

where w ∼ N (0, σ2). Therefore, the above expectation is equivalent to

E[ỹx⊤µ] =−
∫ r−1

−∞
(w + 1) dPw +

∫ ∞

r−1

(w + 1) dPw

=−
∫ r−1

−∞
w dPw +

∫ +∞

r−1

w dPw −
∫ r−1

−∞
dPw +

∫ +∞

r−1

dPw

=

∫ 1−r

r−1

dPw −
∫ r−1

−∞
w dPw +

∫ +∞

r−1

w dPw

=Erf[
1− r√
2σ

] + 2
σ√
2π

exp
(
− (r − 1)2

2σ2

)
, (30)

where Erf[x] = 2√
π

∫ x

0
e−t2 dt. Note that r < 1, which means that most half of samples are

mislabeled. Thus

1

2
E[ỹiµ⊤xi] =

1

2
Erf[

1− r√
2σ

] +
σ√
2π

exp
(
− (r − 1)2

2σ2

)
> 0.

Now we deal with the ②in in Eq. (29).

1

2n
|µ⊤(

n∑

i=1

tanh(θ⊤t xi)
)
| = 1

2n
|q⊤p|

≤ 1

2n
∥q∥ ∥p∥ , (31)

q = (µ⊤x1,µ
⊤x2, . . . ,µ

⊤xn) ∈ Rn, and p = (tanh(θ⊤t x1), tanh(θ
⊤
t x2), . . . , tanh(θ

⊤
t xn)) ∈

Rn.

By triangle inequality of the norm,

∥q∥ = ∥q− 1+ 1∥ ≤ ∥q− 1∥+ ∥1∥ =
√
n+ ∥q− 1∥ ,

where q− 1 is a random vector with Gaussian coordinates. By Lemma E.1,

∥q− 1∥ /σ ≤ 2σ
√
n (32)

with probability 1− δ when n ≥ c1 log 1/δ, where c1 is a constant.

On the other hand,
∥∥p− tanh(θ⊤t µ)1n + tanh(θ⊤t µ)1n

∥∥ ≤
∥∥tanh(θ⊤t µ)1n

∥∥+
∥∥p− tanh(θ⊤t µ)1n

∥∥
≤
∥∥tanh(θ⊤t µ)1n

∥∥+ ∥θt∥ ∥q− 1∥
=tanh(θ⊤t µ)

√
n+ 2σ

√
n ∥θt∥ , (33)

where the second inequality is by Lemma 9 from Liu et al. (2020), the last inequality by Lemma E.1.

Then we take Eq. (31) and Eq.(33) together, and then take them and Eq.(30) into −µ⊤∇θL(θt),
which gives us:

−∇θL(θt)⊤µ ≥ 1

2
Erf[

1− r√
2σ

] +
σ√
2π

exp
(
− (r − 1)2

2σ2

)
− σ(tanh(θ⊤t µ) + 2σ ∥θt∥) (34)

By Lemma 8 from Liu et al. (2020), we have supθ∈Rd ∥∇θL(θ)∥ ≤ 1 + 2σ. Therefore, Eq. (34) can
be rewritten as:

−∇θL(θt)⊤µ
∥∇θL(θt)∥

≥
Erf[ 1−r√

2σ
] + 2 σ√

2π
exp

(
− (r−1)2

2σ2

)

1 + 2σ
− σ(tanh(θ⊤t µ) + 2σ ∥θt∥)

1 + 2σ

≥ b0
1 + 2σ

− σ(tanh(θ⊤t µ) + 2σ ∥θt∥)
1 + 2σ

, (35)
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where we let b0 = 1
2Erf[

1−r√
2σ

] + σ√
2π

exp
(
− (r−1)2

2σ2

)
.

Then we prove −∇θL(θt)
⊤µ

∥∇θL(θt)∥ ≥ 1
10

b0
1+2σ by mathematical induction, which can help us get rid of the

dependence on θt for the lower bound in Eq. (35).

