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Abstract
In order to advance scientific discovery, it is001
essential to answer scientific questions regard-002
ing a particular field of study. However, these003
questions might not be answered easily with004
just a few words and might mislead scientists,005
delaying scientific discovery. In this paper, we006
propose to recommend scientific datasets in-007
stead of directly answering each question. We008
introduce sciDataQA, a novel scientific dataset009
recommendation dataset with 43466 scientific010
datasets and 244128 questions, including each011
dataset’s title, citation information, summary,012
and abstract. We construct the dataset with013
large pre-trained language models and utilize014
a contrastive-learning-based approach to fil-015
ter the low-quality questions. Based on this016
dataset, we develop a novel recursive retrieval017
approach for scientific dataset recommendation.018
Further, we illustrate how our dataset can be019
used to study citation prediction and improve020
existing scientific QA systems. Extensive ex-021
periments show the effectiveness of our recur-022
sive retrieval approach and the improvement in023
the low-resource setting of two existing scien-024
tific QA systems with our dataset.025

1 Introduction026

Question answering (QA) has become an increas-027

ingly important task due to the massive amount028

of data from a variety of resources (Wang, 2022).029

Scientific question-answering systems aim to an-030

swer questions about a specific scientific domain031

and could be critical for scientific discovery (Clark032

et al., 2018; Mihaylov et al., 2018; Lu et al., 2022).033

These questions are often answered by performing034

machine reading comprehension on scientific liter-035

ature (Khashabi et al., 2020; Xu et al., 2021; Huang036

et al., 2022). However, in contrast to traditional037

QA, scientific questions might not be answered038

easily according to existing literature; many new039

research problems are never studied in the litera-040

ture; an incorrect answer might mislead scientists041

and delay scientific discovery.042

User

Is there a relationship between the expression of ZFP423 and the development of 
the adipocyte phenotype?

Our Method

Please refer to this dataset: GEO74899

Document Library

ChatGPT

The exact relationship between ZFP423 expression and the development of the 
adipocyte phenotype is not well understood and may vary depending on the 

specific context.

Title: Identification of Zfp423-dependent genes in adult 
inguinal white adipocytes
Summary: We derived a model that allows for 
doxycycline-inducible deletion of Zfp423 in mature 
adipocytes of adult mice. In these animals deletion of 
Zfp423 results in a spontaneous conversion of white 
adipocytes into beige-like adipocytes at room 
temperature....
Overall Design: Inguinal white adipose tissues were 
isolated from adult control and doxycycline inducible 
adipocyte Zfp423 knockout mice maintained at room 
temperature on a doxcycyline-containing diet for 28 days...
Content: ...

Figure 1: An illustration of the comparison between
traditional science QA bot and our dataset recommen-
dation approach.

To circumvent this challenge, we propose to rec- 043

ommend scientific datasets instead of directly an- 044

swering this question. The input of our scientific 045

QA system is still a scientific question. The out- 046

put will be a dataset that we recommend scien- 047

tists analyze in order to answer this question. This 048

dataset recommendation task mimics the scientific 049

discovery process of raising a hypothesis and then 050

retrieving relevant datasets to answer this hypothe- 051

sis. Compared to answering the question directly, 052

recommending a dataset is more feasible and can 053

offer more flexibility for scientists to analyze it. On 054

the other hand, recommending a dataset requires us 055

to comprehend not only the question but also the 056

scientific dataset. 057

As this scientific dataset recommendation task 058

has not been systematically studied before, we 059

first construct a large-scale dataset, sciDataQA, 060

which contains 244128 questions and 43466 sci- 061

entific datasets from Gene Expression Omnibus 062

(GEO) (Edgar et al., 2002). Each question is paired 063

with one dataset from GEO. For each dataset, we 064

first identified the collection of scientific papers that 065
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have used this dataset. We then extracted the men-066

