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Abstract

Keyphrase extraction aims at automatically ex-001
tracting a list of “important” phrases which002
represent the key concepts in a document. Tra-003
ditionally, it has been approached from an004
information-theoretic angle using phrase co-005
occurrence statistics. This work proposes a006
novel unsupervised approach to keyphrase ex-007
traction that uses a more intuitive notion of008
phrase importance, inspired by interpretabil-009
ity research. In particular, we use a self-010
explaining neural model to measure the pre-011
dictive impact of input phrases on downstream012
task performance, and consider the resulting013
interpretations as document keyphrases for the014
target task. We show the efficacy of our015
approach on four datasets in two domains—016
scientific publications and news articles—017
attaining state-of-the-art results in unsuper-018
vised keyphrase extraction.019

1 Introduction020

Keyphrase extraction is a crucial step in process-021

ing long documents, especially in specialized (e.g.,022

scientific, medical) domains (Mekala and Shang,023

2020; Dong et al., 2020; Betti et al., 2020; Wang024

et al., 2019). Identifying important keyphrases025

is challenging, since the notion of importance is026

context- and task-dependent. For example, scien-027

tific terminology has key importance in summa-028

rization of scientific documents (Bekhuis, 2015;029

Gábor et al., 2016), whereas fine-grained entities030

and events are generally important in news summa-031

rization (Pighin et al., 2014; Balachandran et al.,032

2021; Yang et al., 2020; Li et al., 2016). Conse-033

quently, developing general keyphrase annotation034

guidelines and curating hand-labeled datasets is035

expensive, and is not easily transferable across do-036

mains (Mani et al., 2020).037

Prior approaches primarily relied on information038

theory to quantify phrase importance (Mihalcea039

and Tarau, 2004), and heuristic scoring techniques040

Past work of generating referring expressions
mainly utilized attributes of objects and binary
relations between objects . However , such an
approach does not work well when there is no
distinctive attribute among objects . To overcome
this limitation , this paper proposes a method
utilizing the perceptual groups of objects and n-ary
relations among them . We conducted experiments
with 42 subjects to collect referring expressions in
such situations , and built a generation algorithm
based on the results . The evaluation using another
23 subjects showed that the proposed method could
effectively generate proper referring expressions .

Figure 1: Example extracted keyphrases from an ab-
stract in SciERC (Luan et al., 2018). Our task is to
identify these keyphrases in an unsupervised setting.

incorporating various frequency, position, and syn- 041

tactic features to rank extracted phrases (Shang 042

et al., 2018). Neural unsupervised approaches are 043

limited to using language model scores for phrase 044

ranking (Tomokiyo and Hurst, 2003). These prior 045

approaches cannot be easily adapted to obtain high- 046

quality task-specific keyphrases. 047

We propose a novel neural approach to 048

keyphrase extraction. Specifically, we leverage im- 049

portance attribution techniques from interpretabil- 050

ity literature in NLP (Jin et al., 2020; Kennedy et al., 051

2020), and a classification model—SelfExplain 052

(Rajagopal et al., 2021)—which is interpretable 053

by design: it learns to attribute text classification 054

decisions to relevant phrases in the input text and 055

in the training corpus. We adapt the SelfExplain 056

model to process long documents, and propose a 057

distant supervision setup to facilitate keyphrase ex- 058

traction (§2). Specifically, we train the model on 059

multi-label topic classification, and extract result- 060

ing model interpretations as important keyphrases 061

for the document. We hypothesize that in classifi- 062

cation of these domain-specific topics SelfExplain 063

will learn to highlight—via interpretations it is de- 064

signed to provide—important keyphrases in the 065

input document. We call this novel framework for 066
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We present a text
mining method for
finding synonymous
expressions based
on the distributional
hypothesis in a set
of coherent corpora
.
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Figure 2: Overview of INSPECT. We first extract candidate phrases (all Noun Phrases) from the document using a
parser before obtaining the representation of each phrase using RoBERTa. We construct representations of the input
without the contribution of each of the phrases, which are then provided to our topic classifier. The difference in
predictions gives us importance scores for each phrase, where a higher score signifies more influence on prediction.

