

---

# Theoretical and Practical Analysis of Fréchet Regression via Comparison Geometry

---

Anonymous Author(s)

Affiliation

Address

email

## Abstract

Fréchet regression extends classical regression methods to non-Euclidean metric spaces, enabling the analysis of data relationships on complex structures such as manifolds and graphs. This work establishes a rigorous theoretical analysis for Fréchet regression through the lens of comparison geometry which leads to important considerations for its use in practice. The analysis provides key results on the existence, uniqueness, and stability of the Fréchet mean, along with statistical guarantees for nonparametric regression, including exponential concentration bounds and convergence rates. Additionally, insights into angle stability reveal the interplay between curvature of the manifold and the behavior of the regression estimator in these non-Euclidean contexts. Empirical experiments validate the theoretical findings, demonstrating the effectiveness of proposed hyperbolic mappings, particularly for data with heteroscedasticity, and highlighting the practical usefulness of these results.

## 1 Introduction

Fréchet regression [35] is a powerful statistical tool for analyzing relationships between variables when the response or predictor lies in a non-Euclidean space. It generalizes classical regression to settings where the response variable  $Y$  resides in a metric space  $\mathcal{M}$ . Given predictors  $X$ , Fréchet regression seeks to estimate the conditional Fréchet mean.

$$\mu(x) = \arg \min_{m \in \mathcal{M}} \mathbb{E} [d^2(Y, m) \mid X = x], \quad (1)$$

where  $d$  is the metric on  $\mathcal{M}$ . This approach accommodates data in various non-Euclidean spaces, such as manifolds, trees, and graphs [29, 17, 18, 36, 13]. In recent years, several variants of Fréchet regression have been proposed [39, 7, 37, 19, 44, 42], each addressing different aspects such as variable selection, error modeling, and high-dimensional data handling. However, most existing studies primarily focus on specific geometric settings or lack a comprehensive theoretical framework that accounts for varying curvature bounds. This study fills this gap by leveraging comparison geometry to provide a unified theoretical analysis of Fréchet regression across  $CAT(K)$  spaces with diverse curvature properties.

Fréchet regression allows the assumption of a non-Euclidean space in the space of the data, so one can expect that its behavior can be described depending on the geometrical properties of the space. To investigate this, this study utilizes comparison geometry, which is a fundamental branch of differential geometry that investigates the geometric properties of a given space by comparing it to model spaces of constant curvature [12, 20, 11, 41]. Unlike information geometry [3, 5, 33, 4, 27, 28], which focuses on general statistical manifolds, this framework leverages classical comparison theorems to derive insights about the structure and behavior of more complex or less regular spaces. By establishing inequalities and structural similarities between a target space and well-understood model

35 spaces (e.g., Euclidean, spherical, or hyperbolic geometries), comparison geometry enables the  
 36 extension of geometric and topological results to broader contexts, including spaces that may lack  
 37 smoothness or traditional manifold structures. In this framework,  $\text{CAT}(K)$  spaces are pivotal objects  
 38 of study, which are the generalization of constant curvature space [6, 22, 9].  $\text{CAT}(K)$  spaces are  
 39 geodesic metric spaces, where geodesic triangles are thinner than their comparison triangles in  
 40 the model space of constant curvature  $K$ . Consider several known examples of  $\text{CAT}(K)$  spaces.  
 41 Euclidean spaces  $\mathbb{R}^n$  are classic examples with  $K = 0$ , exhibiting flat geometry. Hyperbolic spaces,  
 42 which have constant negative curvature ( $K < 0$ ), serve as models for spaces exhibiting exponential  
 43 growth and are useful in areas like network analysis and evolutionary biology. On the other hand, trees  
 44 can be viewed as  $\text{CAT}(0)$  spaces, providing a discrete analog with unique geodesics between points.  
 45 Additionally, certain types of manifold structures used in shape analysis and computer graphics  
 46 also qualify as  $\text{CAT}(K)$  spaces under specific curvature conditions. These examples demonstrate  
 47 the broad applicability of  $\text{CAT}(K)$  spaces in modeling diverse geometric contexts encountered in  
 48 statistical analysis. By considering such spaces, this study aims to describe the behavior of the Fréchet  
 49 regression in terms of curvature  $K$  in particular.

## 50 2 Notation

51 In this section, the notations and definitions required for the following analysis are organized. Let  
 52  $\mathcal{M}$  be a metric space and  $d$  be the metric on  $\mathcal{M}$ . Here, the metric space  $(\mathcal{M}, d)$  is geodesic space if  
 53 every pair of points in  $\mathcal{M}$  can be connected by a geodesic, a curve whose length equals the distance  
 54 between the points.