tions of this dataset and used pre-trained language067

models (PLMs) to automatically generate a ques-068

tion based on each mention. We further proposed069

a contrastive-learning-based approach to exclude070

non-quality questions. To assess the quality of sci-071

DataQA, we conducted both automatic and human072

evaluations, which confirmed the high quality of073

our dataset.074

Based on this dataset, we have developed a novel075

recursive retrieval approach for scientific dataset076

recommendation. The key idea of our method is to077

use UMLS (Bodenreider, 2004), a domain-specific078

knowledge base, to enrich each question by re-079

trieving relevant background information of a ques-080

tion. Specifically, we construct a terminology tree081

for each question by expanding each entity into082

multiple entities that appear in its definition. We083

then utilized a graph convolutional network to learn084

the representation of this tree, which integrates in-085

formation from the original question and relevant086

background information.087

In addition to question answering, we further088

demonstrated how our dataset could be used to089

study citation prediction and improve the existing090

scientific QA systems. In particular, we found that091

the performance on the low-resource setting of two092

existing scientific QA systems can be enhanced093

by fine-tuning them on our dataset, indicating the094

broad applicability of our dataset. Our contribu-095

tions can be summarized as follows:096

1. Conceptual: We propose a novel task and097

dataset of recommending scientific datasets to098

answer scientific questions.099

2. Methodological: We propose a recursive re-100

trieval approach to embed scientific questions.101

3. Application: We show that our dataset can be102

used to study citation prediction and improve103

existing QA systems.104

2 sciDataQA dataset105

2.1 Collecting scientific datasets106

Since there lacks a benchmark that recommends a107

dataset to a scientific question, we constructed the108

first scientific dataset recommendation benchmark.109

In particular, we collected 43,466 datasets from110

Gene Expression Omnibus (Edgar et al., 2002),111

where each dataset is a biological data assay. Most112

of these datasets are gene expression or mutation113

profiles. Each dataset is a further association with114

two pieces of text information. One is an author-115

Paper: Pubmed-32855402

Context: For example, Zfp423, preferentially 
expressed in white adipocytes, is a pro-adipogenic
commitment factor in vitro and in vivo, but it also 
acts as a molecular gate keeper that maintains 
white cell identity while suppressing browning in 
mature adipocytes.

Output: Is there a relationship between the expression of 
ZFP423 and the development of the adipocyte phenotype?

Entity Linking

Here is a brief description about the dataset.
For example, Zfp423, preferentially expressed in white 
adipocytes, is a pro-adipogenic commitment factor in vitro 
and in vivo, but it also acts as a molecular gate keeper that 
maintains white cell identity while suppressing browning in 
mature adipocytes.
Here are some term explanations.
Adipocytes: Cells in the body that store fats, usually in the 
form of triglycerides. 
In Vitro: Studies using excised tissues.
In Vivo: Located or occurring in the body.
White cell: White blood cells. These include granular 
leukocytes as well as non-granular leukocytes.
What research question can the dataset answer?
Answer:

OPT-1.3B
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Figure 2: The question generation pipeline for our
dataset construction.

written summary. The other is the abstract of the 116

corresponding paper that published this dataset. 117

The abstract and summary have 151 and 110 words 118

on average, respectively, which can provide high- 119

quality descriptions for this dataset. Moreover, 120

each dataset is within a large-scale citation net- 121

work and has on average 24 citations, which can be 122

used as additional context information. 123

2.2 Definition-enriched question generation 124

Manually creating scientific questions and associat- 125

ing them with scientific datasets require substantial 126

domain experts and cannot be scaled up. As an 127

alternative, we exploited Open Pre-trained Trans- 128

former (OPT) (Zhang et al., 2022) to generate 129

questions for each dataset. In particular, we first 130

collected scientific papers that cite a given dataset, 131

assuming that these papers will mention the pur- 132

poses they use this dataset and these purposes can 133

be converted into high-quality scientific questions. 134

Then for each of these papers, we extracted the sen- 135

tence that cites the corresponding data. We fed each 136

sentence to OPT as a prompt template to generate 137

the scientific question in Fig. 2. Our base prompt 138

is designed by adding "Here is a brief description 139

about the dataset: " before the sentence and adding 140

"What research question can the dataset answer?" 141

after the sentence. To further help PLM better un- 142

derstand scientific text, especially scientific termi- 143

nology, we developed a definition-enriched prompt. 144

Specifically, we first identified biomedical entities 145

from the sentence and then obtained the definition 146

of these entities from Unified Medical Language 147

System (UMLS) (Bodenreider, 2004). We then 148

appended these definitions to the prompt template. 149

After generating a question from each sentence, we 150

excluded duplicate questions for the same dataset. 151
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Figure 3: (a) and (b), Comparison in coherence and informativeness between the generation quality with or without
enriched definition. Each set contains 125‘ samples. (c), Example of excluding outlier questions.

