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Abstract

We provide a theoretical convergence analysis of deep feature instrumental variable
(DFIV) regression (Xu et al., 2021), a nonparametric approach to IV regression
using data-adaptive features learned by deep neural networks in two stages. We
prove that the DFIV algorithm achieves the minimax optimal learning rate when
the target structural function lies in a Besov space. This is shown under standard
nonparametric IV assumptions, and an additional assumption on the regularity of
the conditional distribution between the covariate and the instrument. We further
demonstrate that DFIV, as a data-adaptive algorithm, is superior to fixed-feature
(kernel or sieve) IV methods in two ways. First, when the target function possesses
low spatial homogeneity (i.e. has both smooth and spiky/discontinuous regions),
DFIV still achieves the optimal rate, while fixed-feature methods are shown to be
strictly suboptimal. Second, comparing with kernel-based two-stage regression
estimators, DFIV is provably more data efficient in the Stage 1 samples.

1 Introduction
We study the nonparametric instrumental variable (NPIV) regression problem (Newey and Powell,
2003; Ai and Chen, 2003; Darolles et al., 2011). For random variables X , Y ,and ξ, we have

Y = fstr(X) + ξ, E[ξ|X] ̸= 0, (1)

where X ∈ X is the endogenous variable, Y is the outcome, and ξ denotes unobserved confounding
which affects both X and Y . The central object of interest is the structural function fstr: this may be
estimated by utilizing an exogenous instrumental variable Z ∈ Z , which satisfies

E[ξ|Z] = 0, Z ̸⊥⊥ X, (Z ⊥⊥ Y )GX̄
(2)

(the second requirement is the relevance assumption, and the final requirement denotes independence
of Z and Y when incoming edges to X are removed in the graphical model, thus excluding a hidden
common cause of Z and Y ). The IV setting can be understood in terms of an example (Angrist and
Krueger, 2001): let X denote the price of coffee, Y denote coffee consumption, and ξ denote the
level of demand, unknown to the coffee vendor (e.g. increased demand due to conference deadlines),
which affects both X and Y . In this case, Z might be the wholesale price of coffee beans, which
influences the price of coffee and is assumed to be independent of ξ.

Given (1) and (2), fstr satisfies the functional equation Tfstr = E[Y |Z], where PX ,PZ are the
marginal laws of X,Z, and T : L2(PX ) → L2(PZ) is the bounded linear operator that maps each
h ∈ L2(PX ) to E[h(X)|Z] ∈ L2(PZ) (Darolles et al., 2011; Bennett et al., 2023b). The aim of
NPIV is to solve for this possibly under-determined system, where fstr is uniquely identified if and
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Table 1: Summary of main results for IV regression, when the structural function lies in a Besov
space Bs

p,q(X ). m,n denote the number of Stage 1, 2 samples, respectively. The constants γ1 ≤ γ0
denote the decay rates of the link and reverse link conditions and the degree of separation ∆ =
dx(1/p− 1/2)+. The upper bound of DFIV assumes T has maximal smoothness (see Lemma 3.2),
while the projected fixed-feature lower bound assumes dz ≤ dx and d′ := dz ∨ (dx − 2(s−∆)).

Rates DFIV Optimal Fixed-feature

Projected Õ
(
m− 2s+2γ1

2s+2γ1+dx + n−
2s+2γ0

2s+2γ0+dx

)
Ω
(
n−

2s+2γ0
2s+2γ1+dx

)
Ω̃
(
n
− 2(s−∆)+2γ0

2(s−∆)+2γ1+d′
)

Full Õ
(
m− 2(s−γ0+γ1)

2s+2γ1+dx + n−
2(s−γ0+γ1)
2s+2γ0+dx

s+γ0
s+γ1

)
Ω
(
n−

2s
2s+2γ1+dx

)
Ω
(
n
− 2(s−∆)

2(s−∆)+2γ1+dx

)

only if T is injective. This task is inherently challenging due to its ill-posed nature. For example, a
small perturbation in the outcome can lead to estimators that are far from the true solution as T−1

is often unbounded (Carrasco et al., 2007). There has been a growing interest in addressing this
challenge using modern statistical and machine learning techniques.

NPIV estimation plays a crucial role in various fields, including causal inference (Angrist and Imbens,
1995; Newey and Powell, 2003), addressing missing data challenges (Wang et al., 2014; Miao et al.,
2015), and reinforcement learning (Liao et al., 2021; Uehara et al., 2021; Xu et al., 2021; Chen
et al., 2022). Existing methods can be broadly categorized into two main approaches: conditional
moments methods (Muandet et al., 2020; Liao et al., 2020; Dikkala et al., 2020; Bennett et al.,
2019, 2023a,c) and two-stage estimation techniques (Newey and Powell, 2003; Carrasco et al., 2007;
Chen, 2007; Horowitz, 2011; Darolles et al., 2011; Hartford et al., 2017; Chen and Christensen,
2018; Singh et al., 2019; Xu et al., 2021; Ren et al., 2024; Wang et al., 2022; Anonymous, 2024).
Conditional moment methods approach NPIV by constructing a min-max optimization problem
of the form minf∈F maxg∈G L(f, g) for certain function classes F ,G. However, obtaining these
estimators can be difficult in practice since the solutions are typically saddle points. Furthermore,
information-theoretic lower bounds for these methods have not yet been established, so it is unknown
whether the proposed estimators can achieve the optimal learning rate.

In the present work, we consider two-stage methods. These decompose NPIV into the following
steps: Stage 1 learns either the conditional expectation operator T or the conditional density X | Z
depending on the algorithm. In Stage 2, the outcome Y is regressed using the estimator obtained
from Stage 1. While this offers more stability compared to conditional moment methods by avoiding
saddle-point optimization, a key challenge remains to represent the conditional distribution X | Z
from the first stage. One approach is to explicitly learn the conditional density X | Z from data
(Darolles et al., 2011; Hartford et al., 2017; Li et al., 2024a). Density estimation is challenging when
X and Z are high dimensional, however, and convergence rates can be correspondingly slow (see e.g.
Wasserman, 2006, for convergence properties of density estimates). A second approach is to learn the
conditional mean of features of X given Z, where the features of X are the input features of Stage 1
(see e.g., Chen and Reiss, 2011; Singh et al., 2019; Chen and Christensen, 2018; Anonymous, 2024).
This approach, known as two-stage least-squares (2SLS) regression, has the advantage that the Stage
1 problem is only as difficult as it needs to be in order to solve Stage 2, and does not require to address
the harder problem of conditional density estimation. The question of feature dictionary choice
remains a challenge, however, and the above methods employ dictionaries for classes of smooth
functions (i.e., spline and RKHS classes), which are not data adaptive. More recently, two-stage
IV approaches have been proposed with data-adaptive feature dictionaries represended by neural
nets (Xu et al., 2021; Ren et al., 2024; Wang et al., 2022). While these have shown strong empirical
performance, the corresponding theoretical guarantees remain incomplete, and minimax rates are yet
to be established. Finally, while sample splitting is predominantly used in two-stage NPIV, the ratio
between Stage 1 (m) and Stage 2 (n) samples is rarely studied in the literature. Singh et al. (2019)
and Anonymous (2024) recently showed that m > n is required in order to achieve the minimax
optimal rate in the case of fixed-feature estimators.

Our contributions. We study the deep feature instrumental variable (DFIV) algorithm proposed
by Xu et al. (2021), where learnable deep neural network (DNN) features are employed to jointly
optimize both stages. As a data-adaptive estimator, DFIV exhibits superior empirical performance
compared with fixed-feature methods, most notably in cases where the structural function may have
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both smooth and non-smooth regions (Xu et al., 2021; Chen et al., 2022). In this work, we provide
minimax convergence guarantees for DFIV, and formally characterize the conditions under which
deep neural features yield a performance advantage over fixed-dictionary approaches. These build on
existing statistical analyses of DNNs (e.g. Suzuki, 2019; Hayakawa and Suzuki, 2020), which study
ordinary regression settings, by contrast with our two-stage setting where two dependent DNNs must
be jointly learned. Our result are as follows:

• We prove an upper bound for the risk of the DFIV estimator f̂str in terms of the number m,n of
Stage 1 and 2 samples, respectively, when fstr lies in a Besov space Bs

p,q(X ). We obtain rates
with respect to both the projected pseudometric ∥T f̂str − Tfstr∥2L2(PZ) (Theorem 3.1) and the

full non-projected metric ∥f̂str − fstr∥2L2(PX )(Theorem 3.5).
• We obtain information-theoretic lower bounds for NPIV in Besov spaces and demonstrate that

DFIV can achieve the minimax optimal rate (Proposition 3.3, 3.7). Moreover, we show that DFIV
can attain the optimal rate with Stage 1 samples m ≈ n, whereas kernel IV estimators require
m/n→ ∞ (Singh et al., 2019; Anonymous, 2024).

• Our rates recover known rates for smooth fstr, established previously Chen and Reiss (2011);
Anonymous (2024) with fixed-feature estimators. More importantly, we demonstrate a strict
separation between DFIV and any fixed-feature estimator (Chen and Reiss, 2011; Anonymous,
2024) when the target function has both smooth and spiky/discontinuous regions (Corollary 4.2).

A detailed discussion of prior two-stage appraoches, and of relevant works addressing the convergence
of DNN regression functions, is provided in Appendix A. A summary of our rates is given in Table 1.
The rest of the paper is structured as follows: In Section 2, we outline the DFIV algorithm and define
our target and hypothesis classes. The upper bounds for DFIV and comparison to NPIV minimax
lower bounds are presented in Section 3. The separation between fixed-feature methods and DFIV is
established in Section 4. All proofs are deferred to the appendix.

2 Background and DFIV Algorithm
2.1 Instrumental Variable Regression
Nonparametric instrumental variable (NPIV) regression typically has a treatmentX ∈ X and outcome
Y ∈ R, related via the structural function fstr : X → R and an unobserved ξ that affects both X,Y :

Y = fstr(X) + ξ, E[ξ] = 0, E[ξ|X] ̸= 0. (3)

This implies that fstr(x) ̸= E[Y |X = x] so that ordinary supervised regression methods cannot be
used. Instead, we introduce an instrumental variable Z ∈ Z known to be uncorrelated with ξ, that is
E[ξ|Z] = 0, and satisfying the requirements (2). For simplicity we assume that X,Z are bounded
and set X = [0, 1]dx , Z = [0, 1]dz , equipped with the induced probability measures PX ,PZ . By
defining the projection operator

T : L2(PX ) → L2(PZ), (Tf)(Z) = E[f(X)|Z],
eq. (3) can be described as the nonparametric indirect regression (NPIR) model (Chen and Reiss,
2011)

Y = Tfstr(Z) + η, η = fstr(X)− Tfstr(Z) + ξ, (4)
where E[η|Z] = 0, and hence we seek to solve the inverse problem Tfstr = E[Y |Z]. The problem
is generally ill-posed, however; the solution may be ill-behaved or not unique (Nashed and Wahba,
1974; Carrasco et al., 2007). To analyze this problem, we require a mild regularity of the noise.
Assumption 1. (i) There exists σ1 > 0 such that η|(Z = z) is σ1-subgaussian for all z ∈ Z .

(ii) (For lower bound only) There exists σ0 > 0 such that Var(η|Z = z) ≥ σ2
0 and the KL

divergence between η|(Z = z), µ+ η|(Z = z) is bounded above by µ2

2σ2
0

for all z ∈ Z, µ ∈ R.

This is satisfied for example if η|Z = z is N(0, σ2(z))-distributed with σ0 ≤ σ(·) ≤ σ1, which is a
standard assumption in the literature (Bissantz et al., 2007; Chen and Reiss, 2011).

Besov spaces. In order to facilitate a learning-theoretic analysis, we suppose that the structural
function fstr belongs to a Besov space on X . Besov spaces are a well-studied class of functions
of generalized smoothness, and include Hölder spaces, Sobolev spaces, and classes of bounded
variation.
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Definition 2.1. Let s > 0 and 0 < p, q ≤ ∞. For f ∈ Lp(X ) and r ∈ N, r > s ∨ s+ 1− 1/p, the
rth modulus of smoothness of f is given as

wr,p(f, t) := sup∥h∥2≤t∥∆r
h(f)∥p, ∆r

h(f)(x) = 1{x,x+rh∈X}
∑r

j=0

(
r
j

)
(−1)r−jf(x+ jh).

Then the Besov space with parameters s, p, q is defined as the following subspace of Lp(X ),

Bs
p,q(X ) = {f ∈ Lp(X ) | ∥f∥Bs

p,q(X ) := ∥f∥Lp(X ) + |f |Bs
p,q(X ) <∞},

where the Besov seminorm is defined as |f |Bs
p,q(X ) := (

∫∞
0
t−qs−1wr,p(f, t)

q dt)1/q if q <∞ and
supt>0 t

−swr,p(f, t) if q = ∞.

The unit ball of (Bs
p,q(X ), ∥·∥Bs

p,q
) is denoted as U(Bs

p,q(X )). Moreover, Besov spaces on Z are
defined in the same manner. We have the following classical results (Triebel, 1983):

• For s > 0, s /∈ N, the Hölder space Cs(X ) = Bs
∞,∞(X ). For m ∈ N, Cm(X ) ↪→ Bm

∞,∞(X ).

• For m ∈ N, the Sobolev space Wm
2 (X ) = Bm

2,2(X ) and Bm
p,1(X ) ↪→Wm

p (X ) ↪→ Bm
p,∞(X ).

• If s > dx/p then Bs
p,q(X ) ↪→ C0(X ).

• If s > dx(1/p− 1/r)+ then Bs
p,q(X ) ↪→ Lr(X ).

In particular, Besov spaces with smoothness below the threshold dx/p contain functions with discon-
tinuities which are more difficult to learn; our theory can account for this regime. We also need to
assume s > dx(1/p− 1/2)+ in order to consider L2 error.
Assumption 2 (Structural function). fstr ∈ U(Bs

p,q(X )) and |fstr| ≤ C for some 0 < p, q ≤ ∞,
s > dx(1/p− 1/2)+ and C > 0. If s ≤ dx/p, PX also has Lebesgue density bounded above.

Our analysis utilizes the B-spline system, which forms a hierarchical basis for Besov spaces: the
span of B-splines up to resolution k is strictly contained in the span of B-splines at resolution k + 1.
Definition 2.2 (B-spline basis). The cardinal B-spline of order r ∈ N is iteratively defined as the
repeated convolution ιr = ιr−1 ∗ ι0 ∈ C(R) where ι0(x) = 1[0,1](x). The tensor product B-spline
of order r with resolution k ∈ Z≥0 and location ℓ ∈ Ik =

∏dx

i=1{−r,−r + 1, · · · , 2k} is

ωk,ℓ(x) =
∏dx

i=1 ιr(2
kxi − ℓi).

2.2 Two-Stage Least Squares Regression
A popular method for performing IV analysis is two-stage least squares (2SLS) regression. In
2SLS, the structural function fstr(x) is modeled as a linear combination u⊤ψ(x) of fixed basis
functions ψ(x), for instance Hermite polynomials (Newey and Powell, 2003) or reproducing kernel
Hilbert spaces (RKHS) (Singh et al., 2019; Anonymous, 2024). The weight vector u is estimated
by performing two successive regressions. In Stage 1, the conditional mean embedding (CME)
EX|Z [ψ(X)] (Song et al., 2009; Park and Muandet, 2020; Klebanov et al., 2020) is approximated
by another set of basis functions V ϕ(Z), where the coefficient matrix V is computed by solving the
vector-valued regression (Grünewälder et al., 2012; Mollenhauer and Koltai, 2020; Li et al., 2022,
2024b):

V̂ = argminV EX,Z [∥ψ(X)− V ϕ(Z)∥2] + λ1∥V ∥2. (5)

In Stage 2, we obtain u by regressing Y against EX|Z [fstr(X)] ≈ u⊤V̂ ϕ(Z), where the Stage 1
CME estimate is utilized:

û = argminu EY,Z [∥Y − u⊤V̂ ϕ(Z)∥2] + λ2∥u∥2. (6)

Finally, the structural function is estimated as f̂str(x) = û⊤ψ(x). Both stages can be solved in closed
form by performing ridge regression, including for infinite (RKHS) feature dictionaries.

2.3 Deep Feature Instrumental Variable Regression
We now recall the deep feature instrumental variable (DFIV) regression algorithm (Xu et al., 2021),
which extends the 2SLS framework to incorporate learnable feature representations ψθx(x), ϕθz (z)
in both stages. The respective hypothesis classes, equipped with the L∞-norm, are denoted as

Fx = {ψθx : X → R | θx ∈ Θx}, Fz = {ϕθz : Z → R | θz ∈ Θz}.
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As in Singh et al. (2019); Anonymous (2024); Xu et al. (2021), we do not presume access to samples
from the joint law (X,Y, Z), and instead are provided with m i.i.d. samples D1 = {(xi, zi)}mi=1
from (X,Z) for Stage 1, and n i.i.d. samples D2 = {(ỹi, z̃i)}ni=1 from (Y,Z) for Stage 2.

Stage 1 regression: Given data D1 and fixed Stage 2 parameter θx, the conditional expectation
EX|Z [ψθx(X)] is learned using the network ϕθz (Z) by minimizing the empirical loss,

θ̂z = θ̂z(θx) = argmin
θz∈Θz

1

m

m∑
i=1

(ψθx(xi)− ϕθz (zi))
2
. (7)

The resulting estimate is also denoted as ÊX|Z [ψθx ] := ϕθ̂z(θx)(·) to emphasize that θ̂z is a function
of the current Stage 2 input feature parameters θx.

Stage 2 regression: Given data D2 and the Stage 1 estimate ϕθ̂z , we solve the following regression
where R : Θx → R≥0 is an optional regularizer:

θ̂x = argmin
θx∈Θx

1

n

n∑
i=1

(
ỹi − ÊX|Z [ψθx ](z̃i)

)2
+ λR(θx). (8)

The final DFIV for estimate fstr is returned as f̂str = ψθ̂x
.

Remark 2.3. We note that jointly optimizing (7) and (8) is challenging as the optimal θ̂z is itself
a function of the current θx. The DFIV algorithm as originally proposed in Xu et al. (2021) takes
ψθx , ϕθz to be vector-valued mappings, and treats separately the linear maps u, V (eqs. (5) & (6)) via
ridge regression. This enables more effective optimization by partially backpropagating θx through
the analytical solutions of u, V ; see Section 3 of Xu et al. (2021) for details. From the sample
complexity viewpoint, however, it suffices to consider the scalar output u⊤ψθx as a single neural
network and learn its conditional expectation in Stage 1. A more sophisticated joint optimization
approach is described by Petrulionyte et al. (2024) and the references therein.

