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Abstract

In order to advance scientific discovery, it is
essential to answer scientific questions regard-
ing a particular field of study. However, these
questions might not be answered easily with
just a few words and might mislead scientists,
delaying scientific discovery. In this paper, we
propose to recommend scientific datasets in-
stead of directly answering each question. We
introduce sciDataQA, a novel scientific dataset
recommendation dataset with 43466 scientific
datasets and 244128 questions, including each
dataset’s title, citation information, summary,
and abstract. We construct the dataset with
large pre-trained language models and utilize
a contrastive-learning-based approach to fil-
ter the low-quality questions. Based on this
dataset, we develop a novel recursive retrieval
approach for scientific dataset recommendation.
Further, we illustrate how our dataset can be
used to study citation prediction and improve
existing scientific QA systems. Extensive ex-
periments show the effectiveness of our recur-
sive retrieval approach and the improvement in
the low-resource setting of two existing scien-
tific QA systems with our dataset.

1 Introduction

Question answering (QA) has become an increas-
ingly important task due to the massive amount
of data from a variety of resources (Wang, 2022).
Scientific question-answering systems aim to an-
swer questions about a specific scientific domain
and could be critical for scientific discovery (Clark
et al., 2018; Mihaylov et al., 2018; Lu et al., 2022).
These questions are often answered by performing
machine reading comprehension on scientific liter-
ature (Khashabi et al., 2020; Xu et al., 2021; Huang
et al., 2022). However, in contrast to traditional
QA, scientific questions might not be answered
easily according to existing literature; many new
research problems are never studied in the litera-
ture; an incorrect answer might mislead scientists
and delay scientific discovery.
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Figure 1: An illustration of the comparison between
traditional science QA bot and our dataset recommen-
dation approach.

To circumvent this challenge, we propose to rec-
ommend scientific datasets instead of directly an-
swering this question. The input of our scientific
QA system is still a scientific question. The out-
put will be a dataset that we recommend scien-
tists analyze in order to answer this question. This
dataset recommendation task mimics the scientific
discovery process of raising a hypothesis and then
retrieving relevant datasets to answer this hypothe-
sis. Compared to answering the question directly,
recommending a dataset is more feasible and can
offer more flexibility for scientists to analyze it. On
the other hand, recommending a dataset requires us
to comprehend not only the question but also the
scientific dataset.

As this scientific dataset recommendation task
has not been systematically studied before, we
first construct a large-scale dataset, sciDataQA,
which contains 244128 questions and 43466 sci-
entific datasets from Gene Expression Omnibus
(GEO) (Edgar et al., 2002). Each question is paired
with one dataset from GEO. For each dataset, we
first identified the collection of scientific papers that



have used this dataset. We then extracted the men-
tions of this dataset and used pre-trained language
models (PLMs) to automatically generate a ques-
tion based on each mention. We further proposed
a contrastive-learning-based approach to exclude
non-quality questions. To assess the quality of sci-
DataQA, we conducted both automatic and human
evaluations, which confirmed the high quality of
our dataset.

Based on this dataset, we have developed a novel
recursive retrieval approach for scientific dataset
recommendation. The key idea of our method is to
use UMLS (Bodenreider, 2004), a domain-specific
knowledge base, to enrich each question by re-
trieving relevant background information of a ques-
tion. Specifically, we construct a terminology tree
for each question by expanding each entity into
multiple entities that appear in its definition. We
then utilized a graph convolutional network to learn
the representation of this tree, which integrates in-
formation from the original question and relevant
background information.

In addition to question answering, we further
demonstrated how our dataset could be used to
study citation prediction and improve the existing
scientific QA systems. In particular, we found that
the performance on the low-resource setting of two
existing scientific QA systems can be enhanced
by fine-tuning them on our dataset, indicating the
broad applicability of our dataset. Our contribu-
tions can be summarized as follows:

1. Conceptual: We propose a novel task and
dataset of recommending scientific datasets to
answer scientific questions.

2. Methodological: We propose a recursive re-
trieval approach to embed scientific questions.

3. Application: We show that our dataset can be
used to study citation prediction and improve
existing QA systems.

2 sciDataQA dataset

2.1 Collecting scientific datasets

Since there lacks a benchmark that recommends a
dataset to a scientific question, we constructed the
first scientific dataset recommendation benchmark.
In particular, we collected 43,466 datasets from
Gene Expression Omnibus (Edgar et al., 2002),
where each dataset is a biological data assay. Most
of these datasets are gene expression or mutation
profiles. Each dataset is a further association with
two pieces of text information. One is an author-
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Figure 2: The question generation pipeline for our
dataset construction.

written summary. The other is the abstract of the
corresponding paper that published this dataset.
The abstract and summary have 151 and 110 words
on average, respectively, which can provide high-
quality descriptions for this dataset. Moreover,
each dataset is within a large-scale citation net-
work and has on average 24 citations, which can be
used as additional context information.

2.2 Definition-enriched question generation

Manually creating scientific questions and associat-
ing them with scientific datasets require substantial
domain experts and cannot be scaled up. As an
alternative, we exploited Open Pre-trained Trans-
former (OPT) (Zhang et al., 2022) to generate
questions for each dataset. In particular, we first
collected scientific papers that cite a given dataset,
assuming that these papers will mention the pur-
poses they use this dataset and these purposes can
be converted into high-quality scientific questions.
Then for each of these papers, we extracted the sen-
tence that cites the corresponding data. We fed each
sentence to OPT as a prompt template to generate
the scientific question in Fig. 2. Our base prompt
is designed by adding "Here is a brief description
about the dataset: " before the sentence and adding
"What research question can the dataset answer?"
after the sentence. To further help PLM better un-
derstand scientific text, especially scientific termi-
nology, we developed a definition-enriched prompt.
Specifically, we first identified biomedical entities
from the sentence and then obtained the definition
of these entities from Unified Medical Language
System (UMLS) (Bodenreider, 2004). We then
appended these definitions to the prompt template.
After generating a question from each sentence, we
excluded duplicate questions for the same dataset.
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Figure 3: (a) and (b), Comparison in coherence and informativeness between the generation quality with or without
enriched definition. Each set contains 125° samples. (c), Example of excluding outlier questions.