To validate whether the definition-enriched152

prompt can improve the quality of questions, we153

compared the definition-enriched prompt with the154

base prompt that does not append terminology def-155

initions in Fig. 3a and Fig. 3b. In particular, we156

randomly selected 500 sentences and compared157

the questions generated by these two prompts. For158

each pair of questions generated for the sentence,159

we recruited annotators to assess which question160

was better in terms of informativeness and coher-161

ence. We found that definition-enriched prompts162

yielded greater or equal coherence on 88.3% of163

questions and greater or equal to informativeness164

on 92.5% of questions, indicating the benefits of in-165

cluding definitions. Moreover, we noticed that the166

improvement of our method is larger when there167

are fewer entities in the sentences. Since such sen-168

tences might be less informative and each entity169

could play a more important role, augmenting these170

sentences with definitions could compensate for the171

sparsity, further confirming the effectiveness of en-172

riching each sentence with definitions.173

2.3 Excluding outlier questions using174

contrastive learning175

Intuitively, each dataset should only be able to ad-176

dress a few questions. However, since a dataset177

might be cited by many papers, we might gener-178

ate many questions for that dataset. To find the179

representative question, we used a density-based180

clustering algorithm OPTICS (Ankerst et al., 1999;181

Pedregosa et al., 2011) to cluster questions for the182

same dataset. To obtain feature embeddings for183

clustering, we applied unsupervised SimCSE (Gao184

et al., 2021) to the collection of all the questions185

generated by OPT. Formally, given a BERT-style186

encoder, we took the last layer hidden-state of 187

[CLS] as question representation h and that with 188

different dropout mask denoted as h′. The training 189

objective for the i-th question can be defined as: 190

Li
unsup = − log

esim(hi,h
′
i)/τ∑n

j=1 e
sim(hi,h′

j)/τ
, (1) 191

where sim is the cosine similarity, n is the mini- 192

batch size and τ is a temperature hyperparameter. 193

We then excluded questions that are considered 194

outliers by OPTICS. We found that most of these 195

outliers are either not related to or not specified 196

to the corresponding dataset, demonstrating the 197

importance of excluding them from our dataset. 198

To provide a specific explanation, we plot the ex- 199

cluding outcome by t-SNE in Fig. 3c on dataset 200

29606353 and a case study about it in Appendix A. 201

2.4 Validating question dataset associations 202

After generating questions for each dataset, we 203

evaluated the question dataset associations. We ex- 204

ploited three evaluation strategies based on existing 205

QA systems, co-citation and manual evaluation. 206

Evaluating using existing QA systems We first 207

constructed three QA systems based on GPT- 208

3 (Brown et al., 2020), OPT (Zhang et al., 2022), 209

and UnifiedQA (Khashabi et al., 2020). We then 210

fed a question to each QA system and asked the 211

system to answer this question. Here, each QA 212

system directly provided an answer instead of rec- 213

ommending a dataset. We compared the answer to 214

the summary of each dataset and examined whether 215

the dataset we recommended has higher similarity 216

with this answer generated by existing QA systems, 217

assuming that these systems can partially answer 218

scientific questions. We summarized the results in 219
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Figure 4: (a), The automatic evaluation on several QA systems. (b), The correlation between the averaged question
similarity of two datasets and their co-citation ratio. (c), Human annotation on 1000 samples.

