Under review as submission to TMLR

Provably Efficient Reward Transfer in Reinforcement Learning
with Discrete Markov Decision Processes

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we propose a new solution to reward adaptation (RA) in reinforcement learning,
where the agent adapts to a target reward function based on one or more existing source
behaviors learned a priori under the same domain dynamics but different reward functions.
While learning the target behavior from scratch is possible, it is often inefficient given
the available source behaviors. Our work introduces a new approach to RA through the
manipulation of Q-functions. Assuming the target reward function is a known function of
the source reward functions, we compute bounds on the Q-function and present an iterative
process (akin to value iteration) to tighten these bounds. Such bounds enable action pruning
in the target domain before learning even starts. We refer to this method as “ Q-Manipulation”
(Q-M). The iteration process assumes access to a lite-model, which is easy to provide or
learn. We formally prove that Q-M, under discrete domains, does not affect the optimality
of the returned policy and show that it is provably efficient in terms of sample complexity in
a probabilistic sense. Q-M is evaluated in a variety of synthetic and simulation domains to
demonstrate its effectiveness, generalizability, and practicality.

1 Introduction

Reinforcement Learning (RL) as described by [Watkins| (1989)); |Sutton & Barto| (2018) represents a class of
learning methods that allow agents to learn from interacting with the environment. RL has demonstrated
great successes in various domains such as games like Chess in |(Campbell et al.| (2002), Go in [Silver et al.
(2016), and Atari games in |[Mnih et al.| (2015]), logistics in |[Yan et al,| (2022)), biology in |Angermueller et al.
(2019), and robotics in [Kober et al.| (2013). However, applying RL to many real-world problems still suffers
from the issue of high sample complexity. Prior approaches have been proposed to alleviate the issue from
different perspectives, such as learning optimization, transfer learning, modular and hierarchical RL, and
offline RL. However, few methods provably improve sample complexity.

The problem of reward adaptation (RA) was first introduced l
and addressed by Barreto et al.[(2017 2020), where the learning
agent adapts to a target reward function given one or multiple l
existing behaviors learned a priori (referred to as the source
behaviors) under the same actions and transition dynamics but }
different reward functions. RA has many useful applications, l
such as enabling a vehicle’s driving behavior from two known - =

behaviors (comfortable driving with passengers and fast driving ___ = __7@
for goods delivery) to a new target behavior that combines

comfort and speed, accommodating both passengers and goods. Figure 1: Dollar-Euro domain.
Featuring such a special type of transfer learning, RA methods can benefit from an ever-growing repertoire of
source behaviors to create new and potentially more complex target behaviors. Learning the target behavior
from scratch via model-free methods is possible but often inefficient given the available source behaviors,
while model-based methods are prone to model error, e.g., due to uneven exploration of the state space when
learning the source behaviors. In this paper, we present a new approach that takes the advantage of both

Under review as submission to TMLR

sides while avoiding their limitations to bridge the gap for RA. This lite-model offers complimentary benefits
with respect to the previous work.

To better conceptualize the RA problem, consider a grid-world as shown in Fig. [I} which is an expansion
of the Dollar-Euro domain described by |Russell & Zimdars| (2003). In this domain, the agent can move to
any of its adjacent locations at any step. The agent’s initial location is colored in yellow, and the terminal
locations are colored pink or green, which correspond to the source reward functions (i.e., collecting dollars
and euros), respectively. Visiting the terminal location with a single color returns a reward of 1.0 under the
corresponding reward function, and visiting the terminal location with split colors returns a reward of 0.6
under both reward functions. A target domain may correspond to a reward function that awards both dollars
and euros.

RA is most efficient when the source and target domains feature reward functions that are correlated. For
example, an assumption was made in Successor Feature Q-Learning (SFQL) [Barreto et al| (2017 |2020) where
the reward functions are expressed as feature weights. An advantage of this assumption is that the source
behaviors can be evaluated easily under the target domain. SFQL can be viewed as combining the best parts
of the source behaviors to initialize learning. Consequently, SFQL may not work well for situations where
the target behavior differs substantially from the source behaviors, such as in the Dollar-Euro domain. Our
proposed approach, on the other hand, represents a more general knowledge transfer method whose efficacy
does not rely on the similarity between the source and target behaviors. Soft Q Bounding (SQB) |Adamczyk
et al. (2024) establishes double sided bounds of the Q function to speed up learning by clipping overly
optimistic or pessimistic updates. When viewed as a method for RA, it relies on a given Q function computed
from source behaviors. Even though the idea of computing the bounds bears some similarity to our work,
SQB does not exploit the source behaviors during target learning, resulting in unpredictable performance due
to reliance on samples.

Our approach to RA is referred to as “@Q-Manipulation” (Q-M). In this paper, we focus on discrete Markov
Decision Processes (MDPs) for a theoretical treatment. Challenges in addressing continuous MDPs are
discussed in Section [5] with directions outlined for future work. Similar to prior work on RA, we assume
the relationship between the source reward functions and the target reward function is known, and in our
case, via what is referred to as a combination function. The intuition here is that we often have a good
idea about the functional relationship (potentially noisy) between the source and target reward functions,
e.g., linear in the Dollar-Euro domain. Based on such a relationship, Q-M computes an upper and lower
bound of the Q-function in the target domain via an iterative process similar to value iteration. This process
operates on a lite-model of the transition function that is easier to provide or estimate while learning the
source behaviors. The output bounds enable us to prune actions before learning the target behavior, without
affecting its optimality. In our evaluation, we empirically show that the effectiveness of Q-M across simulated
and randomly generated domains, and also analyze its limitations. In general, Q-M operates under additional
computation and space requirements that are reasonable to implement in practice, with its benefits to sample
complexity outweighing these costs. For a comprehensive comparison between Q-M and competing transfer
learning approaches, refer to table

Our core contributions are: We address the problem of reward adaptation (RA) via Q-Manipulation (Q-M)
in domains with discrete state and action spaces, and demonstrate that Q-M is provably efficient to sample
complexity due to action pruning, and represents a new approach to RA that supports more general knowledge
transfer than the previous work. We introduce two methods that both leverage a lite-model for capturing
neighboring-state information: 1) Q-Manipulation (Q-M), which modifies Bellman updates to compute
upper and lower bounds on the target domain’s Q* in a value-iteration style update and 2) Monotonic
Q-Manipulation (M-Q-M), which extends Q-M by incorporating source Q-functions for initializing the bounds
and then iteratively tighten them. We formally prove the correctness of both methods. Since optimal
actions are preserved , there is no negative transfer. We extensively evaluate Q-M against baselines under
its theoretical assumptions to validate its efficacy and analyze its limitations, such as with nonlinear and
imperfect combination functions. Results confirm Q-M as a valuable approach for RA.

Under review as submission to TMLR

2 Related work

Transfer learning and multi-task learning have emerged as two central paradigms in RL for improving sample
efficiency and generalization. This section surveys existing approaches across these domains, with a focus on
how prior experience from one or more source tasks can be exploited to accelerate or stabilize learning the
target task.

Transfer Learning in Reinforcement Learning: The goal of transfer learning in RL is to utilize knowledge
gained from previously solved tasks (source tasks) to improve performance in a different, typically unseen
task (target task). Foundational surveys such as |[Taylor & Stone| (2009); Wulfmeier et al.| (2023)) categorize
transfer techniques by how the knowledge is transferred, ranging from policies and value functions to learned
models and internal representations. According to the taxonomy of transfer reinforcement learning proposed
by [Taylor & Stone| (2009), reward adaptation belongs to transfer learning where the allowed task difference
is R. Even though more general transfer methods can be applied to reward adaptation, such as Mann &
Choel (2013)), these methods are often heuristic in nature due to the generic relationship between the source
and target domains. Within the category of reward adaptation in transfer RL, several relevant methods
have been proposed. Notably, SFQL and SQB represent recent efforts aimed at improving transfer efficiency
through the use of successor features (¢ and w) and action-value bounds, respectively. Table [1| presents
a comprehensive comparison of three methods, detailing their key characteristics, including assumptions,
core strategies, and intended use cases to provide a clearer understanding of the purpose and design of each
approach.

Q-M (M-Q-M) SFQL Bar{ | SBQ |Adamczyk et al.
reto et al.l| (2024)
(2017)
Assumptions Source Domain R;,, T(- | s,a), Q-| ¢and w; Initial Q
variants (M-Q-M only)
Target Domain f Wtarget NA
Strategy for transfer Action pruning Warm start Clipped Bellman update
Guaranteed improvement on sample efficiency | Yes No No
Pre-Learning or Online Learning Pre-Learning Pre-Learning Online Learning
Modularity Yes Yes Yes
Robust against Negative Transfer Yes No No

Table 1: Comparative analysis of Q-M, SFQL and SQB for transfer learning given source domain Q-values,
target reward as combination of source reward R = f(R;) and lite-model T'(- | s, a)

Multi-Task Reinforcement Learning (MTRL): MTRL addresses transfer from a different angle by
aiming to jointly learn across multiple tasks. Rather than assuming task isolation, MTRL leverages shared
experience across a distribution of tasks to improve generalization or reduce training time on each task
Vithayathil Varghese & Mahmoud, (2020). Common methods involve parameter sharing at the level of
policy networks, value functions, or representation encoders. For example, D’Eramo et al.| (2019) explores
decentralized training where multiple agents share parameters with a central model during training, facilitating
cross-task generalization. MTRL typically involves joint learning across tasks. Moreover, MTRL approaches
typically rely on strong assumptions about the alignment of tasks during training, such as tasks belonging to
the same distribution [Taylor & Stone| (2009). These assumptions are necessary for stable joint optimization
but significantly limit robustness when attempting to generalize or transfer across structurally diverse or
highly heterogeneous tasks.

Despite their promise, existing transfer RL and MTRL methods often assume a high degree of behavioral
or reward similarity between source and target tasks. When this assumption does not hold, transferred
knowledge can mislead the learning process, a phenomenon known as negative transfer. To mitigate this,
some approaches investigate mechanisms for estimating or bounding task similarity prior to transfer, though
such measures are not always practical, reliable, or easy to compute |Carroll & Seppi| (2005); [Taylor & Stone
(2009). The proposed approach to reward adaptation does not rely on this assumption and thus bridges an
important gap in transfer learning, offering a complementary and robust strategy for leveraging prior task
knowledge across tasks, regardless of their similarity.