To validate whether the definition-enriched
prompt can improve the quality of questions, we
compared the definition-enriched prompt with the
base prompt that does not append terminology def-
initions in Fig. 3a and Fig. 3b. In particular, we
randomly selected 500 sentences and compared
the questions generated by these two prompts. For
each pair of questions generated for the sentence,
we recruited annotators to assess which question
was better in terms of informativeness and coher-
ence. We found that definition-enriched prompts
yielded greater or equal coherence on 88.3% of
questions and greater or equal to informativeness
on 92.5% of questions, indicating the benefits of in-
cluding definitions. Moreover, we noticed that the
improvement of our method is larger when there
are fewer entities in the sentences. Since such sen-
tences might be less informative and each entity
could play a more important role, augmenting these
sentences with definitions could compensate for the
sparsity, further confirming the effectiveness of en-
riching each sentence with definitions.

2.3 Excluding outlier questions using
contrastive learning

Intuitively, each dataset should only be able to ad-
dress a few questions. However, since a dataset
might be cited by many papers, we might gener-
ate many questions for that dataset. To find the
representative question, we used a density-based
clustering algorithm OPTICS (Ankerst et al., 1999;
Pedregosa et al., 2011) to cluster questions for the
same dataset. To obtain feature embeddings for
clustering, we applied unsupervised SimCSE (Gao
et al., 2021) to the collection of all the questions
generated by OPT. Formally, given a BERT-style

encoder, we took the last layer hidden-state of
[CLS] as question representation h and that with
different dropout mask denoted as h’. The training
objective for the i-th question can be defined as:
esim(hi,h;)/T

Z?:l €

where sim is the cosine similarity, n is the mini-
batch size and 7 is a temperature hyperparameter.
We then excluded questions that are considered
outliers by OPTICS. We found that most of these
outliers are either not related to or not specified
to the corresponding dataset, demonstrating the
importance of excluding them from our dataset.
To provide a specific explanation, we plot the ex-
cluding outcome by t-SNE in Fig. 3c on dataset
29606353 and a case study about it in Appendix A.

Efmsup = —log (D

sim(h;,h%)/7’

2.4 Validating question dataset associations

After generating questions for each dataset, we
evaluated the question dataset associations. We ex-
ploited three evaluation strategies based on existing
QA systems, co-citation and manual evaluation.

Evaluating using existing QA systems We first
constructed three QA systems based on GPT-
3 (Brown et al., 2020), OPT (Zhang et al., 2022),
and UnifiedQA (Khashabi et al., 2020). We then
fed a question to each QA system and asked the
system to answer this question. Here, each QA
system directly provided an answer instead of rec-
ommending a dataset. We compared the answer to
the summary of each dataset and examined whether
the dataset we recommended has higher similarity
with this answer generated by existing QA systems,
assuming that these systems can partially answer
scientific questions. We summarized the results in
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Figure 4: (a), The automatic evaluation on several QA systems. (b), The correlation between the averaged question
similarity of two datasets and their co-citation ratio. (c), Human annotation on 1000 samples.

Fig. 4a and observed that 86.4% of the ground-truth
datasets are ranked within the top 30.0% among
all datasets. This result reflects the substantial con-
sistency between our dataset recommendation and
other QA system, supporting the possibility of rec-
ommending datasets instead of answering the sci-
entific questions and further suggesting the high-
quality associations in sciDataQA.

Evaluating using co-citation relationship We
next used the co-citation relationship to evaluate
our question dataset associations. We calculate two
kinds of similarity metrics between two datasets.
The first is a co-citation similarity based on how
many papers cite them using Jaccard similarity.
The second is the semantic similarity between the
generated questions of the two datasets. We found
that these two similarity metrics are highly consis-
tent with a Spearman correlation of 0.42 (Fig. 4b).
As co-citation similarity has been extensively used
to measure scientific paper similarity(Boyack et al.,
2013), this high consistency indicates that we gen-
erated similarity questions for similar datasets, fur-
ther confirming the quality of the associations.

Manual evaluation The above two large-scale
automatic evaluations demonstrate the quality of
our question data associations. We next conducted
a manual evaluation by designing multiple-choice
questions. In particular, for each dataset, we pro-
vided four questions: the ground truth associated
question (positives), a simple negative question
whose representation is the farthest from the posi-
tive question (simple negatives), a normal negative
question randomly sampled from another dataset
(normal negatives), and a hard negative question
that is generated from another sentence that in the

same paper paragraph as the positive question (hard
negatives). We asked the human annotators to se-
lect the question that best matched the dataset ac-
cording to the dataset summary.

We found that human annotators achieved 78%
accuracy in this multiple-choice-based evaluation
(Fig. 4¢), indicating that our dataset question asso-
ciations are consistent with human knowledge. We
noted that most of the incorrectness fell into the
hard negatives category. These hard negatives re-
quire the most domain knowledge compared to sim-
ple negative and normal negatives since sentences
of these hard negatives are in the same paragraph
with positive questions.