Fig. 4a and observed that 86.4% of the ground-truth220

datasets are ranked within the top 30.0% among221

all datasets. This result reflects the substantial con-222

sistency between our dataset recommendation and223

other QA system, supporting the possibility of rec-224

ommending datasets instead of answering the sci-225

entific questions and further suggesting the high-226

quality associations in sciDataQA.227

Evaluating using co-citation relationship We228

next used the co-citation relationship to evaluate229

our question dataset associations. We calculate two230

kinds of similarity metrics between two datasets.231

The first is a co-citation similarity based on how232

many papers cite them using Jaccard similarity.233

The second is the semantic similarity between the234

generated questions of the two datasets. We found235

that these two similarity metrics are highly consis-236

tent with a Spearman correlation of 0.42 (Fig. 4b).237

As co-citation similarity has been extensively used238

to measure scientific paper similarity(Boyack et al.,239

2013), this high consistency indicates that we gen-240

erated similarity questions for similar datasets, fur-241

ther confirming the quality of the associations.242

Manual evaluation The above two large-scale243

automatic evaluations demonstrate the quality of244

our question data associations. We next conducted245

a manual evaluation by designing multiple-choice246

questions. In particular, for each dataset, we pro-247

vided four questions: the ground truth associated248

question (positives), a simple negative question249

whose representation is the farthest from the posi-250

tive question (simple negatives), a normal negative251

question randomly sampled from another dataset252

(normal negatives), and a hard negative question253

that is generated from another sentence that in the254

same paper paragraph as the positive question (hard 255

negatives). We asked the human annotators to se- 256

lect the question that best matched the dataset ac- 257

cording to the dataset summary. 258

We found that human annotators achieved 78% 259

accuracy in this multiple-choice-based evaluation 260

(Fig. 4c), indicating that our dataset question asso- 261

ciations are consistent with human knowledge. We 262

noted that most of the incorrectness fell into the 263

hard negatives category. These hard negatives re- 264

quire the most domain knowledge compared to sim- 265

ple negative and normal negatives since sentences 266

of these hard negatives are in the same paragraph 267

with positive questions. 268

3 Recursive definition retrieval for 269

dataset recommendation 270

3.1 Problem definition 271

Given a scientific question Q = (q1, q2, . . . , qi), 272

and a set of datasets D = (D1, D2, . . . , DT ), we 273

aim to select the best-matched dataset for that ques- 274

tion. For each dataset Dt, we also have a dataset 275

summary St = (st1, s
t
2, . . . , s

t
m) and a scientific pa- 276

per abstract At = (tt1, t
t
2, . . . , t

t
n) describing that 277

dataset. We do not consider citation networks for 278

the recommendation. 279

3.2 Recursive definition retrieval 280

Scientific questions might contain terminologies 281

that cannot be easily processed by PLMs (Lavrenko 282

and Croft, 2017; Yu et al., 2021). Motivated by the 283

promising results of enriching questions with def- 284

initions in dataset generation, we also propose to 285

include definitions for each question for a better 286

recommendation. Here, we propose a recursive def- 287

inition retrieval approach that recursively expands 288
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Terminology: Endothelin-1
Definition: A 21-amino acid peptide produced in a variety of tissues 
including endothelial and vascular smooth-muscle cells, neurons and 
astrocytes in the central nervous system, and endometrial cells. It acts 
as a modulator of vasomotor tone, cell proliferation, and hormone
production.

Terminology:Hormones
Definition:Chemical substances having a specific regulatory effect on 
the activity of a certain organ or organs. The term was originally applied 
to substances secreted by various endocrine glands and transported in 
the bloodstream to the target organs. 

Terminology:Gland
Definition: An organ that produces and secretes hormones (e.g. 
endocrine gland), saliva or sweat (e.g. exocrine gland).

Question: What is the role of endothelin-1 (ET1) in the pathophysiology of intestinal inflammation?

Figure 5: An question example processed by the re-
cursive retrieval approach. There are three identified
entities in the question and we constructed an entity tree
for each entity based on their definition texts.