Under review as submission to TMLR

Other Related Paradigms: Several adjacent fields intersect with the goals of transfer in RL and RA.
Reward decomposition [Russell & Zimdars| (2003)); |Van Seijen et al.| (2017) breaks down complex reward
signals into composable sub-rewards to simplify learning. Multi-objective RL [Roijers et al.| (2013)); |Vamplew
et al.| (2011]) optimizes policies that balance trade-offs among multiple predefined objectives. Hierarchical
RL (HRL) Dietterich (1998])); Bacon et al.| (2017 structures learning around temporal abstraction, using
high-level policies to control low-level sub-policies. While conceptually related, these approaches often rely
on known task structure, explicit sub-goals, or carefully designed reward factorizations, which limit their
applicability to general transfer scenarios or in some cases they are only scaling up RL instead of effective
transfer of knowledge.

3 Proposed approach

In this section, we start with a brief introduction to reinforcement learning (RL) before discussing reward
adaptation (RA) and formulating our approach.

3.1 Preliminaries

In RL, the task environment is modeled as an MDP M = (S, A, T, R,~), where S is the state space, A is the
action space, T : S x A x S — [0,1] is the transition function, R: S x A x S — R is the reward function,
and -y is the discount factor. At every step t, the RL agent observes state s; and takes an action a; € A.
As a result, the agent progresses to state s;y1 according to the transition dynamics T'(+|s¢, at), and receives
a reward ;. The goal is to search for a policy that maximizes the expected cumulative reward. We use
7S — A to denote a policy. The @ function of the optimal policy 7* is denoted by Q* and defined in Eq. [I]

S]]

To prepare us for later discussion, we also introduce Q* (Eq.
to represent the Q) function of the “worst” policy that min-
imizes the expected return. The following lemma establishes
the connection between Q" and a variant of Q*:

Lemma 3.1. Q%(s,a) = —Q* (s, a), where Q* y(s,a) denotes Q"(s,a) = min
the @ function of the optimal policy under negative R or —R.

Q*(s,a) = max l

lZvnSm H (2)

t=0

In this paper, we consider RL with discrete state and action spaces and deterministic policies. Extending the
discussion to the continuous cases and stochastic policies will be future work. Proofs throughout the paper
are in the appendix.

3.1.1 Reward Adaptation (RA)

In RA, we consider only the adaptation of the reward function, and hence assume the same transition dynamics
(including terminal states), state, and action spaces for the source and target behaviors. Furthermore, the
source and target reward functions are assumed to be related, e.g., via success features in [Barreto et al.| (2017).
The source domains are no longer accessible while learning target behaviors but may transfer knowledge to
the target domain. Next, we provide the problem statement of RA under our approach as follows:

Definition 3.2. Reward Adaptation: RA is a problem to determine the optimal policy under a target reward
function R that is under a known functional relationship with the source reward functions specified as
follows:

R = f(R1,Rz,...Ry) (3)

where f is referred to as the combination function that relates rewards from the source and target domains.

The above definition provides a general formulation of RA when no restriction is placed on f, equivalent to
that in [Barreto et al. (2017) when each state is viewed as a unique feature. In practice, however, we often
restrict the form of f, such as assuming linearity. In such cases, even though the above formulation becomes
less expressive than [Barreto et al. (2017)) for RA problems, it enables Q-M to drop the requirement on the
similarity between the source and target behaviors. When f must be learned, f can also be augmented with
a noise component to accommodate for imperfect observations or function mappings (more discussion later).

Under review as submission to TMLR

3.1.2 Provably Efficient Transfer in Q-Learning

A central objective in transfer learning is to establish theoretical guarantees that knowledge transfer leads
to improved sample efficiency (Agarwal et all 2023} Tirinzoni et al., |2020; [Mann & Choe} 2013). However,
these results do not apply readily to reward adaptation, which has a more restrictive problem setting that
allows the analysis to be more targeted. In particular, in our approach, the efficiency of sample complexity
lies in action pruning. Using Theorem 7 from |Qu & Wierman| (2020), the sample complexity bound is given

by O(%) , where |S| denotes the cardinality of the state space, |A| denotes the cardinality of the
action space, tmix is the mixing time of the underlying Markov chain induced by the policy, v € (0,1) is
the discount factor, and € > 0 is the accuracy parameter. Q-M pruning strategy eliminates suboptimal
actions while ensuring that the optimal action is preserved, thereby yielding a reduced action set A < A.
Furthermore, pruning may render some states of the original MDP unreachable, since transitions associated
with pruned actions are removed. This is equivalent to cutting down the state space since the theory applies
to space that is ergodic. Hence, action pruning directly impacts the (|S||.4])? term in the bound. Moreover,
the simplified transition structure typically leads to a smaller mixing time ¢.,;x. Together, these effects yield a
polynomial (at least a quadratic) reduction in sample complexity, as compared to the original MDP. It is also
worth noting that action pruning not only benefits sample complexity but also regret. Even though these are
separate concepts in RL, they are often related: the theoretical regret bounds often depend polynomially on
the cardinality of the state and action space (Zhang et al.| (2020); [Bai et al.| (2019)).

3.2 Q-Manipulation

In transfer learning, the source domains can pass information to the target domain to facilitate its learning.
In RA such as Barreto et al.| (2017)), for example, what is passed includes 1) successor features, which are
essentially discounted feature counts, and 2) source weights. The successor features of a source policy allow it
to be evaluated easily under any new task given its weights. In Q-M, we assume the following to be passed:
a) source reward function, and b) a lite-model of the environment (denoted by 7'(-|s, a)), where the lite-model
captures neighboring information only. For example, the neighbors of a state after executing an action may
be represented as a small region around that state. Since the lite-model does not model the distribution
of such neighbors, it is much easier to specify or learn (while learning the source behaviors) than the full
dynamics model in MDP. For the target domain, feature weights are assumed in |Barreto et al.|(2017) and f
is assumed in Q-M. Both may also be learned. From this perspective, Q-M is comparable to [Barreto et al.
(2017)) in terms of resource demands.

In Q-M, we iteratively refine an upper and lower bound (UB and LB) of Q% . These steps are formalized
below:

Definition 3.3 (Q-M Bellman Operators). The Bellman operators for UB and LB in Q-M are mappings
T : RIS*Al 5 RISXAl that satisfy, respectively:

(Tm,angB)(sa ll) = max R(Sv a, S,) + 7y max QgB (5/7 al)i| (4)
s’€T(+|s,a) a’

(Tmzn]?B)(Sa a) = rpln R(Sv a, S,) + 7y max QiB (S/7 a/)i| (5)
s'€T'(+|s,a) a’

More specifically, T(|s, a) denotes 1-step reachable states from s, a. In practice, T('|s, a) can be estimated
via memorization while learning the source behaviors. Such information can then be consolidated by the
target domain. An assumption here is that each transition must have been experienced at least once by at
least one of the source domains during learning, which is a much less stringent requirement than that in the
value convergence of RL. When information regarding T(\s, a) is available, it can be provided directly to
the target domain without implicit knowledge transfer. A similar practice can be adopted for the source
reward functions, which are combined via f to compute the target reward function used above (i.e., R).
When R; is subject to noise, it may be approximated by the mean reward measured during source training.
However, this approximation does not by itself provide the statistical guarantees required to establish sound
performance bounds (refer Section . A more rigorous treatment of this issue is left for future work.

With deterministic domains, the Q-M Bellman operators above are exactly the operator in value iteration.

Under review as submission to TMLR

Note about lite-models: [Zhuo & Kambhampati| (2017) has explored the use of lite-models for planning. Lite
models are incomplete or approximate models of a domain: they provide limited or coarse-grained information
about the domain dynamics. While the lite-model considered in our work cannot be used directly for planning,
it can support reinforcement learning, opening up a new possibility for transfer learning.

Similar to value iteration, the UB and LB can be initialized arbitrarily, established by the following theorem.

Theorem 3.4 (Q-M Convergence). T : RIS*Al RISXAl js g strict contraction such that the Q function
converges to a unique fized point for UB and LB, respectively, or more formally:

IT'Qr — T'Qrsilloo < VQk — Qrtillos, YQk, Qi1 € RISHAI

I/ llcc = sup, |f(z)| and hence ||Qr — Qk+1|l0o returns the maximum absolute difference between Qy (s, a) and
Qk+1(s,a) under any s,a above. Given that the Q values for UB and LB may be initialized arbitrarily, Next,
we demonstrate that the bounds are valid upon convergence. This is established by the following theorem:

Theorem 3.5. Given the standard Bellman operator T, Tmin, and Tmax (discussed above), if the initial
Q-functions are ordered such that QEP < Qo < QYB, then

QL <Qr=Q”
holds for all k > 0. Thus, the fized points Q*, QLB , and QU produced by the respective operators, satisfy

the same ordering in the limit as k — oo.

3.2.1 Monotonic Q-Manipulation (M-Q-M)

We have shown that Q-M iteration process will converge to a fixed UB and LB, respectively. However, the
updates are conservative in the sense that only the best or worst transitions are considered. This can lead to
loose bounds even when we start with tighter bounds as initialization, which is counterproductive. Next, we
consider new update rules to avoid the issue when we have a valid UB and LB to start with.