55 **Definition 1** (CAT( $K$ ) space). *Let  $(\mathcal{M}, d)$  be a geodesic metric space and let  $K \in \mathbb{R}$ . The space  
 56  $\mathcal{M}$  is said to be a  $\text{CAT}(K)$  space if it satisfies the following curvature condition: for any geodesic  
 57 triangle  $\triangle pqr$  in  $\mathcal{M}$  with perimeter less than  $2D_K$  (where  $D_K = \pi/\sqrt{K}$  if  $K > 0$ , and  $D_K = \infty$   
 58 otherwise), and for any points  $x, y$  on the edges  $[pq]$  and  $[qr]$  respectively, the distance between  $x$  and  
 59  $y$  in  $\mathcal{M}$  does not exceed the distance between the corresponding points  $\bar{x}$  and  $\bar{y}$  on the comparison  
 60 triangle  $\triangle \bar{p}\bar{q}\bar{r}$  in the model space of constant curvature  $K$ :  $d(x, y) \leq d_{\mathbb{M}_K^2}(\bar{x}, \bar{y})$ , where the  
 61 comparison triangle  $\triangle \bar{p}\bar{q}\bar{r}$  is a triangle in the simply connected, complete 2-dimensional Riemannian  
 62 manifold  $\mathbb{M}_K^2$  of constant curvature  $K$  that preserves the side lengths as  $d_{\mathbb{M}_K^2}(\bar{p}, \bar{q}) = d(p, q)$ ,  
 63  $d_{\mathbb{M}_K^2}(\bar{q}, \bar{r}) = d(q, r)$ , and  $d_{\mathbb{M}_K^2}(\bar{r}, \bar{p}) = d(r, p)$ .*

64 **Definition 2** (Geodesic convexity). *A function  $f: \mathcal{M} \rightarrow \mathbb{R}$  is geodesically convex if for every  
 65 geodesic  $\gamma: [0, 1] \rightarrow \mathcal{M}$ ,  $f(\gamma(t)) \leq (1-t)f(\gamma(0)) + tf(\gamma(1))$ , for all  $t \in [0, 1]$ .*

66 **Definition 3** ( $\lambda$ -strong geodesic convexity). *A function  $f: \mathcal{M} \rightarrow \mathbb{R}$  is  $\lambda$ -strongly geodesically convex  
 67 around  $p \in \mathcal{M}$  if there exists a constant  $\lambda > 0$  depending only on  $K$  and  $\text{diam}(\mathcal{M})$  such that*

$$f(x) - f(p) \geq \lambda d^2(x, p), \quad (2)$$

68 for every  $x \in \mathcal{M}$ .

69 **Definition 4** (Lower semicontinuity). *A functional  $F: \mathcal{M} \rightarrow \mathbb{R} \cup \{+\infty\}$  is lower semicontinuous at  
 70 a point  $x \in \mathcal{M}$  if for every sequence  $\{x_n\}$  converging to  $x$ , it satisfies*

$$F(x) \leq \liminf_{n \rightarrow +\infty} F(x_n). \quad (3)$$

71 **Definition 5** (Weak convergence in metric space). *A sequence of probability measures  $\{\nu_n\}$  on  $\mathcal{M}$   
 72 is said to converge weakly to a probability measure  $\nu$  (denoted by  $\nu_n \Rightarrow \nu$ ) if for every bounded  
 73 continuous function  $f: \mathcal{M} \rightarrow \mathbb{R}$ ,*

$$\lim_{n \rightarrow +\infty} \int_{\mathcal{M}} f(y) d\nu_n(y) = \int_{\mathcal{M}} f(y) d\nu(y).$$

74 **Definition 6** (Alexandrov angle). *The Alexandrov angle  $\angle_x(y, z)$  is defined as the limit of secular  
 75 angles between short sub-segments. Concretely, if  $y'$  is a point on  $[xy]$  with  $d(x, y') \rightarrow 0$  and  $z'$  is a  
 76 point on  $[xz]$  with  $d(x, z') \rightarrow 0$ . Then,*

$$\angle_x(y, z) := \lim_{y' \rightarrow x, z' \rightarrow x} \angle_x^{(\text{sec})}(y'z'),$$

77 where  $\angle_x^{(\text{sec})}(y'z')$  is the ordinary angle in the comparison triangle for  $\triangle xy'z'$  in the model space.