3 Recursive definition retrieval for
dataset recommendation

3.1 Problem definition

Given a scientific question @ = (¢1,92,---,¢),
and a set of datasets D = (D1, Do, ..., Dr), we
aim to select the best-matched dataset for that ques-
tion. For each dataset D;, we also have a dataset
summary S; = (sf,sh, ..., sl ) and a scientific pa-
per abstract A; = (¢, 4,...,t) describing that
dataset. We do not consider citation networks for
the recommendation.

3.2 Recursive definition retrieval

Scientific questions might contain terminologies
that cannot be easily processed by PLMs (Lavrenko
and Croft, 2017; Yu et al., 2021). Motivated by the
promising results of enriching questions with def-
initions in dataset generation, we also propose to
include definitions for each question for a better
recommendation. Here, we propose a recursive def-
inition retrieval approach that recursively expands
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Figure 5: An question example processed by the re-
cursive retrieval approach. There are three identified
entities in the question and we constructed an entity tree
for each entity based on their definition texts.

a question into an entity tree.

Superficially, for each question (), we convert
it to a multi-root entity tree. The roots of this tree
are entities in this question identified through entity
linking. We then obtain the definition of each entity
and find new entities in the definition using Scis-
paCy (Neumann et al., 2019). These new entities
will be inserted into this tree as child nodes. We
recursively repeat this process by expanding more
layers in this tree, where a child entity is mentioned
in the definition of the parent entity. To prevent
very deep and large trees that could be computa-
tionally intensive, we will terminate the expansion
if the new entity is very different from its corre-
sponding root entity based on the definition textual
similarity. An example of the multi-root entity tree
is shown in Fig. 5. We set the maximum depth of
the tree and similarity threshold as hyperparame-
ters. This process will help us enrich the question
() by augmenting it with related definitions.

3.3 Tree-augmented question embedding

Each node in the tree is associated with an entity
and a definition. We can now use them to augment
the original question. To achieve this, we learn two
graph convolutional networks (GCN) (Defferrard
et al., 2016) to embed entity names and entity defi-
nitions respectively: Initial node features for GCN
are the BERT embedding of entity names or defi-
nitions. We then separately aggregated the entity-
based embedding of all roots and the definition-
based embeddings of all roots. Instead of aggregat-
ing the embeddings of all nodes, we only consider

roots, which are entities in the original question.
This design enables conservatively enriching the
question without adding too much irrelevant in-
formation. These two aggregated embeddings are
concatenated with question embeddings to get the
final representation.

4 Experimental results

We randomly select 10000 samples from sci-
DataQA and split them as training (80%), dev
(10%), and test set (10%), using cross-validation.
The hyper-parameter selection is presented in Ap-
pendix B. We compare our method with two text
classification models: CLEncoder (Gao et al.,
2021) and UniEncoder (Devlin et al., 2018). Since
neither of them retrieve and augment extra informa-
tion for the question, our comparison can show the
importance of tree-based question augmentation.

CLEncoder. Wau et al. (2022) point out that when
one passage could be the positive passage of multi-
ple questions, there would be a higher probability
of the passage appearing as both positive and nega-
tive instances in one batch simultaneously. There-
fore, we design the negative instance, in addition to
the in-batch negative technique, to address this is-
sue. Specifically, for each question x;, we take the
abstract and summary of its corresponding dataset
as positive instance xj and that of a randomly cho-
sen dataset other than the positive dataset as nega-
tive instance x; , then conduct in-batch contrastive

learning. The training objective Eéup is formulated
as:

esim(hi,hj)/f

- log ) (2)

sim(hy,h )/ esim(hihy)/Ty

where symbols are defined the same as Eq. 1.

UniEncoder. We also use a BERT encoder with a
binary classification layer to do our task. Formally,
we set the concatenation of the question, dataset
summary, and dataset abstract with different sepa-
rate tokens as inputs of the BERT encoder and use
the [CLS] token’s hidden state as the input of the
classification layer.

Main Results. According to Table 1, we can see
our approach substantially outperforms the base-
lines on a variety of top K accuracy, indicating
the effectiveness of augmenting the question with
entity definitions. We further noticed that the im-
provement is larger when K is smaller. For ex-
ample, our method achieves 7.3% enhancement



‘ ACC@1 ACC@5 ACC@10 ACC@20 ACC@50 ‘ ACC@1 ACC@5 ACC@10 ACC@20 ACC@50
CL | 0.146 0.302 0.396 0.485 0.618 BERT | 0092 0239 0.314 0.386 0.533
CL + GCN ‘ 0.151 0.316 0.400 0.487 0.618 SciBERT ‘ 0.151 0.316 0.398 0.495 0.623
Uni ‘ 0.102 0.293 0.383 0.494 0.650 PubMedBERT ‘ 0.168 0.332 0.445 0.531 0.653
Uni + GCN ‘ 0.175 0.343 0.434 0.535 0.661 KRISSBERT ‘ 0.175 0.343 0.434 0.535 0.661

Table 1: The accuracy of our model on the dataset,
where CL denotes CLEncoder, and Uni denotes UniEn-
coder. Test on KRISSBERT.

on top 1 accuracy, which is much higher than the
4.1% enhancement on top 20 accuracy, when com-
pared to UniEncoder. However, for CLEncoder,
our approach only has little improvement over the
baseline. We assume that in UniEncoder, the termi-
nology tree could interact with both the question
and abstract/summary. Through the self-attention
network, the connection between the specific entity
in the question and our dataset could be further
considered for recommendation.

Pre-trained Models. In this experiment, we use
BERT (Devlin et al., 2018), SciBERT (Beltagy
et al., 2019), KRISSBERT (Zhang et al., 2021),
and PubMedBERT (Gu et al., 2020)’s pre-trained
weights to initialize our encoders. And we investi-
gate the effect of different pre-training parameters
on model performance.