First, we formalize the new updates as follows:

Upper Bound (UB)

YB(s,a) > Q* [Initialization] (6)
ngl(s, a) =min <QgB(s, a), max [R(&a, s') + ymax QgB(s’,a')]) (7)
s’€T'(+|s,a) a’
Lower Bound (LB)
"B < [Initialization] (8)
Q,’;‘fl(& a) =max (QfB(s, a), min [R(& a,s') +ymax QLB (s, a’)} > (9)
s'€T'(+]s,a) a’

This update guarantees that the upper and lower bounds are monotonically non-increasing (for the upper
bound) and non-decreasing (for the lower bound). At every iteration, the bounds satisfy the condition:
QB < @Q* < QY. The outermost max/min ensures QU2 > Q* > QP throughout the iterative processes
via simple induction. When the source reward functions are noisy, it requires their min/ max noise to be
used in the updates. Similar to Q-M, when R; is noisy, using mean reward may lead to inaccuracy due to
approximate R; as well as inaccurate source () functions derived from R;. In such cases the soundness of the
bounds cannot be guaranteed (refer Section . Next, before discussing the initializations, we show that
such processes converge to a fixed point in M-Q-M.

Definition 3.6. (M-Q-M Bellman Operators) The min and max Bellman operator for UB and LB in M-Q-M
are mappings 7 : RIS*Al — RIS*Al that satisfy, respectively:

(TmegB)(SaG) = min < gB(Sva‘)7 max |:R(57CL,SI) +7H§”X QgB(Slya/):I>

s'€T(-|s,a)

s'€T(|s,a)

(Tmaac ﬁB)(&a) = max (QkL:B(Sva)v HliIl |:R(S7(1,Sl) +")/Inaa;X Q£3(3/7a/):|>

Under review as submission to TMLR

Since the theoretical results for the min and max operators are similar, we do not distinguish between them
below but provide separate proofs for them in the appendix.

Theorem 3.7 (M-Q-M Convergence). The iteration process introduced by the Bellman operator in M-Q-M
satisfies

1TQk — TQrr1lloo < VQk — Qrrtlloos YQk, Qi1 € RISXA

under the initialization assumption of equation[0] and equation[§ such that the Q function converges to a fized
point.

This process converges to a fixed point, since the difference between two consecutive iterations always
decreases. However, it turns out that the fixed point may not necessarily be unique, as with value iteration.

Theorem 3.8. The Bellman operator in Q-M specifies only a non-strict contraction in general:
|re-74|, <[e-2]
o0 o0

This result is interesting since it identifies another case where non-strict contraction results in a fixed point
other than the identity map.

Corollary 3.9 (Non-uniqueness). The fized point of the iteration process in M-Q-M may not be unique.

In our evaluation, we observe that the fixed point found by the M-Q-M iteration process depends on the
initialization. Another observation is that the Bellman operator in M-Q-M appears almost identical to that
in value iteration when the MDP is deterministic. In such cases, we observe that Q-M and M-Q-M often
results in zero-shot learning when the upper and lower bounds converge to Q% .

3.2.2 Initializing the Bounds

In order to use M-Q-M updates, the user must provide some correct bounds to start with. To relax such a
requirement, next, we show how high quality initialization can be automatically computed for restrictive
sets of problems. Computing such an initialization requires additional knowledge to be transferred from the
source to the target domains, referred to as Q variants (Q* and Q*).

A simple way to initialize the bounds would be to identify the most positive and negative rewards and
compute the sums of their geometric sequences via the discount factor, respectively. However, these bounds
are likely to be too conservative to be useful since the iteration processes may converge undesirably due to
non-unique fixed points. Intuitively, we would like the bounds to be tight initially to yield the best results.
However, computing bounds for the target behavior based on information from the source behaviors only is
not a trivial task. Next, we show situations where additional assumptions hold such that we can provide more
desirable initializations. In particular, we will show next how different forms of the combination function f in
Eq. B can affect the initializations.

Linear Combination Function: First, we consider the case when the target reward function is a linear
function of the source reward functions. In such cases, if the agent maintains both Q’s and Q}’s while
learning the source behaviors, we propose the initializations as follows. Note that Q! can be obtained
conveniently while learning the source behaviors based on Lemma [3.1]

Lemma 3.10. When R = E? 1 CiRi with ¢; > 0, the upper and lower bounds of Q% are, respectively,
UB =5 ¢;Qf and QFP = max; {CzQ + Z ¢ Q@ }, where j € {1:n}\i.

Nonlinear Combination Function: Handling a nonlinear combination is more complicated and deriving
tight bounds that are guaranteed to be correct is difficult. Instead, we propose approximate bounds for
a monotonically increasing and positive function f as follows: UB = f((e @lRap - - > @) and

- _f(QTRl‘vQTRZP'“vQTR |)

Using the bounds above requires the agent to maintain Ql R, S Since these bounds are approximate, they do
not guarantee correctness for M-Q-M in general, meaning tLat actions belonging to the optimal policy may
be pruned. However, we show that they work well in practice in our evaluation.

Under review as submission to TMLR

3.2.3 Noisy Combination Function

When the combination function is not known exactly but can be modeled with an additional noise component,
such that R = f(R; ... R,) + N, and we know the range of the noise (i.e., Ny and Nyua.). We can consider
such situations by augmenting the R(s, a, s’) in Egs. |z| and@with Nmaz and Npin, respectively. We must also

update the initialization of the bounds using QUZ = QUB 4 N,,4. ¥ 77 and QP8 = QLB+ N, im X Vtm”
where t,,4, is the maximum steps in an episode. Note however that such modifications will likely reduce the
efficacy of Q-M.

3.3 Action Pruning in Q-M:

If an action a’s lower bound is higher than some other action @’s upper bound under a state s, then a can be
pruned for that state. This allows us to reduce the action space per each different state, which contributes
to faster convergence (refer Sec. . For empirical purposes and to avoid numerical instability, we use
a threshold (A) and prune only if Q*5(s,a) — QUB(s,a) > A. When the source domain’s Q values are
computed using value iteration with a stopping threshold €, A can be set to be 26& to ensure that no
actions would be wrongly pruned. When the Q values are approximated (such as via Q learning) and e is
unknown, setting A would not be so straightforward and we delay its treatment to future work. When the
upper and lower bounds are sound, the optimal policies are preserved.

Theorem 3.11. [Optimality] For reward adaptation with @ variants, the optimal policies in the target domain
remain invariant under Q-M and M-Q-M when the upper and lower bounds are initialized correctly.

4 Evaluation

4.1 Baselines

The primary objective here is to evaluate the performance of Q-M using the target time to threshold and
analyze its benefits and limitations. We compare Q-M against three methods: SFQL Barreto et al.| (2017)),
a state-of-the-art approach for reward adaptation; SQB |Adamczyk et al. (2024), which clips the Bellman
error using a prior @Q-function to accelerate learning; and standard Q-Learning (QL) without any knowledge
transfer as a baseline. To initialize learning for SFQL, we evaluate the given source behaviors in the target
domain to compute a bootstrap Q-function as described in the generalized policy improvement theorem in
Barreto et al.| (2017). Additional results for the running time taken by the Q-M iteration process are reported
in Sec. We keep the hyperparameters for Q-Learning the same across the different methods (refer Sec.

ALl).

4.2 Evaluation Design

Since we are interested in demonstrating Q-M (short for Q-M/M-Q-M unless separately noted) as a more
robust knowledge transfer method than SFQL or SQB, we design the evaluation domains such that the target
behaviors are substantially different from the source behaviors in most of them (similar to the situation in
Dollar-Euro). Designing evaluations this way also provides an opportunity to study negative transfer in
transfer learning. Details on how the source and target behaviors are designed are in the appendix. For SFQL,
policy evaluation of the source behaviors, required to bootstrap target learning, is achieved via value iteration
on the target. To analyze the theoretical properties of Q-M, we assume access to accurate lite-models, reward
functions of the source behaviors, and Q-variants (only for M-Q-M and computed using value iteration). In
the appendix, we use memorization and learning to estimate these from source domains, which demonstrate
comparable performances. For M-Q-M, we use the initializations described in Sec. [3.2:2]

One observation about Q-M is that the computation of UB and LB is affected substantially by the stochastic
branching factor (SBF) of a domain, as evident in Egs. and [9] SBF here is defined as the maximum
number of next states reachable (or with a nonzero transition probability) from any state and action pair
Intuitively, the less stochastic the domain is, the more the Bellman updates in Q-M resemble that in value
iteration: Q-M updates in deterministic domains are exactly value iteration updates, resulting in zero-shot

Under review as submission to TMLR

learning. To demonstrate the influence of SBF, for each evaluation domain, we gradually increase its SBF. At
the same time, the number of reachable states from a given state is allowed to vary and is randomly chosen
between 1 and a set SBF. We first evaluate with gridworld domains where combination is a linear combination
of source rewards. We also visualize actions pruning in a chosen domain to illustrate its operation. To evaluate
the generality, evaluations are further conducted with autogenerated MDPs and with linear and non-linear
combination functions Finally, we study the effectiveness of Q-M under noisy combination functions, which
analyzes the situations when the combination functions must be learned but noise can be bounded.

All evaluations are averaged over 30 runs. In the convergence plots, we indicate the mean with a solid line,
and the shaded region represents a 95% confidence interval. More details about the evaluation settings,
along with a detailed description of all the domains, including the design of source and target behaviors, are
reported in the appendix.

4.3 Gridworld and Linear Combination Function

— QM — MQM — QL —— SFQL —— SQB
SBF =1 SBF =2 SBF =4

1.20 1.20 1.20

1.04 1.04 1.04
0.96 0.96 0.96
0.88 0.88 0.88
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
SBF =1 SBF =5 SBF =7
0 0 0 /___,—
c
£ — , ;
g -4 -4 -4
S
© -8 -8 -8
Q
<<
-12 -12 -12
-16 -16 -16
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
SBF =1 SBF =2 SBF = 4
0.9 0.9 / y 0.9 /
0.6 0.6 0.6
03 03 03
0.0 0.0 0.0
-03 -03 -03
0 1500 3000 4500 6000 0 1500 3000 4500 6000 0 1500 3000 4500 6000

Step

Figure 2: Convergence plots for Dollar Euro (top), Racetrack (mid), and Frozen Lake (bottom).