interpretable unsupervised phrase extraction IN-067

SPECT.068

We evaluate INSPECT in two domains—069

scientific publications and news articles (§3.1). Re-070

sults in §4 on four benchmark datasets show that IN-071

SPECT improves keyphrase extraction performance072

over all baselines on all datasets by up to 15% F1.073

The increase in performance is more pronounced074

in smaller datasets where frequency based methods075

especially struggle.076

In summary, this paper’s key contribution is a077

neural network-based framework to quantify the078

importance of phrases in long documents by train-079

ing a self-explainable classifier on the downstream080

task of topic prediction. Through empirical anal-081

ysis on four datasets, we show that INSPECT out-082

performs state-of-the-art approaches to keyphrase083

extraction. Importantly, INSPECT alleviates the084

need to collecting expert-labelled annotations and085

thus can be applied to a wide range of domains and086

problems where keyphrase extraction is important.1087

2 The INSPECT Framework088

Our INSPECT framework leverages model expla-089

nations, produced by neural interpretability ap-090

proaches, to extract important keyphrases in the091

long documents. While we rely on an existing in-092

terpretable model to extract the phrases, the overall093

application of this model to inducing document094

structure via phrase importance scoring is novel.095

INSPECT identifies and scores relevant phrases in096

the document through the use of distant supervi-097

sion in the downstream task of predicting the topic098

of a document. In what follows, we outline the099

base model, a mechanism for attributing phrase rel-100

evance to the downstream task of topic prediction,101

and finally scoring the candidate keyphrases in tar-102

1Code and data will be publicly released.

get documents. The framework overview is shown 103

in Figure 2. 104

2.1 Base Model: SelfExplain 105

Feature attribution methods for model interpretabil- 106

ity include two predominant approaches, (i) post- 107

hoc explanations of a trained model (Jin et al., 108

2020; Kennedy et al., 2020; Lundberg and Lee, 109

2017), and (ii) intrinsically (by-design) explain- 110

able models (Alvarez-Melis and Jaakkola, 2018; 111

Rajagopal et al., 2021). We adopt the latter ap- 112

proach, specifically, SelfExplain (Rajagopal et al., 113

2021) as our phrase attribution model. SelfEx- 114

plain augments a pre-trained transformer-based 115

model (RoBERTa (Liu et al., 2019) in our case) 116

with a local interpretability layer and a global inter- 117

pretability layer which are trained to produce local 118

(relevant features from input sample) and global 119

(relevant samples from training data) explanations 120

jointly with the model predictions. Since our goal 121

is to identify important phrases from the input sam- 122

ple, we use only the local explanation layer and 123

adapt it for topic prediction. 124

The local interpretability layer takes as input a 125

sentence x and a set of candidate phrases CP x = 126

cpx1 , cp
x
2 , ..., cp

x
N and quantifies the contribution of 127

a particular phrase for prediction through the activa- 128

tion difference (Shrikumar et al., 2017; Montavon 129

et al., 2017) between the phrase and sentence rep- 130

resentations. 131

2.2 Distant Supervision via Topic Prediction 132

SelfExplain is designed to process single sentences 133

and uses a set of all phrases spanning non-terminals 134

in a constituency parser as units for interpretation. 135

This is computationally expensive for our use-case. 136

To facilitate long document topic classification, we 137

instead define the set of noun phrases (NPs) as the 138

interpretable units, which aligns with prior work in 139
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keyphrase extraction (Shang et al., 2018; Mihalcea140