a question into an entity tree.289

Superficially, for each question Q, we convert290

it to a multi-root entity tree. The roots of this tree291

are entities in this question identified through entity292

linking. We then obtain the definition of each entity293

and find new entities in the definition using Scis-294

paCy (Neumann et al., 2019). These new entities295

will be inserted into this tree as child nodes. We296

recursively repeat this process by expanding more297

layers in this tree, where a child entity is mentioned298

in the definition of the parent entity. To prevent299

very deep and large trees that could be computa-300

tionally intensive, we will terminate the expansion301

if the new entity is very different from its corre-302

sponding root entity based on the definition textual303

similarity. An example of the multi-root entity tree304

is shown in Fig. 5. We set the maximum depth of305

the tree and similarity threshold as hyperparame-306

ters. This process will help us enrich the question307

Q by augmenting it with related definitions.308

3.3 Tree-augmented question embedding309

Each node in the tree is associated with an entity310

and a definition. We can now use them to augment311

the original question. To achieve this, we learn two312

graph convolutional networks (GCN) (Defferrard313

et al., 2016) to embed entity names and entity defi-314

nitions respectively: Initial node features for GCN315

are the BERT embedding of entity names or defi-316

nitions. We then separately aggregated the entity-317

based embedding of all roots and the definition-318

based embeddings of all roots. Instead of aggregat-319

ing the embeddings of all nodes, we only consider320

roots, which are entities in the original question. 321

This design enables conservatively enriching the 322

question without adding too much irrelevant in- 323

formation. These two aggregated embeddings are 324

concatenated with question embeddings to get the 325

final representation. 326

4 Experimental results 327

We randomly select 10000 samples from sci- 328

DataQA and split them as training (80%), dev 329

(10%), and test set (10%), using cross-validation. 330

The hyper-parameter selection is presented in Ap- 331

pendix B. We compare our method with two text 332

classification models: CLEncoder (Gao et al., 333

2021) and UniEncoder (Devlin et al., 2018). Since 334

neither of them retrieve and augment extra informa- 335

tion for the question, our comparison can show the 336

importance of tree-based question augmentation. 337

CLEncoder. Wu et al. (2022) point out that when 338

one passage could be the positive passage of multi- 339

ple questions, there would be a higher probability 340

of the passage appearing as both positive and nega- 341

tive instances in one batch simultaneously. There- 342

fore, we design the negative instance, in addition to 343

the in-batch negative technique, to address this is- 344

sue. Specifically, for each question xi, we take the 345

abstract and summary of its corresponding dataset 346

as positive instance x+i and that of a randomly cho- 347

sen dataset other than the positive dataset as nega- 348

tive instance x−i , then conduct in-batch contrastive 349

learning. The training objective Li
sup is formulated 350

as: 351

− log
esim(hi,h

+
i )/τ∑N

j=1 (e
sim(hi,h

+
j )/τ + esim(hi,h

−
j )/τ )

, (2) 352

where symbols are defined the same as Eq. 1. 353

UniEncoder. We also use a BERT encoder with a 354

binary classification layer to do our task. Formally, 355

we set the concatenation of the question, dataset 356

summary, and dataset abstract with different sepa- 357

rate tokens as inputs of the BERT encoder and use 358

the [CLS] token’s hidden state as the input of the 359

classification layer. 360

Main Results. According to Table 1, we can see 361

our approach substantially outperforms the base- 362

lines on a variety of top K accuracy, indicating 363

the effectiveness of augmenting the question with 364

entity definitions. We further noticed that the im- 365

provement is larger when K is smaller. For ex- 366

ample, our method achieves 7.3% enhancement 367

5



ACC@1 ACC@5 ACC@10 ACC@20 ACC@50

CL 0.146 0.302 0.396 0.485 0.618

CL + GCN 0.151 0.316 0.400 0.487 0.618

Uni 0.102 0.293 0.383 0.494 0.650

Uni + GCN 0.175 0.343 0.434 0.535 0.661

Table 1: The accuracy of our model on the dataset,
where CL denotes CLEncoder, and Uni denotes UniEn-
coder. Test on KRISSBERT.

on top 1 accuracy, which is much higher than the368

4.1% enhancement on top 20 accuracy, when com-369

pared to UniEncoder. However, for CLEncoder,370

our approach only has little improvement over the371

baseline. We assume that in UniEncoder, the termi-372

nology tree could interact with both the question373

and abstract/summary. Through the self-attention374

network, the connection between the specific entity375

in the question and our dataset could be further376

considered for recommendation.377

Pre-trained Models. In this experiment, we use378

BERT (Devlin et al., 2018), SciBERT (Beltagy379

et al., 2019), KRISSBERT (Zhang et al., 2021),380

and PubMedBERT (Gu et al., 2020)’s pre-trained381

weights to initialize our encoders. And we investi-382

gate the effect of different pre-training parameters383

on model performance.384

According to Table 2, the results show that the385

SciBERT, KRISSBERT, and PubMedBERT all out-386

perform the original BERT by a large margin. An387

apparent reason is that the original BERT is not388

good at processing biomedical data. And among389

the three BERT, we can see the KRISSBERT out-390

performs the other two BERT. One possible ex-391

planation is that the KRISSBERT uses PubMed-392

BERT’s parameters and is continuously fine-tuned393

on the UMLS dataset, which is also the data source394

for our tree construction.395

Ablation Studies. We construct a terminology396

tree to enrich the information of specific questions397

by recursive retrieval. To analyze how the variables398

in the tree influence the results, we conduct detailed399

ablation studies (Fig. 6a).400

We first modify the tree depth from 2 to 5 when401

the similarity threshold is fixed at 0.8. The overall402

trend shows that when the similarity threshold is403

constant, as the tree depth increases, the recommen-404

dation’s accuracy is better. We assume that the tree405

could provide more details to understand the given406

questions when it gets deeper. However, when the407

depth reaches 5, more irrelevant information will408

ACC@1 ACC@5 ACC@10 ACC@20 ACC@50

BERT 0.092 0.239 0.314 0.386 0.533

SciBERT 0.151 0.316 0.398 0.495 0.623

PubMedBERT 0.168 0.332 0.445 0.531 0.653

KRISSBERT 0.175 0.343 0.434 0.535 0.661

Table 2: Performances of different pre-trained models.
Test on UniEncoder + GCN.