In this evaluation, we compared Q-M and M-Q-M with the baselines in simulation domains that include
Racetrack, Dollar-Euro, and Frozen Lake domain with linear combination functions. The convergence plots
are shown in Fig. [2| In each subfigure, we show the SBF used (labeled at the top). We observe that M-Q-M
converges substantially faster than the baselines in all three domains. Depending on how many actions are
pruned under traditional Q-M, its performance lies between M-Q-M and QL. In Sec. we show how
action pruning differs between M-Q-M and Q-M, which results in such an effect on convergence. However, as
expected, the performance of Q-M and M-Q-M are negatively impacted as SBF increases. An interesting
observation is the performance of SFQL. SFQL seems to struggle with these domains, especially racetrack

Under review as submission to TMLR

and frozen lake domains. Since the source behaviors differ much from the target behavior, knowledge transfer
in SFQL based on combining the source behaviors can actually misguide the learning process. It is worth
mentioning that SFQL eventually converged to the optimal policy after we allowed it to train with more
episodes. In addition, we also observe that Q-M in deterministic scenarios (leftmost subfigures when SBF
= 1) result in zero-shot learning: their iterative processes for computing UB and LB both converge to Q%.
Similar to SFQL, SQB also struggles in the racetrack and frozen lake domain. This result demonstrates that
Q-M is indeed more robust against negative transfer, and thus represents a more general knowledge transfer
method that does not depend on the similarity between the source and target behaviors.

4.3.1 Analysis of Action Pruning

For gridworld domains (with 4 actions), to understand the states where actions are pruned, we plot heat-maps
(refer Fig. [3| for the Dollar Euro domain). In all three domains, we observe significant pruning around the
terminal states. In addition, we also observe that fewer actions are pruned as SBF increases. The following
color codes are used: initial state = yellow and goal states = green. We use different shades of blue to
illustrate how many actions are pruned in a state: the lighter the color, the fewer the actions remain. Upon
comparing Dollar-Furo domain’s action pruning using M-Q-M and Q-M, we observe that Q-M results in
pruning fewer actions (as shown in the Fig. [3). The additional information used by M-Q-M is able to anchor
the values to better bounds than the unique fixed point identified by Q-M, which results in more pruning
opportunities in M-Q-M. As the SBF increases, Q-M prunes out fewer actions, and so performance becomes
similar to QL. This trend is consistent across other domains as well.

Dollar Euro SBF= 1. Dollar Euro SBF= 2. Dollar Euro SBF= 4.

40 4.0

< -
| 35 35

™ 3.0 30 7

~ -25 -25 0~

. 20 -20
| | 15 -15

=] 'EB' =]
10 -1.0

6 1 2 3 4 5 6 7 8 5 6

4.0

4

35

3

3.0

o -25

g AR NEN

o 1 2 3 4 5 6 7 8

-2.0

-15

4.0

35

- 30
-25 ~

-2.0
-

-1s
)

-10

Figure 3: Heat-maps illustrating action pruning in the Dollar Euro domain using M-Q-M (top) and Q-M
(bottom). Lighter shade of blue indicates fewer action remain after pruning.

-10

o i 2 3 4 5 & 71 8

4.4 Autogenerated MDP with Linear and Non Linear Combination Function

In order to test generalization beyond gridworld and linear combination function, we evaluated with auto-
generated MDP where T is randomly generated in each run. The terminal states were held fixed as well as
their terminal rewards. The convergence plots are presented in Fig. [d] averaged over 30 different MDPs.
Similarly, we can observe that M-Q-M performs the best in both domains. We also observe that when the
combination function is a nonlinear combination, M-Q-M and Q-M’s performance drops due to reduced action
pruning. It demonstrates that our methods can generalize to MDPs beyond gridworld dynamics and different
target reward combinations.

10

Under review as submission to TMLR

— QM — MQM — QL —— SFQL —— SQ@B
SBF =1 SBF =3 SBF =5
1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 0.50
0.25 0.25 0.25
€
20.00 0.00 0.00
['4
) 0 1500 3000 4500 6000 0 1500 3000 4500 6000 0 1500 3000 4500 6000
5 SBF =1 SBF =3 SBF =5
<
16 16 16
1.2 12 12
0.8 0.8 0.8
0.4 0.4 0.4
0.0 _ 0.0 0.0
0 1000 2000 3000 4000 5000 0 1000 20080t 3000 4000 5000 0 1000 2000 3000 4000 5000
ep

Figure 4: Convergence plots for auto-generated domains: R = Ry + Ry (top) and R = (R; + R2)? (bottom).

4.5 Noisy Combination Function

We aim to evaluate how Q-M would perform under noisy combination functions and how noise affects its
performance. We used the same setting as the autogenerated MDP described above. We consider a situation
where the combination function is not exactly known but can be modeled by using a noise component:
R = Ry + Ry + N. Assuming the knowledge of Ny;, and Ny .y, we updated the initializations and Bellman
updates for M-Q-M. The convergence plots are presented in Fig. [B] demonstrating the diminishing boost in
performance as the number of actions pruned decreases with increase in the magnitude of noise. As expected,
we observe that noise has an impact on the efficacy of M-Q-M: the more noise, the smaller the performance
gain. It is important to note that the maximum magnitude of noise that allows action pruning depends
on MDP reward design. However, it is promising to observe that M-Q-M can still be effective under such
noisy situations since it can greatly expand the applicability of M-Q-M. For instance, when the functional
relationship is unknown, we can apply regression to fit the source reward functions to the observed target
rewards under an assumed functional form based on domain expertise; noise can be incorporated to handle
regression error.

Actions Pruned with respect to uniform noise Action Pruning using M-Q-M Action Pruning using Q-M
16.9%

17.1%

I 11 1.1
g 12 11.5%
5% c c

5 E10 £1.0
Q40 k] H
® 4 14
S 8.3% 009 209
G 8 7.4% 7.4% 7.6% 5 3
S Zos — Pruned=17.1% Zgg ~—— Pruned =7.4%
g° ~—— Pruned = 16.9% ~— Pruned =7.4%
Qo 4.0% —— Pruned = 11.5% ~—— Pruned = 4.0%
Z 4 0.7
< 3.0% 2.8% —— Pruned =8.3% 07 —— Pruned = 3.0%

2 —— Pruned =7.6% —— Pruned =2.8%

0.6 —a 0.6 —a
0
0.25% 0.50% 0.75% 1.00% 1.25% 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
+/- Percentage Noise wrt Rmax=1.2 Step Step

Figure 5: Performance under varying noise in auto-generated domains. Left: Actions pruned (%) vs. noise.
Middle: M-Q-M convergence. Right: Q-M convergence. (color: dark = M-Q-M, lighter = Q-M).

11

Under review as submission to TMLR

5 Limitations and Future Work

Convergence Quality for M-Q-M: The convergence behavior of M-Q-M depends critically on its initializa-
tion relative to the convergence point of Q-M. In the case where the initialization of M-Q-M strictly dominates
the fixed point of Q-M (i.e., higher for upper bounds and lower for lower bounds,Vs, a), M-Q-M would perform
at least as well as Q-M. However, the situation is less clear when the quality of the initialization is less known.
This raises an open question regarding the quality of convergence for M-Q-M: Under what conditions on the
initialization does M-Q-M yield strictly tighter bounds or improved performance compared to Q-M? Formal
characterization of such conditions, potentially in terms of partial dominance or monotonicity properties over
subsets of the state-action space, could offer deeper theoretical insights and guide more effective initialization
strategies. Exploring this direction represents a compelling avenue for future work.

Safety Considerations: Safety is critical when applying Q-M in real-world settings. For instance, in
autonomous driving, @ may prioritize avoiding obstacles, ensuring safe navigation. In contrast, learning Q'
could result in reckless behavior, like colliding with obstacles, which is unsafe and undesirable. Therefore,
selecting a safe, ethical behavior for learning Q-variants becomes essential when designing Q-M systems for
real-world applications. One possible solution is to leverage safe RL methods, such as shielding [Alshiekh
et al.| (2018]), to ensure safety while learning Q-variants.

Scaling to Real-World Domains: While effective in discrete settings, Q-M must overcome challenges to
scale to continuous spaces, where Q-value bounds are harder to initialize and refine. This raises a central
challenge: how to effectively initialize and refine Q-value bounds when the space is uncountably infinite.
One solution lies in leveraging function approximation to estimate these bounds efficiently. Additionally,
identifying one-step reachable neighbors becomes more complex in continuous spaces. A potential approach is
to approximate these neighbors via uniform sampling within a bounded radius in the state space, or to derive
closed-form functions that produce finite, representative next states. Approximation errors may cause Q-M
to prune optimal actions, degrading performance. To ensure reliability, pruning should be used cautiously
and combined with techniques that mitigate approximation bias. For example, setting A (refer Sec.
should be done empirically due to the fact that the error in the estimated value function is unknown.

Generalization and Domain Adaptation: Q-M currently assumes a known relationship between source
and target rewards, limiting its use when target rewards are unknown. Extending Q-M to learn or infer
these relationships would improve adaptability. Its pruning strategy could also support dynamics transfer
(off-dynamics RL), expanding applications to areas like sim2real transfer.

Q-M provides a promising foundation for transfer in RL. Realizing its practical impact will require addressing
safety, scalability, approximation errors, and generalization, each offering challenges and opportunities for
broader real-world adoption.

6 Conclusions

In this paper, we studied reward adaptation, the problem where the learning agent adapted to a target
reward function based on the existing source behaviors under the same MDP except for R. We propose
2 methods 1) Q-Manipulation (Q-M) and its extension, 2) Monotonic Q-Manipulation (M-Q-M) as novel,
theoretically grounded approaches for reward adaptation in reinforcement learning. By leveraging source
Q-function variants, these methods compute tight bounds on the target Q-function to safely prune suboptimal
actions. We formally proved that our approach converged and retained optimality under correct initializations.
Empirically, we showed that Q-M and M-Q-M were substantially more efficient than the baselines in domains
where the source and target behaviors differ, and generalizable under different randomizations. We also
applied Q-M to noisy combination functions to extend its applicability. As such, our methods offer a robust
framework for leveraging prior knowledge in reinforcement learning, advancing the state of transfer and
continual learning. Our work also opens up many future opportunities, such as addressing continuous state
and action spaces and handling different domain dynamics (in addition to reward functions) as in domain
adaptation.