Smooth DNN class. In our paper, ψθx , ϕθz are chosen from a class of smooth DNNs, defined with
depth L, width W , sparsity S, norm bound M and a Cr activation σ (applied elementwise, where r
is given in Definition 2.1) as

FDNN(L,W, S,M) :=
{
clip

¯
C,C̄ ◦ (W(L)σ + b(L)) ◦ · · · ◦ (W(1)idX + b(1)) : X → R

∣∣∣
W(1) ∈ RW×d,W(ℓ) ∈ RW×W ,W(L) ∈ RW , b(ℓ) ∈ RW , b(L) ∈ R,∑L

ℓ=1 ∥W(ℓ)∥0 + ∥b(ℓ)∥0 ≤ S,maxℓ≤L∥W(ℓ)∥∞∨ ∥b(ℓ)∥∞ ≤M
}
.

Here clip
¯
C,C̄ : R → [−C̄, C̄] is any bounded, 1-Lipschitz C∞ function equal to the identity when

|x| ≤
¯
C; we fix any C̄ >

¯
C > C and omit them from the notation. The use of smooth activations

and smooth clipping is in order to ensure FDNN ⊂W r
p (X ) ⊂ Bs

p,q(X ) (Suzuki, 2019) and thus to
obtain Besov norm guarantees for the DNN estimator. Moreover, we specifically consider sigmoid
activations σ(x) = (1 + e−x)−1 for ease of analysis, however the results can be extended to any
sufficiently smooth activation e.g. SiLU, GELU, Softplus, as well as piecewise polynomial activations
such as ReQU; see the discussion in Appendix C. Some of our results also hold when the ReLU DNN
class, defined with activation σ(x) = 0 ∨ x and clipC̄(x) = (−C̄) ∨ (x ∧ C̄), is used instead.

3 Theoretical Analysis of DFIV
We now establish the sample complexity of DFIV when fstr lives in the Besov space Bs

p,q(X ) with
smoothness s. We obtain upper and lower bounds for both the projected error (Section 3.2) and
non-projected error with p ≥ 2 (Section 3.3), and obtain precise conditions for when the minimax
optimal rate is achieved. We begin by stating our assumptions on the projection operator T .

3.1 Link and Smoothness Conditions
The operator T plays a crucial role in determining the sample complexity due to the following factors.

• The NPIV model (4) shows that Stage 2 essentially learns fstr using data from the projected
function Tfstr, leading to a loss of information. Hence the rate will worsen depending on how
contractive T is in an L2-sense, which is usually quantified by a link condition (see e.g., Nair
et al., 2005; Chen and Reiss, 2011; Anonymous, 2024), here given as Assumption 3.
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• The difficulty of Stage 1, where we estimate the conditional expectation Tψθx for the output ψθx
of Stage 2, depends on the regularity properties of Tf for f in certain function classes. We will
control this using a novel smoothness condition (Assumption 4 or 4*).

• To obtain the final non-projected rate ∥f̂str − fstr∥L2(PX ), we must start with the projected rate
∥T f̂str − Tfstr∥L2(PZ) and then use a reverse link condition (Assumption 6) to derive the former.

We now state and discuss each assumption in full. Denote by P /k
r = span{ωk,ℓ | ℓ ∈ Ik} ⊂ Bs

p,q(X )

the linear span of all B-splines of order r up to resolution k and Π
/k
r the projection operator to P /k

r .

Assumption 3 (link condition). There exists γ1 ≥ 0 such that for all f ∈ Bs
p,q(X ),

∥T (f −Π/k
r f)∥L2(PZ) ≲ 2−γ1k∥f −Π/k

r f∥L2(PX ). (9)

That is, T is more contractive at higher resolutions. Assumption 3, and the reverse link condition
Assumption 6, are equivalent to or follow from standard conditions imposed in the IV literature; for
example, they follow from the link condition in Chen and Reiss (2011) and Anonymous (2024) stated
in terms of the Hilbert scale generated by a certain operator.2 Note that rankΠ/k

r = dimP
/k
r ≍ 2kdx ,

hence (9) corresponds to polynomial (mildly ill-posed) rather than exponential (severely ill-posed)
decay w.r.t. the number of basis elements (Blundell et al., 2007).

We now discuss the issue of smoothness. Stage 1 aims to learn the conditional expectation Tψθ̂x
for the data-dependent predictor ψθ̂x

∈ Fx with the DNN class Fz . This is a separate regression
problem on Z , so its risk depends on the smoothness of Tψθ̂x

; a nonsmooth predictor ψθ̂x
(possibly

due to overfitting) may have an irregular projection and end up incurring a larger error in Stage 1.
Thus we would like to understand the smoothness properties of functions residing in the projection of
the Stage 2 DNN class T [Fx]. In particular, an estimate such as the following is desirable.

Assumption 4*. T [FDNN] ⊆ CT · U(Bs′

p′,q′(Z)) for each class of sigmoid or ReLU DNNs on X ,
for some 0 < p′, q′ ≤ ∞, s′ > dz(1/p

′ − 1/2)+ and CT > 0 that do not depend on L,W,S,M .

Although Assumption 4* may hold if T is sufficiently mollifying (see the example below), it is
quite restrictive as the class FDNN is much larger than the unit ball of any Besov space3 and varies
depending on design choice. However, motivated by the observation that the neural network ψθ̂x

is
approximating fstr ∈ U(Bs

p,q(X )), we can use a much less restrictive assumption:

Assumption 4 (smoothness of T ). T [U(Bs
p,q(X ))] ⊆ CT · U(Bs′

p′,q′(Z)) for some 0 < p′, q′ ≤ ∞,
s′ > dz(1/p

′ − 1/2)+ and CT > 0. If s′ ≤ dz/p
′, PZ also has Lebesgue density bounded above.

The above formulation is a natural condition as it quantifies how much T preserves smoothness of
the target Besov space. In comparison, the link conditions essentially quantify how much T contracts
in an L2-sense, giving us two distinct perspectives on the action of T . Assumption 4 also interacts
with the link conditions to relate s′ back to s; see Lemma 3.2 for details.

We give some concrete examples in which Assumption 4 is satisfied. Suppose T is smooth in the
sense that the conditional density of X given Z exists and satisfies a Hölder condition w.r.t. z,

|fX|Z(x|z1)− fX|Z(x|z2)| ≤ η(x)∥z1 − z2∥α for some η ∈ L1(X ).

It follows that |Tf(z1) − Tf(z2)| ≤ ∥η∥1∥f∥∞∥z1 − z2∥α for any bounded integrable function
f . Since Cα(X ) continuously embeds into the Zygmund space Bα

∞,∞(X ) (Giné and Nickl, 2015,
Proposition 4.3.23), Assumption 4 holds with s′ = α; in this scenario, Assumption 4* also holds. At
the opposite extreme, consider the case where the instrument is perfect, dx = dz and T restricts to a
quasi-isometry between Besov spaces of the same order, the simplest example being T = idX . Then
Assumption 4 holds with s′ = s, however Assumption 4* cannot be true. Thus Assumption 4 is a
much more general condition encompassing both high and low degrees of smoothing.

2This can be seen by taking the spectrum νk = k in their Assumption 1 and restricting to the span of the first
N basis elements or its orthogonal complement in Assumptions 2, 5 with link function ϕ(t) = tγ1/dx .

3Even when using a smooth DNN class, the Besov norm of a generic DNN can scale polynomially in the
specified weight norm bound, which we in turn take to scale polynomially in m,n in our results.
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Controlling Stage 2 smoothness. In order to replace Assumption 4* with Assumption 4, we need
to ensure that the Stage 2 predictor ψθ̂x

lies in the U(Bs
p,q(X )), up to normalization. Using the

smooth DNN class ensures ψθ̂x
∈ Bs

p,q(X ) but does not by itself guarantee a norm bound (see
footnote 3). A simple way to ensure this is to restrict the domain as follows:

Θ′
x =

{
θx ∈ Θx

∣∣∣ |ψθx |Bs
p,q(X ) ≤ CW

}
. (10)

In practice, since the restriction cannot be applied a priori, we can run the DFIV algorithm from
random initialization and simply discard solutions which are ill-behaved: we show that the subset
(10) still contains a rate-optimal solution. A more sophisticated method to guarantee smoothness
which we also consider in our theoretical framework is to explicitly add the Besov (semi)norm as a
penalty to be optimized for in Stage 2,

R(θx) = |ψθx |
q̄
Bs

p,q(X ) or R(θx) = ∥ψθx∥
q̄
Bs

p,q(X ) (11)

for any exponent q̄ > 2. The seminorm can be easily estimated from its equivalent discretization
|f |Bs

p,q(X ) ≍ (
∑∞

k=0[2
kswr,p(f, 2

−k)]q)1/q (Giné and Nickl, 2015, p.330); the Lp component can
be ignored since ψθx is bounded. It is also bounded above by the Sobolev seminorm |f |W r

p (X ) =∑
|α|=r∥Dαf∥Lp(X ) due to the string of continuous embeddings W r

p (X ) ↪→ Br
p,∞(X ) ↪→ Bs

p,q(X )

(Giné and Nickl, 2015, Proposition 4.3.20). This can be numerically computed or backpropagated
through θx to any desired accuracy independently of the data by differentiating the network output
with respect to its input at mesh points; thus we assume R can be computed exactly for simplicity.

Such smoothness-based or gradient-norm penalties have been considered before. For example,
regularizers of the form E[∥Dψθx∥22], E[∥Dψθx∥42] (equivalent to the Besov seminorm penalty when
p = q = 2, s = 1) or similar have been successfully used to improve training or generalization
of deep networks (Gulrajani et al., 2017; Sokolić et al., 2017; Arbel et al., 2018). Furthermore,
Rosca et al. (2020) argue that smoothness regularization leads to benefits in inductive capabilities,
robustness, and modeling performance.

3.2 Projected Upper and Lower Bounds
We now present the upper bound for the projected mean squared error (MSE) of DFIV. The proof is
quite involved and is presented throughout Appendix D, with a brief sketch provided in Appendix B.
We also require some new theory on rate-optimal estimation with sigmoid DNNs, which is developed
in Appendix C.

Theorem 3.1 (projected upper bound for DFIV). Under Assumptions 1(i),2,3 and Assumption 4 with
domain restriction (10) or regularization (11) with λ asymptotic to the rate below, or Assumption 4*
without regularization, by choosing Fx = FDNN(⌈log2 dx⌉+ 1,poly(m),poly(m),poly(m)) and
similarly Fz to be smooth DNN classes, it holds that

ED1,D2

[
∥T f̂str − Tfstr∥2L2(PZ)

]
≲ m− 2s+2γ1

2s+2γ1+dx logm+ (m ∧ n)−
2s′

2s′+dz log(m ∧ n). (12)

See below for discussion. Rather surprisingly, the rate in Stage 2 samples n depends only on the
Stage 1 smoothness s′, while the rate in Stage 1 samples m is depends on the smoothness of both
stages. We remark that Fz (and Fx if Assumption 4* is used) can be replaced with ReLU DNNs
since smoothness of the network output is not required. In this case, the network depth must scale
logarithmically in m,n and the log factors in (12) are replaced by log3.

Projected minimax lower bound. We now demonstrate the minimax optimality of the above
learning rate. As usual, we state our assumptions first. The following is required to lower bound the
error in L2(PX ) by the ordinary L2 error over the domain.

Assumption 5. PX has Lebesgue density bounded below; more generally, the Radon-Nikodym
derivative dmX

dPX
w.r.t. Lebesgue measure mX exists and is bounded above, so ∥·∥L2(PX ) ≳ ∥·∥L2(X ).

Assumption 6 (reverse link condition). There exists γ0 ≥ γ1 such that for all f ∈ P
/k
r ,

2−γ0k∥f∥L2(PX ) ≲ ∥Tf∥L2(PZ).
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This is equivalent to assuming a polynomial rate for the sieve measure of ill-posedness, which depends
on the operator T and can be estimated from the data along with γ1 with the method in (Blundell
et al., 2007). We are most interested in the case γ0 = γ1, which gives a precise characterization of
the decay of T . This assumption also allows us to connect the exponent s′ appearing in (12) to the
target smoothness s. Comparing the sizes of the standard and projected unit balls, we can show:
Lemma 3.2. For Assumptions 4 and 6 to both be satisfied, it must hold that

s′/dz ≤ (s+ γ0)/dx. (13)

The lemma is proved in Appendix F.2, where we also show that equality can hold if e.g. dx = dz and
T maps B-splines to (scaled) B-splines. If equality is achieved in (13), we say that T has maximal
smoothness. In this case, the DFIV rate in Table 1 is retrieved.

Now the minimax lower bound for any estimator for the NPIV problem can be derived as follows.
This is a nontrivial extension of the known lower bound in the Sobolev setting (Hall and Horowitz,
2005; Chen and Reiss, 2011), as B-splines are neither orthogonal nor independent.
Proposition 3.3 (projected minimax lower bound). Under Assumptions 1(ii),2,3,5,6, it holds that

inf
f̂str:NPIV

sup
fstr∈U(Bs

p,q(X ))

E
[
∥T f̂str − Tfstr∥2L2(PZ)

]
≳ n−

2s+2γ0
2s+2γ1+dx , (14)

where f̂str : NPIV is taken over all measurable functions of the data (D1,D2).

The proof is given in Appendix F.1 and relies on reduction to the NPIR model to which the Yang-
Barron method can be applied; in fact, the lower bound holds for all valid estimators of Tfstr. The
bound is independent of m, hence is most informative in the limit m→ ∞. The usual nonparametric
rate is retrieved when γ0 = γ1 = 0. Comparing with the upper bound (12), we conclude:
Corollary 3.4 (projected optimality of DFIV). If γ0 = γ1 and T has maximal smoothness, DFIV

attains the nearly minimax optimal rate n−
2s+2γ0

2s+2γ0+dx log n in the projected metric if m = Ω(n).

We also observe two potential factors of suboptimality. If the inequality (13) is strict, DFIV is upper

bounded by the rate n−
2s′

2s′+dz > n−
2s+2γ0

2s+2γ0+dx which is suboptimal due to the increased difficulty
(reduced regularity) of the Stage 1 regression. If γ0 > γ1, the link conditions are loose, so the lower
bound also becomes comparatively weaker. In the latter case, it may also be beneficial to scale m as

Ω
(
n
1∨ 2s+2γ1+dx

2s+2γ1

2s′
2s′+dz

)
rather than Ω(n), since the rate in m can become slower than n in (12).

3.3 Full Upper and Lower Bounds
Corollary 3.4 establishes minimax optimality of the projected MSE, however since T−1 is often
unbounded in NPIV, we cannot directly deduce the full MSE from the projected rate. Therefore, a
more interesting result is whether DFIV can achieve minimax optimality in the non-projected rate.
To this end, we prove the following non-projected upper bound in Appendix E.2.
Theorem 3.5 (full upper bound for DFIV). Let p ≥ 2. Under Assumptions 1(i),2,3,6 and Assumption
4 with domain restriction (10) or regularization (11), by choosing λ as in Theorem 3.1, Fx =
FDNN(⌈log2 dx⌉+1,poly(m),poly(m),poly(m)) and Fz to be smooth DNN classes, it holds that

ED1,D2

[
∥f̂str − fstr∥2L2(PX )

]
≲ m− 2(s−γ0+γ1)

2s+2γ1+dx logm+(m∧n)−
2s′

2s′+dz

s−γ0+γ1
s+γ1 log(m∧n). (15)

The log factors can be improved to log
s−γ0+γ1

s+γ1 .

Stage 2 smoothness revisited. The control over the smoothness of f̂str now plays a dual role:
besides bounding the difficulty of Stage 1 through T f̂str, it also determines the strength of the reverse
link condition that determines the final non-projected MSE, since Assumption 6 is stated in terms of
the B-spline basis. To be precise, the L2 risk must be bounded by taking fN , f̂N to be the width N
approximations of fstr, f̂str, respectively, and evaluating the truncation

∥f̂str−fstr∥L2(PX ) ≲ ∥f̂str− f̂N∥L2(PX )+2γ0k∥T f̂N −TfN∥L2(PZ)+∥fstr−fN∥L2(PX ). (16)

Then the truncation error ∥f̂str − f̂N∥L2(PX ) directly depends on the regularity of f̂str, and
smoothness-based restriction or regularization becomes unavoidable to obtain theoretical guarantees.
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Remark 3.6. We point out that Theorem 3.5 only studies the situation when p ≥ 2. The regime
p < 2 – where separation with fixed-feature estimators is achieved – requires special treatment, and
is proved under an extended link condition in Section 4; see the discussion therein.

We now provide the uniform NPIV lower bound, proved in Appendix F.1.
Proposition 3.7 (full minimax lower bound). Under Assumptions 1(ii),2,3, it holds that

inf
f̂str:NPIV

sup
fstr∈U(Bs

p,q(X ))

E
[
∥f̂str − fstr∥2L2(X )

]
≳ n−

2s
2s+2γ1+dx .

From this, we conclude the following result, which to our knowledge is the first result along with
Corollary 3.4 to establish minimax optimal rates for NPIV with deep neural networks.
Corollary 3.8 (optimality of DFIV). If p ≥ 2, γ0 = γ1 and T has maximal smoothness, DFIV attains
the nearly minimax optimal rate n−

2s
2s+2γ1+dx (log n)

s
s+γ1 if m = Ω(n).

More generally, the upper bound always scales as n−
2s′

2s′+dz

s−γ0+γ1
s+γ1 for large enough m. If T does

not have maximal smoothness, the first exponent will deteriorate due to increased difficulty of Stage
1; if the link conditions are mismatched, the characterization of the projection becomes loose and the
second exponent will deteriorate.

Optimal splitting. We find that the sample requirement for Stage 1 of DFIV in Corollaries 3.4, 3.8
is only m = Ω(n). In contrast, for kernel IV, Singh et al. (2019) and Anonymous (2024) require
m > Ω(n) to obtain minimax optimal rates, prescribing an asymmetric splitting if the Stage 1, 2
samples are split from a single dataset. However, this leads to a suboptimal scaling in the total number
of samples m+ n. Our results show that DFIV requires strictly less Stage 1 data, retrieving the same
optimal rate in the total number of samples.