According to Table 2, the results show that the
SciBERT, KRISSBERT, and PubMedBERT all out-
perform the original BERT by a large margin. An
apparent reason is that the original BERT is not
good at processing biomedical data. And among
the three BERT, we can see the KRISSBERT out-
performs the other two BERT. One possible ex-
planation is that the KRISSBERT uses PubMed-
BERT’s parameters and is continuously fine-tuned
on the UMLS dataset, which is also the data source
for our tree construction.

Ablation Studies. We construct a terminology
tree to enrich the information of specific questions
by recursive retrieval. To analyze how the variables
in the tree influence the results, we conduct detailed
ablation studies (Fig. 6a).

We first modify the tree depth from 2 to 5 when
the similarity threshold is fixed at 0.8. The overall
trend shows that when the similarity threshold is
constant, as the tree depth increases, the recommen-
dation’s accuracy is better. We assume that the tree
could provide more details to understand the given
questions when it gets deeper. However, when the
depth reaches 5, more irrelevant information will

Table 2: Performances of different pre-trained models.
Test on UniEncoder + GCN.

harm the model performance.

Then, we set the depth to 4 and tune the sim-
ilarity threshold among 0.8, 0.9, 0.95, and 0.99.
Our method becomes less accurate as the threshold
keeps increasing. This indicates that too large a
threshold will decrease the scale of the tree struc-
ture and thus can’t provide enough information for
an accurate recommendation.

5 Applications of sciDataQA

In addition to the main application of dataset recom-
mendation, sciDataQA can also be used for other
applications involving scientific datasets. We inves-
tigated two such applications here and raised more
applications in the Future Work section.

5.1 Providing additional training data for
existing QA systems

First, sciDataQA can be used to fine-tune existing
QA systems for scientific question answering. In
particular, we can treat the question and the sum-
mary of its corresponding dataset as a question-
answer pair. We can obtain 7500 such pairs from
our training set. We can then exploit these ques-
tions to fine-tune existing QA systems (Yoo et al.,
2021; Wang et al., 2021b; Meng et al., 2022; Ye
et al., 2022). To validate this application, we
studied two QA approaches based on UnifiedQA
(BART) (Khashabi et al., 2020) and Instruction
Tuning (T5) (Sanh et al., 2022). We evaluate their
performance in the few-shot setting on an indepen-
dent scientific QA dataset ScienceQA (Lu et al.,
2022) (biology subset). Both approaches are fine-
tuned using the entire sciDataQA.

We found that our dataset substantially improved
the performance of both QA systems (Fig. 6¢). For
example, UnifiedQA fine-tuned on our dataset ob-
tained a 62.38 accuracy in the zero-shot setting,
which is much higher than the 58.63 accuracy us-
ing UnifiedQA only. The improvement is more
significant when there are less training data from
ScienceQA, especially in the zero-shot scenario,
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further indicating the advantage of leveraging sci-
DataQA as additional training data.

5.2 Citation Prediction

Moreover, our dataset can be used to study citation
prediction. Citation prediction is an important task
in scientific literature analysis (Bai et al., 2019).
It aims to predict the future citation relationship
between papers, which has critical implications for
detecting emerging research problems and improv-
ing scientific paper writing efficiency.

There exists a substantial amount of citation re-
lationships in our dataset, which can be used to pre-
dict and evaluate the citation prediction. Different
from existing citation prediction datasets (Cohan
et al., 2020), sciDataQA focuses on recommend-
ing citation of dataset papers. As a result, we can
additionally consider the dataset summary as a fea-
ture. Specifically, given two dataset papers and
their summaries, we will predict whether one paper
cites the other. As two papers that have similar
summaries are more likely to cite each other, we
concatenated their summaries as input and trained
a binary classifier. We considered encoders based
on BERT (Devlin et al., 2018), PubMedBERT (Gu
etal.,2020), KRISSBERT (Zhang et al., 2021), and,
SciBERT (Beltagy et al., 2019). We considered de-
coders based on GPT-2 (Radford et al., 2019) and
BioGPT (Luo et al., 2022) to predict the citation.

We summarized the results in Fig. 6b. We ob-
served that all these PLMs achieved in general
high prediction results, supporting the high quality
of our dataset. Moreover, we observed a notice-
able discrepancy among these PLMs. In particular,
domain-specific language models, such as PubMed-
BERT, KRISSBERT, and BioGPT, perform better

than general language models, such as GPT and
BERT. This observation is consistent with previous
works (Gu et al., 2020) that domain-specific lan-
guage models have better performance on a variety
of downstream applications. Thus, our dataset also
offers an application to compare various of PLMs.

6 Related Work

6.1 Dataset generation using language models

Existing approaches to dataset generation mainly
focus on fine-tuning the generative models using ex-
isting training data and then generating additional
training data (Anaby-Tavor et al., 2020; Kumar
et al., 2020; Puri et al., 2020; Lee et al., 2021; He
et al., 2021; Vu et al., 2021; Mekala et al., 2022).
The generative dataset augmentation has been ap-
plied to a variety of applications, including ques-
tion answering (Alberti et al., 2019), commonsense
reasoning (Yang et al., 2020), semantic textual sim-
ilarity (Schick and Schiitze, 2021), labeled doc-
uments (Mekala et al., 2021), biomedical factoid
question answering (Pappas et al., 2022), and query
reformulations (Adolphs et al., 2022). Recently,
SuperGen (Meng et al., 2022) and ZeroGen (Ye
et al., 2022) generate training data guided by label-
descriptive prompts. Here, we generate questions
for the scientific dataset. There are two major dif-
ferences between our work and existing approaches.
First, we focus on a novel application of generat-
ing scientific questions for scientific dataset rec-
ommendation. Second, instead of fine-tuning the
large language model using training data, we utilize
background definition information to prompt the
language model without using any training data.