and Tarau, 2004; Bougouin et al., 2013). INSPECT141

splits a long document into constituent passages,142

extracts NPs as candidate phrases, and uses the143

SelfExplain model architecture to attribute the con-144

tribution of each noun phrase for topic prediction.145

We discuss identification of relevant NPs for topic146

prediction in the INSPECT framework below.147

2.3 Keyphrase Relevance Model148

For each text block x in the input document, we149

preprocess and identify a set of candidate phrases150

CP x = cpx1 , cp
x
2 , ..., cp

x
N where N is the number151

candidate phrases in x. We obtain the [CLS] con-152

textual representation of the entire text block hxCLS153

and the representations hx1 ...h
x
N for each candidate154

phrase in CP x = {cpx1 , cpx2 , ..., cpxN}. Each hxi155

is calculated by taking the sum of the RoBERTa156

representations of each token from the phrase cpxi .157

To compute the relevance of each phrase, we158

construct a representation of the input without the159

contribution of the phrase, zxi , using the activation160

differences between the two representations. We161

then pass it to a classifier layer to obtain the label162

distribution for prediction as163

zxi = g(hxi )− g(hxCLS)164

165
lxi = f(W T zi + b)166

where g is the ReLU activation function and W167

and b are the weights and bias of the classifier.168

Here lxi denotes the label distribution obtained on169

passing the phrase-level representations zxi through170

a classification layer f which is either the sigmoid171

or the softmax function depending on the prediction172

task (multi-label versus multi-class). We denote the173

label distribution from the base RoBERTa model174

for predicting the output using the whole input175

block as lxCLS . We train the model using the cross176

entropy loss with respect to the gold topic label yt177

as follows :178

Ly = −
T∑
t=1

yt log(l
x
CLS)179

The classifier is regularized with an explanation180

specific loss by computing a weighted average over181

all the phrase-level label distributions such that182

le =
∑

iwi × lxi :183

Le = −
T∑
t=1

yt log(le)184

and computes a joint explanation and classification 185

loss for the model as: 186

L = Ly + αLe, 187

where α is the regularization parameter. 188

2.4 Inference 189

During inference, INSPECT calculates an impor- 190

tance score rxi using the difference between the 191

label distribution lxi for the candidate phrase cxi and 192

the one obtained from the entire input lxCLS as 193

rxi = lxCLS − lxi . 194

This score denotes the influence of a candidate 195

keyphrase on the topic prediction. A higher score is 196

caused by a high shift in label distribution when us- 197

ing the representation of the input without the con- 198

tribution of the phrase, indicating that the phrase is 199

highly relevant for prediction. Since the relevance 200

scores are computed with respect to a particular pre- 201

dicted topic and it’s label distribution, the scores for 202

the same input are not comparable across different 203

predicted topics in multi-label classification (since 204

label distributions can vary in magnitude). To ag- 205

gregate important keyphrases across all predicted 206

topics, we pick the ones that positively impact pre- 207

diction for each topic (having a positive influence 208

score) as a set of keyphrases. 209

3 Experimental Setup 210

3.1 Evaluation Datasets 211

We evaluate INSPECT in two domains—scientific 212

publications and news articles—and on four popu- 213

lar keyphrase extraction datasets: SemEval-2017, 214

SciERC, SciREX (Scientific) and 500N-KPCrowd 215

(News). Dataset statistics are listed in Table 5 in 216

the Appendix. 217

SemEval-2017 (Augenstein et al., 2017a) con- 218

sists of 500 abstracts taken from 12 AI conferences 219

covering Computer Science, Material Science, and 220

Physics. The entities are annotated with Process, 221

Task, and Material labels, which form the funda- 222

mental concepts in scientific literature. Identifica- 223

tion of the keyphrases was subtask A of the Scien- 224

ceIE SemEval task (Augenstein et al., 2017b). 225

SciERC (Luan et al., 2018) extends SemEval- 226

2017 by annotating more entity types, relations, 227

and co-reference clusters to include broader cover- 228

age of general AI. The dataset was annotated by a 229
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single domain expert who had high (76.9%) agree-230