4 Separation with Fixed-feature IV

It has been empirically observed that DFIV outperforms existing methods especially when the
structural function is non-smooth or discontinuous; see the experiments on the conditional average
treatment effect and behavior reinforcement learning tasks in Xu et al. (2021). In this section, we
study the efficiency of DFIV in the setting where fstr lives in a Besov space with p < 2. In this
regime, we rigorously establish a separation between DFIV and linear estimators including sieve or
kernel-based algorithms, proving the superiority of deep neural features over non-adaptive methods.

For ordinary regression in a d-dimensional Besov space, the minimax rate over all linear estimators

is known to be lower bounded by n−
2(s−∆)

2(s−∆)+d where ∆ = d(1/p− 1/2)+ determines the degree of
separation from the optimal rate (Donoho and Johnstone, 1998; Zhang et al., 2002). This occurs
because functions in the regime p < 2 are highly spatially inhomogeneous, consisting of both
jagged (possibly discontinuous when s < d/p) and smooth regions. Adaptive models such as DNNs
have an inherent advantage over linear estimators by allocating more complexity (i.e. choosing
higher-frequency basis elements as needed) in regions of low smoothness to capture spatial variability
efficiently (Donoho and Johnstone, 1998; Suzuki, 2019).

A linear IV estimator is formally defined as any estimator of fstr of the following form,

f̂L(x) =

n∑
i=1

ui(x, (z̃i)
n
i=1,D1)ỹi, u1, · · · , un : X ×Zn × (X ×Z)m → R .

We only require linearity w.r.t. the Stage 2 responses, as the lower bound will again hold for any
reduction to the NPIR model (4). fixed-feature methods such as 2SLS, nonparametric 2SLS (Newey
and Powell, 2003), Nadaraya-Watson methods (Carrasco et al., 2007; Darolles et al., 2011), sieve IV
(Newey and Powell, 2003; Chen and Christensen, 2018), kernel IV (Singh et al., 2019; Anonymous,
2024), and moment-based methods (Zhang et al., 2023) are all examples of linear IV estimators.

We first show that all linear IV estimators incur a degree of suboptimality when the target function
possesses low homogeneity. The following lower bound is proved in Appendix F.3 by adapting the
approach in Zhang et al. (2002) for univariate regression to IV regression.
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Theorem 4.1 (lower bound for linear IV estimators). Under Assumptions 1(ii),2,3 and assuming PX
has Lebesgue density bounded above, for ∆ = dx(1/p− 1/2)+, it holds that

inf
f̂L:linear

sup
fstr∈U(Bs

p,q(X ))

E
[
∥f̂L − fstr∥2L2(X )

]
≳ n

− 2(s−∆)
2(s−∆)+2γ1+dx .

This is not directly comparable with DFIV, however, as we assumed p ≥ 2 in Theorem 3.5 so as
to not incur any looseness when evaluating (16) with the reverse link condition. More precisely,
fstr, f̂str had to be approximated using B-splines up to a fixed resolution cutoff, which lower bounds
the truncation error by the best N -term linear approximation error or Kolmogorov width, which
is suboptimal when p < 2 (Vybíral, 2008). Nonetheless, DNNs are capable of choosing from a
much wider pool of basis elements to achieve the optimal nonlinear approximation rate N−s/dx for
functions of low spatial homogeneity (Suzuki, 2019). To account for such adaptive selection, we now
extend Assumption 6 to varying linear subsets of a higher resolution horizon.

Assumption 7 (extended reverse link condition). Fix C∗ > ∆dx

s−∆ + 1 and let S be any subset of
size O(2kdx) of the set of B-splines up to resolution ⌈C∗k⌉. Then 2−γ0k∥f∥L2(PX ) ≲ ∥Tf∥L2(PZ)

holds for all f ∈ spanS.

The intuition is that T is more contractive for functions with higher complexity (i.e. requiring many
basis elements to construct), and hence the tighter link constant 2−γ0k holds for any subset with
size similar to P /k

r , instead of 2−γ0C
∗k guaranteed for the whole space P /C∗k

r . Such a dimensional
separation is in fact easily satisfied: for example, suppose T is the projection in RD to the orthogonal
complement of span{v} for a unit vector v such that |v1|, · · · , |vD| ≥ c√

D
for some c ∈ (0, 1]. Then

for any size D′ subset A ⊂ {1, · · · , D} and unit vector w ∈ span{ej | j ∈ A},

∥Tw∥2 = 1− (
∑

j∈A wjvj)
2 ≥ 1−

∑
j∈A v

2
j =

∑
j /∈A v

2
j ≥ c(1−D′/D).

Hence as long as D′ = o(D) (indeed D′ = D1/C∗
in Assumption 7), it is possible that T is ‘mini-

mally contractive’ on all subspaces P spanned by D′ basis elements (infw∈P,w ̸=0∥Tw∥2/∥w∥2 ≈ 1)
even as D,D′ → ∞, but ‘maximally contractive’ on the entire space (infw ̸=0∥Tw∥2/∥w∥2 = 0).

With this modification, we conclude the following strict separation in Appendix E.2. A notable
consequence is that the assumption of maximal smoothness of T can be weakened to a range of s′
depending on the gap ∆.
Corollary 4.2. Under the setting of Theorem 3.5 and also Assumption 7, the upper bound (15) and
Corollary 3.8 hold for 0 < p < 2.

Hence comparing with Theorem 4.1, DFIV is faster than any linear IV estimator if γ0 = γ1 and

(s−∆)dx
(s−∆)dx +∆(2γ0 + dx)

s+ γ0
dx

<
s′

dz
≤ s+ γ0

dx
cf. (13).

Remark 4.3. We also show a separation result for the projected rates in Appendix F.4. In this
case, Assumption 7 is not needed since Theorem 3.1 is valid for all p > 0, being independent of
the reverse link condition. On the other hand, the lower bound requires an additional assumption
that Z is sufficiently ‘spatially covered’ by the projection operator so as to be difficult for spatially
non-adaptive estimators. We then prove the projected minimax error for any linear IV estimator is

at least Ω̃
(
n
− 2(s−∆)+2γ0

(2(s−∆)+2γ1+dz)∨(2γ1+dx)

)
(Theorem F.2), which is worse than the DFIV upper bound

(12) if e.g. γ0 = γ1, T has maximal smoothness and dz > (dx − 2(s−∆)) ∨ s−∆+γ0

s+γ0
dx.

5 Conclusion

In this paper, we developed a novel estimation error analysis for two-stage IV regression with neural
features. We proved that the DFIV algorithm achieves the minimax optimal rate when the structural
function lies in a Besov space and further demonstrated that DFIV can outperform fixed-feature IV
estimators by adaptively learning functions with low spatial homogeneity. Furthermore, we showed
that a balanced number of Stage 1 and 2 samples suffices to attain optimal performance. These results
provide a rigorous foundation for the advantages of DFIV in terms of both adaptivity and sample
efficiency, paving the way for further exploration of neural features for causual inference.

10



Acknowledgments

Juno Kim was partially supported by JST CREST (JPMJCR2015). Taiji Suzuki was partially
supported by JSPS KAKENHI (24K02905) and JST CREST (JPMJCR2115). Dimitri Meunier,
Arthur Gretton and Zhu Li were supported by the Gatsby Charitable Foundation.

References
C. Ai and X. Chen. Efficient estimation of models with conditional moment restrictions containing

unknown functions. Econometrica, 71(6):1795–1843, 2003.

J. Angrist and G. Imbens. Identification and estimation of local average treatment effects, 1995.

J. Angrist and A. Krueger. Instrumental variables and the search for identification: From supply and
demand to natural experiments. Journal of Economic Perspectives, 15:69–85, 2001.

Anonymous. Nonparametric instrumental regression via kernel methods is minimax optimal. In
Submission, 2024.

M. Arbel, D. Sutherland, M. Binkowski, and A. Gretton. On gradient regularizers for MMD GANs.
In Advances in Neural Information Processing Systems, 2018.

B. Bauer and M. Kohler. On deep learning as a remedy for the curse of dimensionality in nonpara-
metric regression. The Annals of Statistics, 47(4):2261–2285, 2019.

A. Bennett, N. Kallus, and T. Schnabel. Deep generalized method of moments for instrumental
variable analysis. In Advances in Neural Information Processing Systems, 2019.

A. Bennett, N. Kallus, X. Mao, W. Newey, V. Syrgkanis, and M. Uehara. Inference on strongly
identified functionals of weakly identified functions. In Conference on Learning Theory, 2023a.

A. Bennett, N. Kallus, X. Mao, W. Newey, V. Syrgkanis, and M. Uehara. Minimax instrumental vari-
able regression and l2 convergence guarantees without identification or closedness. In Conference
on Learning Theory, 2023b.

A. Bennett, N. Kallus, X. Mao, W. Newey, V. Syrgkanis, and M. Uehara. Source condition double
robust inference on functionals of inverse problems. arXiv preprint arXiv:2307.13793, 2023c.

M. Z. Berkolaiko and I. Y. Novikov. Unconditional bases in spaces of functions of anisotropic
smoothness. Proc. Steklov Inst. Math., 204(3):27–41, 1994.

N. Bissantz, T. Hohage, A. Munk, and F. Ruymgaart. Convergence rates of general regularization
methods for statistical inverse problems and applications. SIAM Journal on Numerical Analysis,
45(6):2610–2636, 2007.

R. Blundell, D. Kristensen, and X. Chen. Semi-nonparametric IV estimation of shape-invariant Engel
curves. Econometrica, 75:1613–1669, 2007.

M. Carrasco, J.-P. Florens, and E. Renault. Linear inverse problems in structural econometrics
estimation based on spectral decomposition and regularization. Handbook of Econometrics, 6:
5633–5751, 2007.

X. Chen. Large sample sieve estimation of semi-nonparametric models. Handbook of Econometrics,
6:5549–5632, 2007.

X. Chen and T. M. Christensen. Optimal sup-norm rates and uniform inference on nonlinear
functionals of nonparametric IV regression. Quantitative Economics, 9(1):39–84, 2018.

X. Chen and M. Reiss. On rate optimality for ill-posed inverse problems in econometrics. Econometric
Theory, 27(3):497–521, 2011.

Y. Chen, L. Xu, C. Gulcehre, T. L. Paine, A. Gretton, N. de Freitas, and A. Doucet. On instrumental
variable regression for deep offline policy evaluation. Journal of Machine Learning Research, 23
(302):1–40, 2022.

11



S. Darolles, Y. Fan, J. P. Florens, and E. Renault. Nonparametric instrumental regression. Economet-
rica, 79(5):1541–1565, 2011.

T. De Ryck, S. Lanthaler, and S. Mishra. On the approximation of functions by tanh neural networks.
Neural Networks, 143:732–750, 2021.

R. A. DeVore and V. A. Popov. Interpolation of Besov spaces. Transactions of the American
Mathematical Society, 305(1):397–414, 1988.

N. Dikkala, G. Lewis, L. Mackey, and V. Syrgkanis. Minimax estimation of conditional moment
models. In Advances in Neural Information Processing Systems, 2020.

D. L. Donoho and I. M. Johnstone. Minimax estimation via wavelet shrinkage. The Annals of
Statistics, 26(3):879–921, 1998.
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Appendix

A Comparison with Existing Works

Error analysis of NPIV estimators. Many existing analyses of NPIV study linear (kernel or sieve)
methods, where the estimator is constructed by regressing against a known basis expansion in an
RKHS or Sobolev ball; some are further shown to attain the minimax optimal rate (Ai and Chen, 2003;
Newey and Powell, 2003; Blundell et al., 2007; Chen and Reiss, 2011; Horowitz, 2011; Chen and
Christensen, 2018; Singh et al., 2019; Anonymous, 2024). It is also possible to relax the restrictions
on smoothness via e.g. spectral or Tikhonov regularization (Hall and Horowitz, 2005; Carrasco et al.,
2007; Darolles et al., 2011). However, these methods do not readily extend to DNN classes, which
are highly nonlinear in their parameters and misspecified for both stages.

Theoretical guarantees for adaptive neural network-based IV estimators are at present very limited. Xu
et al. (2021) give an initial analysis of DFIV with no specific learning rate, under strong assumptions
on T and identifiability. Hartford et al. (2017); Li et al. (2024a) study a two-stage NPIV estimator
with neural networks, however there are two key differences. First, from the algorithmic side, the
two works both employ a DNN to learn the conditional density fX|Z(·) in Stage 1. However, our
Stage 1 only needs to estimate the conditional mean of the relevant features for Stage 2, which can
be much easier depending on the Stage 2 network. Second, Li et al. (2024a) only derive an upper
bound in terms of abstract function class complexity measures. It is not clear whether the derived
rate is minimax optimal since neither a concrete evaluation for DNNs nor a matching lower bound is
provided.

Estimation ability of DNNs. For ordinary least-squares regression, it is known that DNNs achieve
the minimax optimal learning rate for various target classes and furthermore outperform fixed-
feature estimators when the target function possesses low homogeneity (Suzuki, 2019) or directional
smoothness (Suzuki and Nitanda, 2021). These works build on classical separation results between
adaptive and fixed-feature estimators (Donoho and Johnstone, 1998; Zhang et al., 2002; Dũng, 2011).
Our results in Section 4 extend this line of work to two-stage regression. A significant challenge of
2SLS with DNN is how can we control the smoothness of stage 2 DNN, as it is the target of stage 1
regression. This is achieved by using DNNs with smooth (e.g. sigmoid) activations, for which we
extend existing approximation results (Bauer and Kohler, 2019; Langer, 2021; De Ryck et al., 2021)
to obtain a new approximation guarantee for Besov functions which is both rate optimal in L2 norm
(see Suzuki, 2019) and also converge in Besov norm.

B Proof Sketch of DFIV Upper Bound

In this section, we give a brief outline of our proof of the upper bound for DFIV in Theorem 3.1
which is one of our key contributions. The full proof is presented throughout Appendices C, D and
the non-projected MSE upper bounds (Theorem 3.5 and Corollary 4.2) are derived using this result in
Appendix E.

First note that in the population limit of (7), Stage 1 is essentially minimizing the loss

EX,Z

[
∥ψθx(X)− ϕθz (Z)∥2

]
= EX,Z

[
∥ψθx(X)− Tψθx(Z)∥2

]
+ ∥Tψθx − ϕθz∥2L2(PZ),

and so factoring out the projection error, we may view ∥Tψθx − ÊX|Z [ψθx ]∥L2(PZ) as the ‘effective’
Stage 1 estimation error.

Denote the δx, δz-covering numbers of the hypothesis classes Fx,Fz as Nx = N (Fx, ∥·∥L∞(X ), δx)
and Nz = N (Fz, ∥·∥L∞(Z), δz), respectively. We begin by showing the following oracle inequality
from the definition of θ̂x as the empirical risk minimizer of (8) conditioned on D1,

ED2

[
∥Tfstr − ÊX|Z [ψθ̂x

]∥2L2(PZ)

]
≲ inf

θx∈Θx

∥Tfstr − ÊX|Z [ψθx ]∥2L2(PZ) +
logNz

n
+ δz,

where the second term can be further bounded by

2 inf
θx∈Θx

∥Tfstr − Tψθx∥2L2(PZ) + 2 sup
θx∈Θx

∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ).
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With some manipulation, the projected error can be bounded as

∥Tfstr − T f̂str∥2L2(PZ) ≤ ∥Tfstr − ÊX|Z [ψθ̂x
]∥2L2(PZ) + 2∥ÊX|Z [ψθ̂x

]− T f̂str∥2L2(PZ)

≲ inf
θx∈Θx

∥Tfstr − Tψθx∥2L2(PZ) + sup
θx∈Θx

∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ) +
logNz

n
+ δz.

Thus it becomes necessary to bound the expected supremum of the effective Stage 1 estimation error,
sup∥Tψθx − ÊX|Z [ψθx ]∥L2(PZ) over the hypothesis space, which is highly nontrivial. We aim to
achieve this by controlling both the supremum of the corresponding empirical process

sup
θx∈Θx

1

m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2
,

and the supremum of their difference. Naively these quantities are evaluated by reducing to a finite
cover (ψx,j)j≤Nx

of Fx. This does not work for DFIV, however, since the Stage 1 estimator ÊX|Z [·]
can be ill-behaved in general; approximating ψθx by ψθx,j does not guarantee that ÊX|Z [ψθx,j ] is a
good approximation of ÊX|Z [ψθx ]. Instead, we construct an extended dynamic or data-dependent
cover Ĉ, which maps to a subset of the product cover for Fx ×Fz , that approximates all possible
combinations of ψθx and ÊX|Z [ψθx ]. A similar construction C* is given for the population version
of Stage 1 risk minimization. By converting to the supremum over Ĉ, C* and applying classical
concentration bounds, we obtain the following general bound:

ED1,D2

[
∥Tfstr − T f̂str∥2L2(PZ)

]
≲ inf

θx∈Θx

∥Tfstr − Tψθx∥2L2(PZ) +
logNx

m
+ δx

+ sup
θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
+

logNz

m ∧ n
+ δz,

in terms of the Stage 2 and Stage 1 (supremal) approximation errors and covering entropies. In
particular, the Stage 1 approximation error for each θx ∈ Θx is determined by the smoothness of
Tψθx , which can be bounded by Assumption 4* or Assumption 4 combined with domain restriction
(10). If instead regularization is used, we can repeat the argument including the regularization term
to also obtain a smoothness bound.

It remains to choose the appropriate DNN classes and explicitly evaluate the terms above. The
approximation rates for DNNs equal the optimal nonlinear rate; this is known for ReLU DNNs
(Suzuki, 2019), but we prove this result for sigmoid DNNs together with a stronger Besov norm
convergence guarantee in Theorem C.8, which allows us to make the above smoothness argument
rigorous. Taking the DNN class variables to balance the approximation and entropy terms, we
conclude the projected upper bound (12).

C Deep Sigmoid Neural Networks

In this section we prove key results on the approximation of Besov functions by deep sigmoid neural
networks. The results are obtained by carefully applying the Sobolev norm bounds developed in
De Ryck et al. (2021) to the B-spline system. The main difference is that instead of relying on
local polynomial approximation, we exploit the fact that B-splines are piecewise polynomials to
give a sparse construction similar to Suzuki (2019). This allows us to achieve rate optimality in the
sense of best approximation width (Theorem C.8) as well as small covering number (Lemma C.9).
Moreover, the proof will serve to demonstrate how to extend the construction to any Cr activation
with a decaying part (e.g. either of limx→±∞ σ(x) exists) by manipulating Taylor expansions to
approximate polynomials as in Mhaskar and Micchelli (1992); De Ryck et al. (2021); Langer (2021),
or by constructing piecewise polynomials exactly in the case of ReQU.