6.2 Scientific question answering

Scientific question answering is a challenging task
that has been studied in both single text modal-
ity (Khashabi et al., 2018; Clark et al., 2018; Mi-
haylov et al., 2018; Khot et al., 2020; Lu et al.,
2022) and multi-modal reasoning (Krishnamurthy
et al., 2016; Kembhavi et al., 2016, 2017; Kafle
etal., 2018; Sampat et al., 2020; Lu et al., 2021a,b).
To leverage the reasoning path for constructing bet-
ter QA systems, enhanced datasets (Jansen et al.,
2018; Jhamtani and Clark, 2020; Dalvi et al., 2021)
annotate explanations for the question-answer pairs
from the perspective of explanation graphs, rea-
soning chains, and entailment trees respectively.
To construct scientific question-answering systems,
previous approaches have exploited K-nearest
neighbour (Altman, 1992), latent dirichlet alloca-
tion (Blei et al., 2003), the co-authors’ network (Lu-
ong et al., 2012), writing style (Yang and Davi-
son, 2012), citations (Kiicliktung et al., 2012), and
PLMs (Khashabi et al., 2020; Xu et al., 2021;
Huang et al., 2022) to perform the answer recom-
mendation or generation on scientific papers. By
contrast, we don’t provide the answer explanations
explicitly, but recommend a dataset for scientists
to study in order to answer this question.

6.3 Dataset recommendation

There are two scenarios of dataset recommendation:
1) recommendation based on user query (Leme
et al., 2013; Ben Ellefi et al., 2016; Patra et al.,
2020; Singhal et al., 2013; Altaf et al., 2019); 2)
recommendation based on provided dataset (Wang
et al., 2021a). These recommendation studies fo-
cused on computer science instead of the scientific
field and have never been applied to the rich collec-
tion of Gene Expression Omnibus. To fill in this
gap, we provide a high-quality dataset and novel
methods for scientific dataset recommendation.

7 Discussions and Future Work

Dataset generation with PLM. One of our key
contributions is to use the pre-trained language
model to generate specific questions. We found that
the design of prompts for language models is essen-
tial for the quality of our questions. Specifically,
if we change the order of background information
and the dataset description, the quality of the gener-
ated questions will be lower, and the model might
not generate anything for some datasets. As a re-
sult, designing a reasonable and effective prompt

is critical for a PLM to generate high-quality ques-
tions. Moreover, the enriched definitions have been
demonstrated to be essential for question genera-
tion. However, we also observed that adding too
much background might hurt the generation’s per-
formance by introducing irrelevant information. In
the future, we want to develop a better approach
to incorporate background information into pre-
trained language models for knowledge-aware gen-
eration.

Recursive retrieval for dataset recommendation
We have proposed an entity-tree-based approach
for dataset recommendation. Currently, we need
to limit the number of nodes in the tree by using
a pruning algorithm. Without this constraint, the
number of nodes in the tree grows exponentially
with increasing depth, and the memory usage will
influence the training and inference process seri-
ously. In this work, we set the similarity threshold
statically, which proves effective in the recommen-
dation. However, to get a better understanding of
each question, it may need information with dif-
ferent granularities for different kinds of entities.
We leave the exploration of dynamic pruning algo-
rithms as future work for better scale control in the
entity tree.

8 Conclusion

In this paper, we study a novel problem of sci-
entific dataset recommendation via our proposed
dataset, sciDataQA. We argue that instead of an-
swering challenging scientific questions directly, it
is more realistic to recommend a scientific dataset
that might be able to solve this question. To con-
struct our dataset, we developed a novel definition-
enriched approach to generate high-quality scien-
tific questions using a pre-trained language model
OPT. Both automatic and human evaluations con-
firm the quality of our dataset.

Based on sciDataQA, we developed a tree-
augmented recursive retrieval dataset recommenda-
tion method and obtained substantial improvement
on several strong baselines. We further demon-
strated how our dataset could be exploited to recom-
mend scientific citations and improve existing sci-
entific QA systems. Collectively, we have proposed
a comprehensive solution for scientific dataset rec-
ommendation, including defining the task, building
a new dataset, and proposing the novel recommen-
dation method.



Limitations

Due to the limitation of computing resources, one
deficiency of this work is that our dataset was gen-
erated with OPT-1.3B, whose parameter is much
smaller than the popular GPT-3 or a pre-trained
model of equivalent capability. However, with
proper data filtering algorithms, the promising re-
sults of our recommendation method and down-
stream applications showed that our dataset is of
high quality, which confirms the validity of our
approach.

Another limitation is that we don’t manually
annotate the gold answer for each question in our
dataset because of the high cost of professional
human resources. Since our primary goal is to
build a dataset recommendation system to solve
challenging science QA, standard answers seem
less necessary. Furthermore, treating the dataset
summary’s first sentence as the answer is proven
to be an effective workaround, as pre-training on
it significantly improves the QA system’s accuracy
on ScienceQA.

Acknowledgements

References

Leonard Adolphs, Michelle Chen Huebscher, Christian
Buck, Sertan Girgin, Olivier Bachem, Massimiliano
Ciaramita, and Thomas Hofmann. 2022. Decoding a
neural retriever’s latent space for query suggestion.

Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin,
and Michael Collins. 2019. Synthetic QA corpora
generation with roundtrip consistency. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 6168—6173, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Basmah Altaf, Uchenna Akujuobi, Lu Yu, and Xian-
gliang Zhang. 2019. Dataset recommendation via
variational graph autoencoder. In 2019 IEEE Inter-
national Conference on Data Mining (ICDM), pages
11-20. IEEE.