harm the model performance. 409

Then, we set the depth to 4 and tune the sim- 410

ilarity threshold among 0.8, 0.9, 0.95, and 0.99. 411

Our method becomes less accurate as the threshold 412

keeps increasing. This indicates that too large a 413

threshold will decrease the scale of the tree struc- 414

ture and thus can’t provide enough information for 415

an accurate recommendation. 416

5 Applications of sciDataQA 417

In addition to the main application of dataset recom- 418

mendation, sciDataQA can also be used for other 419

applications involving scientific datasets. We inves- 420

tigated two such applications here and raised more 421

applications in the Future Work section. 422

5.1 Providing additional training data for 423

existing QA systems 424

First, sciDataQA can be used to fine-tune existing 425

QA systems for scientific question answering. In 426

particular, we can treat the question and the sum- 427

mary of its corresponding dataset as a question- 428

answer pair. We can obtain 7500 such pairs from 429

our training set. We can then exploit these ques- 430

tions to fine-tune existing QA systems (Yoo et al., 431

2021; Wang et al., 2021b; Meng et al., 2022; Ye 432

et al., 2022). To validate this application, we 433

studied two QA approaches based on UnifiedQA 434

(BART) (Khashabi et al., 2020) and Instruction 435

Tuning (T5) (Sanh et al., 2022). We evaluate their 436

performance in the few-shot setting on an indepen- 437

dent scientific QA dataset ScienceQA (Lu et al., 438

2022) (biology subset). Both approaches are fine- 439

tuned using the entire sciDataQA. 440

We found that our dataset substantially improved 441

the performance of both QA systems (Fig. 6c). For 442

example, UnifiedQA fine-tuned on our dataset ob- 443

tained a 62.38 accuracy in the zero-shot setting, 444

which is much higher than the 58.63 accuracy us- 445

ing UnifiedQA only. The improvement is more 446

significant when there are less training data from 447

ScienceQA, especially in the zero-shot scenario, 448
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Figure 6: (a), Ablation studies on the dataset recommendation task. Test on KRISSBERT. (b), The citation prediction.
(c), Comparison between with or without our data as unsupervised data augmentation on ScienceQA.