12

Under review as submission to TMLR

References

Jacob Adamczyk, Volodymyr Makarenko, Stas Tiomkin, and Rahul V Kulkarni. Boosting soft g-learning by
bounding. arXiv preprint arXiv:2406.18033, 2024.

Alekh Agarwal, Yuda Song, Wen Sun, Kaiwen Wang, Mengdi Wang, and Xuezhou Zhang. Provable benefits
of representational transfer in reinforcement learning. In The Thirty Sizth Annual Conference on Learning
Theory, pp. 2114-2187. PMLR, 2023.

Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Koénighofer, Scott Niekum, and Ufuk Topcu.
Safe reinforcement learning via shielding. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy Colwell.
Model-based reinforcement learning for biological sequence design. In International conference on learning
representations, 2019.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient g-learning with low switching cost.
Advances in Neural Information Processing Systems, 32, 2019.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and David
Silver. Successor features for transfer in reinforcement learning. Advances in neural information processing
systems, 30, 2017.

André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement learning with
generalized policy updates. Proceedings of the National Academy of Sciences, 117(48):30079-30087, 2020.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intelligence, 134(1-2):
57-83, 2002.

James L Carroll and Kevin Seppi. Task similarity measures for transfer in reinforcement learning task
libraries. In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp- 803-808. IEEE, 2005.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowledge in
multi-task deep reinforcement learning. In International Conference on Learning Representations, 2019.

Thomas G Dietterich. The maxq method for hierarchical reinforcement learning. In ICML, volume 98, pp.
118-126. Citeseer, 1998.

David Krame Kadurha, Domini Jocema Leko Moutouo, and Yae Ulrich Gaba. Bellman operator convergence
enhancements in reinforcement learning algorithms. arXiv preprint arXiv:2505.14564, 2025.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238-1274, 2013.

Timothy A Mann and Yoonsuck Choe. Directed exploration in reinforcement learning with transferred
knowledge. In Furopean Workshop on Reinforcement Learning, pp. 59-76. PMLR, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529-533, 2015.

Guannan Qu and Adam Wierman. Finite-time analysis of asynchronous stochastic approximation and
g-learning. In Conference on Learning Theory, pp. 3185-3205. PMLR, 2020.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-objective
sequential decision-making. Journal of Artificial Intelligence Research, 48:67-113, 2013.

13

Under review as submission to TMLR

Stuart J Russell and Andrew Zimdars. Q-decomposition for reinforcement learning agents. In Proceedings of
the 20th International Conference on Machine Learning (ICML-03), pp. 656-663, 2003.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey. Journal
of Machine Learning Research, 10(7), 2009.

Andrea Tirinzoni, Riccardo Poiani, and Marcello Restelli. Sequential transfer in reinforcement learning with
a generative model. In International Conference on Machine Learning, pp. 9481-9492. PMLR, 2020.

Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan Dekker. Empirical evaluation
methods for multiobjective reinforcement learning algorithms. Machine learning, 84(1):51-80, 2011.

Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey Tsang. Hybrid
reward architecture for reinforcement learning. Advances in Neural Information Processing Systems, 30,
2017.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement learning.
Electronics, 9(9):1363, 2020.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. -, 1989.

Markus Wulfmeier, Arunkumar Byravan, Sarah Bechtle, Karol Hausman, and Nicolas Heess. Foundations for
transfer in reinforcement learning: A taxonomy of knowledge modalities. arXiv preprint arXiv:2312.01939,
2023.

Yimo Yan, Andy HF Chow, Chin Pang Ho, Yong-Hong Kuo, Qihao Wu, and Chengshuo Ying. Reinforcement
learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities.
Transportation Research Part E: Logistics and Transportation Review, 162:102712, 2022.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learningvia reference-
advantage decomposition. Advances in Neural Information Processing Systems, 33:15198-15207, 2020.

Hankz Hankui Zhuo and Subbarao Kambhampati. Model-lite planning: Case-based vs. model-based ap-
proaches. Artificial Intelligence, 246:1-21, 2017.

14

Under review as submission to TMLR

A Appendix

A.1 Theoretical Proofs

Lemma [3.1]

Q(s,a) = = min

[foon]
S— [i_ytmso,ﬂu o

t=0

= —Qg(s,0)

Lemma When R =3 ¢;R; where ¢; > 0, an upper and lower bound of Q% are given, respectively, by:

n
-0
i=1

5B — max[e;QF + chQg] where j € {1:n}\¢

J

(11)

Proof. From definition, we have:
QT = max [E[cirio +veiria + ...+ ¢iri nlso, 7] (12)

By reorganizing the reward components, we have:

Z CiQ;T = Qﬂ- R 13
i S e, (13)
Denote the optimal policy under the target reward function R as 7*, given ¢; > 0, we can derive that

D_aQi =) aQf = Qr (14)

For the lower bound, we have:

max (;:QF + ch) < cpQF + ZCJ 7r’“

J#i J#k
where k denotes the best choice of 7 from the left (15)
< rn;}x(ciQf + Z c;Q7)
j#i
O

Next, we present a few lemmas that are used in the proof of our theorems:

Lemma A.1.

(a) — maxg(a)| < max|f(a) - g(a)].
Proof. Assume without loss of generality that max, f(a) > max, g(a), and denote a* = arg max, f(a). Then,

max f(a) — max g(a)| = max f(a) - maxg(a) = f (a") — max g(a) < (@) — g (a") < max|(a) - g(a)].

This concludes the proof. O

15

Under review as submission to TMLR

Lemma A.2.
min f(a) — min g(a)| < max|f(a) — g(a)].

Proof. Assume without loss of generality that f(a*) = min, f(a) > min, g(a) = g(b*). Then,

max [f(a) = g(a)| = [f (b") =g (b")[= f (b7) =g (b") = f(a”) — g (b") = |min f(a) — ming(a)
This concludes the proof. O]

Theorem [Q-M Convergence] T : RIS*Al — RISXAl is a strict contraction such that the @ function
converges to a unique fixed point for UB and LB, respectively, or more formally:

IT'Qr — T'Qrt1lloo < VQk — Qrtillo, YQrk, Qr1 € RISHAI

Proof. For any two Q-functions, denoted Q4P and QLP, the distance between their transformations under
the operator is strictly smaller than their original distance, scaled by . We demonstrate this for 7,,;,. The
proof for T4, follows a symmetric argument.

We want to show:
||Tmzn ,L4B - TmanéBHoo S VHQﬁB - QéBHOO

Consider the absolute difference for an arbitrary state-action pair (s, a):

‘(Tmzn ﬁB)(S’ a) - (Tmm éB)(S, a)|

min {R(s, a,s') +ymax Q5B (s, a’)} — min {R(s, a,s') 4+ ymax QLB (s, a')} ‘
a’ a’

s’ET(~|s,a) s’€T(~|s,a)
< max {R(s, a,s') +ymax Q45 (s, a’)] — [R(& a,s') +ymax QEP (s, a’)] ‘ (Lemma [A.2)
s'€T'(+]s,a) a’ a’
= max |ymaxQEP(s) — ymax Q5 (a)
s'€T'(+]s,a) a’ a’
=~ max |maxQ5iB(s’, a') — max Q5P (s, d)
s'€T(-|s,a) ! a a’

<7 max max|QEP(s,a) — QFP(s,)| (Lemma[A)

s'eT(-|s,a) @
< IQE" - Q5 Il

This inequality holds for all (s,a), so taking the maximum over all state-action pairs gives:

||Tmzn ﬁB - TmeéBHoo S ’YHQ%B - QéBHOO

Since « € [0,1), the operator Tp,n is a contraction. By the Banach Fixed-Point Theorem, this implies that
Tmin has a unique fixed point in the space of bounded Q-functions. O

Theorem Given the standard Bellman operator T, Tiin, and T (discussed above), if the initial
Q-functions are ordered such that Q52 < Qo < QF?, then

LB UB
Qr” < Qr < Q

holds for all k£ > 0. Thus, the fixed points Q*, Q¥Z, and QUE produced by the respective operators, satisfy
the same ordering in the limit as kK — oo.

Proof. First, we establish two key properties of the operators.

16

Under review as submission to TMLR

Lemma A.3 (Operator Properties).

1. Monotonicity: For any two Q-functions Q a,Qp such that Q4 < Qp (pointwise), we have ToQa <
TaQp for any of the three operators Q) € {standard, LB,UB}. This is because max, Q4 < max, Qp,
and the min, max, and expectation operators all preserve this inequality. (for formal proof, refer to
proposition 3.6 in|Kadurha et al.| (2025))

2. Ordering: For any Q-function @, we have TpminQ < TQ < Tmaa®@. This follows from the definition
of expectation that the minimum of a set of values is less than or equal to their expectation, which is
less than or equal to their mazimum.

To prove QPP < Q* < QUP We proceed by mathematical induction:

Base Case (k=0):
Q7 <Qo=<Qf” (given)

Inductive Hypothesis: Assume that for some k > 0, we have the inductive hypothesis:

LB UB
k SQk SQ}C

Inductive Step: First, we prove the left-hand inequality, Qﬁfl < Qp1:

Qitr = TrminQi” (by definition)
< ToninQk (by monotonicity and induction hypothesis)
<TQk (by operator ordering)
= Qr+1 (by definition)

Next, we prove the right-hand inequality, Q41 < Qkal:

Qr+1 =TQk (by definition)
< Trmax @k (by Operator Ordering)
< Trnaz QY (by Monotonicity and induction hypothesis)
= Qi (by definition)

Since both sides of inequalities hold, we have:
Qi < Qra1 < QU
Thus, by the principle of mathematical induction, the ordering

LB UB
Qr” < Qr < Q

holds for all £ > 0. As k — oo, the inequality also holds for fixed points of individual operators. O

Theorem [Convergence] The iteration process introduced by the Bellman operator in M-Q-M satisfies
ITQxk = TQrslloo < MQk = Quslloo, YQu, Qur € RITA.

such that the @ function converges to a fixed point.