ment with three other expert annotators on 12%231

subset of the dataset.232

SciREX (Jain et al., 2020) is a document-level233

information extraction dataset, covering entity iden-234

tification and n-ary relation formation using salient235

entities. Human and automatic annotations were236

used to annotate 438 full papers with salient en-237

tities, with a distant supervision from the Papers238

With Code2 corpus. This dataset can help verify239

the performance of models on full papers.240

500N-KPCrowd (Marujo et al., 2013) is a241

keyphrase extraction dataset in the news domain.242

This data consists of 500 articles from 10 topics243

annotated by multiple Amazon Mechanical Turk244

workers for important keywords. Following the245

baselines on this datasets, we pick keywords that246

were among the top two most frequently chosen by247

the human annotators. Since no span-level infor-248

mation for these keywords is given, we annotate all249

occurrences of the chosen keywords in the docu-250

ment to obtain a list of span labels, which we use251

to evaluate all the models.252

3.2 Topic Labels253

We create distant supervision for INSPECT by la-254

beling the above datasets using document topics255

as labels. We leverage existing topic annotations256

when such annotations exist. For example, news257

articles are often categorized into topics (tags or258

categories such as Sports, Politics, Entertainment).259

For the scientific publications domain, we use topic260

models (Gallagher et al., 2017) to extract T topics261

where each document can be labeled with multiple262

topics. For the news domain, our topic prediction263

task is a one-class classification problem, while for264

the scientific domain, it is as multi-label classifica-265

tion setup.266

3.3 Training Data and Settings267

We evaluate the generalizability of INSPECT in two268

experimental settings:269

1. INSPECT: For each dataset (SciERC,270

SciREX, Semeval-2017 and 500N-KPCrowd),271

we train the model for topic prediction us-272

ing only the documents in the training set of273

the dataset and their corresponding topic la-274

bels (obtained using the approach outlined in275

§3.2). The training data in this setting, is most276

2https://paperswithcode.com/

closely aligned to the test data, where the doc- 277

uments are of a similar topic distrubution. We 278

then evaluate the model on the held-out test 279

data from the dataset. 280

2. INSPECT-ZeroShot Here, the model is 281

trained using a large set similar-domain exter- 282

nal dataset of documents and corresponding 283

topic labels and evaluated on the test data of 284

each dataset. The training data here is of a sim- 285

ilar domain (e.g. ICLR papers for scientific 286

domain), but is not necessarily of similar topic 287

distribution as the test data (e.g. SemEval- 288

2017 has Physicis papers which might have 289

different topics when compared to ICLR pa- 290

pers). In this setting, we use data from ICLR 291

(OpenReview3) papers for scientific domain 292

and BBC News articles for news domain to 293

train the model on topic prediction. We col- 294

lect over 8,317 full papers from ICLR and 295

obtained 75 topic labels using topic model- 296

ing4. We manually removed 22 topic labels 297

that were generic and uninformative (list in 298

Appendix Table 6) and used the rest to train 299

our model in a multi-label classification setup. 300

The BBC News corpus (Greene and Cunning- 301

ham, 2006) consists of 2,225 news article doc- 302

uments, each annotated with one of five top- 303

ics (business, entertainment, politics, sport, or 304

tech). 305

We pre-process each document by splitting it 306

into text blocks of size 512 tokens, where consec- 307

utive blocks overlap with a stride size of 128. For 308

each block, we then extract candidate phrases. Fol- 309

lowing Shang et al. (2018), we consider all Noun 310

Phrases (NPs) as candidate phrases and extract 311

them using a Noun Phrase extractor from the Berke- 312

ley Neural Parser5. 313

We chose all hyperparameters based on the de- 314

velopment set performance on the SciERC dataset.6 315

Our final models were trained with a batch size of 316

8 and a learning rate of 2e-5. Our classification 317

layer weight dimension is 64. The λ parameter 318

used to combine the phrase and context representa- 319

tions was fixed at 0.5. We train each of our models 320

3https://openreview.net/group?id=ICLR.
cc

4https://github.com/gregversteeg/
corex_topic

5https://pypi.org/project/benepar/
6Details on our hyperparameter search is shared in the

appendix.
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for 10 epochs and save the model based on best321