further indicating the advantage of leveraging sci-449

DataQA as additional training data.450

5.2 Citation Prediction451

Moreover, our dataset can be used to study citation452

prediction. Citation prediction is an important task453

in scientific literature analysis (Bai et al., 2019).454

It aims to predict the future citation relationship455

between papers, which has critical implications for456

detecting emerging research problems and improv-457

ing scientific paper writing efficiency.458

There exists a substantial amount of citation re-459

lationships in our dataset, which can be used to pre-460

dict and evaluate the citation prediction. Different461

from existing citation prediction datasets (Cohan462

et al., 2020), sciDataQA focuses on recommend-463

ing citation of dataset papers. As a result, we can464

additionally consider the dataset summary as a fea-465

ture. Specifically, given two dataset papers and466

their summaries, we will predict whether one paper467

cites the other. As two papers that have similar468

summaries are more likely to cite each other, we469

concatenated their summaries as input and trained470

a binary classifier. We considered encoders based471

on BERT (Devlin et al., 2018), PubMedBERT (Gu472

et al., 2020), KRISSBERT (Zhang et al., 2021), and,473

SciBERT (Beltagy et al., 2019). We considered de-474

coders based on GPT-2 (Radford et al., 2019) and475

BioGPT (Luo et al., 2022) to predict the citation.476

We summarized the results in Fig. 6b. We ob-477

served that all these PLMs achieved in general478

high prediction results, supporting the high quality479

of our dataset. Moreover, we observed a notice-480

able discrepancy among these PLMs. In particular,481

domain-specific language models, such as PubMed-482

BERT, KRISSBERT, and BioGPT, perform better483

than general language models, such as GPT and 484

BERT. This observation is consistent with previous 485

works (Gu et al., 2020) that domain-specific lan- 486

guage models have better performance on a variety 487

of downstream applications. Thus, our dataset also 488

offers an application to compare various of PLMs. 489

6 Related Work 490

6.1 Dataset generation using language models 491

Existing approaches to dataset generation mainly 492

focus on fine-tuning the generative models using ex- 493

isting training data and then generating additional 494

training data (Anaby-Tavor et al., 2020; Kumar 495

et al., 2020; Puri et al., 2020; Lee et al., 2021; He 496

et al., 2021; Vu et al., 2021; Mekala et al., 2022). 497

The generative dataset augmentation has been ap- 498

plied to a variety of applications, including ques- 499

tion answering (Alberti et al., 2019), commonsense 500

reasoning (Yang et al., 2020), semantic textual sim- 501

ilarity (Schick and Schütze, 2021), labeled doc- 502

uments (Mekala et al., 2021), biomedical factoid 503

question answering (Pappas et al., 2022), and query 504

reformulations (Adolphs et al., 2022). Recently, 505

SuperGen (Meng et al., 2022) and ZeroGen (Ye 506

et al., 2022) generate training data guided by label- 507

descriptive prompts. Here, we generate questions 508

for the scientific dataset. There are two major dif- 509

ferences between our work and existing approaches. 510

First, we focus on a novel application of generat- 511

ing scientific questions for scientific dataset rec- 512

ommendation. Second, instead of fine-tuning the 513

large language model using training data, we utilize 514

background definition information to prompt the 515

language model without using any training data. 516
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6.2 Scientific question answering517