Proof. 1) Upper Bound
The operator T, for the upper bound is defined as follows:

s'€T(|s,a)

Qi (s.a) = (Tain %B><s,a>min<Q£B<s,a>, max [R@a,s')+vﬂ;@xQ%B<s’,a’>]) (16)

17

Under review as submission to TMLR

where T'(-|s,a) denotes reachable states from s, a.

We consider the change of difference between Q) values between before and after the modified Bellman update
(ie., the difference between |QY 5 (s,a) — QYB (s,a)| and |QY 5 (s,a) — QY (s, a)|):

Case 1: If the first elements were the smaller values for computing both QY2 11 and QYE 1o in Eq.

Qi (s,a) = QP (s,a)
Qk+2(3 a) = Qka1(a)
‘QkJrl (s,a) k+2 s,a) ’_|Q)—ngl(s7a)|:0

Case 2: If the second element in min was the smaller value for computing QY2 %1 and the first element in min
was the smaller value for QY5 o

QE(s,a) = max [R(s,a,8') +ymax QY *(s',a)

s/ef(~\s,a)
Qg—i-BQ(Sva) Qk+1()
‘ngl(&a) - Qk+2(5 a)’

Case 3: If the first element in min was the smaller value for computing Qkal and the second element in min
was the smaller value for Qgﬁ:

)

QP (s.0) = QP (s,) < max [R(s,0,) +7max QYA(s',)] (Eq. [(1)
s'€T'(+]s,a)
Qi b (s,a) = max [R(s,a,s’) —&—’ymaXQ,gfl(s’,a’)]
s'€T(-]s,a) a’

|Qk+1 s,a) Qka2(5aa)|

=QYP(s,a) — max [R(s,a, s') +ymax QY P (s’,a’)]
s'€T(+]s,a) a’
< max [R(S,a, s') +ymax QY P (s, a’)} — max [R(s,a, s') +ymax QY P (s’,a’)} (Eq. [I7)
s'€T(:[s,a) o s'€T(|s,a) a’
l UB/. ./ l UB (. ./
<| max [R(s,a,s) +ymax Q7 (s ,a)} — max [R(s,a,s)+7maka+1(s ,a)]
s'€T(:|s,a) o s'e€T(-|s,a) a’
<7y max |maxQYP(s',a’) — maxQJ P (s, a’)‘ (Lemma [AT)
a/ a/

s'€T(+|s,a)

<7 max)maX\Qk (s',d") = QUE (s, a")| (Lemma [A7T)
s'e s,a

<HQY"(s,a) — Qk+1(5aa)||oo

Case 4: If the second elements in min were the smaller values for both QY5 11 and QYE o

QE(s,0) = max [R(s,0,8) +ymax QY P (s',a)]
s'€T(+]s,a) a’

Qifa(s,0) = max [R(s,0,5) +ymax QUL (s',a')|

s €T(-|s,a)
|Qk:+1 S, CL ngQ (57 G;)’
_ / UB(.1 1/ ! UB (.1 1
=| max {R(s,a,s)—l—vmax@k (s,a)} — max R(s,a,s)—i—ymax@kﬂ(s,a)}‘
s'€T(:|s,a) o s'€T(+|s,a) o

<QYP(s,a) — QY (s,a)|| (similar to Case 3 above)

18

Under review as submission to TMLR

Since the above cases hold for any s, a, we therefore have:

Q¥ — Qi lloe <AIQF — QiFllo (18)

Since the distance decreases by gamma with every iteration, it will converge to 0 and hence QUE converges
to a fixed point.

2) Lower Bound

The operator Thax for the lower bound is defined as follows:

QEE(5,0) = (T ﬁBX&a)HwX<Q£B@¢0, min [R@¢L§>+vnng£chdﬂ> (19)

s'eT(]s,a)

T'(-|s, a) denotes reachable states from s, a.

We consider the change of difference between Q values between before and after the modified Bellman update
(i.e., the difference between |QEZ (s, a) — QEP (s, a)| and |QEE, (s,a) — QFP,(s, a)|):

Case 1: If the first elements in max were the bigger values for both QLB 71 and QEB Vo
Qifl(sv a) = QéB(Sa a)
QéfZ(Su a) = Q%fl(& a)

|Qk+1 S, a QéfQ(saa” = |Q£B(Saa) - ngfl(saa” =0

Case 2: If the second element in max was the bigger value for Qﬁfl and the first element in max was the
bigger value for Q,fo:

Qi(s,a) = min [R(s,a,8)) +ymax QFP(s)]
s'€T'(+|s,a) a’

QEB,(s,a) = QEP,(s,a)

|Qk+1 s,a) Qﬁfﬂs,a)’ =0

Case 3: If the first element in max was the bigger value for Q£ and the second element in max was the
bigger value for QﬁfQ:

Qfi(s.0) = QfF(s,0) > min [R(s,0.8) +ymax QfF(s,a")] (20)
s'€T(|s,a) o/
Qiy(s,a) = min [R(s,a,) +max QEA (s, a')]
s'€T(-]s,a) a’

19

Under review as submission to TMLR

|Qk+1 s,a) Qﬁfﬂs,a)‘
=—|@"(s0) = min [R(saaa s') + 7 max Qﬁfl(s’,a’)}
S/€T(:|s,a) 2
(since QEP,(s, a) > QEP, (s, a) based on Eq.

< - (min [R(s,a,s’) —l—*ymaxQéB(s',a')] — min [R(s,a, s') —|—’ymaxQ£fl(s’7a’)}> (Eq.
a’ a’

s’GT(-\s,a) S’ET(~|s,a)
<| min [R(s, a,s') +ymax QEP (s, a')} — min [R(s, a,s') +ymax QrP, (s, a’)] ‘
s'€T(:|s,a) al s'€T(:]s,a) a
<7y max |maxQpP(s’,a') —max QP (s, a’)‘ (Lemma [A.2)
a’ a’

s'€T(-|s,a)

<5 max max [QFP(s,) ~ QEE (s a)| (Lemma[AT)

s'e€T(-|s,a)

< QK (s,0) — Qi (s,)l

Case 4: If the second elements in max were the bigger values for both Q41 and Qgy2:

Qifi(s,a) = min [R(Sv a,s') +ymax Qr5 (s, a’)}
s’€T'(+]s,a) a’
Bt =_min (Rl) 420G)

|Ql€fl (Sa a) - Ql?f2(sa a)|

min [R(s,a,s’)—l—vmaXQﬁB(s’,a’) — max [’R(s,a,s')—|—7maxQ£fl(s’,a')}
s'€T(-|s,a) o s'€T(-|s,a) a’

<YNQEP(s,a) — Q1P (s,a)||so (similar to Case 3)

Since the above cases hold for any s, a, we therefore have:

191 — Qkalloe <AIQKF - Qkfillo (21)

Since the distance decreases by gamma with every iteration, it will converge to 0 and hence QLB converges
to a fixed point. O

Theorem The Bellman operator in M-Q-M specifies only a non-strict contraction in general:

|re-7a|_<]e-¢q|,

20

Under review as submission to TMLR

Proof. 1) For Tin computing the upper bound:

TminQ(s,a) — Tmin@(s,a)’ z‘ min <Q(s, a), m(alx : [R(s7 a,s') + fym@x(Q(S',a/))}>
s'€T(-|s,a a

— min (@(s, a), Sler;l(al)z v [R(s, a,s’) + vﬂta}x(@(s',a'))}) ’

<

max(‘Q(s, a) — Q(s,a)],

max {R(s, a,s’) +~ H}I%}X(Q(Sla al))}

s’ET(-|s,a)
— max {R(s,a,s’) —i—fymax(@(s’,a’))} D (Lemma [A72)
s'€T'(-]s,a) a’

<

max<|c2(s,a) — Q(s,a)]|,

Yy max max

ax max [Q(s',) - Q<) D (Lomma 1)
s'€T(-|s,a) @

< max< le-a|_ ,vHQ - @H)

=[le-al,

21

Under review as submission to TMLR

2) For Tmax computing the lower bound:

TmaxQ(s,a) — TmaX@(s,a)’ :’ max (Q(s, a), min [R(S,a, s+ VH}la/JX(Q(S/, a’))])

s’eT(~\s,a)

— max (@(s,a), min [’R(s,a,s’) + ’ynza}x(@(s’,a’))}) ’

s'€T(+|s,a)

<

o[Qs.0) - Qlsva)]

min [R(s,a,5) + y max(Q(,)]

s'€T'(-]s,a)

— min [R(s,a,s’) + vmax(@(s’,a’))} D (Lemma [A.1])
s'€T(-]s,a) a’

<

max< Q) - Qs a)|

max max [Q(s’,a’) - @(s’,a’)} D (Lemma [A.2)

s’ET(‘|s,a) a’
<max([[o-@] _|e-q)
=|le-4|,
Since the above holds for any s,a and for both T, and Thax, we have the conclusion holds. O

Theorem [Optimality] For reward adaptation with Q variants, the optimal policies in the target domain
remain invariant under Q-M or M-Q-M when the upper and lower bounds are initialized correctly.

Proof. Let

Ap(s) = {al 3a Q" (s,a) > Q"7 (s,a);a # a}
A(s) = A(s) \ Ap(s)

where A, (s) represents the set of pruned actions under set s and A represents the remaining set of actions. To
retain all optimal policies, it must be satisfied that none of the optimal actions under each state are pruned.

Assuming that a pruned action @ under s is an optimal action, we must have
Ya Q*(s,a) < Q*(s,a)
Given that Q-M only prunes an action @ under s when 3a Q*Z(s,a) > QVB(s,a), we can derive that

Q" (s,a) > Q"P(s,a) > Q*(s,a) > Q" (s,),

resulting in a contradiction that
Q"B (s,a) > Q*(s,a)

As a result, we know that all optimal actions and hence policies are retained. O

Corollary [3.9) [Non-uniqueness| The fixed point of the iteration process in M-Q-M may not be unique.

22

Under review as submission to TMLR

Proof. This can be proved using the following example:

Consider a three state MDP with states s1, s2, s3, where from sl agent can take an action that transitions
uniformly (0.5) to s2 and s3, from s2 agent can take an action that transitions uniformly (0.5) to sl and
s3, and s3 is the terminal state. Reward is 1 for both actions. There is no reward for the terminal state.
Assuming a discount factor of 0.5.