For t = 0, the inequality holds trivially. By the gradient descent algorithm, θt+1 =

−η
∑t

i=0 ∇θL(θi), where −µ⊤∇θL(θi)/ ∥∇θL(θi)∥ ≥ 1
10

b0
1+2σ .

θ⊤t+1µ

∥θt+1∥
≥−η

∑t
i=0 µ

⊤∇θL(θi)
η
∥∥∥
∑t

i=0 ∇θL(θi)
∥∥∥

≥
1
10

b0
1+2σ (

∑t
i=0 ∥∇θL(θi)∥)∑t

i=0 ∥∇θL(θi)∥

≥ 1

10

b0
1 + 2σ

As t+ 1 < T , we have ∥θt+1∥ ≤ 10 1+2σ
b0

θ⊤t+1µ ≤ 1+2σ
b0

. Taking it into Eq. (35), we have

−∇θL(θt)⊤µ
∥∇θL(θt)∥

≥ b0
1 + 2σ

−
σ(0.1 + 1+2σ

b0
)

1 + 2σ

To show −∇θL(θt)
⊤µ

∥∇θL(θt)∥ is lower bounded by 1
10

b0
1+2σ , we need to have

h(σ) =
9

10

b0
1 + 2σ

− σ(0.1 +
1 + 2σ

b0
) > 0

It is straightforward to verify that h(σ = 0) > 0 and it can be verified that when 0 < σ < c0, we
have h′(σ) > 0. Therefore, for 0 < σ < c0 and any t < T − 1

−∇θL(θt)⊤µ
∥∇θL(θt)∥

≥ 1

10

b0
1 + 2σ

Hence by gradient descent algorithm θT = −η
∑T−1

i=0 ∇θL(θi) and the same proof above, we have

θ⊤T µ

∥θT ∥
≥ 1

10

b0
1 + 2σ

(36)

For the second part: the prediction accuracy on mislabeled sample set B converges in probability to
its mean. Therefore, the expectation of the prediction accuracy on mislabeled samples is given by

E[1{sign(θ⊤T x) = y}] =E[1{sign(yθ⊤T (µ− σz)) = y}]
=E[1{sign(θ⊤T (µ− σz)) = 1}]
=Pr[σθ⊤T z > θ⊤T µ] (37)

Note that z is a standard Gaussian vector, θ⊤T z is distributed as N (0, ∥θT ∥2) Thus, Eq. (37) is

equivalent to Φ(
θ⊤
T µ

σ∥θT ∥ ).

By the inequality 1− Φ(x) ≤ exp{−x2/2} for x > 0, then we have

Φ(
θ⊤T µ

σ ∥θT ∥
) ≥ 1− exp{−

(
θ⊤
T µ

σ∥θT ∥ )
2

2
} ≥ 1− exp{− 1

200

( b0
(1 + 2σ)σ

)2}

We denote g(σ) by:

g(σ) =
Erf[ 1−r√

2σ
]

2(1 + 2σ)σ
+

exp (− (r−1)2

2σ2 )√
2π(1 + 2σ)

,

where g(σ) > 0 for any σ > 0. Note that g(σ) → ∞ when σ → 0, and g(σ) is monotone decreasing
as σ increases since g′(σ) < 0 for σ > 0.
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Lemma E.1. Let X = (X1, X2, . . . , Xn) ∈ Rn be a random vector with independent, Gaussian
coordinates Xi with E[Xi] = 0 and E[X2

i ] = 1 < ∞. Then

Pr[| ∥X∥2 −
√
n| ≥ √

n] ≤ 2 exp
(
− an

)
,

where a > 0 is a constant.

Proof. The Gaussian concentration result is taken from Proposition 5.34 in Vershynin (2018), which
will be used here for proving Theorem 4.1.

F ADDITIONAL LEARNING CURVES

We provide additional learning curves on DomainNet dataset, shown in Figure 10. The dataset
contains 12 pairs of tasks showing: (1) target classifiers have higher prediction accuracy during the
early-training time; (2) leverage ETP by using ELR can alleviate the memorization of unbounded
noisy labels generated by source models.