Naomi S Altman. 1992. An introduction to kernel
and nearest-neighbor nonparametric regression. The
American Statistician, 46(3):175-185.

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,
Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2020. Do not have
enough data? deep learning to the rescue! Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34(05):7383-7390.

Mihael Ankerst, Markus M. Breunig, Hans-Peter
Kriegel, and Jorg Sander. 1999. Optics: Ordering

points to identify the clustering structure. In Pro-
ceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’99,
page 49-60, New York, NY, USA. Association for
Computing Machinery.

Xiaomei Bai, Fuli Zhang, and Ivan Lee. 2019. Pre-
dicting the citations of scholarly paper. Journal of
Informetrics, 13(1):407-418.

1z Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

Mohamed Ben Ellefi, Zohra Bellahsene, Stefan Dietze,
and Konstantin Todorov. 2016. Dataset recommen-
dation for data linking: An intensional approach. In
European Semantic Web Conference, pages 36-51.
Springer.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993-1022.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl_1):D267—
D270.

Kevin W Boyack, Henry Small, and Richard Klavans.
2013. Improving the accuracy of co-citation cluster-
ing using full text. Journal of the American Society
for Information Science and Technology, 64(9):1759-
1767.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Arman Cohan, Sergey Feldman, 1z Beltagy, Doug
Downey, and Daniel S. Weld. 2020. SPECTER:
Document-level Representation Learning using
Citation-informed Transformers. In ACL.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan
Xie, Hannah Smith, Leighanna Pipatanangkura, and
Peter Clark. 2021. Explaining answers with entail-
ment trees. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7358-7370, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Michaél Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances
in neural information processing systems, 29.


https://doi.org/10.48550/ARXIV.2210.12084
https://doi.org/10.48550/ARXIV.2210.12084
https://doi.org/10.48550/ARXIV.2210.12084
https://doi.org/10.18653/v1/P19-1620
https://doi.org/10.18653/v1/P19-1620
https://doi.org/10.18653/v1/P19-1620
https://doi.org/10.1609/aaai.v34i05.6233
https://doi.org/10.1609/aaai.v34i05.6233
https://doi.org/10.1609/aaai.v34i05.6233
https://doi.org/10.1145/304182.304187
https://doi.org/10.1145/304182.304187
https://doi.org/10.1145/304182.304187
https://doi.org/https://doi.org/10.1016/j.joi.2019.01.010
https://doi.org/https://doi.org/10.1016/j.joi.2019.01.010
https://doi.org/https://doi.org/10.1016/j.joi.2019.01.010
https://doi.org/10.18653/v1/2021.emnlp-main.585
https://doi.org/10.18653/v1/2021.emnlp-main.585
https://doi.org/10.18653/v1/2021.emnlp-main.585

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ron Edgar, Michael Domrachev, and Alex Lash. 2002.
Gene expression omnibus: Ncbi gene expression and
hybridization array data repository. nucl acids res 30:
207-210. Nucleic acids research, 30:207-10.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2020. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing.

Xuanli He, Islam Nassar, Jamie Kiros, Gholamreza Haf-
fari, and Mohammad Norouzi. 2021. Generate, an-
notate, and learn: Nlp with synthetic text. CoRR,
abs/2106.06168.

Zixian Huang, Ao Wu, Jiaying Zhou, Yu Gu, Yue
Zhao, and Gong Cheng. 2022. Clues before answers:
Generation-enhanced multiple-choice QA. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL
2022, Seattle, WA, United States, July 10-15, 2022,
pages 3272-3287. Association for Computational
Linguistics.

Peter Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton Morrison. 2018. WorldTree:
A corpus of explanation graphs for elementary sci-
ence questions supporting multi-hop inference. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Harsh Jhamtani and Peter Clark. 2020. Learning to
explain: Datasets and models for identifying valid
reasoning chains in multihop question-answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Kushal Kafle, Scott Cohen, Brian Price, and Christopher
Kanan. 2018. Dvqa: Understanding data visualiza-
tions via question answering. In CVPR.

Aniruddha Kembhavi, Michael Salvato, Eric Kolve,
Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
2016. A diagram is worth a dozen images. ArXiv,
abs/1603.07396.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk,
Jonghyun Choi, Ali Farhadi, and Hannaneh Ha-
jishirzi. 2017. Are you smarter than a sixth grader?
textbook question answering for multimodal machine
comprehension. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
5376-5384.

10

D. Khashabi, S. Min, T. Khot, A. Sabhwaral, O. Tafjord,
P. Clark, and H. Hajishirzi. 2020. Unifiedqa: Cross-
ing format boundaries with a single qa system.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252-262, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. Qasc: A
dataset for question answering via sentence com-
position. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):8082—8090.

Jayant Krishnamurthy, Oyvind Tafjord, and Aniruddha
Kembhavi. 2016. Semantic parsing to probabilis-
tic programs for situated question answering. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 160—
170, Austin, Texas. Association for Computational
Linguistics.

Onur Kiiciiktung, Erik Saule, Kamer Kaya, and Umit V
Catalyiirek. 2012. Recommendation on academic
networks using direction aware citation analysis.
arXiv preprint arXiv:1205.1143.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. In Proceedings of the 2nd Workshop
on Life-long Learning for Spoken Language Systems,
pages 18-26, Suzhou, China. Association for Com-
putational Linguistics.

Victor Lavrenko and W. Croft. 2017. Relevance-based
language models. ACM SIGIR Forum, 51:260-267.

Kenton Lee, Kelvin Guu, Luheng He, Timothy Dozat,
and Hyung Won Chung. 2021. Neural data
augmentation via example extrapolation. ArXiv,
abs/2102.01335.