For the upper bound, depending on how V(s3) is initialized, it may result in different fixed points:

o When V(s3) is initialized to a big value (say 4), a fixed point may be V(s1) = 3 and V(s2) = 3;

o When V(s3) is initialized to a small positive value (say 1), another fixed point could be V(s1) = 3/2
and V(s2) =3/2.

A.2 Algorithm

Algorithm 1 Reward Adaptation via Q-Manipulation

Retrieve variants of @, reachable states, and source reward functions from source domains.
Initialize QUE and QTP for the target behavior.

Tighten the bounds using the iteration process in Q-M or M-Q-M.

Prune actions.

Perform learning in the target domain with the remaining actions.

Github URL: https://anonymous.4open.science/r/Reward-Adaptation-Via-QM-122C/Readme.txt

A.3 Domain Information

A.3.1 MDP Generation

For autogenerated MDP creation: the transitions and transition distributions are then randomly generated.
Initially, the number of reachable states from any s,a is |A] = 9. However, when an SBF is set for the
generated MDP: for each s, a pair, 1) we first randomly select a number & from [1, SBF] as the number of
reachable states from s, a, 2) we retain the state from the transition with the highest probability (which is
often the “intended” state) while randomly choosing k — 1 states (without replacement) from its remaining
reachable states; these are then considered as the new reachable states from s, a, and 3) re-normalize the
transition distribution for s,a based on these new reachable states. 3 states are randomly chosen to be
the terminal states. Note that a new MDP is generated for each run. Similarly, for gridworld domains, in
each run, the MDP is slightly different with respect to random SBF updated in a manner analogous to
the auto-generated MDPs. For our implementation, we resort to the most general form of reward function
R(s,a,s).

Detailed descriptions of the domains used for our evaluations are given below:

Dollar-Euro: A 45 states and 4 actions grid-world domain as illustrated in Fig. Source Domain 1
with R; (collecting dollars): The agent obtains a reward of 1.0 for reaching the location labeled with
“$", and 0.6 for reaching the location labeled with both $ and €. Source Domain 2 with Ry (collecting
euros): The agent obtains a reward of 1.0 for reaching the location labeled with €, and 0.6 for reaching the
location labeled with both $ and €. Target Domain with R: R = R; + R».

Frozen Lake: A standard toy-text environment with 36 states and 4 actions. An episode terminates when
the agent falls into any hole in the frozen lake (4 holes in total) or reaches the goal. Source Domain 1 with
R;: The agent is rewarded +1 for reaching any hole in a subset of holes (denoted by H), —1 for reaching any
hole in the remaining holes (denoted by H) and 0.5 for reaching the goal. Source Domain 2 with Ry: The

23

https://anonymous.4open.science/r/Reward-Adaptation-Via-QM-122C/Readme.txt

Under review as submission to TMLR

agent is rewarded +1 for reaching any hole in H , —1 for reaching any hole in H, and 0.5 for reaching the
goal. Target Domain with R: Avoid all the holes and reach the goal, or R = Ry + Rs.

Race Track: A 49 states and 7 actions grid-world domain. The 7 actions correspond to different velocities
for going forward, turning left, or turning right. An initial location, a goal location, and obstacles make up
the race track. An episode ends when the agent reaches the goal position, crashes, or exhausts the total
number of steps. Source Domain 1 with R, (avoid obstacles): The agent obtains a negative reward
of —0.5 for collision with a living reward of +0.2. Source Domain 2 with R, (terminate): The agent
obtains a reward of 42 for reaching the goal, —0.3 living reward, and —4 for staying at the initial location.
Source Domain 3 with R; (stay put): The agent obtains a reward of +3 for staying at the initial
location. Target Domain with R: Reach the goal in the least number of steps while avoiding all obstacles,
or R = R1 + Ro + Rs. This is the only domain where there are three source behaviors.

Auto-generated Domains:

Generate MDPs with the number of actions=9 and the number of states =60. Rewards for the source domains
(i.e., (R1, R2)) for two of those states are set to (+1,—1) and (—1,+1), respectively; rewards for the third
terminal state are set to (+0.6,40.6).

A.4 Learning with Q-variant in Practice

It is important to note that Q-variants may be difficult to learn with the same samples as experienced during
a typical Q-learning process for @*. Some adaptation to Q learning must be made in order to learn Q*
and Q* (or other Q-variant) via the same set of samples. Note that theoretically, Q learning is guaranteed
to converge regardless of the behavior policy, although that is inefficient and can result in inaccuracy in
practice due to that the behavior policy may result in visiting a different distribution of the states from that
of the optimal policy (distributional shift). To ensure that Q* and Q* (or other Q-variant) can both receive
informative samples, one possible way is to alternate between training Q* and Q* (or other Q-variant) and
use importance sampling while using samples from Q* (or other Q-variant) to training Q* (or vice versa),
so that we can leverage samples from both @Q* and Q* (or other Q-variant) to train both Q* and Q* (or
other Q-variant). Fig. |§| shows that approximately the same number of samples are used in the training of
individual behaviors for the autogenerated MDP. Moreover, for learning in practice, we rely on memorizing
the reward functions during the learning of source behaviors. Henceforth, we use Q-M,, to represent Q-M and
M-Q-M,, to represent M-Q-M with memorized reward and reachable state functions while learning the source.
Since Q-M doesn’t depend on source Q values, memorized reward can be same as true reward and reachable
state may also be memorized accurately, Q-M,, performs similar to Q-M. In such cases we represent it as
Q-M (Q-M,) to avoid cluttering. As a result, Q-M computes bounds using both the learned value functions
and the memorized rewards, which has been shown to work well in practice (Fig. |§| and . For the racetrack
domain, we observe that optimal actions are pruned, leading to suboptimal convergence as SBF increases.
We believe this is due to the approximate estimate of Q in the source domain, which results in incorrect
initialization and subsequently pruning of optimal actions due to inaccurate bounds. In such cases, Q-M
serves as a better alternative since it does not rely on Q-value initialization.

A.4.1 Hyperparameters
All hyperparamters are set to be same for the different methods in the same evaluation domain. The

exploration rate starts from 1.0 and is gradually decayed. « is chosen between [0.9,0.99] across different
domains.

A.4.2 Running Time Comparison
We measured the running times taken for overhead cost of computing bounds and pruning actions for each

method on an XPS 9500 laptop. The aim here is to show that Q-M iteration adds, in most cases, a reasonable
amount of extra computation to the entire learning process (refer Table [2)).

24

Under review as submission to TMLR

Behavior 1 Behavior 2

0.5 0.5

£ £ 08
2 / 2
< —— Q" (epsilon-greed: o —— Q* (epsilon-greed
& oo — O e 2 00 il epslororeed) 06
8, Q* (modified epsilon-greedy) 8, Q* (modified epsilon-greedy)
© —— Q_mu (modified epsilon-greedy) © —— Q_mu (modified epsilon-greedy) 04
3 [g
> >
< s <05
0.2
0.0
10 -1.0
-0.2
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 7000
Step Step Step

Figure 6: Convergence plot for autogenerated domain with linear reward combination: Behavior 1 (left),
Behavior 2 (center) and Target (right) where M-Q-M,, performs action pruning using a estimated lite model,
reward model, and Q-variants. M-Q-M,, indicates M-Q-M in practice.

— QM(@QM,) — MQM — QL —— SFQL —— SQ@B ---- M-Q-M,
SBF = 1 SBF =2 SBF =4
1.20
1.12
1.04
0.96
0.88
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
SBF = 1 SBF =5 SBF =7
0 R e 0
c =
=] — — B
T - T — - —— S e — -
5 -4 —— 4 4
S
T -8 -8 -8
g
<
-12 -12 -12
-16 -16 -16
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
SBF =1 SBF =2 SBF =4
0.9 0.9
0.6 0.6
0.3 0.3
0.0 0.0
-0.3 -0.3 7
0 1500 3000 4500 6000 0 1500 3000 4500 6000 0 1500 3000 4500 6000

Step
Figure 7: Convergence plot for: (top) Dollar Euro, (middle) Racetrack and (bottom) Frozen Lake using a
estimated lite model, reward model, and Q-variants. M-Q-M,, indicates M-Q-M in practice.

Domain SBF_min | SBF_ mid | SBF_max
Dollar Euro 0.05 0.04 0.03
Race Track 0.13 0.12 0.15
Frozen Lake 0.04 0.04 0.04
Autogenerated 0.11 0.11 0.12
Non-linear Target Reward 0.23 1.2 0.42
Noisy Reward Combination 0.12 0.12 0.13

Table 2: Running time for Q-M iteration process (in seconds) by Domain and SBF

25

Under review as submission to TMLR

B Additional Results

B.1 Action pruning Analysis

While heatmaps in Figure [3] only show the number of actions pruned, Figure [§| gives a deeper insight into
which actions are pruned. Note that as a consequence of this pruning, some states may become unreachable
from a given state. This is by design since those states do not contribute to the optimal behavior that goes
through the given state. The values for those states may not be updated properly during target training but
as long as the initial state is chosen consistently during training and testing, it should not pose any problem.