78 **Definition 7** (Riemannian exponential map). Let  $T_z\mathcal{M}$  be the tangent space of  $\mathcal{M}$  at a point  $z \in \mathcal{M}$ .  
 79 For a fixed point  $z$ , the Riemannian exponential map at  $z$ , denoted by  $\exp_z$  is a map from the  
 80 tangent space at  $z$  to the manifold  $\mathcal{M}$ :  $\exp_z: T_z\mathcal{M} \rightarrow \mathcal{M}$ . Here, the Riemannian exponential map  
 81 is constructed as i) Choose a tangent vector  $v \in T_z\mathcal{M}$ . ii) Consider the unique geodesic  $\gamma_v(t)$   
 82 emanating from  $z$  with initial velocity  $v$ . Formally,  $\gamma_v(t)$  satisfies  $\gamma_v(0) = z$  and  $\gamma'_v(0) = v$ . iii) The  
 83 exponential map sends the tangent vector  $v$  to the point on the manifold reached by traveling along  
 84 the geodesic  $\gamma_v$  for unit time,  $\exp_z(v) = \gamma_v(1)$ .

### 85 3 Theory

86 See Appendix B for complete proofs of all statements.

#### 87 3.1 Key Lemmas

88 Here, we summarize key lemmas required for our study. These results follow those of previous  
 89 studies [43, 23, 24], but are presented below for the sake of uniformity of notation and to keep the  
 90 manuscript self-contained. First, it can be shown that in  $\text{CAT}(K)$  spaces with  $K \leq 0$ , the convexity  
 91 properties ensure the existence and uniqueness of the Fréchet mean under mild conditions. For  
 92  $\text{CAT}(K)$  spaces with  $K > 0$ , additional constraints on the diameter of the space may be necessary  
 93 to ensure uniqueness due to potential multiple minima arising from positive curvature.

94 **Lemma 1.** Let  $(\mathcal{M}, d)$  be a  $\text{CAT}(K)$  space for  $K \leq 0$ . For any fixed point  $p \in \mathcal{M}$ , the function  
 95  $f: \mathcal{M} \rightarrow \mathbb{R}$  defined by  $f(x) = d^2(p, x)$  is geodesically convex.

96 Lemma 1 establishes that the squared distance function retains geodesic convexity in  $\text{CAT}(K)$   
 97 spaces with non-positive curvature. This property is fundamental because it ensures that the Fréchet  
 98 functional, which aggregates squared distances, inherits convexity. Consequently, optimization  
 99 procedures to find the Fréchet mean are well-behaved, avoiding local minima and guaranteeing global  
 100 optimality under the given conditions.

101 **Lemma 2.** Let  $(\mathcal{M}, d)$  be a complete  $\text{CAT}(K)$  space. For any probability measure  $\nu$  on  $\mathcal{M}$  with  
 102 compact support, there exists at least one minimizer  $m \in \mathcal{M}$  of the Fréchet functional:

$$m = \arg \min_{x \in \mathcal{M}} \int_{\mathcal{M}} d^2(y, x) d\nu(y).$$

103 **Lemma 3.** Let  $(\mathcal{M}, d)$  be a  $\text{CAT}(K)$  space with  $K \leq 0$  that is strictly geodesically convex, meaning  
 104 that the squared distance function  $f(x) = d^2(p, x)$  is strictly geodesically convex for any fixed point  
 105  $p \in \mathcal{M}$ . Then, for any probability measure  $\nu$  on  $\mathcal{M}$  with compact support, the Fréchet mean  $m$  is  
 106 unique.

107 Based on Lemma 1, which ensures geodesic convexity of the squared distance function in non-  
 108 positively curved  $\text{CAT}(K)$  spaces, and Lemma 2, which guarantees the existence of a Fréchet  
 109 mean under compact support, one can establish the stability of the Fréchet mean under measure  
 110 perturbations. Furthermore, Lemma 3 ensures uniqueness under strict geodesic convexity, thereby  
 111 enabling Proposition 1 to assert the convergence of Fréchet means in non-positively curved spaces.

112 **Proposition 1.** Let  $(\mathcal{M}, d)$  be a  $\text{CAT}(K)$  space with  $K \leq 0$ . Suppose  $\{\nu_n\}$  is a sequence of  
 113 probability measures on  $\mathcal{M}$  that converges weakly to a probability measure  $\nu$ . Assume that for each  
 114  $n$ , the measure  $\nu_n$  has a unique Fréchet mean  $m_n$ , and  $\nu$  also has a unique Fréchet mean  $m$ . Then,  
 115 the sequence of Fréchet means  $\{m_n\}$  converges to  $m \in \mathcal{M}$ .