C.1 Preliminaries

We first present some preliminary results. Denote the dimension of the domain as d = dx for brevity.
It is easy to see that the cardinal B-spline ιr is a piecewise polynomial of degree r supported on
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[0, r + 1] and ιr ∈W r
∞(R), im ιr ⊆ [0, 1]. We make use of the following expansion (Mhaskar and

Micchelli, 1992):

ιr(x) =

r+1∑
j=0

aj(x− j)r+ =

r+1∑
k=0

1[k,k+1)(x)

k∑
j=0

aj(x− j)r, where aj =
(−1)j

r!

(
r + 1

j

)
. (17)

Note that the indicator 1[0,1)(x) can be well approximated by the shallow sigmoid network

δB(x) := σ(Bx)− σ(B(x− 1))

for some B > 1, whose translates form a smooth partition of unity over R.
Lemma C.1 (smooth decay of δB). It holds that:

(1) ∥δB(x+ 1) + δB(x) + δB(x− 1)− 1∥W r
∞([0,1]) ≲ e−B .

(2) For all 0 ≤ k, ℓ ≤ r + 1 with |k − ℓ| ≥ 2 we have ∥δB(x− k)∥W r
∞([ℓ,ℓ+1)) ≲ Bre−B .

Here, constants depending only on r are hidden.

Proof. (1) The rth order derivative of σ satisfies |σ(r)(x)| ≤ rr+1(ex ∧ e−x) (De Ryck et al., 2021,
Lemma A.4), so that

∥δB(x+ 1) + δB(x) + δB(x− 1)− 1∥W r
∞([0,1])

= ∥σ(B(x+ 1))− σ(B(x− 2))− 1∥W r
∞([0,1])

≤ ∥σ(−B(x+ 1))∥W r
∞([0,1]) + ∥σ(B(x− 2))∥W r

∞([0,1])

≤ 2

1 + eB
+ 2rr+1e−B ≲ e−B .

(2) For any pair k, ℓ with k − ℓ ≥ 2 it holds that

∥δB(x− k)∥W r
∞([ℓ,ℓ+1)) ≤ ∥σ(Bx)− σ(B(x− 1))∥W r

∞([ℓ−k,ℓ−k+1))

≤ σ(B(ℓ− k + 1)) +Br∥σ(r)(Bx)− σ(r)(B(x− 1))∥L∞([ℓ−k,ℓ−k+1))

≤ 1

1 + eB
+ 2rr+1Bre−B ≲ Bre−B .

The same bound holds when k − ℓ ≤ −2 by symmetry.

We also require a finer control over the boundary decay of δB :

Lemma C.2. It holds for sufficiently large B that ∥δB(x+ 1)xr∥W r
p ([0,1]) ≲ B−1/2.

Proof. We first note for all j = 1, · · · , r that

∥xje−Bx∥L∞([0,1]) ≤ ∥xj∥L∞([0,1/
√
B]) ∨ ∥e−Bx∥L∞([1/

√
B,1]) ≤ B−j/2 ∨ e−

√
B ≤ B−j/2

for large B. We have that

∥δB(x+ 1)xr∥W r
p ([0,1])

≤ ∥(1− σ(B(x+ 1)))xr∥W r
∞([0,1]) + ∥(1− σ(Bx))xr∥W r

p ([0,1])

= ∥σ(−B(x+ 1))xr∥W r
∞([0,1]) + ∥σ(−Bx)xr∥W r

p ([0,1]).

Then by the general Leibniz rule and the bound for |σ(j)| above, the first term is bounded as

∥σ(−B(x+ 1))xr∥W r
∞([0,1])

≤
∥∥∥xre−B(x+1)

∥∥∥
L∞([0,1])

+

r∑
j=0

(
r

j

)
r!Bj

j!

∥∥∥σ(j)(−B(x+ 1))xj
∥∥∥
L∞([0,1])

≤ e−B + rr+1
r∑

j=0

(
r

j

)
r!Bj

j!

∥∥∥xje−B(x+1)
∥∥∥
L∞([0,1])

≲ e−B ,
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and the second term is bounded as

∥σ(−Bx)xr∥W r
p ([0,1])

≤
∥∥xre−Bx

∥∥
L∞([0,1])

+ r! ∥σ(−Bx)∥Lp([0,1]) +

r∑
j=1

(
r

j

)
r!Bj

j!

∥∥xje−Bx
∥∥
L∞([0,1])

≲ B−r/2 + ∥σ(−Bx)∥Lp([0,1]) + (B−1/2 + · · ·+B−r/2).

For the remaining term above we further have

∥σ(−Bx)∥Lp([0,1]) =

∫ 1/
√
B

0

dx

(1 + eBx)p
+

∫ 1

1/
√
B

dx

(1 + eBx)p
≤ 1

2p
√
B

+
1

(1 + e
√
B)p

,

and hence ∥σ(−Bx)xr∥W r
p ([0,1]) ≲ B−1/2.

The following lemma will also be used to control Sobolev norms.

Lemma C.3 (De Ryck et al. (2021), Lemma A.6 and A.7). Let d ∈ N, r ∈ Z≥0 and Ω ⊂ Rd.

(1) For f, g ∈W r
∞(Ω) it holds that ∥fg∥W r

∞(Ω) ≤ 2r∥f∥W r
∞(Ω)∥g∥W r

∞(Ω).

(2) Let d′ ∈ N and Ω′ ⊂ Rd′
. For f ∈ Cr(Ω′,R), g ∈ Cr(Ω,Ω′) it holds that

∥f ◦ g∥W r
∞(Ω) ≤ 16(e2r4d′d2)r∥f∥W r

∞(Ω′) max
i=1,··· ,d′

∥gi∥rW r
∞(Ω).

The next two results provide the basic building blocks of our construction.
Lemma C.4 (De Ryck et al. (2021), Lemma 3.2). Let r ∈ Z≥0 and M > 0. For every ϵ > 0, there
exists a shallow sigmoid network ζ : [−M,M ] → R with width at most ⌊ 3r

2 ⌋ + 2 and weights at
most ϵ−r/2 poly(M) such that

∥ζ(x)− xr∥W r
∞([−M,M ]) ≤ ϵ.

Lemma C.5 (De Ryck et al. (2021), Corollary 3.7). Let d ∈ N, r ∈ Z≥0 and M > 0. For every
ϵ > 0, there exists a sigmoid network πd : [−M,M ]d → R with depth ⌈log2 d⌉, width 3d and
weights at most ϵ−1/2 poly(M) such that∥∥∥πd(x1, · · · , xd)−∏d

i=1 xi

∥∥∥
W r

∞([−M,M ]d)
≤ ϵ.

Here, poly(·) notation ignores multiplicative constants depending only on r, d.

C.2 Smooth Approximation of B-Splines

Recall that the base tensor product B-spline is defined as ω0,0(x) =
∏d

i=1 ιr(xi). This subsection is
devoted to proving the following smooth approximation result:
Proposition C.6. For all ϵ > 0 sufficiently small, there exists a sigmoid neural network ω̌ with depth
⌈log2 d⌉+ 1, width ⌊ 3r

2 ⌋d+ 4d and weights at most poly(ϵ−1) such that

∥ω̌ − ω0,0∥W r
p (R) + ∥ω̌ − ω0,0∥L∞(R) ≲ ϵ.

Proof. Fix ϵ, ϵ′ > 0 and let ζ be the network given by Lemma C.4 with error ϵ and M replaced by
2r + 3. From the construction in De Ryck et al. (2021) we see that ∥ζ∥L∞(R) ≲ ϵ−r/2. Also, let π2d
be the network given by Lemma C.4 with error ϵ′ and M = ∥ζ∥L∞(R), so that the weights of π2d are
bounded as (ϵ′)−1/2 poly(ϵ−1).

From the decomposition (17), we aim to approximate the multivariate polynomial
∏d

i=1(xi − ji)
r

on the interval
∏d

i=1[ki, ki + 1) by the networks

π̌j,k(x) := π2d(δB(x1 − k1), · · · , δB(xd − kd), ζ(x1 − j1), · · · , ζ(xd − jd))
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and the tensor product B-spline ω0,0(x) =
∏d

i=1 ιr(xi) by the network

ω̌(x) :=

r+1∑
k•=0

k•∑
j•=0

aj1 · · · ajd π̌j,k(x) =
r+1∑

k1,··· ,kd=0

k1,··· ,kd∑
j1,··· ,jd=0

aj1 · · · ajd π̌j,k(x). (18)

Note that we have used the symbol • above to indicate a subscript to be iterated over dimensions
1, · · · , d in a consistent manner. By taking

¯
C > 1, the clip operation will not affect the output due to

the L∞ bound, so it is ignored.

We proceed to evaluate the error ∥ω̌ − ω0,0∥W r
p (Rd) by breaking down into several steps.

Multiplicative approximation error. It is easily seen that ∥δB∥W r
∞(R) ≤ 2Br∥σ∥W r

∞(R) and

∥ζ∥W r
∞([−2r−3,r+2]) ≤ ∥ζ(x)− xr + xr∥W r

∞([−2r−3,r+2]) ≤ ϵ+ (2r + 3)r + r!.

Moreover, |aj | ≤ 2. Thus we can bound the error arising from the multiplication network π2d (here
using the stronger W r

∞ norm) as∥∥∥∥∥∥ω̌(x)−
r+1∑
k•=0

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)ζ(xi − ji)

∥∥∥∥∥∥
W r

∞([−r−2,r+2]d)

≤
r+1∑
k•=0

k•∑
j•=0

2d

∥∥∥∥∥π̌j,k(x)−
d∏

i=1

δB(xi − ki)ζ(xi − ji)

∥∥∥∥∥
W r

∞([−r−2,r+2]d)

≲
r+1∑
k•=0

k•∑
j•=0

2d

∥∥∥∥∥π2d(x1, · · · , x2d)−
2d∏
i=1

xi

∥∥∥∥∥
W r

∞([−M,M ]d)

× max
i=1,··· ,d

{
∥δB(xi − ki)∥W r

∞(R), ∥ζ(xi − ji)∥W r
∞([−r−2,r+2])

}r
≲ 2d(r + 2)2d max{2Br∥σ∥W r

∞(R), ϵ+ (2r + 3)r + r!}rϵ′

≲ Br2ϵ′ (19)

by applying Lemma C.3.

Monomial approximation error. Next, it holds for all 0 ≤ j1, · · · , jd ≤ r + 1 that∥∥∥∥∥
d∏

i=1

ζ(xi − ji)−
d∏

i=1

(xi − ji)
r

∥∥∥∥∥
W r

∞([−r−2,r+2]d)

≤
d∑

ℓ=1

∥∥∥∥∥
ℓ∏

i=1

(xi − ji)
r

d∏
i=ℓ+1

ζ(xi − ji)−
ℓ−1∏
i=1

(xi − ji)
r

d∏
i=ℓ

ζ(xi − ji)

∥∥∥∥∥
W r

∞([−r−2,r+2]d)

≤
d∑

ℓ=1

∥∥∥∥∥((xi − ji)
r − ζ(xi − ji))

ℓ−1∏
i=1

(xi − ji)
r

d∏
i=ℓ+1

ζ(xi − ji)

∥∥∥∥∥
W r

∞([−r−2,r+2]d)

≲
d∑

ℓ=1

∥xr − ζ(x)∥W r
∞([−2r−3,r+2])∥xr∥ℓ−1

W r
∞([−2r−3,r+2])∥ζ∥

d−ℓ
W r

∞([−2r−3,r+2]) ≲ ϵ

and hence the error due to approximating monomials by ζ is bounded as∥∥∥∥∥∥
r+1∑
k•=0

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)

(
d∏

i=1

ζ(xi − ji)−
d∏

i=1

(xi − ji)
r

)∥∥∥∥∥∥
W r

∞([−r−2,r+2]d)

≲
r+1∑
k•=0

k•∑
j•=0

∥δB∥dW r
∞(R)

∥∥∥∥∥
d∏

i=1

ζ(xi − ji)−
d∏

i=1

(xi − ji)
r

∥∥∥∥∥
W r

∞([−r−2,r+2]d)

≲ Brdϵ. (20)
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Indicator approximation error. For the approximation error of the indicators, one needs to be
more careful since 1[0,1) − δB is nonsmooth near boundary points. Nonetheless, the difference of the
piecewise polynomials (17) at each knot k = 0, · · · , r + 1 is always of the form (x− k)r which will
smooth out the error terms. Restricting to each unit interval Jℓ =

∏d
i=1[ℓi, ℓi + 1) inside the box

[−r − 2, r + 2]d, that is for −1 ≤ ℓ1, · · · , ℓd ≤ r + 1, gives that∥∥∥∥∥∥
r+1∑
k•=0

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)(xi − ji)
r −

ℓ•∑
j•=0

d∏
i=1

aji(xi − ji)
r

∥∥∥∥∥∥
W r

p (Jℓ)

≤

∥∥∥∥∥∥
∑

k•:|k•−ℓ•|≤1

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)(xi − ji)
r −

ℓ•∑
j•=0

d∏
i=1

aji(xi − ji)
r

∥∥∥∥∥∥
W r

p (Jℓ)

(21)

+

∥∥∥∥∥∥
∑

k•:∃i′,|ki′−ℓi′ |≥2

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)(xi − ji)
r

∥∥∥∥∥∥
W r

p (Jℓ)

. (22)

Here, we have split the sum over k1, · · · , kd into terms such that |ki − ℓi| ≤ 1 for all i, and the
remaining terms which contain at least one ‘out-of-bounds’ index ki′ with |ki′ − ℓi′ | ≥ 2. Also note
that we are now using the W r

p norm on Jℓ in order to control the boundary remainder terms, although
we will again upper bound by the W r

∞ norm when necessary.

To bound (21), we rearrange the existing terms so that the sum of three neighboring translates of δB
suffices to smoothly approximate the true indicator up to boundary terms. Indeed,∑

k•:|k•−ℓ•|≤1

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)(xi − ji)
r

=

d∏
i=1

∑
ki:|ki−ℓi|≤1

ki∑
ji=0

ajiδB(xi − ki)(xi − ji)
r

=

d∏
i=1

ℓi∑
ji=0

(
aji(δB(xi − ℓi + 1) + δB(xi − ℓi) + δB(xi − ℓi − 1))(xi − ji)

r

− aℓiδB(xi − ℓi + 1)(xi − ℓi)
r + aℓi+1δB(xi − ℓi − 1)(xi − ℓi − 1)r

)
.

Expanding the above product and separating all boundary terms gives∥∥∥∥∥∥
∑

k•:|k•−ℓ•|≤1

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)(xi − ji)
r −

ℓ•∑
j•=0

d∏
i=1

aji(xi − ji)
r

∥∥∥∥∥∥
W r

p (Jℓ)

≤

∥∥∥∥∥∥
ℓ•∑

j•=0

d∏
i=1

aji(xi − ji)
r

(
d∏

i=1

(δB(xi − ℓi + 1) + δB(xi − ℓi) + δB(xi − ℓi − 1))− 1

)∥∥∥∥∥∥
W r

∞(Jℓ)

+
∑

S⊆{1,··· ,d}
S ̸=∅

∥∥∥∥∥∏
i∈S

(aℓi+1δB(xi − ℓi − 1)(xi − ℓi − 1)r − aℓiδB(xi − ℓi + 1)(xi − ℓi)
r)

∥∥∥∥∥
W r

p (Jℓ)

×

∥∥∥∥∥∏
i/∈S

aji(δB(xi − ℓi + 1) + δB(xi − ℓi) + δB(xi − ℓi − 1))(xi − ji)
r

∥∥∥∥∥
W r

∞(Jℓ)

≲

∥∥∥∥∥
d∏

i=1

(δB(xi − ℓi + 1) + δB(xi − ℓi) + δB(xi − ℓi − 1))− 1

∥∥∥∥∥
W r

∞(Jℓ)

+

d∑
i=1

∥δB(xi − ℓi + 1)(xi − ℓi)
r∥W r

p ([ℓi,ℓi+1)) + ∥δB(xi − ℓi − 1)(xi − ℓi − 1)r∥W r
p ([ℓi,ℓi+1))
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≲
d∑

j=1

j−1∏
i=1

∥δB(xi − ℓi + 1) + δB(xi − ℓi) + δB(xi − ℓi − 1)∥W r
∞(Jℓ)

× ∥δB(xj − ℓj + 1) + δB(xj − ℓj) + δB(xj − ℓj − 1)− 1∥W r
∞([ℓj ,ℓj+1))

+

d∑
i=1

∥δB(xi − ℓi + 1)(xi − ℓi)
r∥W r

p ([ℓi,ℓi+1)) + ∥δB(xi − ℓi − 1)(xi − ℓi − 1)r∥W r
p ([ℓi,ℓi+1))

≲ e−B +B−1/2. (23)

To isolate the boundary terms, we have used that ∥fg∥W r
p (Ω) ≲ ∥f∥W r

p (Ω)∥g∥W r
∞(Ω) which is easily

checked from the general Leibniz rule. The remaining terms can be bounded from above in a
straightforward manner. Applying Lemma C.1(1) and Lemma C.2 gives the bound (23).

Finally, we use Lemma C.1(2) to bound (22) as∥∥∥∥∥∥
∑

k•:∃i′,|ki′−ℓi′ |≥2

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)(xi − ji)
r

∥∥∥∥∥∥
W r

∞(Jℓ)

≲
r+1∑
k•=0

k•∑
j•=0

2d∥δB∥d−1
W r

∞(R)∥x
r∥dW r

∞([−2r−3,r+2]) sup
k,ℓ:|k−ℓ|≥2

∥δB(x− k)∥W r
∞([ℓ,ℓ+1))

≲ Brde−B . (24)

Putting things together. Combining the bounds (19), (20), (23) and (24), we have shown that the
construction (18) approximates ω0,0 on the box [−r − 2, r + 2]d as

∥ω̌ − ω0,0∥W r
p ([−r−2,r+2]d)

=

∥∥∥∥∥∥ω̌ −
r+1∑
ℓ•=0

1Jℓ
(x)

ℓ•∑
j•=0

d∏
i=1

aji(xi − ji)
r

∥∥∥∥∥∥
W r

∞([−r−2,r+2]d)

≤

∥∥∥∥∥∥ω̌(x)−
r+1∑
k•=0

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)ζ(xi − ji)

∥∥∥∥∥∥
W r

∞([−r−2,r+2]d)

+

∥∥∥∥∥∥
r+1∑
k•=0

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)

(
d∏

i=1

ζ(xi − ji)−
d∏

i=1

(xi − ji)
r

)∥∥∥∥∥∥
W r

∞([−r−2,r+2]d)

+

r+1∑
ℓ•=−1

∥∥∥∥∥∥
r+1∑
k•=0

k•∑
j•=0

d∏
i=1

ajiδB(xi − ki)(xi − ji)
r −

ℓ•∑
j•=0

d∏
i=1

aji(xi − ji)
r

∥∥∥∥∥∥
W r

p (Jℓ)

≲ Br2ϵ′ +Brdϵ+B−1/2 +Brde−B .