Figure 10: The source models are used to initialize the classifiers and annotate unlabeled target data.
As the classifiers memorize the unbounded label noise very fast, we evaluate the prediction accuracy
on target data every batch for the first 90 steps. After the 90 steps, we evaluate the prediction accuracy
for every 0.3 epoch. We use the CE and ELR to train the classifiers on the labeled target data, shown
in solid green lines and solid blue lines, respectively.

G EXPERIMENTAL DETAILS

In this section, we additionally show the overall training process of our method, illustrated in Figure
11 and in Algorithm 1. Besides, we provide more experimental information of our paper in details.

Datasets. We use four benchmark datasets, which have been widely utilized in the Unsupervised
Domain Adaptation (UDA) (Long et al., 2015; Tan et al., 2020; Wang et al., 2022) and Source-Free
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Data

\

+

Target Classifier

Figure 11: Overview of the SFDA problem and our method.

Algorithm 1: SFDA ELR - Source Free Domain Adaptation with ELR
Input: Source Pre-Trained Model: f(x; θ0), Target Data: Xt(xt), Training Epochs: T

1 Initialize a prediction bank Y with ȳ0 = 0
2 for epoch=1 to T do
3 for iterations t=1,2,3,... do
4 Compute the SFDA objective LSFDA (depends on concrete SFDA algorithms)
5 Update the prediction bank Y: ȳt = βȳt−1 + (1− β)f(xt; θt)

6 Compute the ELR regularization LELR: LELR = log(1− ȳ⊤t f(xt))
7 Compute the total loss: L = LSFDA + λLELR
8 Update the parameters of f(θt) via L
9 end

10 end
Output: Target Adapted Model f(x; θT )
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Table 4: Accuracies (%) on Office-31 for ResNet50-based methods.

Method SF A→D A→W D→W W→D D→A W→A Avg
MCD (Saito et al., 2018b) ✗ 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN (Long et al., 2018) ✗ 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD (Zhang et al., 2019b) ✗ 90.4 90.4 98.7 99.9 75.0 73.7 88.0
BNM (Cui et al., 2020) ✗ 90.3 91.5 98.5 100.0 70.9 71.6 87.1
DMRL (Wu et al., 2020) ✗ 93.4 90.8 99.0 100.0 73.0 71.2 87.9
BDG (Yang et al., 2020) ✗ 93.6 93.6 99.0 100.0 73.2 72.0 88.5
MCC (Jin et al., 2020) ✗ 95.6 95.4 98.6 100.0 72.6 73.9 89.4
SRDC (Tang et al., 2020) ✗ 95.8 95.7 99.2 100.0 76.7 77.1 90.8
RWOT (Xu et al., 2020) ✗ 94.5 95.1 99.5 100.0 77.5 77.9 90.8
RSDA-MSTN (Gu et al., 2020) ✗ 95.8 96.1 99.3 100.0 77.4 78.9 91.1

Source Only ✓ 80.8 76.9 95.3 98.7 60.3 63.6 79.3
+ELR ✓ 90.9 89.0 98.2 100.0 67.1 64.1 84.9

SHOT (Liang et al., 2020) ✓ 94.0 90.1 98.4 99.9 74.7 74.3 88.6
+ELR ✓ 94.9 91.6 98.7 100.0 75.2 74.5 89.3

G-SFDA (Yang et al., 2021b) ✓ 85.9 87.3 98.6 99.8 71.4 72.1 85.8
+ELR ✓ 86.9 87.8 98.7 99.8 71.4 72.9 86.2

NRC (Yang et al., 2021a) ✓ 93.7 93.8 97.8 100.0 75.5 75.6 89.4
+ELR ✓ 93.8 93.3 98.0 100.0 76.2 76.9 89.6

Table 5: Optimal Hypermaraters (β/λ) on various datasets.