Luiz André P Paes Leme, Giseli Rabello Lopes,
Bernardo Pereira Nunes, Marco Antonio Casanova,
and Stefan Dietze. 2013. Identifying candidate
datasets for data interlinking. In International
Conference on Web Engineering, pages 354-366.
Springer.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan
Huang, Xiaodan Liang, and Song-Chun Zhu. 2021a.
Inter-gps: Interpretable geometry problem solving
with formal language and symbolic reasoning. In
The Joint Conference of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (ACL-IJCNLP 2021).


https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/nar/30.1.207
http://arxiv.org/abs/arXiv:2007.15779
http://arxiv.org/abs/arXiv:2007.15779
http://arxiv.org/abs/arXiv:2007.15779
http://arxiv.org/abs/arXiv:2007.15779
http://arxiv.org/abs/arXiv:2007.15779
http://arxiv.org/abs/2106.06168
http://arxiv.org/abs/2106.06168
http://arxiv.org/abs/2106.06168
https://aclanthology.org/2022.naacl-main.239
https://aclanthology.org/2022.naacl-main.239
https://aclanthology.org/2022.naacl-main.239
https://aclanthology.org/L18-1433
https://aclanthology.org/L18-1433
https://aclanthology.org/L18-1433
https://aclanthology.org/L18-1433
https://aclanthology.org/L18-1433
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.1609/aaai.v34i05.6319
https://doi.org/10.1609/aaai.v34i05.6319
https://doi.org/10.1609/aaai.v34i05.6319
https://doi.org/10.1609/aaai.v34i05.6319
https://doi.org/10.1609/aaai.v34i05.6319
https://doi.org/10.18653/v1/D16-1016
https://doi.org/10.18653/v1/D16-1016
https://doi.org/10.18653/v1/D16-1016
https://aclanthology.org/2020.lifelongnlp-1.3
https://aclanthology.org/2020.lifelongnlp-1.3
https://aclanthology.org/2020.lifelongnlp-1.3
https://doi.org/10.1145/3130348.3130376
https://doi.org/10.1145/3130348.3130376
https://doi.org/10.1145/3130348.3130376

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. In The 36th Conference on Neu-
ral Information Processing Systems (NeurlPS).

Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao,
Wei Zhang, Zhou Yu, Xiaodan Liang, and Song-Chun
Zhu. 2021b. Iconqa: A new benchmark for abstract
diagram understanding and visual language reason-
ing. In The 35th Conference on Neural Information
Processing Systems (NeurlPS) Track on Datasets and
Benchmarks.

Rengian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022.
BioGPT: generative pre-trained transformer for
biomedical text generation and mining. Briefings
in Bioinformatics, 23(6).

Hiep Luong, Tin Huynh, Susan Gauch, Loc Do, and
Kiem Hoang. 2012. Publication venue recommen-
dation using author network’s publication history.
In Asian Conference on Intelligent Information and
Database Systems, pages 426—435. Springer.

Dheeraj Mekala, Varun Gangal, and Jingbo Shang.
2021. Coarse2Fine: Fine-grained text classification
on coarsely-grained annotated data. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 583-594, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Dheeraj Mekala, Tu Vu, Timo Schick, and Jingbo Shang.
2022. Leveraging qa datasets to improve generative
data augmentation.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language mod-
els: Towards zero-shot language understanding. In
Advances in Neural Information Processing Systems.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

Mark Neumann, Daniel King, 1z Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and robust models
for biomedical natural language processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319-327, Florence, Italy. Association for
Computational Linguistics.

Dimitris Pappas, Prodromos Malakasiotis, and Ion An-
droutsopoulos. 2022. Data augmentation for biomed-
ical factoid question answering. In Proceedings of
the 21st Workshop on Biomedical Language Process-
ing, pages 63-81, Dublin, Ireland. Association for
Computational Linguistics.

11

Braja Gopal Patra, Kirk Roberts, and Hulin Wu. 2020.
A content-based dataset recommendation system for
researchers—a case study on gene expression om-
nibus (geo) repository. Database, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Raul Puri, Ryan Spring, Mohammad Shoeybi, Mostofa
Patwary, and Bryan Catanzaro. 2020. Training
question answering models from synthetic data. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5811-5826, Online. Association for Computa-
tional Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Shailaja Sampat, Yezhou Yang, and Chitta Baral. 2020.
Visuo-linguistic question answering (vlqa) challenge.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Timo Schick and Hinrich Schiitze. 2021. Generating
datasets with pretrained language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6943—
6951, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Ayush Singhal, Ravindra Kasturi, Vidyashankar Sivaku-
mar, and Jaideep Srivastava. 2013. Leveraging web
intelligence for finding interesting research datasets.
In 2013 IEEE/WIC/ACM International Joint Confer-
ences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), volume 1, pages 321-328. IEEE.

Tu Vu, Minh-Thang Luong, Quoc Le, Grady Simon, and
Mohit Iyyer. 2021. STraTA: Self-training with task
augmentation for better few-shot learning. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5715—
5731, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.


https://doi.org/10.1093/bib/bbac409
https://doi.org/10.1093/bib/bbac409
https://doi.org/10.1093/bib/bbac409
https://doi.org/10.18653/v1/2021.emnlp-main.46
https://doi.org/10.18653/v1/2021.emnlp-main.46
https://doi.org/10.18653/v1/2021.emnlp-main.46
https://doi.org/10.48550/ARXIV.2205.12604
https://doi.org/10.48550/ARXIV.2205.12604
https://doi.org/10.48550/ARXIV.2205.12604
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/2022.bionlp-1.6
https://doi.org/10.18653/v1/2022.bionlp-1.6
https://doi.org/10.18653/v1/2022.bionlp-1.6
https://doi.org/10.18653/v1/2020.emnlp-main.468
https://doi.org/10.18653/v1/2020.emnlp-main.468
https://doi.org/10.18653/v1/2020.emnlp-main.468
http://arxiv.org/abs/2005.00330
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.462
https://doi.org/10.18653/v1/2021.emnlp-main.462
https://doi.org/10.18653/v1/2021.emnlp-main.462

X Wang, F van Harmelen, and Z Huang. 2021a.
Biomedical dataset recommendation. In [0th In-
ternational Conference on Data Science, Technol-
ogy and Applications, DATA 2021, pages 192-199.
SciTePress.