weighted F1 performance on the topic prediction322

task. All training runs took less than 3 hours on 2323

Nvidia 2080Ti GPUs, except on the ICLR dataset,324

which took 8 hours.325

3.4 Baselines326

We compare our method against four common327

unsupervised keyphrase extraction techniques —328

Yake (Campos et al., 2018), TF-IDF (Florescu329

and Caragea, 2017a), TopicRank (Bougouin et al.,330

2013), and AutoPhrase (Shang et al., 2018; Liu331

et al., 2015). Out of the four chosen base-332

lines, Yake, TF-IDF and AutoPhrase are statistical,333

whereas TopicRank is graph-based. Yake and Top-334

icRank are single document keyphrase extraction335

techniques and do not rely on additional data from336

external corpora to improve performance. As our337

method applies a cutoff on relevance scores and338

picks any phrase with a positive relevance score as339

a keyphrase, we cannot be directly compared with340

baselines which rank candidate phrases and pick341

top-K phrases as important. To establish the most342

challenging and fair setting for evaluation, for each343

baseline we choose a ’K’ value which gives best344

F1 performance in the development set.345

3.5 Evaluation Metrics346

Topic Prediction Evaluation: We first evaluate347

INSPECT’s performance on the downstream proxy348

task of topic prediction. To ensure high-quality349

explanations from our model, it is imperative that it350

performs well on the topic prediction task. For all351

experiments, we evaluate using average F1 scores352

across all labels.353

Keyphrase Extraction Evaluation: For our pri-354

mary evaluation of keyphrase extraction, we eval-355

uate using span match of our predictions and the356

true labels (keyphrases). Prior works (Shang et al.,357

2018; El-Beltagy and Rafea, 2009; Bougouin et al.,358

2013) have mainly focused on exact match per-359

formance, however, more recent surveys highlight360

issues with exact match, as the measure is highly re-361

strictive (Papagiannopoulou and Tsoumakas, 2019).362

While exact span match gives high scores for exact363

phrases being returned by the model, it is depen-364

dent on the candidate extraction steps as simple365

differences in preprocessing can misalign phrases366

giving an inaccurate representation of the model’s367

capabilities.368

Alternatively, partial span match has also been369

F1 Score
Dataset Method Micro Macro Weighted

SciERC RoBERTa 0.842 0.651 0.767
INSPECT 0.836 0.658 0.771

SciREX RoBERTa 0.609 0.404 0.641
INSPECT 0.628 0.442 0.697

SemEval17 RoBERTa 0.819 0.613 0.731
INSPECT 0.822 0.611 0.744

500N-KPCrowd RoBERTa 0.916 0.880 0.910
INSPECT 0.938 0.904 0.939

ICLR RoBERTa 0.729 0.456 0.699
INSPECT 0.743 0.492 0.733

BBC News RoBERTa 0.880 0.851 0.876
INSPECT 0.902 0.886 0.894

Table 1: Proxy Task (Topic prediction) performance.
Our INSPECT method outperforms a strong RoBERTa
baseline on Micro, Macro and Weighted F1 scores.

explored (Rousseau and Vazirgiannis, 2015). But, 370

it be over lenient in scoring predicted phrases. Pa- 371

pagiannopoulou and Tsoumakas (2019) suggest 372

average of the exact and partial matching as an ap- 373

propriate metric based on emperical studies. There- 374

fore, in this work, we evaluate performance based 375

on the average of the exact and partial match F1 376

scores between the predicted phrases and the gold 377

standard keyphrases. We calculate partial match 378

F1 scores by considering the word level overlap 379

between the predicted and gold span ranges. 380

4 Results 381

In this section, we evaluate the performance of our 382

proposed model compared to baselines on (1) our 383

proxy task of topic prediction, and (2) span match 384

performance for keyphrases extracted. 385

4.1 Topic Prediction with INSPECT 386

First, we compare INSPECT’s effectiveness in pre- 387

dicting topics while learning phrase-level impor- 388

tance with an encoder baseline, using micro, macro, 389

and weighted F1 score of the classifier’s predic- 390

tions compared to gold standard annotations. The 391

results in Table 1 show that our approach outper- 392

forms a strong RoBERTa (Liu et al., 2019) baseline 393

for topic prediction across all of our evaluation 394

datasets. The difference is more pronounced in 395

larger datasets (SciREX, ICLR, and BBC News), 396

and strong performance on the proxy task sup- 397

ports the hypothesis that the model extracts relevant 398

phrase explanations for model predictions. 399

4.2 Keyphrase Span Match Performance 400

Next, we compare the utility of INSPECT in ex- 401

tracting keyphrases against all baselines on the four 402
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Dataset Method Exact Match F1 Partial Match F1 Avg Exact Partial F1

SciERC

TF-IDF 0.0627 0.2860 0.1743
TopicRank 0.2533 0.5680 0.4110
Yake 0.2230 0.5125 0.3678
AutoPhrase 0.0961 0.3145 0.2053
INSPECT 0.3108 0.5524 0.4316

SciREX

TF-IDF 0.1521 0.3690 0.2605
TopicRank 0.2298 0.4122 0.3210
Yake 0.1840 0.3734 0.2787
AutoPhrase 0.1814 0.4236 0.3025
INSPECT 0.2397 0.4127 0.3262

SemEval17

TF-IDF 0.0610 0.2698 0.1654
TopicRank 0.2240 0.4312 0.3276
Yake 0.1687 0.3644 0.2665
AutoPhrase 0.0790 0.3404 0.2097
INSPECT 0.2594 0.5185 0.3889

500N-KPCrowd

TF-IDF 0.1034 0.3520 0.2277
TopicRank 0.1060 0.2346 0.1703
Yake 0.1380 0.3551 0.2465
AutoPhrase 0.1590 0.3608 0.2599
INSPECT 0.1608 0.3920 0.2764

Table 2: Span-match results for unsupervised keyphrase extraction across datasets in the INSPECT setting. Best
performance is indicated in Bold. Our model ourperforms all baselines on average of exact and partial F1 scores.