Hyperparameters: β/λ Office-31 Office-Home VisDA DomainNet
ELR only 0.9/− 0.99/− 0.99/− 0.9/−

ELR + SHOT 0.7/1.0 0.6/3.0 0.6/25 0.7/7.0
ELR + G-SFDA 0.8/1.0 0.9/1.0 0.5/7.0 0.8/12.0

ELR + NRC 0.5/1.0 0.6/3.0 0.5/3.0 0.8/3.0

Domain Adaptation (SFDA) (Liang et al., 2020) scenarios, to verify the effectiveness of leveraging
the early-time training phenomenon to address unbounded label noise. Office-31 (Saenko et al., 2010)
contains 4, 652 images in three domains (Amazon, DSLR, and Webcam), and each domain consists of
31 classes. Office-Home (Venkateswara et al., 2017) contains 15, 550 images in four domains (Real,
Clipart, Art, and Product), and each domain consists of 65 classes. VisDA (Peng et al., 2017) contains
152K synthetic images and 55K real object images with 12 classes. DomainNet (Peng et al., 2019)
contains around 600K images in six different domains (Clipart, Infograph, Painting, Quickdraw, Real
and Sketch). Following previous work Tan et al. (2020); Liu et al. (2021a), we select 40 the most
commonly-seen classes from four domains: Real, Clipart, Painting, and Sketch.

Implementation. We use ResNet-50 (He et al., 2016) for Office-31, Office-Home and DomainNet,
and ResNet-101 (He et al., 2016) for VisDA as backbones. We adopt a fully connected (FC)
layer as the feature extractor on the backbone and another FC layer as the classifier head. The
batch normalization layer is put between the two FC layers and the weight normalization layer is
implemented on the last FC layer. We set the learning rate to 1e-4 for all layers except for the last two
FC layers, where we apply 1e-3 for the learning rate for all datasets. The training for source models
are set to be consistent with the SHOT (Liang et al., 2020). The hyperparameters for ELR with
self-training, ELR with SHOT, ELR with G-SFDA, and ELR with NRC on four different datasets are
shown in Table 5. We note that for ELR with self-training, there is only one hyperparameter β to
tune. The hyperparameters for existing SFDA algorithms are set to be consistent with their reported
values for Office-31, Office-Home, and VisDA datasets. As these SFDA algorithms have not reported
their performance for DomainNet dataset, We follow the hyperparameter search strategy from their
work (Liang et al., 2020; Yang et al., 2021a;b), and choose the optimal hyperparameters β = 0.3 for
SHOT, K = 5 and M = 5 for NRC, and k = 5 for G-SFDA.
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H MEMORIZATION SPEED BETWEEN LABEL NOISE IN SFDA AND IN
CONVENTIONAL LLN SETTINGS

Although ETP exists in both SFDA and conventional LLN scenarios, the memorization speed for them
is still different. Specifically, the target classifiers memorize noisy labels much faster in the SFDA
scenario. It has already been shown that it takes many epochs before classifiers start memorizing
noisy labels in conventional LLN scenario (Liu et al., 2020; Xia et al., 2020a). We highlight that
the main factor causing the difference is the label noise. To show it, we replace the unbounded
label noise in SFDA with bounded random label noise, and we keep the other settings unchanged as
introduced in 4. To replace the unbounded label noise with bounded random label noise, we use the
source model to identify mislabeled target samples, then we assign random labels to these mislabeled
samples. Figure 13 and Figure 14 show the learning curves on Office-Home and Office-31 datasets
with unbounded label noise and random bounded label noise. To better visualize the learning curves
with unbounded label noise, we re-plot Figures 13-14 with different y scale in Figures 15-16. These
figures demonstrate that target classifiers memorizing noisy labels with unbounded label noise is
much faster than noisy labels with random bounded label noise. The classifiers with bounded label
noise (colored in red) are expected to memorize all noisy labels eventually. As illustrated in Figures
15-16, the classifiers with unbounded label noise (colored in green) show that the noisy labels are
already memorized. We note that for the first 90 steps, the prediction accuracy is evaluated every
batch, while the prediction accuracy is evaluated every 0.3 epoch after that time. Therefore, for
unbounded label noise, target classifiers start memorizing the noisy labels within the first epoch
(consisting of more than 90 batches).