It remains to bound the approximation error outside [−r−2, r+2]d. We may decompose the domain
into a union of sets of the form (R \[−r − 2, r + 2])× Rd−1 and use Lemma C.1(2) to bound the
decay of the corresponding δB component, and an argument similar to (19) yields

∥ω̌ − ω0,0∥W r
∞(Rd \[−r−2,r+2]d)

=

∥∥∥∥∥∥
r+1∑
k•=0

k•∑
j•=0

aj1 · · · ajd π̌j,k(x)

∥∥∥∥∥∥
W r

∞(Rd \[−r−2,r+2]d)

≲
r+1∑
k•=0

k•∑
j•=0

∥∥∥∥∥π̌j,k(x)−
d∏

i=1

δB(xi − ki)ζ(xi − ji)

∥∥∥∥∥
W r

∞(Rd)
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+

r+1∑
k•=0

k•∑
j•=0

∥∥∥∥∥
d∏

i=1

δB(xi − ki)ζ(xi − ji)

∥∥∥∥∥
W r

∞(Rd \[−r−2,r+2]d)

≲
r+1∑
k•=0

k•∑
j•=0

∥∥∥∥∥π2d(x1, · · · , x2d)−
2d∏
i=1

xi

∥∥∥∥∥
W r

∞([−M,M ]d)

max
i=1,··· ,d

{
∥δB∥W r

∞(R), ∥ζ∥W r
∞(R)

}r
+

r+1∑
k•=0

k•∑
j•=0

∥δB∥W r
∞(R \[−1,2])∥δB∥d−1

W r
∞(R)∥ζ∥

d
W r

∞(R)

≲ (Br ∨ ∥ζ∥W r
∞(R))

rϵ′ +Bre−B(Br)d−1∥ζ∥dW r
∞(R).

Moreover from the weight bound in Lemma C.4 we see that ∥ζ∥W r
∞(R) ≲ (ϵ−r/2)2r = ϵ−r2 since ζ

has depth 2. Adding the resulting bounds finally yields

∥ω̌ − ω0,0∥W r
p (Rd) ≲ (Br2 ∨ ϵ−r3)ϵ′ +Brdϵ+B−1/2 +Brde−Bϵ−r2d.

Hence for any ϵ′′ > 0 small enough, we can ensure the above error is bounded as O(ϵ′′) by taking
B ≍ (ϵ′′)−2, ϵ ≍ (ϵ′′)2rd+1 and ϵ′ ≍ (ϵ′′)2r

4d+r3+1. In addition, we can check that the resulting
network ω̌ has depth ⌈log2 d⌉+1, width ⌊ 3r

2 ⌋d+4d and weights at most polynomial in B, ϵ, ϵ′, thus
polynomial in ϵ′′.

For the L∞ approximation error, one can go over the proof and check that the same bounds apply,
discarding the bounds for all higher-order derivatives. Finally, the results hold even if 0 < p < 1 by
replacing applications of the triangle inequality by the quasi-norm inequality.

C.3 Error Rates in Besov Space

For a sequence of coefficients β = (βk,ℓ)k≥0,ℓ∈Ik define the quasi-norm

∥β∥bsp,q :=

( ∞∑
k=0

[
2k(s−d/p)

(∑
ℓ∈Ik

|βk,ℓ|p
)1/p

]q)1/q

with the appropriate modifications when p or q = ∞. To approximate an arbitrary function in a
Besov space Bs

p,q(X ), we make use of the following adaptive recovery result based on B-spline
decomposition.
Lemma C.7 (Dũng (2011, 2013)). Suppose 0 < p, q, u ≤ ∞ and ∆ < s < r ∧ (r− 1+ 1/p) where
∆ = d(1/p− 1/u)+. For any f ∈ Bs

p,q(X ) and sufficiently large N there exists fN which satisfies

∥f − fN∥Lu(X ) ≲ N−s/d∥f∥Bs
p,q(X )

and is of the form

fN =

K∑
k=0

∑
ℓ∈Ik

βk,ℓωk,ℓ +

K∗∑
k=K+1

nk∑
i=1

βk,ℓiωk,ℓi ,

where (ℓi)
nk
i=1 ⊂ Ik, K = ⌈λ1 logN⌉, K∗ = ⌈ν−1 log λ2N⌉+K+1, nk = ⌈2−ν(k−K)λ2N⌉, with

ν = s−∆
2∆ and λ1, λ2 chosen independently of N so that

∑K
k=1 |Ik|+

∑K∗

k=K+1 nk ≤ N . If ∆ = 0
then K∗ = K. Moreover, the sequence of coefficients can be chosen to satisfy ∥β∥bsp,q ≲ ∥f∥Bs

p,q(X ).

Together with Proposition C.6, this implies the following approximation result.
Theorem C.8. Suppose 0 < p, q ≤ ∞, d/p < s < r ∧ (r− 1 + 1/p). For all f ∈ U(Bs

p,q(X )) with
|f | ≤ C and sufficiently large N , there exists a sigmoid neural network f̌N ∈ FDNN(L,W, S,M)
where

L = ⌈log2 d⌉+ 1, W0 = ⌊ 3r
2 d⌋+ d, W = NW0, S = LW 2

0 +NW0, M = poly(N)

such that ∥f̌N − f∥L∞(X ) ≲ N−s/d and ∥f̌N∥Bs
p,q(X ) is bounded. If d(1/p − 1/2)+ < s ≤ d/p,

the same result holds with L∞(X ) replaced by L2(X ).
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Proof. Consider the N -term approximation fN given by Lemma C.7. For each B-spline ωk,ℓ in
its sum, we construct the network ω̌k,ℓ by taking the network ω̌ of Proposition C.6 and scaling its
input as xi 7→ 2kxi − ℓi; note that the scaling only changes the input weights by a factor of at most
2k ≤ 2K

∗
≲ poly(N). It follows that

∥ω̌k,ℓ − ωk,ℓ∥W r
p (R) ≲ 2kr∥ω̌ − ω0,0∥W r

p (R) ≲ 2krϵ and ∥ω̌k,ℓ − ωk,ℓ∥L∞(R) ≲ ϵ.

Now consider the network f̌N obtained by laying each ω̌k,ℓ in parallel and scaling the output weights
by βk,ℓ, so that (ignoring the clip)

f̌N =

K∑
k=0

∑
ℓ∈Ik

βk,ℓω̌k,ℓ +

K∗∑
k=K+1

nk∑
i=1

βk,ℓi ω̌k,ℓi .

Then we have

∥f̌N − fN∥W r
p (X ) + ∥f̌N − fN∥L∞(X )

≤
K∑

k=0

∑
ℓ∈Ik

βk,ℓ

(
∥ω̌k,ℓ − ωk,ℓ∥W r

p (R) + ∥ω̌k,ℓ − ωk,ℓ∥L∞(R)

)

+

K∗∑
k=K+1

nk∑
i=1

βk,ℓi

(
∥ω̌k,ℓi − ωk,ℓi∥W r

p (R) + ∥ω̌k,ℓi − ωk,ℓi∥L∞(R)

)

≤
K∑

k=0

∑
ℓ∈Ik

|βk,ℓ|2krϵ+
K∗∑

k=K+1

nk∑
i=1

|βk,ℓ|2krϵ

≤
K∗∑
k=0

(∑
ℓ∈Ik

|βk,ℓ|p
)1/p

|Ik|1−1/p2krϵ

≤ ∥β∥bsp,q
K∗∑
k=0

2k(d/p−s)2kd(1−1/p)2krϵ

≲ 2K
∗(d+r−s)ϵ = poly(N)ϵ.

Therefore by taking ϵ (and hence all weights) polynomial in N , we can ensure

∥f̌N − fN∥W r
p (X ) + ∥f̌N − fN∥L∞(X ) ≲ N−s/d,

and thus ∥f̌N − f∥L∞(X ) ≲ N−s/d as desired. In particular, for sufficiently large N it follows that
∥f̌N∥L∞(X ) ≲ C +N−s/d <

¯
C so that including the subsequent clip operation does not affect f̌N .

Moreover, since the B-spline expansion of f − fN has coefficient zero for all ωk,ℓ with resolution
k ≤ K, it follows that

∥f − fN∥Bs
p,q(X ) ≲

( ∞∑
k=K+1

[
2k(s−d/p)

(∑
ℓ∈Ik

|βk,ℓ|p
)1/p

]q)1/q

→ 0

as N → ∞, K = ⌈λ1 logN⌉ → ∞. Hence∣∣∣∥f̌N∥Bs
p,q(X ) − ∥f∥Bs

p,q(X )

∣∣∣ ≤ ∥f̌N − fN∥W r
p (X ) + ∥fN − f∥Bs

p,q(X ) → 0

and ∥f̌N∥Bs
p,q(X ) is uniformly bounded.

The δ-covering number N (S, ρ, δ) of a metric space (S, ρ) is defined as the minimal number of balls
with radius δ needed to cover S. The covering number of FDNN(L,W,S,M) in L∞-norm can be
bounded similarly to the ReLU DNN class (Suzuki, 2019, Lemma 3) with a slightly better bound.
Lemma C.9 (covering number of sigmoid DNN class). If the norm bound M ≥ 4, it holds that

logN (FDNN(L,W, S,M), ∥·∥L∞(X ), δ) ≤ (L+ 3)S logMW + S log δ−1.
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Proof. Consider f, f̃ ∈ FDNN(L,W,S,M) given as

f = clip
¯
C,C̄ ◦ (W(L)σ + b(L)) ◦ · · · ◦ (W(1)id + b(1)),

f̃ = clip
¯
C,C̄ ◦ (W̃(L)σ + b̃(L)) ◦ · · · ◦ (W̃(1)id + b̃(1)),

such that ∥W(ℓ) − W̃(ℓ)∥∞, ∥b(ℓ) − ˜b(ℓ)∥∞ ≤ δ.Also denote AL+1(f) = B1(f) = id and

Aℓ(f) = clip
¯
C,C̄ ◦ (W(L)σ + b(L)) ◦ · · · ◦ (W(ℓ)id + b(ℓ)),

Bℓ(f) = σ ◦ (W(ℓ−1)σ + b(ℓ−1)) ◦ · · · ◦ (W(1)id + b(1)),

so that f = Aℓ+1(f) ◦ (W(ℓ)id+ b(ℓ)) ◦Bℓ(f). Then Aℓ(f) is ( 14 )
L−ℓ(MW )L−ℓ+1-Lipschitz with

respect to the L∞-norm and ∥Bℓ(f)∥L∞ ≤ 1. It follows that

∥f − f̃∥L∞(X )

≤

∥∥∥∥∥
L∑

ℓ=1

Aℓ+1(f) ◦ (W(ℓ)id + b(ℓ)) ◦Bℓ(f̃)−Aℓ+1(f) ◦ (W̃(ℓ)id + b̃(ℓ)) ◦Bℓ(f̃)

∥∥∥∥∥
L∞(X )

≤
L∑

ℓ=1

(MW )L−ℓ+1

4L−ℓ
(W + 1)δ ≤ 8(W + 1)

(
MW

4

)L

δ =: δ′,

assuming M ≥ 4. Thus for a fixed sparsity pattern the δ′-covering number is bounded by dividing
the range [−M,M ] of all S nonzero parameters into intervals of length δ and counting all possible
combinations, (

2M

δ

)S

=

(
16M(W + 1)

(
MW

4

)L
1

δ′

)S

.

Moreover the number of possible sparsity patterns is bounded as
(
L(W 2+W )

S

)
≤ (L(W 2 +W ))S .

Noting that 4(W + 1)2 ≤ 16W 2 ≤M2W 2 and 4L ≤ 4L, we conclude:

N (FDNN(L,W, S,M), ∥·∥L∞(X ), δ) ≤

(
16LMW (W + 1)2

(
MW

4

)L
1

δ

)S

≤

(
4LM3W 3

(
MW

4

)L
1

δ

)S

≤ (MW )(L+3)Sδ−S ,

as desired.

D Proof of Theorem 3.1

We first present the proof of the general upper bound for estimation risk, which contains our main
techniques, over Sections D.1-D.6. We then specialize to the Besov setting in Section D.7 by
applying the smooth DNN analysis from Section C.3, which proves the rate under Assumption 4* or
Assumption 4 with domain restriction. Finally, we show how the proof can be modified to incorporate
regularization under Assumption 4 in Section E.1 as part of the derivation of the non-projected rates.

D.1 Reduction of Stage 2 Error

We begin with the following oracle inequality, which is essentially a consequence of e.g. Lemma 4 of
Schmidt-Hieber (2020). This starting point is necessary to utilize the definition of θ̂x as the empirical
risk minimizer of Stage 2.
Lemma D.1 (oracle inequality for NPIR). Denote the δz-covering number of the Stage 2 DNN class
Fz as Nz := N (Fz, ∥·∥L∞(Z), δz). Then there exists a constant C1 depending only on C̄ such that
for all δz > 0 with logNz > 1 it holds conditional on D1,

ED2

[
∥Tfstr − ÊX|Z [ψθ̂x

]∥2L2(PZ)

]
≤ 4 inf

θx∈Θx

∥Tfstr − ÊX|Z [ψθx ]∥2L2(PZ) + C1

(
logNz

n
+ δz

)
.
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Note that even though the risk is being minimized with respect to the Stage 2 parameter θx, the
generalization gap depends on the covering number of the Stage 1 DNN class which contains the
actual regression model ÊX|Z [ψθ̂x

] for Tfstr. Also, the multiplicative factor 4 can be replaced by
any constant larger than 1.

Proof. We may repeat the proof of Theorem 2.6 of Hayakawa and Suzuki (2020) while replacing the
regression model Y = f◦(X) + ξ, where ξ was assumed to be i.i.d. Gaussian noise, with the NPIR
model Y = Tfstr(Z) + η (4) and the class of estimators by Fz . Here, we only provide the necessary
modifications. For the loss

Π(θx) = ∥Tfstr − ÊX|Z [ψθx ]∥2L2(PZ)

and the corresponding empirical quantity4

Π̂(θx) = ED2

[
1

n

n∑
i=1

(
Tfstr(z̃i)− ÊX|Z [ψθx ](z̃i)

)2]
,

it can be shown in the same way that∣∣∣Π̂(θ̂x)−Π(θ̂x)
∣∣∣ ≤ 1

2
Π(θ̂x) + C ′

1

(
logNz

n
+ δz

)
. (25)

Moreover, using that E[η] = 0 and E[ηϕθz (Z)] = E[ϕθz (Z)E[η|Z]] = 0 for all ϕθz ∈ Fz , it can be
shown that

Π̂(θ̂x) ≤ 2∥Tfstr − ÊX|Z [ψθx ]∥2L2(PZ) +
4δz
n

E

[
n∑

i=1

|ηi|

]
+

4

n
E
[
max
j≤Nz

ε2j

]
+ 4C̄δz

for all θx ∈ Θx, where ϕθz,j for j ≤ Nz is a δz-covering of Fz and

εj :=

∑n
i=1 ηi(ϕθz,j (z̃i)− Tfstr(z̃i))√∑n

i=1(ϕθz,j (z̃i)− Tfstr(z̃i))2
.

Here, since ηi|Z = z̃i is σ1-subgaussian, we have E[|ηi| |Z = z̃i] ≤
√
2πσ1 and E[|ηi|] ≤

√
2πσ1.

Furthermore, each εj is also σ1-subgaussian conditioned on the data z̃1, · · · , z̃n as an L2-projection
of (η1, · · · , ηn), and hence

exp

(
1

4σ2
1

E
[
max
j≤Nz

ε2j

])
≤ E

[
max
j≤Nz

exp

(
ε2j
4σ2

1

)]

≤
Nz∑
j=1

E

[
exp

(
ε2j
4σ2

1

)]

=

Nz∑
j=1

∫ ∞

0

P
(
|εj | ≥ 2σ1

√
log u

)
du

≤ Nz

∫ ∞

1

2

u2
∧ 1 du = 2

√
2Nz.

This shows that E[maxj ε
2
j ] ≤ 4σ2

1 log 2
√
2Nz , which combined with (25) concludes the desired

statement.

Now let θx = θ∗x denote a minimizer of ∥Tfstr − Tψθx∥L2(PZ). It holds that

inf
θx∈Θx

∥Tfstr − ÊX|Z [ψθx ]∥2L2(PZ) ≤ ∥Tfstr − ÊX|Z [ψθ∗
x
]∥2L2(PZ)

4Here we are abusing notation to allow for both a fixed θx ∈ Θx and also an estimator θ̂x which is a map
from the data to Θx. For the former, it is clear that Π(θx) = Π̂(θx) always. We are interested in bounding the
gap (25) for the latter.
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≤ 2∥Tfstr − Tψθ∗
x
∥2L2(PZ)+ 2∥Tψθ∗

x
− ÊX|Z [ψθ∗

x
]∥2L2(PZ).

Then the projected error can be bounded using Lemma D.1 as

ED2

[
∥Tfstr − T f̂str∥2L2(PZ)

]
≤ 2ED2

[
∥Tfstr − ÊX|Z [ψθ̂x

]∥2L2(PZ)

]
+ 2ED2

[
∥ÊX|Z [ψθ̂x

]− T f̂str∥2L2(PZ)

]
≤ 16∥Tfstr − Tψθ∗

x
∥2L2(PZ) + 16∥Tψθ∗

x
− ÊX|Z [ψθ∗

x
]∥2L2(PZ)

+ 2C1

(
logNz

n
+ δz

)
+ 2ED2

[
∥ÊX|Z [ψθ̂x

]− Tψθ̂x
∥2L2(PZ)

]
≤ 16 inf

θx∈Θx

∥Tfstr − Tψθx∥2L2(PZ) + 2C1

(
logNz

n
+ δz

)
(26)

+ 18 sup
θx∈Θx

∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ), (27)

where the projected Stage 2 approximation error and covering number (26) will be explicitly evaluated
later.

It thus becomes necessary to uniformly control the expected supremum of the Stage 1 estimation
error over the hypothesis space Fx which is highly nontrivial. This is achieved by controlling both
the supremum of the corresponding empirical process:

sup
θx∈Θx

1

m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2
, (28)

and the supremum of their difference:

sup
θx∈Θx

[
1

m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2
− ∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ)

]
, (29)

by carefully reducing to a well-chosen dynamic cover of the hypothesis spaces Fx,Fz . We detail
this approach over the following subsections.