Dataset Method Exact Match F1 Partial Match F1 Avg Exact Partial F1

SciERC
TF-IDF 0.2162 0.4434 0.3298
AutoPhrase 0.2416 0.6130 0.4273
Our 0.4227 0.6929 0.5578

SciREX
TF-IDF 0.1780 0.4008 0.2894
AutoPhrase 0.2583 0.4993 0.3788
Our 0.2601 0.4893 0.3747

SemEval17
TF-IDF 0.1810 0.3398 0.2604
AutoPhrase 0.1104 0.4874 0.2989
Our 0.3246 0.6218 0.4732

500N-KPCrowd
TF-IDF 0.1398 0.3578 0.2488
AutoPhrase 0.1701 0.3918 0.2805
Our 0.1776 0.4194 0.2985

Table 3: Span-match results for unsupervised keyphrase extraction in INSPECT-ZeroShot (trained on ICLR and
BBC News corpus). Best performance is indicated in Bold. INSPECT is better or comparable to other approaches.

evaluation datasets using span match evaluations.403

The results for INSPECT are detailed in Table 2 and,404

for INSPECT-ZeroShot in Table 3. All baselines in405

Table 2 were trained using only training documents406

of the corresponding dataset. Note that Yake and407

Topic Rank do not make use of any external corpus408

to learn how to predict keyphrases. For a fair com-409

parison, we thus include them only in the INSPECT410

setting evaluation.411

Results in Table 2 show that even with access to412

a small training set of documents from each dataset,413

INSPECT outperforms all baselines with ∼2.75 av-414

erage F1 improvements and establishes state-of-art415

results on unsupervised keyphrase extraction. Even416

in the restrictive exact span match metric, INSPECT417

has an improvement between 1-6 F1 points over418

previous state-of-art methods. Interestingly, we419

observe poor performance from TF-IDF and Au-420

toPhrase on SciERC and SemEval17 datasets. We421

hypothesize that in small datasets like SciERC and 422

SemEval17, it is harder to obtain accurate statis- 423

tical measures which both these methods rely on. 424

In larger datasets (SciREX and 500N-KPCrowd), 425

both methods improve resulting in similar perfor- 426

mance to other baselines. 427

In the INSPECT-ZeroShot setting, with access to 428

a larger dataset of external documents, our model 429

outperforms prior methods in 3 out of 4 datasets 430

with ∼10.4 points average F1 improvements. As 431

Table 3 illustrates, we notice that the model con- 432

sistently perform better in the INSPECT-ZeroShot 433

setting when compared with the INSPECT setting, 434

showing that the method benefits from more train- 435

ing data. Our results further show that variations in 436

topic distribution between training and test data do 437

not significantly impact results. 438

Our results demonstrate that our approach of 439

using phrase attribution based techniques to iden- 440
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the competence levels are unknown , they must
be empirically estimated . We provide frequentist
and Bayesian analyses for this situation . Some of
our proof techniques are non-standard and may be
of independent interest . 

Case 1

Case 2

True Keyphrases Our Predictions AutoPhrase

Figure 3: Two data points randomly chosen from the SciERC dataset. Orange spans represent gold standard
annotations. Green spans in the predictions represent correctly predicted spans, whereas red spans are spans
wrongly predicted as being keyphrases and red text are keyphrases that the model did not identify.