There are some existing LLN methods such as PCL (Zhang et al., 2021) to purify noisy labels every
epoch based on ETP. Due to this difference, these LLN methods are not helpful to solving label noise
in SFDA as they are not able to capture the benefits of ETP. Our empirical results in Section 5.1 can
support this argument. We also note that PCL does not suffer from the fast memorization speed and
is able to capture the benefits of ETP in conventional LLN settings. As we indicated in Figures 13-14,
it takes much longer time (more than a few epochs) for target classifiers to start memorizing bounded
noisy labels. We hope these insights can motivate the researcher to consider memorization speed and
design algorithms better for SFDA.

I ADDITIONAL ANALYSIS OF ELR AND A STANDARD SFDA METHOD - NRC

In this section, we will theoretically and empirically compare ELR and NRC in detail. Specifically,
NRC (Yang et al., 2021a) is a well-known SFDA method that explores the neighbors of target
data by graph-based methods and utilizes these neighbors’ information to correct the target data’s
pseudo-label, in order to boost the SFDA performance. The proposed NRC loss has the following
form:

ℓNRC = Ldiv + LN + LE + Lself

with:

Ldiv =

K∑

k=1

KL(p̄k||qk)

the diversity loss where p̄k is the empirical label distribution and q is a uniform distribution; and

LN = − 1

nt

∑

i

∑

m∈N i
M

AimST
mh(xi)

the neighbors loss, where m is the index of the m-th nearest neighbors of xi, Sm is the m-th item in
memory bank S , Aim is the affinity value of m-th nearest neighbors of input xi in the feature space.

LE = − 1

nt

∑

i

∑

m∈N i
M

∑

j∈Em
N

rST
nh(xi)

the expanded neighbors loss, where Em
N contain the N -nearest neighbors of neighbor m in NM .

Lself = − 1

nt

nt∑

i

ST
i h(xi)
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the self-regularization loss, where Si means the stored prediction in the memory bank, a constant
vector and is identical to the h(xi) as in NRC they update the memory banks before the training.

I.1 THEORETICAL ANALYSIS OF NRC’S SELF-REGULARIZATION TERM COMPARED TO ELR

To emphasize the novelty of our proposed ELR in SFDA problems, we will compare the original
formulas and also the gradients of ELR and NRC’s self-regularization (SR) term in detail. And
then, we will explain why NRC can not benefit from the ETP only by adopting the SR term. As we
formulate in the main paper, we can represent the ELR loss and the SR loss as follows:

LELR(θt) = log(1− ȳ⊤t f(x; θt)) (38)

and
LSR(θt) = −ŷ⊤t f(x; θt) (39)

where ȳt = βȳt−1+(1−β)f(x; θt) in ELR is the moving average prediction for x, and ŷt = f(x; θt)
in SR is the constant vector copied from the current training step’s prediction. Besides, the gradients
of ELR and SR are:

dLELR(θt)

df(x; θt)
= − ȳt

1− ȳ⊤t f(x; θt)
(40)

and
dLSR(θt)

df(x; θt)
= −ŷt (41)

The motivation of the SR term is to emphasize the ego feature of current prediction and, therefore, to
reduce the potential impact of noisy neighbors, whereas the ELR proposed in this paper considers the
changes of prediction quality during the training process and aims to encourage the model prediction
to stick to the early-time predictions for each data point.

As shown in Eq. ( 38) and Eq. ( 39), we can directly observe that ELR involves the previous training
step’s prediction information in loss (included in ȳt), however, SR leverages only the prediction result
of current step.