SBF =1 SBF = 2 SBF =

YA YA YA
4 » »> > »> <+ <+ <+ <+ 4 »> »> > »> <+ 4 X P |4 X P |4 X P 4 {4 X P4 X P |4 X> » <+ 4 X P |4 X >t X>
LA AL LA AL LA AL
A NA N KA NA N NA KA A DAY A NA RN /KA RNA N Na KA Na
3 » »> » »> <+ <+ <+ <+ 314 X > »> »> > < 4 X P4 X >t 314 X |4 X > »> »>| < 4 X P4 X |4 X P> 4 X >
LANRE AL AN LA AN AN
YA YA YA YYD KA N N KA N Na KA N4
2 »> > »> <+ <+ <+ 2 »> >4 X >4 X Pt 4 X P |4 X» 214 X P |4 X P4 X P € X Pt Pt X P 4 X P X Pt X>
v v LNV v LA AL LA AN L AN AN AN L AN AN AL

YNSRI YOI YNNI

1 <+ » »> <+ <+ »> 1 <+ 4 X P |4 X P | X P[4 X >4 X > »> 1 4 X P4 X P4 X P 4 X P € X Pt X > »
AN ANV v WYY YN Y AN AN AN AN AN AN AN ANVA)

IZIEENY Y2 IYZIYZIEENY
o <+ <+ »> <+ > »> 0 <+ <+ 4« X >t P> »> »> 0 <+ 4 X Pt X Pt Pt X P4 X> >
(NN WYY YN
B i ; 3 : 3 p 7 : B i H H H 3 : 7 : B T H 3 H : G ; :
SBF = 1 SBF = 2 SBF = 4

YYD A TNA A T4 YA 2 TNATNA A
4 »> »> »> »> <+ <+ <+ <+ 414 X P[4 X >4 X >4 X > 4 X P |4 X P |4 X P4 X P 14X |4 X >4 X > »> 4 X P |4 X P[4 X >4 X >
AN AN AN AN LA AN AN AL AN
YA YA AN AN N NARa N Na Ka Na A KA N N NA N Na KA N4
3 » »> » »> <+ <+ <+ <+ 314 X > »> »> »> <+ 4 X P4 X >t 314 X |4 X» »> P4 X P |4 P4 X |4 X4 X >
v LANE AL AN LA AN L AN AN L)
YYD YA YYD AN
2 »> »> »> < <+ < 214 X » »> >[4 X >4 X >|< <+ X P[4 X > 2{ 4 X P[4 X P |4 X P |4 X P4 X P[4 X P4 XX P 4 X P>
v v AN (AN AN ANZ AN AN AN AN AN AN AN AL
YA YA YNNI
1 <+ » »> <+ <+ »> 114 X P |4 X P4 X P |4 X Pt X Pt X Pt X P € X> 1 4 X P[4 X P4 X P4 X |4 X P4 X P[Pt >
v AN AN AN AN AN AN AN AN AL) AN AN L AN AN AN DL AN AN AL

IZEEEN YOI A RNA N TR N N KA

0 <+ <+ »> <+ »> »> 0 4 X |4 X Pt X >t PleX> »> »> 0 4 X P4 X Pt X Pt Pt XP |t X>€X>

LANZAAN AN IR WYYy YY)

T H H i T H 3 W 7 : 7

0 1 2 3 a 5 6 7 8 0 5 6 7 8 o 8

Figure 8: Dollar Euro action pruning: Red = Pruned, Blue = Retained. Top: M-Q-M, Bottom: Q-M. Note
that action pruning is not symmetric due to our random construction of the transition function (see Sec. {4.2)

B.2 Pruning Threshold

In section [3.3] we provide a way to set the Delta parameter which ensures pruning only happens when the
Lower bound of some action a is at least A units greater than the upper bound of another action ajq;.
While this ensures optimal action is never pruned, A can also be set empirically or less conservatively. The
conservative value of A as per section is 1le — 11 and optimal actions are not pruned till A = 0. Setting a
lower A may lead to pruning more actions, and sometimes it is at the cost of a loss of optimal action (refer
Figure E[) In our evaluation to study the varying effect of delta, we find that delta parameter is robust, and
optimal actions are pruned if delta is set to a negative value. As shown Figure [9] the red count in the bar
indicates the number of actions which were optimal but still pruned due to the non-conservative value of A.
Setting delta is domain dependent to some extent, and so it should be set conservatively to ensure optimality
is not lost.

26

Under review as submission to TMLR

SBF vs Average remaining actions wrt A (Dollar Euro Domain)

160.00
160

Delta (A)
/3 -0.01
/1o
3 1e-11

[1e-10

140

N
=3

104.00 104.00 104.00

o
=3

84.87

@
S

Average pruned actions
(2]
o

56.10 56.10 56.10

45.90
40

30.20 30.20 30.20

20

SBF =1 SBF =2 SBF =4

Figure 9: Impact of A on the number of actions pruned in the Dollar Euro domain; count in red indicates
instances where an optimal actions were pruned.

B.3 Noisy Source R

In Section [A.4] when learning the reward function and Q in practical scenarios, memorization is beneficial
when the reward is deterministic. However, when the reward in the source domain is noisy, we employ
an exponential moving average to approximate the reward function. For our experiments, we consider the
addition of uniform noise to the source behavior during source behavior training (given by equation .
Since R may deviate from the true source reward, the Q-values learned from the source domain could
yield inaccurate bounds, potentially leading to the loss of the optimal solution. We implemented a fallback
mechanism to not prune actions in states where LB>UB (due to noisy reward or approximate value function),
but this does not ensure optimality under a noisy reward function (as shown in figure . For M-Q-M, if
initialization is incorrect, then it may never recover from incorrect bounds, which may lead to pruning of
optimal actions. For Q-M, if the mean reward is accurate (which can be ensured through sufficient exploration
during source domain training), optimal actions should not be pruned. We know that as SBF increases the
number of actions pruned decreases. Furthermore, stochastic noise in reward for one state may offset noisy
reward in other states. As a result we might not see pruning of optimal actions but very few actions are
pruned which results into QL like performance. In the future, we plan to study this effect further and
establish safeguards against pruning out of optimal actions.

R; = R, + U(+x, —x) (22)

B.4 Scalability

Q-M and M-Q-M are expected to scale analogously to value iteration due to similarity in the updates. In
order to verify this, we perform evaluations on scaled version of the Dollar-Euro domain when SBF=2. As
shown in Figure Q-M and M-Q-M outperform other baselines. It is important to note that, scaling in
environment size affects baseline more than Q-M and M-Q-M. It is observed that our method significantly
reduces training time with respect to the baselines which becomes more evident as state space grows larger.
Table presents a detailed breakdown of the time required for source training using QL (see Sec. , the
overhead associated with computing bounds and pruning actions, and the total training time. All times are
reported until the agent achieves 95% of the maximum reward during both source and target training. Q-M
doesn’t require source Q-values and so source training time only includes time taken for memorizing reward
and reachability function. Figure [I2]illustrates action pruning under M-Q-M, where the source Q-values are

27

Under review as submission to TMLR

-=== Q-M(Q-M, (0)
- QM (02)

—--- QMp(03) ---- M-QMj (0) - M-QM, (0.3)
— MQM - MQM, (02) — QL

SBF =2 SBF =4

SBF =1

1.12

Average Return
R

0.96

4000 6000 8000 4 2000 4000 6000 8000
Step

0 2000 4000 6000 8000 0 2000

Figure 10: Convergence plot for Dollar Euro domain when source behaviors have noisy reward indicated
within parentheses of M-Q-M,,

learned using Q-Learning and value iteration (which is employed in the main paper for evaluating the theory).
It is important to note that our primary aim is to improve sample efficiency and source behaviors, source
rewards, the combination function, and the lite model are assumed available to all approaches.

— aM@M,) — MQM —— QL — SFQL —— SQB ---- M-Q-M,

11x21 17x33
12 —

=)

0.9

=3
a

Average Return

0.8

07

06

0 10000 20000 30000 40000 50000 60000 0 20000 40000 60000 80000 100000 120000 0.0 0.5 1.0 15 20 25

Step

Figure 11: Convergence plot for Dollar Euro Domain 5x11, 11x21, 17x33 (left to right)

Method Source Training Overhead Target training Total
mean std mean std mean | std
M-Q-M,, | 0.25 0.34 0.04 0.01 0.01 0.34 | 0.35
Q-M, le™* le™® 0.27 0.05 0.05 0.32 | 0.05
QL - - - 0.08 0.07 0.08 | 0.07
SFQL * 0.08 0.05 0.28 | 0.19
SQB 0.2 0.14 - 0.05 0.09 0.25 | 0.23

Table 3: Running time (in seconds) for Dollar Euro 5x9

28

Under review as submission to TMLR

Method Source Training Overhead Target training Total
mean std mean std mean | std
M-Q-M,, | 1.82 0.89 0.04 0.79 0.41 2.65 1.3
Q-M,, 0.07 le™® 0.29 0.8 0.68 1.16 | 0.68
QL - - - 2.25 1.96 2.25 | 1.96
SFQL * 1.27 0.23 2.78 | 1.18
sop | MOt | 09 - 506 | 2.00 | 477 | 3.89

Table 4: Running time (in seconds) for Dollar Euro 11x21

Method Source Training Overhead Target training Total
mean std mean std mean | std
M-Q-M,, | 8.67 3.43 0.05 2.23 1.75 10.95 | 5.18
Q-M,, 0.69 le* 0.31 4.31 2.31 5.31 2.31
QL - - 28.46 | 44.02 | 28.46 | 44.02
SFQL 8.69 481 * 37.02 | 50.55 | 45.71 | 55.36
SQB ’ ' - 62.28 | 87.47 | 70.97 | 92.28

Table 5: Running

-15

time (in seconds) for Dollar Euro 17x33

Figure 12: Heatmap for action remaining in each state after pruning using M-Q-M for Dollar Euro Domain
(top: source behaviors trained using value iteration; bottom: source behaviors trained using the modified QL

(refer to)

29

	Introduction
	Related work
	Proposed approach
	Preliminaries
	Reward Adaptation (RA)
	Provably Efficient Transfer in Q-Learning

	Q-Manipulation
	Monotonic Q-Manipulation (M-Q-M)
	Initializing the Bounds
	Noisy Combination Function

	Action Pruning in Q-M:

	Evaluation
	Baselines
	Evaluation Design
	Gridworld and Linear Combination Function
	Analysis of Action Pruning

	Autogenerated MDP with Linear and Non Linear Combination Function
	Noisy Combination Function

	Limitations and Future Work
	Conclusions
	Appendix
	Theoretical Proofs
	Algorithm
	Domain Information
	MDP Generation

	Learning with Q-variant in Practice
	Hyperparameters
	Running Time Comparison

	Additional Results
	Action pruning Analysis
	Pruning Threshold
	Noisy Source R
	Scalability