Zhen Wang. 2022. Modern question answering datasets
and benchmarks: A survey.

Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao.
2021b. Towards zero-label language learning.

Bohong Wu, Zhuosheng Zhang, Jinyuan Wang, and Hai
Zhao. 2022. Sentence-aware contrastive learning for
open-domain passage retrieval. In The 60th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2022).

Weiwen Xu, Yang Deng, Huihui Zhang, Deng Cai, and
Wai Lam. 2021. Exploiting reasoning chains for
multi-hop science question answering. pages 1143—
1156.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang,
Chandra Bhagavatula, Yejin Choi, and Doug Downey.
2020. Generative data augmentation for common-
sense reasoning. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
1008-1025, Online. Association for Computational
Linguistics.

Zaihan Yang and Brian D Davison. 2012. Venue rec-
ommendation: Submitting your paper with style.
In 2012 11th International Conference on Machine
Learning and Applications, volume 1, pages 681-686.
IEEE.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao
Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022. Zerogen: Efficient zero-shot learning via
dataset generation.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo
Lee, and Woomyoung Park. 2021. GPT3Mix: Lever-
aging large-scale language models for text augmen-
tation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2225-2239,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

HongChien Yu, Chenyan Xiong, and Jamie Callan. 2021.
Improving query representations for dense retrieval
with pseudo relevance feedback.

Sheng Zhang, Hao Cheng, Shikhar Vashishth, Cliff
Wong, Jinfeng Xiao, Xiaodong Liu, Tristan Nau-
mann, Jianfeng Gao, and Hoifung Poon. 2021.
Knowledge-rich self-supervision for biomedical en-
tity linking.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu

12

Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

A Dataset Examples

According to Table 3, the questions in the clusters
represent different aspects of the dataset (in this
case, BCL11A’s regulation, expression, structure,
and function), and their answers can be found in
the abstract and summary. However, the outlier
points are either too generic (Outlier 1) or misled
by the entity (Outlier 2) that is peripheral in the
context.

B Implementation Details

For dataset recommendation, we fix batch size as
16, learning rate as le-5, and train epochs as 10.
For citation prediction, we fix batch size as 32,
learning rate as 2e-5, and train epochs as 10. For
SimCSE (Gao et al., 2021), UnifiedQA (Khashabi
et al., 2020), and Instruction Tuning (Sanh et al.,
2022), we use their original training scripts with no
modification in hyperparameters.
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Abstract

Fetal hemoglobin (HbF, a2+2) level is genetically controlled and modifies severity of adult
hemoglobin (HbA, «252) disorders, sickle cell disease and 5-thalassemia. Common genetic
variation affects expression of BCL11A, a regulator of HbF silencing. To uncover how
BCLI11A supports the developmental switch from ~- to 8- globin, we use a functional
assay and protein binding microarray to establish a requirement for a zinc-finger cluster
in BCL11A in repression, and identify a preferred DNA recognition sequence. This motif
appears in embryonic and fetal-expressed globin promoters, and is duplicated in ~y-globin
promoters. The more distal of the duplicated motifs is mutated in individuals with hereditary
persistence of fetal hemoglobin. Using the CUT&RUN approach to map protein binding
sites in erythroid cells, we demonstrate BCL.11A occupancy preferentially at the distal motif,
which can be disrupted by editing the promoter. Our findings reveal that direct y-globin gene
promoter repression by BCL11A underlies hemoglobin switching.

Summary

Fetal hemoglobin (HbF) level is genetically controlled and modifies severity of adult
hemoglobin (HbA) disorders. Common genetic variation affects expression of BCL11A, a
critical regulator of HbF silencing. Current models suggest that BCL11A acts at a distance
from the gamma-globin genes via long-distance chromosomal interactions. Here we use
a functional cellular assay and protein-binding microarray to establish a requirement for a
zinc-finger cluster of BCL11A for globin repression, and identify a preferred DNA recog-
nition sequence (TGACCA). The motif is present in embryonic and fetal-expressed globin
promoters, and duplicated in gamma-globin promoters, yet only the distal motif is mutated in
alleles of individuals with hereditary persistence of hemoglobin. Using CUT&RUN to map
protein binding sites, we detected BCL11A occupancy preferentially at the distal motif, and
validated its absence in HbF-expressing, promoter-edited erythroid cells. Taken together, our
findings reveal that direct gamma-globin gene promoter repression by BCL11A underlies
hemoglobin switching.

Cluster A

How is the Bcll1a gene regulated?

Cluster B

What is the relationship between the expression levels of Bcllla and the transcriptional
activity of the human hematopoietic stem cell (HSC) lineage?

Cluster C

What is the structure of the zinc finger domain of BCL11A?

Cluster D

How does the gene expression profile change in response to the presence or absence of
Bcllla?

Outlier 1

What is the average length of a DNA fragment?

Outlier 2

What is the role of 5-Globin in the regulation of gene expression?

Table 3: Case study of excluding outlier questions on dataset 29606353.
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