Besides, if we further look at the gradient formulas of these two losses and analyze the back-
propagation process, we can find that the gradient dLELR(θt)

df(x;θt)
increases as the model prediction closes

to the target ȳt, which will further force the prediction f(x; θt) close to ȳ thanks to the large magnitude
of the gradient. And this will help with the utilization of early-time predictions and ETP. However,
the gradient of LSR is a constant vector with values of prediction logits, which could be very small.
So when dLSR(θt)

df(x;θt)
is small, SR term can be easily overwhelmed by the other loss terms that favour

fitting incorrect pseudo labels, leading to poor performance.

The above analysis shows a fundamentally different difference between SR and ELR. Specifically,
SR does not utilize ETP and cannot handle the unbounded label noise either.

I.2 EMPIRICAL ANALYSIS OF ELR AND NRC IN TERMS OF THE UTILIZATION OF ETP

In addition to the above theoretical analysis for the loss functions, we also observed the same
conclusion through experiments. As shown in Figure 12, we observe that thanks to the update of
the pseudo-label with the process of adaptation in the SFDA method, overall, NRC can obtain a
model with relatively high accuracy on the target domain. However, the performance drop still exists
when using the NRC method alone, which can be effectively avoided by adding the ELR term. This
confirms that ELR can effectively leverage ETP and avoid the problem of noisy label memorization.

J ADDITIONAL DISCUSSION OF PSEUDO-LABEL PURIFICATIONS IN SFDA
AND LLN APPROACHES

In this section, we will further discuss the similarities and the differences between the LLN approaches
and the pseudo-label purification processes proposed in current SFDA methods.

The main similarity between the existing SFDA approaches and the LLN methods is that both research
fields have to deal with data with noise, aiming to get a model with promising performance. As
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Figure 12: Fine-Grained Training Accuracy of NRC and NRC + ELR on Office-Home dataset. The
solid green lines represent the training process of NRC, whereas the solid blue lines represent the
training process of NRC with ELR term. The colored bands represent the performance drop.

for the differences, they can be mainly divided into the following aspects. From the perspective
of motivations, most of the existing SFDA approaches are developed under the domain adaptation
setting. They study how to best exploit the distribution relationship between the source and target
domains in the absence of source data, so as to achieve domain adaptation better. Their motivation
is to investigate how to better assign the pseudo-label. In contrast, LLN is an independent field
that mainly studies, given a set of noisy data, how to deal with the label noise, conduct the model
training, and obtain a noise-robust model with better performance. Traditionally, the study of LLN
does not involve assumptions about the data domain or source model. Meanwhile, there are more
in-depth and rigorous studies (theoretical and methodological) on the types of noises, and how to
handle and exploit them. From the perspective of the methodology, in order to obtain a higher quality
pseudo-label, many SFDA methods heuristically use clustering or neighbor features to correct the
pseudo-labels, and use the corrected labels to perform a normal supervised learning. The current
SFDA methods focus on the explicit pseudo-label purification process, which can be summarized as
noisy label correction. However, for LLN, the noisy label correction is just a research sub-branch.
LLN also includes many other research directions, such as studies of different label noise types,
research about how to utilize and even benefit from label noise in the training process, and how to
train the model more robustly. Many noise-robust loss functions and related theoretical analyses have
been developed.

We would like to emphasize that the motivation of our paper is to investigate how to study SFDA
from the perspective of learning with label noise. We combine the characteristics of SFDA with the
LLN approaches and discover the unbounded nature of label noise in SFDA. Further, we rigorously
distinguish which LLN methods can help SFDA problems and which approaches are limited in their
use in SFDA. We believe that the studies of LLN can open new avenues for the research of SFDA
and bring more ideas and inspiration to the design of the SFDA algorithm.
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Figure 13: Training accuracy on Office-Home dataset. The solid green lines represent the unbounded
label noise in SFDA, whereas the solid red lines represent the bounded label noise.

Figure 14: Training accuracy on Office-31 dataset. The solid green lines represent the unbounded
label noise in SFDA, whereas the solid red lines represent the bounded label noise.
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Figure 15: Figure 13 with different y-scale to better show learning details of the unbounded label
noise.

Figure 16: Figure 14 with different y-scale to better show learning details of the unbounded label
noise.
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