Scientific question answering is a challenging task518

that has been studied in both single text modal-519

ity (Khashabi et al., 2018; Clark et al., 2018; Mi-520

haylov et al., 2018; Khot et al., 2020; Lu et al.,521

2022) and multi-modal reasoning (Krishnamurthy522

et al., 2016; Kembhavi et al., 2016, 2017; Kafle523

et al., 2018; Sampat et al., 2020; Lu et al., 2021a,b).524

To leverage the reasoning path for constructing bet-525

ter QA systems, enhanced datasets (Jansen et al.,526

2018; Jhamtani and Clark, 2020; Dalvi et al., 2021)527

annotate explanations for the question-answer pairs528

from the perspective of explanation graphs, rea-529

soning chains, and entailment trees respectively.530

To construct scientific question-answering systems,531

previous approaches have exploited K-nearest532

neighbour (Altman, 1992), latent dirichlet alloca-533

tion (Blei et al., 2003), the co-authors’ network (Lu-534

ong et al., 2012), writing style (Yang and Davi-535

son, 2012), citations (Küçüktunç et al., 2012), and536

PLMs (Khashabi et al., 2020; Xu et al., 2021;537

Huang et al., 2022) to perform the answer recom-538

mendation or generation on scientific papers. By539

contrast, we don’t provide the answer explanations540

explicitly, but recommend a dataset for scientists541

to study in order to answer this question.542

6.3 Dataset recommendation543

There are two scenarios of dataset recommendation:544

1) recommendation based on user query (Leme545

et al., 2013; Ben Ellefi et al., 2016; Patra et al.,546

2020; Singhal et al., 2013; Altaf et al., 2019); 2)547

recommendation based on provided dataset (Wang548

et al., 2021a). These recommendation studies fo-549

cused on computer science instead of the scientific550

field and have never been applied to the rich collec-551

tion of Gene Expression Omnibus. To fill in this552

gap, we provide a high-quality dataset and novel553

methods for scientific dataset recommendation.554

7 Discussions and Future Work555

Dataset generation with PLM. One of our key556

contributions is to use the pre-trained language557

model to generate specific questions. We found that558

the design of prompts for language models is essen-559

tial for the quality of our questions. Specifically,560

if we change the order of background information561

and the dataset description, the quality of the gener-562

ated questions will be lower, and the model might563

not generate anything for some datasets. As a re-564

sult, designing a reasonable and effective prompt565

is critical for a PLM to generate high-quality ques- 566

tions. Moreover, the enriched definitions have been 567

demonstrated to be essential for question genera- 568

tion. However, we also observed that adding too 569

much background might hurt the generation’s per- 570

formance by introducing irrelevant information. In 571

the future, we want to develop a better approach 572

to incorporate background information into pre- 573

trained language models for knowledge-aware gen- 574

eration. 575

Recursive retrieval for dataset recommendation 576

We have proposed an entity-tree-based approach 577

for dataset recommendation. Currently, we need 578

to limit the number of nodes in the tree by using 579

a pruning algorithm. Without this constraint, the 580

number of nodes in the tree grows exponentially 581

with increasing depth, and the memory usage will 582

influence the training and inference process seri- 583

ously. In this work, we set the similarity threshold 584

statically, which proves effective in the recommen- 585

dation. However, to get a better understanding of 586

each question, it may need information with dif- 587

ferent granularities for different kinds of entities. 588

We leave the exploration of dynamic pruning algo- 589

rithms as future work for better scale control in the 590

entity tree. 591

8 Conclusion 592

In this paper, we study a novel problem of sci- 593

entific dataset recommendation via our proposed 594

dataset, sciDataQA. We argue that instead of an- 595

swering challenging scientific questions directly, it 596

is more realistic to recommend a scientific dataset 597

that might be able to solve this question. To con- 598

struct our dataset, we developed a novel definition- 599

enriched approach to generate high-quality scien- 600

tific questions using a pre-trained language model 601

OPT. Both automatic and human evaluations con- 602

firm the quality of our dataset. 603

Based on sciDataQA, we developed a tree- 604

augmented recursive retrieval dataset recommenda- 605

tion method and obtained substantial improvement 606

on several strong baselines. We further demon- 607

strated how our dataset could be exploited to recom- 608

mend scientific citations and improve existing sci- 609

entific QA systems. Collectively, we have proposed 610

a comprehensive solution for scientific dataset rec- 611

ommendation, including defining the task, building 612

a new dataset, and proposing the novel recommen- 613

dation method. 614
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Limitations615

Due to the limitation of computing resources, one616

deficiency of this work is that our dataset was gen-617

erated with OPT-1.3B, whose parameter is much618

smaller than the popular GPT-3 or a pre-trained619

model of equivalent capability. However, with620

proper data filtering algorithms, the promising re-621

sults of our recommendation method and down-622

stream applications showed that our dataset is of623

high quality, which confirms the validity of our624

approach.625

Another limitation is that we don’t manually626

annotate the gold answer for each question in our627

dataset because of the high cost of professional628

human resources. Since our primary goal is to629

build a dataset recommendation system to solve630

challenging science QA, standard answers seem631

less necessary. Furthermore, treating the dataset632

summary’s first sentence as the answer is proven633

to be an effective workaround, as pre-training on634

it significantly improves the QA system’s accuracy635

on ScienceQA.636
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A Dataset Examples 1001

According to Table 3, the questions in the clusters 1002

represent different aspects of the dataset (in this 1003

case, BCL11A’s regulation, expression, structure, 1004

and function), and their answers can be found in 1005

the abstract and summary. However, the outlier 1006

points are either too generic (Outlier 1) or misled 1007

by the entity (Outlier 2) that is peripheral in the 1008

context. 1009

B Implementation Details 1010
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Abstract Fetal hemoglobin (HbF, α2γ2) level is genetically controlled and modifies severity of adult
hemoglobin (HbA, α2β2) disorders, sickle cell disease and β-thalassemia. Common genetic
variation affects expression of BCL11A, a regulator of HbF silencing. To uncover how
BCL11A supports the developmental switch from γ- to β- globin, we use a functional
assay and protein binding microarray to establish a requirement for a zinc-finger cluster
in BCL11A in repression, and identify a preferred DNA recognition sequence. This motif
appears in embryonic and fetal-expressed globin promoters, and is duplicated in γ-globin
promoters. The more distal of the duplicated motifs is mutated in individuals with hereditary
persistence of fetal hemoglobin. Using the CUT&RUN approach to map protein binding
sites in erythroid cells, we demonstrate BCL11A occupancy preferentially at the distal motif,
which can be disrupted by editing the promoter. Our findings reveal that direct γ-globin gene
promoter repression by BCL11A underlies hemoglobin switching.

Summary Fetal hemoglobin (HbF) level is genetically controlled and modifies severity of adult
hemoglobin (HbA) disorders. Common genetic variation affects expression of BCL11A, a
critical regulator of HbF silencing. Current models suggest that BCL11A acts at a distance
from the gamma-globin genes via long-distance chromosomal interactions. Here we use
a functional cellular assay and protein-binding microarray to establish a requirement for a
zinc-finger cluster of BCL11A for globin repression, and identify a preferred DNA recog-
nition sequence (TGACCA). The motif is present in embryonic and fetal-expressed globin
promoters, and duplicated in gamma-globin promoters, yet only the distal motif is mutated in
alleles of individuals with hereditary persistence of hemoglobin. Using CUT&RUN to map
protein binding sites, we detected BCL11A occupancy preferentially at the distal motif, and
validated its absence in HbF-expressing, promoter-edited erythroid cells. Taken together, our
findings reveal that direct gamma-globin gene promoter repression by BCL11A underlies
hemoglobin switching.

Cluster A How is the Bcl11a gene regulated?

Cluster B What is the relationship between the expression levels of Bcl11a and the transcriptional
activity of the human hematopoietic stem cell (HSC) lineage?

Cluster C What is the structure of the zinc finger domain of BCL11A?

Cluster D How does the gene expression profile change in response to the presence or absence of
Bcl11a?

Outlier 1 What is the average length of a DNA fragment?

Outlier 2 What is the role of β-Globin in the regulation of gene expression?

Table 3: Case study of excluding outlier questions on dataset 29606353.
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