D.2 Constructing the Dynamic Cover

We first introduce the essential tools for our proof technique. Fix δx, δz > 0. Let the functions
ψθx,j for j = 1, · · · ,Nx := N (Fx, ∥·∥L∞(X ), δx) form a δx-cover of Fx and let ϕθz,k for k =
1, · · · ,Nz := N (Fz, ∥·∥L∞(Z), δz) be a δz-cover of Fz . Naively one would attempt to bound the
desired supremum over Fx, say

sup
θx∈Θx

∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ),

with the supremum over the cover

sup
j≤Nx

∥Tψθx,j − ÊX|Z [ψθx,j ]∥2L2(PZ).

However this is not directly feasible since the Stage 1 estimation operator ÊX|Z can be ill-behaved;
approximating ψθx by the element ψθx,j

satisfying ∥ψθx − ψθx,j
∥L∞(X ) ≤ δx does not guarantee

that ÊX|Z [ψθx,j
] is a good approximation of ÊX|Z [ψθx ], even in L2(PZ)-norm. Instead, we must

construct an extended cover Ĉ that approximates all possible combinations of ψθx and ÊX|Z [ψθx ].
We also give a similar construction for the population conditional mean approximation.
Definition D.2 (dynamic extended cover). The pair of elements (ψθx,j

, ϕθz,k) is said to be a joint
empirical approximator of ψθx ∈ Fx if

∥ψθx − ψθx,j
∥L∞(X ) ≤ δx and ∥ÊX|Z [ψθx ]− ϕθz,k∥L∞(Z) ≤ δz (30)

are both satisfied, which always exists for each θx. Similarly, (ψθx,j
, ϕθz,k) is said to be a joint

population approximator of ψθx if for the L2-minimizer θ∗z = argminθz∈Θz
∥Tψθx − ϕθz∥L2(PZ)

corresponding to θx,

∥ψθx − ψθx,j
∥L∞(X ) ≤ δx and ∥ϕθ∗

z
− ϕθz,k∥L∞(Z) ≤ δz (31)
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are both satisfied. Moreover, the subsets Ĉ, C* ⊂ {1, · · · ,Nx} × {1, · · · ,Nz} are defined as

Ĉ :=
{
(j, k) | (ψθx,j

, ϕθz,k) is a joint empirical approximator of ψθx for some θx ∈ Θx

}
,

C* :=
{
(j, k) | (ψθx,j

, ϕθz,k) is a joint population approximator of ψθx for some θx ∈ Θx

}
.

Note that Ĉ is a random subset dependent on the data D1 and hence one must be careful when proving
uniform bounds using Ĉ. In contrast, C* depends only on the operator T and predetermined covers
θx,j , θz,k. Also note that | Ĉ |, | C* | ≤ Nx ×Nz by definition.

D.3 Reduction of Supremal Stage 1 Error

We now demonstrate how to appropriately reduce the supremal empirical error (28) over the extended
covers Ĉ, C* defined above. For each θx ∈ Θx, by the definition of ÊX|Z [ψθx ] as the empirical risk
minimizer for the Stage 1 loss, it holds for θ∗z = argminθz∈Θz

∥Tψθx − ϕθz∥L2(PZ) that

1

m

m∑
i=1

(
ψθx(xi)− ÊX|Z [ψθx ](zi)

)2
≤ 1

m

m∑
i=1

(
ψθx(xi)− ϕθ∗

z
(zi)
)2
.

By adding and subtracting the true conditional means Tψθx(zi) from both sides and rearranging, we
obtain

1

m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2
≤ 1

m

m∑
i=1

(
Tψθx(zi)− ϕθ∗

z
(zi)
)2

+
2

m

m∑
i=1

(
ÊX|Z [ψθx ](zi)− ϕθ∗

z
(zi)
)
(ψθx(xi)− Tψθx(zi))

≤ inf
θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ) (32)

+
1

m

m∑
i=1

(
Tψθx(zi)− ϕθ∗

z
(zi)
)2 − ∥Tψθx − ϕθ∗

z
∥2L2(PZ) (33)

+
2

m

m∑
i=1

(
ÊX|Z [ψθx ](zi)− Tψθx(zi)

)
(ψθx(xi)− Tψθx(zi)) (34)

+
2

m

m∑
i=1

(
Tψθx(zi)− ϕθ∗

z
(zi)
)
(ψθx(xi)− Tψθx(zi)) . (35)

Now that the Stage 1 approximation error (32) has been isolated, we may reduce each of (33)-(35) to
the supremum over the respective extended covers. For (34), let (ψθx,j

, ϕθz,k) be a joint empirical
approximator of ψθx and define the residuals ξj,i := ψθx,j (xi)− Tψθx,j (zi). By the condition (30)
and due to the L∞-contractivity

∥Tψθx − Tψθx,j∥L∞(Z) ≤ ∥ψθx − ψθx,j∥L∞(X ) ≤ δx

of T , it follows that

2

m

m∑
i=1

(
ÊX|Z [ψθx ](zi)− Tψθx(zi)

)
(ψθx(xi)− Tψθx(zi))

≤ 2

m

m∑
i=1

(
ϕθz,k(zi)− Tψθx,j

(zi)
)
(ψθx(xi)− Tψθx(zi)) + 4C̄(δx + δz)

≤ 2

m

m∑
i=1

(
ϕθz,k(zi)− Tψθx,j (zi)

)
ξj,i + 4C̄(3δx + δz).

Similarly for (33) and (35), letting (ψθx,j′ , ϕθz,k′ ) be a joint population approximator of ψθx , it is
easily checked that

1

m

m∑
i=1

(
Tψθx(zi)− ϕθ∗

z
(zi)
)2 − ∥Tψθx − ϕθ∗

z
∥2L2(PZ)
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≤ 1

m

m∑
i=1

(
Tψθx,j′ (zi)− ϕθz,k′ (zi)

)2
− ∥Tψθx,j′ − ϕθz,k′∥2L2(PZ) + 4(2C̄ + 1)(δx + δz)

and

2

m

m∑
i=1

(
Tψθx(zi)− ϕθ∗

z
(zi)
)
(ψθx(xi)− Tψθx(zi))

≤ 2

m

m∑
i=1

(
Tψθx,j′ (zi)− ϕθz,k′ (zi)

)
ξj′,i + 4C̄(3δx + δz)

by taking δx, δz < 1. Hence we have shown that

sup
θx∈Θx

1

m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2
≤ sup

θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
+ (32C̄ + 4)(δx + δz) (36)

+ sup
(j,k)∈C*

∣∣∣∣∣ 1m
m∑
i=1

(
Tψθx,j

(zi)− ϕθz,k(zi)
)2 − ∥Tψθx,j

− ϕθz,k∥2L2(PZ)

∣∣∣∣∣ (37)

+ sup
(j,k)∈Ĉ

2

m

m∑
i=1

(
ϕθz,k(zi)− Tψθx,j

(zi)
)
ξj,i (38)

+ sup
(j,k)∈C*

2

m

m∑
i=1

(
Tψθx,j (zi)− ϕθz,k(zi)

)
ξj,i. (39)

In addition, repeating the above argument for the supremal difference term (29) yields the following
reduction to the dynamic cover Ĉ,

sup
θx∈Θx

[
1

m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2
− ∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ)

]

≤ sup
(j,k)∈Ĉ

∣∣∣∣∣ 1m
m∑
i=1

(
Tψθx,j

(zi)− ϕθz,k(zi)
)2 − ∥Tψθx,j

− ϕθz,k∥2L2(PZ)

∣∣∣∣∣ (40)

+ (8C̄ + 4)(δx + δz).

We now evaluate the expected value of each of the suprema (37)-(40) by adapting standard complexity-
based arguments to exploit the definitions of Ĉ, C*. Again, the approximation error (36) will be
analyzed later.

D.4 Bounding Subgaussian Complexities (38), (39)

Define the auxiliary random variables

εj,k =

∑m
i=1(ϕθz,k(zi)− Tψθx,j

(zi))ξj,i√∑m
i=1(ϕθz,k(zi)− Tψθx,j (zi))

2
, 1 ≤ j ≤ Nx, 1 ≤ k ≤ Nz,

where εj,k = 0 if the denominator is zero. Note that (38), (39) are similar to classical complexity
measures of function classes, but with the noise terms replaced by the function-dependent residuals
ξj,i = ψθx,j

(xi) − Tψθx,j
(zi). Nonetheless, conditioned on zi we have E[ξj,i|zi] = 0 and since∣∣ψθx,j

(xi)
∣∣ ≤ C̄, each (ξj,i)

m
i=1 is independently C̄-subgaussian conditioned on (zi)

m
i=1. It follows

that εj,k is also C̄-subgaussian, and repeating the tail bound argument in Lemma D.1 over all pairs
(j, k) we obtain

exp

(
1

4C̄2
E

[
sup

j≤Nx,k≤Nz

ε2j,k

])
≤

Nx∑
j=1

Nz∑
k=1

E

[
exp

(
ε2j,k
4C̄2

)]
≤ 2

√
2NxNz,
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so that

ED1

[
sup

(j,k)∈Ĉ
ε2j,k

]
≤ ED1

[
sup

j≤Nx,k≤Nz

ε2j,k

]
≤ 4C̄2 log 2

√
2NxNz.

Moreover for each (j, k) ∈ Ĉ, the pair (ψθx,j
, ϕθz,k) constitutes a joint empirical approximator of

some ψθ◦
x
∈ Fx so that

m∑
i=1

(
ϕθz,k(zi)− Tψθx,j (zi)

)2 ≤
m∑
i=1

(
ÊX|Z [ψθ◦

x
](zi)− Tψθ◦

x
(zi)
)2

+ (4C̄ + 2)m(δx + δz).

Therefore, (38) is bounded in expectation as

ED1

[
sup

(j,k)∈Ĉ

2

m

m∑
i=1

(
ϕθz,k(zi)− Tψθx,j

(zi)
)
ξj,i

]

= ED1

[
2

m
sup

(j,k)∈Ĉ

√∑m
i=1(ϕθz,k(zi)− Tψθx,j

(zi))
2εj,k

]

≤ 2

m
ED1

[
sup

(j,k)∈Ĉ
ε2j,k

]
+ ED1

[
sup

(j,k)∈Ĉ

1

2m

m∑
i=1

(
ϕθz,k(zi)− Tψθx,j

(zi)
)2]

≤ 8C̄2

m
log 2

√
2NxNz + ED1

[
sup

θx∈Θx

1

2m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2]
+ (2C̄ + 1)(δx + δz).

In particular, the second term is simply half of the supremal Stage 1 error to be bounded.

Furthermore, almost the same argument for (39) with the cover C* yields the bound

ED1

[
sup

(j,k)∈C*

2

m

m∑
i=1

(
Tψθx,j

(zi)− ϕθz,k(zi)
)
ξj,i

]

≤ 8C̄2

m
log 2

√
2NxNz + ED1

[
sup

(j,k)∈C*

1

2m

m∑
i=1

(
Tψθx,j (zi)− ϕθz,k(zi)

)2]
,

where the second term can be bounded by half the sum of (37) and

sup
(j,k)∈C*

∥Tψθx,j
− ϕθz,k∥2L2(PZ) ≤ sup

θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
+ (4C̄ + 2)(δx + δz),

similarly as before (a tighter bound can be obtained with more analysis since C* is not data-dependent,
but this does not affect the result).

D.5 Bounding Supremal Deviations (37), (40)

We derive the bound for (40) first. Define the auxiliary functions

gj,k(z) :=
(
Tψθx,j

(z)− ϕθz,k(z)
)2 − ∥Tψθx,j

− ϕθz,k∥2L2(PZ)

and set κj,k := ∥Tψθx,j − ϕθz,k∥L2(PZ) ∨ κ0 for some κ0 > 0. For each (j, k) ∈ Ĉ comprising a
joint empirical approximator for some ψθ◦

x
∈ Fx, it holds that

κ2j,k ≤ ∥Tψθx,j − ϕθz,k∥2L2(PZ) + κ20

≤ ∥Tψθ◦
x
− ÊX|Z [ψθ◦

x
]∥2L2(PZ) + (4C̄ + 2)(δx + δz) + κ20

so that

sup
(j,k)∈Ĉ

κ2j,k ≤ sup
θx∈Θx

∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ) + (4C̄ + 2)(δx + δz) + κ20, (41)
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retrieving the supremal Stage 1 error to be bounded. In addition, it holds for all z that∣∣∣∣gj,k(z)κj,k

∣∣∣∣ ≤ 4C̄2

κ0
,

m∑
i=1

E

[(
gj,k(z)

κj,k

)2
]
≤ 4C̄2m.

Then for the sum over (zi)mi=1, by Bernstein’s inequality we have the tail bound

P

(∣∣∣∣∣
m∑
i=1

gj,k(zi)

κj,k

∣∣∣∣∣ ≥ u

)
≤ 2 exp

(
− u2

8C̄2(m+ u/3κ0)

)
for all u > 0. Hence the random variable

G := sup
(j,k)∈Ĉ

∣∣∣∣∣
m∑
i=1

gj,k(zi)

κj,k

∣∣∣∣∣
satisfies by a union bound

P (G2 ≥ u) ≤ 2| Ĉ | exp
(
− u

8C̄2(m+
√
u/3κ0)

)
≤ 2| Ĉ | exp

(
− u

16C̄2m

)
+ 2| Ĉ | exp

(
−3κ0

√
u

16C̄2

)
.

Therefore for a cutoff u0 > 0, we evaluate

E[G2] =

∫ ∞

0

P (G2 ≥ u) du

≤ u0 +

∫ ∞

u0

2| Ĉ | exp
(
− u

16C̄2m

)
du+

∫ ∞

u0

2| Ĉ | exp
(
−3κ0

√
u

16C̄2

)
du

= u0 + 32| Ĉ |C̄2m exp
(
− u0
16C̄2m

)
+ 4| Ĉ |

(
16C̄2√u0

3κ0
+

256C̄4

9κ20

)
exp

(
−
3κ0

√
u0

16C̄2

)
,

where we have used the fact that the antiderivative of exp(−
√
u) is −2(

√
u + 1) exp(−

√
u). We

now choose κ0, u0 such that

u0
16C̄2m

=
3κ0

√
u0

16C̄2
= log | Ĉ | ⇔ κ0 =

4C̄

3

√
log | Ĉ |
m

, u0 = 16C̄2m log | Ĉ |,

which yields

E[G2] ≤ 16C̄2m log | Ĉ |+ 32C̄2m+ 4

(
16C̄2m+

16C̄2m

log | Ĉ |

)
≤ 16C̄2m(log | Ĉ |+ 10). (42)

Combining (41) and (42) and substituting in the value for κ0, it follows that

ED1

[
sup

(j,k)∈Ĉ

∣∣∣∣∣ 1m
m∑
i=1

gj,k(zi)

∣∣∣∣∣
]

≤ 1

m
ED1

[
G sup

(j,k)∈Ĉ
κj,k

]
≤ E[G2]

2m2
+

1

2
ED1

[
sup

(j,k)∈Ĉ
κ2j,k

]

≤ 80C̄2(log | Ĉ |+ 9)

9m
+

1

2
ED1

[
sup

θx∈Θx

∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ)

]
+ (2C̄ + 1)(δx + δz).

Furthermore, a similar argument for (37) with the cover C* gives the bound

ED1

[
sup

(j,k)∈C*

∣∣∣∣∣ 1m
m∑
i=1

gj,k(zi)

∣∣∣∣∣
]

≤ 80C̄2(log | C* |+ 9)

9m
+

1

2
sup

θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
+ (2C̄ + 1)(δx + δz).
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Remark D.3. The above uniform bounds can also be obtained up to constants via localization and
chaining techniques, see e.g. Theorem 14.1 and Corollary 14.3 of Wainwright (2019). For this
approach, we control deviations of empirical and population L2-norms uniformly over the class

F Ĉ := T [Fx]−Fz =
{
Tψθx − ϕθz | (j, k) ∈ Ĉ

}
.

One caveat is that the function class is usually required to be star-shaped, that is f ∈ F Ĉ should
imply αf ∈ F Ĉ for all α ∈ [0, 1]. However F Ĉ is in fact only nearly star-shaped; while the output
of a DNN in Fx,Fz can generally be scaled by scaling the parameters of the final layer, the clip
operation (when activated) prevents this for certain functions. This can be overcome by slightly
extending Fx,Fz to incorporate a scalable clipping clipα

¯
C,αC̄ .

D.6 Putting Things Together

Plugging in the obtained bounds for (38) and (39), we have that

ED1

[
sup

θx∈Θx

1

m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2]

≤ 3

2
sup

θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
+ (36C̄ + 6)(δx + δz)

+
3

2
ED1

[
sup

(j,k)∈C*

∣∣∣∣∣ 1m
m∑
i=1

(
Tψθx,j

(zi)− ϕθz,k(zi)
)2 − ∥Tψθx,j

− ϕθz,k∥2L2(PZ)

∣∣∣∣∣
]

+
16C̄2

m
log 2

√
2NxNz + ED1

[
sup

θx∈Θx

1

2m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2]
and so, substituting in the bound for (37) as well,

ED1

[
sup

θx∈Θx

1

m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2]

≤ 3 sup
θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
+

32C̄2

m
log 2

√
2NxNz + (72C̄ + 12)(δx + δz)

+ 3ED1

[
sup

(j,k)∈C*

∣∣∣∣∣ 1m
m∑
i=1

(
Tψθx,j

(zi)− ϕθz,k(zi)
)2 − ∥Tψθx,j

− ϕθz,k∥2L2(PZ)

∣∣∣∣∣
]

≤ 9

2
sup

θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
+

176C̄2

3m
(logNx + logNz + 9) + (78C̄ + 15)(δx + δz)

since | C* | ≤ NxNz . Combining with the bound for (40) yields

ED1

[
sup

θx∈Θx

∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ)

]
≤ ED1

[
sup

θx∈Θx

∣∣∣∣∣ 1m
m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2
− ∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ)

∣∣∣∣∣
]

+ ED1

[
sup

θx∈Θx

1

m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2]

≤ 80C̄2(log | Ĉ |+ 9)

9m
+

1

2
ED1

[
sup

θx∈Θx

∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ)

]
+ (10C̄ + 4)(δx + δz)

+ ED1

[
sup

θx∈Θx

1

m

m∑
i=1

(
Tψθx(zi)− ÊX|Z [ψθx ](zi)

)2]
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≤ 9

2
sup

θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
+

1

2
ED1

[
sup

θx∈Θx

∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ)

]
+

68C̄2

m
(logNx + logNz + 9) + (88C̄ + 19)(δx + δz),

and thus we obtain the upper bound for the Stage 1 supremal error as

ED1

[
sup

θx∈Θx

∥Tψθx − ÊX|Z [ψθx ]∥2L2(PZ)

]
≤ 9 sup

θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
+ C2

(
logNx + logNz

m
+ δx + δz

)
. (43)

for some constant C2 depending only on C̄.