tify phrases with high predictive impact on a441

task like topic prediction can output high-quality442

keyphrases. This helps us introduce a new direction443

for keyphrase extraction.444

5 Discussion445

In this section, we discuss and provide examples of446

INSPECT’s performance, strengths, and weaknesses447

on keyphrase extraction. We also discuss some448

common types of errors that our system makes and449

demonstrate the specific types of keyphrases that450

our model is better at extracting.451

Entity Type Analysis: We leverage the entity452

type information present in SciERC to observe453

the performance of INSPECT on specific types of454

keyphrases. From Table 4, we see that INSPECT455

performs best on keyphrases labelled as Scientific456

Terms and Materials. Generic phrases and Met-457

rics are usually not representatives of the topical458

content, and thus, our method performs poorly on459

them. On manual inspection, we noticed that many460

phrases that were marked as Task are very spe-461

cific, which might make them harder to learn. A462

high partial match recall but a low exact match463

recall for the Method type suggests that many pre-464

dicted keyphrases are misaligned with the gold la-465

bels by a few words. We believe that using different466

downstream tasks can help tailor our approach to467

capture specific types of entities better, based on468

the requirement of the application that builds upon469

keyphrase extraction.470

Qualitative Analysis In Figure 3 we show two 471

randomly selected abstracts from the SciERC 472

dataset. We see that INSPECT tends to extract 473

longer phrases compared to AutoPhrase, which 474

tends to extract mostly unigrams or bigrams. Since 475

noun phrases can overlap, we observe that our 476

model sometimes predicts overlapping phrases. 477

Overall, our approach is able to extract more rele- 478

vant phrases than the baseline. Both INSPECT and 479

AutoPhrase tend to miss generic phrases like ‘ap- 480

proach’ (e.g., as seen in case 1). This might be due 481

to topic prediction training incorporated as part of 482

downstream task in INSPECT, which would lead 483

the model to focus on phrases more relevant for 484

detecting the topic of the document. Also, because 485

of this, INSPECT might miss too specific phrases 486

(which usually consist of proper nouns) like Nitzan- 487

Paroush in case 2. 488

Due to the nature of extracting longer phrases, 489

INSPECT extracts more compound phrases con- 490

nected by functional words. We hypothesize 491

that post-processing, to remove overlapping and 492

compound phrases might lead to even higher 493

performance on datasets consisting of smaller 494

phrases. Case 2 in Figure 3 also demonstrates 495

the trend of predicting complete phrases, like 496

‘classical decision-theoretic problem’, instead of 497

AutoPhrase’s prediction – ‘classical decision- 498

theoretic’ which is incomplete. 499

6 Related Work 500

Unsupervised keyphrase extraction is typically 501

treated as a ranking problem, given a set of can- 502
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Recall
Type Exact Partial
Metric 60.65 78.34
Task 58.27 90.45
Material 72.17 86.69
Scientific Term 78.87 95.13
Method 65.31 95.41
Generic 63.16 86.06

Table 4: Exact and partial span match recall scores for
different types of keyphrases on the SciERC dataset.

didate phrases (Shang et al., 2018; Campos et al.,503

2018; Florescu and Caragea, 2017a). A standard504

pipeline (1) extracts candidate phrases; (2) scores505

phrase relevance; and (3) ranks the phrases based506

on their scores. Broadly, prior approaches can be507

categorized as statistical (Florescu and Caragea,508

2017a; El-Beltagy and Rafea, 2009; Liu et al.,509

2009; Campos et al., 2018), graph-based (Brin510

and Page, 1998; Mihalcea and Tarau, 2004; Wan511

and Xiao, 2008; Rose et al., 2010; Danesh et al.,512

2015; Florescu and Caragea, 2017b; Gollapalli and513

Caragea, 2014; Bougouin et al., 2013; Yu and Ng,514

2018), embedding-based (Bennani-Smires et al.,515

2018; Papagiannopoulou and Tsoumakas, 2018),516

or language model based methods (Tomokiyo and517

Hurst, 2003); Papagiannopoulou and Tsoumakas518

(2019) provide a detailed survey.519

Statistical techniques for keyphrase extraction520

exploit notions of information theory directly. The521

most common (and surprisingly strong) baseline522

is TF-IDF based scoring of phrases (Florescu and523

Caragea, 2017a). Other approaches use phrase posi-524

tion in the document (El-Beltagy and Rafea, 2009)525

or co-occurrence statistics and semantic relatedness526

of candidate terms to cluster phrases (Liu et al.,527

2009). Capturing the statistical information of the528

context of each phrase has also been shown to be529

an important signal for keyphrase extraction (Cam-530

pos et al., 2018). Statistical approaches typically531

treat different instances or uses of a phrase equally,532

which is a limitation.533

Graph-based techniques, on the other hand,534

broadly aim to form a graph of candidate phrases535

connected based on similarity to each other. Then536

core components of the graph are chosen as key537

phrases. Amongst these, PageRank (Brin and Page,538

1998) gives the score to each node based on re-539

cursive node influence. TextRank (Mihalcea and540

Tarau, 2004) specifically applied this idea by con-541

necting nodes based on co-occurrence within some542

window. A common extension to such techniques is543

to use weights on the edges denoting the strength of 544

connection (Wan and Xiao, 2008; Rose et al., 2010; 545

Bougouin et al., 2013). Position Rank (Florescu 546

and Caragea, 2017b) and SGRank (Danesh et al., 547

2015) combine the ideas from statistical, word co- 548

occurrence and positional information. Some ap- 549

proaches, especially applied in the scientific doc- 550

ument setting, make use of citation graphs (Golla- 551

palli and Caragea, 2014; Wan and Xiao, 2008), and 552

external knowledge bases (Yu and Ng, 2018) to im- 553

prove keyphrase extraction . In this work, we focus 554

our approach on a general unsupervised keyphrase 555

extraction setting applicable to any domain where 556

these external resources are not present. 557

Finally, embedding based techniques (Bennani- 558

Smires et al., 2018; Papagiannopoulou and 559

Tsoumakas, 2018) make use of word-document 560

similarity using word embeddings, while language- 561

model based techniques use the uncertainty 562

when predicting words to decide informativeness 563

(Tomokiyo and Hurst, 2003). 564

7 Conclusion and Future Work 565

We propose INSPECT, a novel approach to unsuper- 566

vised keyphrase extraction. Our framework uses 567

a neural model that interprets text classification 568

decisions to extract keyphrases via phrase-level 569

feature attribution. Using four standard datasets, 570

we show that INSPECT outperforms prior methods 571

and establishes new state-of-the-art results in unsu- 572

pervised keyphrase extraction. Through qualitative 573

and quantitative analysis, we show that INSPECT 574

can leverage large external corpora to produce high- 575

quality keyphrases in the scientific and news do- 576

mains. INSPECT also opens doors for more control 577

in keyphrase extraction and model explanation ap- 578

plications. For instance, depending on the proxy 579

task, our focus and the definition of importance can 580

be varied. While topic prediction may be a good 581

task to capture content, sentiment prediction might 582

improve pragmatic understanding. 583

Ultimately, our work utilizes model explanations 584

in an automated (rather that human–computer in- 585

teraction) setting. With the advances in explainable 586

and interpretable NLP, such a framework relying on 587

feature-level attribution and model explanations to 588

improve a downstream task, can be applied in many 589

applications, including for unsupervised informa- 590

tion extraction, content planning, and structured 591

prediction. 592
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8 Appendix842

8.1 Implementation Details843

Here, we present the hyper-parameters for all exper-844

iments along with their corresponding search space.845

We chose all hyperparameters based on the devel-846

opment set performance on the SciERC dataset.847

We considered RoBERTa (Liu et al., 2019) and848

XL-NET (Yang et al., 2019) based encoders and849

finally chose RoBERTa for faster compute times.850

We experimented with learning-rates from the set851

of 1e-5,2e-5,5e-5,1e-4 and 2e-4. We chose 2e-5852

as the final learning rate. Our batch size of 8 was853

chosen after experimenting with 4, 8, 12 and 16.854

The size of the weights matrix in the classification855

layer was chosen to be 64 from a set of 16,32,64856

and 128. The λ parameter used to combine the857

phrase and context representations was fixed at 0.5.858

We tried values between 0.1 and 0.9 and did not859

find signifcant difference.860
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Dataset Type Split Total docs Avg words per doc Avg keyphrases per doc

SciERC Scientific
Train 350 130 16
Dev 50 130 16
Test 100 134 17

SciREX Scientific
Train 306 5601 353
Dev 66 5484 354
Test 66 6231 387

SemEval17 Scientific
Train 350 160 21
Dev 50 193 27
Test 100 186 23

500N-KPCrowd News
Train 400 430 193
Dev 50 465 86
Test 50 420 116

BBC News News All 2225 385 -
ICLR Scientific All 8317 6505 -

Table 5: Description about the datasets. Average words and keyphrases per document are rounded to the nearest
whole number. ICLR and BBC News are used in INSPECT-ZeroShot setting for training and don’t have any labelled
keyphrase data.

S.No. Top words from removed topic
1 proposed;propose novel;propose;proposed method;method
2 generalization;study;analysis;suggest;provide
3 outperforms;existing;existing methods;outperforms stateoftheart;methods
4 state;art;state art;shortterm;current state
5 effectiveness;demonstrate effectiveness;source;effectiveness proposed;student
6 training;training data;training set;training process;model training
7 experimental;experimental results;results;results demonstrate;experimental results demonstrate
8 experiments;extensive;extensive experiments;experiments demonstrate;conduct
9 performance;improves;significantly;improve;improved
10 recent;shown;recent work;recent advances;success
11 achieves;introduce;competitive;achieves stateoftheart;introduce new
12 trained;model trained;models trained;networks trained;trained using
13 present;paper present;present novel;work present;monte
14 widely;parameters;widely used;proposes;paper proposes
15 simple;benchmark datasets;benchmark;propose simple;simple effective
16 prior;approach;sampling;continuous;prior work
17 program;introduces;programs;future;paper introduces
18 solve;challenging;able;complex;challenging problem
19 challenge;current;challenges;open;current stateoftheart
20 rate;good;good performance;l;regime
21 works;previous works;existing works;focus;scenarios
22 evaluate;evaluation;tackle;tackle problem;evaluate method

Table 6: 22 Generic topics removed from the 75 topic labels learned using topic modeling on ICLR data.
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