Finally combining this with (26) and (27), we conclude that the projected L2 error is bounded as

ED1,D2

[
∥Tfstr − T f̂str∥2L2(PZ)

]
≲ inf

θx∈Θx

∥Tfstr − Tψθx∥2L2(PZ) + sup
θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
+

logNx

m
+

logNz

m ∧ n
+ δx + δz. (44)

D.7 Error Rates for DNN Classes

Thus far, we have shown that the error can be bounded in terms of the (projected) Stage 2 approx-
imation error, supremal Stage 1 approximation error, and covering numbers for the Stage 1 and 2
estimator function classes. We now evaluate each of these quantities for the introduced DNN classes
to prove the final result. Concretely, for sufficiently large integers Nx, Nz we set

Fx = FDNN(⌈log2 dx⌉+ 1, O(Nx), O(Nx),poly(Nx)),

Fz = FDNN(⌈log2 dz⌉+ 1, O(Nz), O(Nz),poly(Nz)),

as specified in Theorem C.8. As a technical note, we must also set the lower clip cutoff
¯
Cz of Fz to

be greater than the higher cutoff C̄ of Fx. This is to ensure that the target of Stage 1, the conditional
mean Tψθx which has sup norm bounded by C̄, is contained in the identity region of the clip for Fz

and thus can be properly learned.

First, the projected Stage 2 approximation error (26) can be evaluated as follows. Let the Nx-term
B-spline decomposition of fstr according to Lemma C.7 be

fNx
=

K∑
k=0

∑
ℓ∈Ik

βk,ℓωk,ℓ +

K∗∑
k=K+1

nk∑
i=1

βk,ℓiωk,ℓi .

By the adaptive recovery method given in Dũng (2011), it holds that 2Kdx ≍ Nx. Moreover, if the
residual component g = Π

/K
r (fstr − fNx

) along P /K
r satisfies g ̸= 0, by redefining fNx

as g + fNx

(modifying the coefficients of the B-splines up to resolution K if necessary), we can ensure that
Π

/K
r (fstr − fNx

) = 0, and the approximation error of fstr does not increase due to the Pythagorean
theorem. It follows from Assumption 3 that

∥T (fstr − fNx
)∥L2(PZ) ≲ 2−γ1K∥fstr − fNx

∥L2(PX ) ≲ N−γ1/dx
x N−s/dx

x .

Here, we have bounded the L2(PX )-norm by the L∞(X )-norm in the continuous regime s ≥ dx/p
and by the L2(X )-norm in the discontinuous regime s < dx/p via Assumption 2.

On the other hand, by the proof of Theorem C.8, there exists a sigmoid neural network f̌Nx such that

∥f̌Nx − fNx∥W r
p (X ) + ∥f̌Nx − fNx∥L∞(X ) ≲ poly(Nx)ϵ

with weights at most poly(ϵ−1). Thus choosing ϵ so that this error is dominated by N−(s+γ1)/dx
x ,

possibly by increasing the norm bound of Fx by a poly(Nx) factor, we can ensure

∥Tfstr − T f̌Nx
∥L2(PZ) ≤ ∥T (fstr − fNx

)∥L2(PZ) + ∥f̌Nx
− fNx

∥L2(PX ) ≲ N−(s+γ1)/dx
x
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for some f̌Nx ∈ Fx. Since ∥f̌Nx∥Bs
p,q(X ) is bounded, this construction is valid even with domain

restriction (10) for a suitable CW .

Next, under Assumption 4* or Assumption 4 with domain restriction and CT = Θ(CW ), it holds for
all θx ∈ Θx that Tψθx ∈ CT ·U(Bs′

p′,q′(Z)) by replacing Θx by (10) if necessary. We also have that

∥Tψθx∥L∞(Z) ≤ ∥ψθx∥L∞(X ) ≤ C̄ <
¯
Cz.

Thus by Theorem C.8 (slightly modified to account for the constant factor CT ), we are guaranteed
the existence of f̌Nz

∈ Fz satisfying ∥f̌Nz
− Tψθx∥L∞(Z) ≲ N

−s′/dz
z , so that we also have

sup
θx∈Θx

[
inf

θz∈Θz

∥Tψθx − ϕθz∥2L2(PZ)

]
≲ N−2s′/dz

z .

Furthermore, it follows from Lemma C.9 that Nx ≲ Nx log(δ
−1
x Nx) and Nz ≲ Nz log(δ

−1
z Nz).

Hence by setting δx ≍ N
−(s+γ1)/dx
x , δz ≍ N

−2s′/dz
z and substituting in (44), it follows that

ED1,D2

[
∥Tfstr − T f̂str∥2L2(PZ)

]
≲ N

− 2s+2γ1
dx

x +N
− 2s′

dz
z +

Nx logNx

m
+
Nz logNz

m ∧ n
,

and taking Nx ≍ m
dx

2s+2γ1+dx and Nz ≍ (m ∧ n)
dz

2s′+dz , we finally conclude:

ED1,D2

[
∥Tfstr − T f̂str∥2L2(PZ)

]
≲ m− 2s+2γ1

2s+2γ1+dx logm+ (m ∧ n)−
2s′

2s′+dz log(m ∧ n).

If ReLU DNNs are used instead for Fz , the approximation error and covering number estimates are
replaced by Proposition 1 and Lemma 3 of Suzuki (2019), respectively. In this case, the depth must
scale as log(m ∧ n) and the sparsity also incurs an additional log factor. The resulting rates are the
same except that the log factor must be replaced by log3 (rather than log2 suggested in the paper).

E Proof of Theorem 3.5

E.1 Adding Smoothness Regularization

The Stage 2 objective with a nonnegative regularizer R : Θx → R≥0 and regularization strength
λ > 0 reads

θ̂x = argmin
θx∈Θx

1

n

n∑
i=1

(
ỹi − ÊX|Z [ψθx ](z̃i)

)2
+ λR(θx),

where we take R as in (11) later on. We begin by modifying the oracle inequality (Lemma D.1) to
include regularization.

Lemma E.1. For Nz := N (Fz, ∥·∥L∞(Z), δz), there exists a constant C1 such that for all δz > 0
with logNz > 1 it holds conditional on D1,

ED2

[
∥Tfstr − ÊX|Z [ψθ̂x

]∥2L2(PZ) + λR(θ̂x)
]

≤ 4 inf
θx∈Θx

(
∥Tfstr − ÊX|Z [ψθx ]∥2L2(PZ) + λR(θx)

)
+ C1

(
logNz

n
+ δz

)
.

Proof. For the quantities

Π(θx) = ∥Tfstr − ÊX|Z [ψθx ]∥2L2(PZ) + λR(θx),

Π̂(θx) = ED2

[
1

n

n∑
i=1

(
Tfstr(z̃i)− ÊX|Z [ψθx ](z̃i)

)2]
+ λR(θx),

it still follows that∣∣∣Π̂(θ̂x)−Π(θ̂x)
∣∣∣ ≤ 1

2
∥Tfstr − ÊX|Z [ψθ̂x

]∥2L2(PZ) + C ′
1

(
logNz

n
+ δz

)
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≤ 1

2
Π(θ̂x) + C ′

1

(
logNz

n
+ δz

)
since R is nonnegative. Moreover for all θx ∈ Θx, from the inequality

1

n

n∑
i=1

(
ỹi − ÊX|Z [ψθ̂x

](z̃i)
)2

+ λR(θ̂x) ≤
1

n

n∑
i=1

(
ỹi − ÊX|Z [ψθx ](z̃i)

)2
+ λR(θx),

we have

Π̂(θ̂x) ≤ Π(θx) + ED2

[
2

n

n∑
i=1

(ỹi − Tfstr(z̃i))
(
ÊX|Z [ψθ̂x

](z̃i)− ÊX|Z [ψθx ](z̃i)
)]

≤ Π(θx) + ED2

[
1

2n

n∑
i=1

(
Tfstr(z̃i)− ÊX|Z [ψθx ](z̃i)

)2]
+ C ′′

1

(
logNz

n
+ δz

)
≤ Π(θx) +

1

2
Π̂(θ̂x) + C ′′

1

(
logNz

n
+ δz

)
.

Combining the two inequalities concludes the statement.

We now complete the proof of Theorem 3.1 with regularization. By inserting additional R terms, the
projected error can be bounded similarly as in Section D.1 as

ED2

[
∥Tfstr − T f̂str∥2L2(PZ) + λR(θ̂x)

]
≤ 2ED2

[
∥Tfstr − ÊX|Z [ψθ̂x

]∥2L2(PZ) + λR(θ̂x)
]
+ 2ED2

[
∥ÊX|Z [ψθ̂x

]− T f̂str∥2L2(PZ)

]
≤ 8 inf

θx∈Θx

(
∥Tfstr − ÊX|Z [ψθx ]∥2L2(PZ) + λR(θx)

)
+ 2C1

(
logNz

n
+ δz

)
+ 2ED2

[
∥ÊX|Z [ψθ̂x

]− T f̂str∥2L2(PZ)

]
≤ 16∥Tfstr − Tψθ∗

x
∥2L2(PZ) + 16∥Tψθ∗

x
− ÊX|Z [ψθ∗

x
]∥2L2(PZ) + 8λR(θ∗x)

+ 2∥Tψθ̂x
− ÊX|Z [ψθ̂x

]∥2L2(PZ) + 2C1

(
logNz

n
+ δz

)
.

Note that we have not reduced the Stage 1 error for θ̂x and θ∗x to the supremum over Θx. Indeed,
we may retrace the arguments in Section D.2 through D.6 without reducing any of the terms to the
corresponding supremum over Ĉ, C* or Θx but retaining their specific value (e.g. the specific joint
empirical or population approximators) for θ̂x, θ∗x until the final step. Then we see that the Stage 1
error bound (43) also holds with the supremal approximation error replaced by the pointwise error
for the estimate,

E
[
∥Tψθ̂x

− ÊX|Z [ψθ̂x
]∥2L2(PZ)

]
≤ 9E

[
inf

θz∈Θz

∥Tψθ̂x
− ϕθz∥2L2(PZ)

]
+ C2

(
logNx + logNz

m
+ δx + δz

)
,

and similarly for θ∗x. Moreover taking Fx,Fz as in Section D.6 and applying Theorem C.8 as before,
the Stage 1 approximation error can be bounded as

inf
θz∈Θz

∥Tψθx − ϕθz∥L2(PZ) ≲ N−s′/dz
z ∥Tψθx∥Bs′

p′,q′ (Z) ≲ N−s′/dz
z ∥ψθx∥Bs

p,q(X )

for both θ̂x, θ∗x. Plugging this and (11) into the above, we obtain that

E
[
∥Tfstr − T f̂str∥2L2(PZ) + λR(θ̂x)

]
≲ ∥Tfstr − Tψθ∗

x
∥2L2(PZ) + λR(θ∗x) +N−2s′/dz

z

(
∥ψθ∗

x
∥2Bs

p,q(X ) + E
[
∥ψθ̂x

∥2Bs
p,q(X )

])
+

logNx

m
+

logNx

m ∧ n
+ δx + δz.
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Again by Theorem C.8, there exists θ∗x ∈ Θx such that ∥Tfstr − Tψθ∗
x
∥L2(PZ) ≲ N

−(s+γ1)/dx
x

and ∥ψθ∗
x
∥Bs

p,q(X ) is bounded, so that R(θ∗x) is also bounded. Hence taking Nx ≍ m
dx

2s+2γ1+dx and

Nz ≍ (m ∧ n)
dz

2s′+dz as before, it holds that

E
[
∥Tfstr − T f̂str∥2L2(PZ) + λR(θ̂x)

]
≲ N

− 2s+2γ1
dx

x + λ+N
− 2s′

dz
z E

[
∥ψθ̂x

∥2Bs
p,q(X )

]
+N

− 2s′
dz

z +
Nx logNx

m
+
Nz logNz

m ∧ n
≲ m− 2s+2γ1

2s+2γ1+dx logm+ λ+ (m ∧ n)−
2s′

2s′+dz

(
E
[
∥ψθ̂x

∥2Bs
p,q(X )

]
+ log(m ∧ n)

)
.

By further setting

λ ≍ m− 2s+2γ1
2s+2γ1+dx logm+ (m ∧ n)−

2s′
2s′+dz log(m ∧ n), (45)

we can guarantee that

E
[
∥Tfstr − T f̂str∥2L2(PZ) + λR(θ̂x)

]
≲ λ

(
E
[
|ψθ̂x

|2Bs
p,q(X )

]
+ 1
)
.

In particular, since q̄ > 2, isolating the regularizer yields by Jensen’s inequality

E[R(θ̂x)] ≲ E
[
|ψθ̂x

|2Bs
p,q(X )

]
+ 1 ≤ E[R(θ̂x)]2/q̄ + 1

for both choices in (11), and hence E[R(θ̂x)] must be bounded above. From this and the preceding
inequality, we conclude that E

[
∥Tfstr − T f̂str∥2L2(PZ)

]
≲ λ.

E.2 Obtaining Non-projected Rates

For a sufficiently large threshold N , let fN be the N -term B-spline approximation of fstr in Lemma
C.7 such that ∥fstr − fN∥L2(PX ) ≲ N−s/dx . Again, we have bounded the L2(PX )-norm by the
L∞(X )-norm if s ≥ dx/p and by the L2(X )-norm if s < dx/p. Since p ≥ 2, it suffices to take
K∗ = K so that fN ∈ P

/K
r and 2Kdx ≍ N . Similarly, let f̂N be the N -term approximation of f̂str,

for which it holds that ∥f̂str − f̂N∥L2(PX ) ≲ N−s/dx∥f̂str∥Bs
p,q(X ). Then we have that

∥f̂str − fstr∥L2(PX )

≲ ∥f̂str − f̂N∥L2(PX ) + 2γ0K∥T f̂N − TfN∥L2(PZ) + ∥fstr − fN∥L2(PX )

≤ 2γ0K
(
∥T f̂str − T f̂N∥L2(PZ) + ∥T f̂str − Tfstr∥L2(PZ) + ∥Tfstr − TfN∥L2(PZ)

)
+ ∥f̂str − f̂N∥L2(PX ) + ∥fstr − fN∥L2(PX )

≲
(
2(γ0−γ1)K + 1

)(
∥f̂str − f̂N∥L2(PX ) + ∥fstr − fN∥L2(PX )

)
+ 2γ0K∥T f̂str − Tfstr∥L2(PZ)

≲ N−(s−γ0+γ1)/dx

(
∥f̂str∥Bs

p,q(X ) + 1
)
+Nγ0/dx∥T f̂str − Tfstr∥L2(PZ)

by applying Assumptions 3, 6. Furthermore, ∥f̂str∥2Bs
p,q(X ) is bounded above with domain restriction,

or bounded in expectation with regularization via the argument in the previous section by taking λ as
in (45). Squaring both sides and taking expectations, it follows that

ED1,D2

[
∥f̂str − fstr∥2L2(PX )

]
≲ N− 2(s−γ0+γ1)

dx +N
2γ0
dx λ.

Finally, setting N ≍ λ−
dx

2s+2γ1 yields the desired rate.

Proof of Corollary 4.2. When 0 < p < 2, the approximations fN , f̂N are adaptively constructed
from B-splines up to resolution K∗ = ⌈C∗K⌉; nonetheless, the total number of elements used
is bounded by N ≍ 2Kdx , and we can also ensure compatibility with the forward link condition
Π

/K
r (fstr − fN ) = 0 as before. Hence the proof above can be repeated to obtain the same rate by

36



applying the extended reverse link condition to the difference f̂N − fN which is comprised of at
most 2N B-splines.

Furthermore, the resulting upper bound (15) when p < 2, ∆ > 0 is strictly faster than the linear
lower bound proved in Theorem 4.1 if (in the case of γ0 = γ1)

2s′

2s′ + dz

s

s+ γ0
>

2(s−∆)

2(s−∆) + 2γ1 + dx

which is equivalent to

s′

dz
>

(s+ γ0)(s−∆)

sdx + 2∆γ0
=

(s−∆)dx
(s−∆)dx +∆(2γ0 + dx)

s+ γ0
dx

.

In the same manner, a separation can be obtained even if γ0 ̸= γ1; we omit the details for clarity of
presentation.

F Proofs of Minimax Lower Bounds

F.1 Proof of Propositions 3.3, 3.7

Recall that the NPIR model corresponding to the NPIV model is given as

Y = Tfstr(Z) + η, η = fstr(X)− Tfstr(Z) + ξ, E[η|Z] = 0.

It can be shown that NPIV is at least as difficult as NPIR (where the operator T is assumed to be
known) in the minimax sense: an estimator for NPIV can be utilized to solve NPIR with the same
expected risk by generating the corresponding treatments from the conditional distribution of X
given data Z = zi (Chen and Reiss, 2011). This is true for any m, and thus yields a lower bound
in n valid even when m → ∞. The goal now is to lower bound the minimax risk over the Besov
space U(Bs

p,q(X )) for the non-projected case or T [U(Bs
p,q(X ))] for the projected case, when only

samples {(z̃i, ỹi)}ni=1 from the indirect model are available. We obtain this via a modification of the
Yang-Barron method (Yang and Barron, 1999).

First note that suppωk,ℓ covers r + 1 dyadic cubes with side length 2−k in each dimension. By e.g.
only considering ℓ ∈ Ik such that all components are multiples of r + 1, we can construct a subset
Jk ⊂ Ik such that suppωk,ℓ are contained in X and pairwise disjoint for all ℓ ∈ Jk and

|Jk| ≍
|Ik|

(r + 1)dx
≍ 2kdx .

Consider the best approximation π1,0 of ω1,0 w.r.t. the L2-norm on suppω1,0 in the span of the
B-spline ω0,0 and its integer translates. Note that P /k−1

r is equal to the span of all B-splines with
resolution excatly k − 1. For each ωk,ℓ with ℓ ∈ Jk, its best approximation in P /k−1

r will be the
correspondingly scaled and translated version πk,ℓ of π1,0, so that

∥ωk,ℓ −Π/k−1
r ωk,ℓ∥L2(X ) = ∥ωk,ℓ − πk,ℓ∥L2(X ) = 2−kdx/2∥ω1,0 − π1,0∥2. (46)

Now set f0 = f̃0 ≡ 0 and define the functions

fv = 2−ksϵ
∑
ℓ∈Jk

βv,ℓωk,ℓ, v = 1, · · · , 2|Jk|

and
f̃v = fv −Π/k−1

r fv = 2−ksϵ
∑
ℓ∈Jk

βv,ℓ(ωk,ℓ − πk,ℓ),

where ϵ is a suitably small positive number and βv = (βv,ℓ)ℓ∈Jk
is an enumeration of the vertices

of the hypercube {1,−1}|Jk|. It follows from the sequence norm equivalence (DeVore and Popov,
1988, Theorem 5.1) that

∥fv∥Bs
p,q(X ) ≍ 2k(s−dx/p)

(∑
ℓ∈Jk

|2−ksϵβv,ℓ|p
)1/p

= 2−kdx/p|Jk|1/pϵ ≍ ϵ.
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Also, the coefficients of πk,ℓ (a linear combination of B-splines ωk−1,ℓ′ at resolution k − 1) for each
ℓ ∈ Jk are different translates of the fixed coefficient sequence for π1,0. Denoting its ℓ1-norm by A,
it follows that the coefficient of each B-spline ωk−1,ℓ′ in the sum

Π/k−1
r fv = 2−ksϵ

∑
ℓ∈Jk

βv,ℓπk,ℓ

is also uniformly bounded by 2−ksϵA, and so Π
/k−1
r ∥fv∥Bs

p,q(X ) ≲ ϵ by a similar computation at
resolution k − 1. Hence

∥f̃v∥Bs
p,q(X ) ≲ ∥fv∥Bs

p,q(X ) + ∥Πk−1
r fv∥Bs

p,q(X ) ≲ ϵ,

so we can ensure that each f̃v is contained in the target class U(Bs
p,q(X )) by choosing ϵ to be suitably

small.

Furthermore, by the Gilbert-Varshamov bound, there exists a well-separated subset Vk of the index
set {1, · · · , 2|Jk|} with log |Vk| ≍ |Jk| ≍ 2kdx such that

1

2p

∑
ℓ∈Jk

|βv,ℓ − βv′,ℓ|p ≳ |Jk|, v ̸= v′ ∈ Vk,

which guarantees the separation

∥f̃v − f̃v′∥2L2(X ) ≥ 2−2ksϵ2
∑

ℓ∈Jk:βv,ℓ ̸=βv′,ℓ

4∥ωk,ℓ − πk,ℓ∥2L2(X )

≳ 2−2ksϵ2 · |Jk|2−kdx ≍ 2−2ksϵ2

by (46). The KL divergence between the sample distributions (ỹi)ni=1 from the NPIR model with
fstr = f̃0, f̃v is then bounded as

KL(Pf̃0
∥Pf̃v

) = E(z̃i)ni=1

[
KL(Pf̃0

|(z̃i)ni=1∥Pf̃v
|(z̃i)ni=1)

]
≤

n∑
i=1

∥T f̃v∥2L2(PZ)

2σ2
0

≲ 2−2ksϵ2 · 2−2γ1kn
∥f̃v∥2L2(X )

2σ2
0

≲ 2−2k(s+γ1)n

due to Assumption 1 and the link condition. Here we have utilized the near-sparsity of ωk,ℓ: extending
the definition of B-splines to all locations ℓ ∈ Zdx , it is easy to see that they form a partition of unity,∑

ℓ∈Zdx ωk,ℓ ≡ 1 and so

∥f̃v∥L2(X ) ≤ ∥fv∥L2(X ) ≤

∥∥∥∥∥∑
ℓ∈Ik

βv,ℓωk,ℓ

∥∥∥∥∥
L2(PX )

≤

∥∥∥∥∥∑
ℓ∈Ik

βv,ℓωk,ℓ

∥∥∥∥∥
L∞(X )

≤ 1.

Hence the inequality
1

|Vk|
∑
v∈Vk

KL(Pf0∥Pfv ) ≲ log |Vk| ≍ 2kdx

is satisfied by scaling the resolution as 2(2s+2γ1+dx)k ≍ n. Finally, applying the Yang-Barron method
proves that the L2(X ) minimax rate is lower bounded as

inf
f̂ :NPIR

sup
fstr∈U(Bs

p,q(X ))

E[∥f̂ − fstr∥2L2(X )] ≳ 2−2ksϵ2 ≍ n−
2s

2s+2γ1+dx ,

proving Proposition 3.7. We can check that the ordinary rate n−
2s

2s+dx is retrieved when T = idX
and γ1 = 0, while the rate becomes much worse if T decays exponentially. The same rate holds in
the L2(PX )-norm under Assumption 5.
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For Proposition 3.3, we can also derive the projected lower bound in the same manner by noting that
for any estimator f̂ , T f̂ is also a valid estimator for the projected target Tfstr since T is assumed to
be known in the NPIR setting. Repeating the same construction given above, since f̃v is contained in
P

/k
r , the separation in the projected MSE now becomes

∥T f̃v − T f̃v′∥2L2(PZ) ≳ 2−2γ0k∥f̃v − f̃v′∥2L2(PX ) ≳ 2−(2s+2γ0)kϵ2

due to the reverse link condition and Assumption 5. Hence we conclude that

inf
f̂ :NPIR

sup
fstr∈U(Bs

p,q(X ))

E[∥T f̂ − Tfstr∥2L2(PZ)] ≳ n−
2s+2γ0

2s+2γ1+dx .

F.2 Proof of Lemma 3.2

The metric entropy of Besov spaces is classical:

Theorem F.1 (Giné and Nickl (2015), Theorem 4.3.36). If s > d(1/p− 1/2)+, then the Besov norm
unit ball B = U(Bs

p,q([0, 1]
d)) is relatively compact in L2([0, 1]d) and

logN (B, L2([0, 1]d), δ) ≍
(
1

δ

) d
s

, ∀δ > 0.

On the other hand, the construction in the previous section gives a subset of T [U(Bs
p,q(X ))] with log

cardinality log |Vk| ≍ 2kdx and separation ∥Tfv − Tfv′∥2L2(PZ) ≳ 2−(2s+2γ0)kϵ2. Assuming PZ

has Lebesgue density bounded above, we may take δ ≍ 2−(s+γ0)k to satisfy

δ <
1

2
min

v ̸=v′∈Vk

∥Tfv − Tfv′∥L2(Z)

so that each δ-ball in the projected image can cover at most one element Tfv . It follows that

log |Vk| ≲ logN (T [U(Bs
p,q(X ))], L2([0, 1]dz ), δ)

≲ logN (U(Bs′

p′,q′(Z)), L2([0, 1]dz ), δ)

≍
(
2(s+γ0)k

) dz
s′
,

and taking the resolution of the subset k → ∞, the constant factor can be eliminated, concluding that
s′/dz ≤ (s+ γ0)/dx.

Finally, we verify that equality can be achieved if dx = dz and T acts on B-splines as Tωk,ℓ =
2−γ0kωk,ℓ. Let f be an arbitrary element of U(Bs

p,q(X )) with B-spline decomposition

f =

∞∑
k=0

∑
ℓ∈Ik

βk,ℓωk,ℓ, Tf =

∞∑
k=0

∑
ℓ∈Ik

2−γ0kβk,ℓωk,ℓ.

Then it follows from the sequence norm equivalence that

∥Tf∥
B

s+γ0
p,q (Z)

≍

( ∞∑
k=0

[
2k(s+γ0−dz/p)

(∑
ℓ∈Ik

|2−γ0kβk,ℓ|p
)1/p

]q)1/q

≍

( ∞∑
k=0

[
2k(s−dz/p)

(∑
ℓ∈Ik

|βk,ℓ|p
)1/p

]q)1/q

≍ ∥f∥Bs
p,q(X ),

implying that T [U(Bs
p,q(X ))] ⊆ CT · U(Bs+γ0

p,q (Z)) for some constant CT . Hence the L2 rate of
contraction specifies the degree of which smoothness is increased under the maximal smoothness
assumption.
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F.3 Proof of Theorem 4.1

Since the bound is equal to the overall minimax optimal rate when p ≥ 2, we only consider the case
p < 2.

Write z̃ = (z̃1, · · · , z̃n) for brevity and denote its joint law by P z̃ . We fix k ≥ 0 and consider the
B-spline ωk,ℓ on X for ℓ ∈ Ik. Note that ∥Tωk,ℓ∥L∞(Z) ≤ 1 and

∥Tωk,ℓ∥L2(PZ) ≲ 2−γ1k∥ωk,ℓ∥L2(PX ) ≲ 2−γ1k∥ωk,ℓ∥L2(X ) ≍ 2−k(γ1+dx/2)

by the link condition. This implies

Uℓ,i :=
Tωk,ℓ(z̃i)

2

∥Tωk,ℓ∥2L2(PZ)

≤ Cu2
k(2γ1+dx), E[U2

ℓ,i] ≤ Cu2
k(2γ1+dx)

for some constant Cu. By Bernstein’s inequality, it follows that

P

(
1

n

n∑
i=1

Uℓ,i > 2

)
≤ exp

(
− n2/2∑n

i=1 E[U2
ℓ,i] + Cu2k(2γ1+dx)n/3

)
and by union bounding,

P

(
sup
ℓ∈Ik

1

n

n∑
i=1

Uℓ,i > 2

)
≲ 2kdx exp

(
− 3

8Cu
2−k(2γ1+dx)n

)
.

Now assuming n ≳ 2k(2γ1+dx+ϵ) (∗) for some ϵ > 0, the right-hand side converges to zero as
k → ∞, so that the event

E :=

{
z̃ ∈ Zn : sup

ℓ∈Ik

1

n

n∑
i=1

Uℓ,i ≤ 2

}
satisfies P (E) = 1− ok(1).

Now as in Section F.1, we may reduce to the NPIR model (4) for known T and only consider
estimators of the form

f̂L(x) =

n∑
i=1

ui(x, z̃)ỹi, u1, · · · , un : X ×Zn → R . (47)

Denote the corresponding linear minimax rate as

RL = inf
f̂L:linear

sup
fstr∈U(Bs

p,q(X ))

E
[
∥f̂L − fstr∥2L2(X )

]
and define the auxiliary function q(x) =

∑n
i=1

∫
E ui(x, z̃)

2 dP z̃ . For all f ∈ U(Bs
p,q(X )), we have

from ỹi = Tf(z̃i) + ηi that

RL ≥ E
[
∥f̂L − f∥2L2(X )

]
≥ E

∥∥∥∥∥
n∑

i=1

Tf(z̃i)ui(·, z̃)− f(·)

∥∥∥∥∥
2

L2(X )

+ σ2
0 · E

[
n∑

i=1

∥ui(·, z̃)∥2L2(X )

]

≥
∫
E

∫
X

(
n∑

i=1

Tf(z̃i)ui(x, z̃)− f(x)

)2

dx dP z̃ +σ
2
0

∫
X
q(x) dx. (48)

Set I+k = Ik ∩ Ndx and partition the domain into rectangles as

X =
⋃

ℓ∈I+
k

Ak,ℓ =
⋃

ℓ∈I+
k

dx∏
i=1

[
ℓi − 1

2k
,
ℓi
2k

)
.
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It follows from (48) that there exists ℓ∗ ∈ I+k satisfying∫
Ak,ℓ∗

q(x) dx ≤ 2−kdxσ−2
0 RL.

To each Ak,ℓ we will associate the B-spline ωk,ℓ−ℓ0 where ℓ0 = (⌊r/2⌋, · · · , ⌊r/2⌋). It can be seen
that there exists a constant Cr depending only on r such that

vol{x ∈ A0,0 | ω0,−ℓ0 ≥ Cr} ≥ Cr.

Hence for the sets

G := {x ∈ Ak,ℓ∗ | ωk,ℓ∗−ℓ0(x) ≥ Cr},
H := {x ∈ Ak,ℓ∗ | q(x) ≤ 2σ−2

0 CrRL},

we have VolG ≥ 2−kdxCr and Vol(Ak,ℓ∗ \H) ≤ 2−kdx−1Cr, so that Vol(G ∩H) ≥ 2−kdx−1Cr.
Moreover from the definition of E , for all x ∈ H we have∫

E

(
n∑

i=1

Tωk,ℓ∗−ℓ0(z̃i)ui(x, z̃)

)2

dP z̃

≤
∫
E
sup
ℓ∈Ik

n∑
i=1

Tωk,ℓ(z̃i)
2 ·

n∑
i=1

ui(x, z̃)
2 dP z̃

≤ 2n∥Tωk,ℓ∥2L2(PZ) · q(x) ≤
4Crn

Cuσ2
0

· 2−k(2γ1+dx)RL.

For a moment, suppose that
4Crn

Cuσ2
0

· 2−k(2γ1+dx)RL ≤ C2
r

4
. (49)

We apply (48) to the scaled B-spline f = 2−k(s−dx/p)ϵωk,ℓ∗−ℓ0 , where ∥f∥Bs
p,q(X ) ≍ ϵ and ϵ = Θ(1)

is chosen so that f ∈ U(Bs
p,q(X )). It follows that

RL ≥ 2−2k(s−dx/p)ϵ2
∫
G∩H

∫
E

(
n∑

i=1

Tωk,ℓ∗−ℓ0(z̃i)ui(x, z̃)− ωk,ℓ∗−ℓ0(x)

)2

dP z̃ dx

≥ 2−2k(s−dx/p)ϵ2
∫
G∩H

[(∫
E
ωk,ℓ∗−ℓ0(x)

2 dP z̃

)1/2

−

(∫
E

(
n∑

i=1

Tωk,ℓ∗−ℓ0(z̃i)ui(x, z̃)

)2

dP z̃

)1/2]2
dx

≥ 2−2k(s−dx/p)ϵ2 ·Vol(G ∩H)

[
P (E)1/2Cr −

(
4Crn

Cuσ2
0

· 2−k(2γ1+dx)RL

)1/2
]2

≥ (1− ok(1))C
3
r ϵ

2

8
· 2−2k(s−dx(1/p−1/2)).

Comparing with (49), we have shown that either of the following must hold:

RL ≳
2k(2γ1+dx)

n
or RL ≳ 2−2k(s−∆).

Finally taking k such that n ≍ 2k(2(s−∆)+2γ1+dx), we can verify that condition (∗) is satisfied since

s > ∆, and therefore RL ≳ n
− 2(s−∆)

2(s−∆)+2γ1+dx .

F.4 Separation in Projected Rates

To obtain a lower bound for the projected MSE of linear IV estimators, we require that Z to be
sufficiently spatially covered by the projected class so as to be difficult to learn for non-adaptive
estimators; one such sufficient condition is outlined below.
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Theorem F.2. Suppose that dz ≤ dx. For any cube S in the dyadic partition of Z into 2kdz cubes of
all side lengths 2−k, we assume there exists ℓ ∈ Ik such that

Vol {z ∈ S | |Tωk,ℓ(z)| ≥ µk} ≥ c1 VolS, µk = c2 · 2−k(2γ0+dx−dz)/2.

for constants c1, c2 > 0. Then under the conditions of Theorem 4.1, the projected linear minimax

rate is Ω̃
(
n
− 2(s−∆)+2γ0

(2(s−∆)+2γ1+dz)∨(2γ1+dx)

)
.

The threshold µk corresponds to the natural magnitude if the mass ∥Tωk,ℓ∥2L2(Z) ≳ 2−k(2γ0+dx) is
distributed uniformly on S. Since each B-spline can cover asymptotically finitely many cubes at
the level µk, the implication dz ≤ dx follows from a counting argument. Hence comparing with
Theorem 3.1 when p < 2, we conclude that DFIV achieves faster projected rates compared to any
linear IV estimator if γ0 = γ1, T has maximal smoothness and dz > (dx − 2(s−∆))∨ s−∆+γ0

s+γ0
dx.5

Proof. The proof is similar to Section F.3. We will show the lower bound for all linear estimators of
Tfstr of the form ĝL(z) =

∑n
i=1 ui(z, z̃)ỹi, which includes the projection T f̂L =

∑n
i=1 Tui(·, z̃)ỹi

of any NPIR estimator (47). Denote the desired rate by R′
L and replace the auxiliary function q(x)

by q(z) =
∑n

i=1

∫
E ui(z, z̃)

2 dP z̃ . It follows for all f ∈ U(Bs
p,q(X )) that

R′
L ≥

∫
E

∫
Z

(
n∑

i=1

Tf(z̃i)ui(z, z̃)− Tf(x)

)2

dz dP z̃ +σ
2
0

∫
Z
q(z) dz.

Then there exists a cube S in the dyadic partition of Z satisfying
∫
S
q(z) dz ≤ 2−kdzσ−2

0 R′
L. By

assumption, there exists ℓ ∈ Ik such that for

G = {z ∈ S | |Tωk,ℓ(z)| ≥ µk} ,
H = {z ∈ S | q(z) ≤ 2c−1

1 σ−2
0 R′

L},

it holds that VolG ≥ c1 · 2−kdz and Vol(G ∩H) ≥ c1 · 2−kdz−1, moreover∫
E

(
n∑

i=1

Tωk,ℓ∗−ℓ0(z̃i)ui(x, z̃)

)2

dP z̃ ≤ 4n

Cuc1σ2
0

· 2−k(2γ1+dx)R′
L.

Then repeating the above line of reasoning gives that either of the following must hold:

R′
L ≳

2k(2γ1−2γ0+dz)

n
or R′

L ≳ 2−2k(s−∆+γ0).

If dz > dx − 2(s −∆), we may take n ≍ 2k(2(s−∆)+2γ1+dz) so that condition (∗) is satisfied. If
dz ≤ dx − 2(s−∆), we instead take n ≍ 2k(2γ1+dx+ϵ) for arbitrary ϵ > 0. The stated lower bound
can be verified in both cases.

Remark F.3. The dependency of the optimal rates on dimension dx is an intrinsic property of Besov
spaces; however, this can be removed by instead considering mixed (Schmeisser, 1987) or anisotropic
Besov spaces (Berkolaiko and Novikov, 1994). By applying the results in Appendices C, D to the
appropriate wavelet systems, existing learning-theoretic analyses for these spaces (Suzuki, 2019;
Suzuki and Nitanda, 2021) can also be adapted to incorporate smooth DNN classes and obtain the
corresponding dimension-free bounds.

5The derived rate shows that it is possible for separation to be achieved even if dz ≤ dx − 2(s−∆) and
s′/dz < (s+ γ0)/dx in certain smoothness regimes. We omit a precise characterization.
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