116 Proposition 1 claims that the  $\text{CAT}(K)$  condition with  $K \leq 0$  ensures that the space is non-positively  
 117 curved, which imbues the space with strict convexity properties crucial for the uniqueness and stability  
 118 of minimizers. This geometric structure prevents the existence of multiple local minima, thereby  
 119 facilitating the continuity of minimizers under perturbations of the measure. Here, the stability of  
 120 the Fréchet mean under measure perturbations is foundational for Fréchet regression. It ensures that  
 121 as predictors vary and induce changes in the conditional distributions of responses, the conditional  
 122 Fréchet means (regression estimates) behave predictably and converge appropriately as sample size  
 123 increases.

124 **Lemma 4.** Let  $(\mathcal{M}, d)$  be a  $\text{CAT}(K)$  space with positive curvature bound  $K > 0$ . If the diameter  
 125 of the support of the probability measure  $\nu$ , denoted by  $\text{diam}(\text{supp}(\nu))$ , satisfies  $\text{diam}(\text{supp}(\nu)) <$   
 126  $\frac{\pi}{2\sqrt{K}}$ , then the Fréchet mean  $m$  of  $\nu$  is unique.

127 In Lemma 4, the diameter constraint ensures that all points in the support of  $\nu$  lie within a geodesic  
 128 ball of radius  $R = \pi/2\sqrt{K}$ . In  $\text{CAT}(K)$  spaces with  $K > 0$ , such balls are geodesically convex,  
 129 meaning any geodesic between two points within the ball lies entirely inside the ball. This local  
 130 convexity is crucial for preserving strict convexity properties of the Fréchet functional.

131 In addition, applying Lemmas 2 and 3, the following statement can be obtained.

132 **Lemma 5.** *Let  $(\mathcal{M}, d)$  be a complete  $\text{CAT}(K)$  space and consider a conditional distribution  $\nu_x$  of  
 133  $Y$  given  $X = x$ . If for each  $x$ , the support of  $\nu_x$  satisfies*

$$\text{diam}(\text{supp}(\nu_x)) < D_K = \begin{cases} +\infty & \text{if } K \leq 0, \\ \frac{\pi}{\sqrt{K}} & \text{if } K > 0, \end{cases}$$

134 *then then the conditional Fréchet mean in Eq. (1) exists and is unique for each  $x$ .*

### 135 3.2 Convergence Rates and Concentration

136 Let  $\hat{\mu}_n^*$  denote a nonparametric Fréchet regression estimator (e.g., Nadaraya–Watson–type kernel  
 137 smoothing [32, 40, 8] on the predictor space). Then, the following statements for the concentration  
 138 results, the pointwise consistency, and rates of convergence can be obtained. The important point is  
 139 that one has to rely on exponential concentration inequalities valid in  $\text{CAT}(K)$  spaces (e.g., specific  
 140 versions of concentration of measure or deviation bounds for Fréchet means).

141 **Theorem 1** (Concentration for the sample Fréchet mean). *Let  $(\mathcal{M}, d)$  be a complete  $\text{CAT}(K)$  space  
 142 of diameter at most  $D$ . Suppose that  $Y_1, Y_2, \dots, Y_n$  are independent and identically distributed  
 143 random points in  $\mathcal{M}$ , and let  $\mu$  and  $\hat{\mu}_n$  be the population and sample Fréchet mean.*

$$\mu := \arg \min_{z \in \mathcal{M}} \mathbb{E}[d^2(Y, z)],$$

$$\hat{\mu} := \arg \min_{z \in \mathcal{M}} \frac{1}{n} \sum_{i=1}^n d^2(Y_i, z).$$

144 Assume further that each  $d^2(Y_i, z)$  is essentially bounded by  $D^2$ , or more generally that  $d^2(Y_i, z)$   
 145 has sub-Gaussian tails uniformly in  $z$ . Then there exists  $\delta > 0$  such that for every  $\epsilon > 0$ ,

$$\mathbb{P}[d(\hat{\mu}, \mu) > \epsilon] \leq 2 \left( \frac{\alpha(K, D)D}{\delta} \right)^m e^{-\frac{n(\alpha(K, D)\epsilon^2)^2}{8D^2}}, \quad (4)$$

146 where  $m$  is the dimension of the manifold, and  $\alpha(K, D)$  is the strong convexity constant.

147 In addition to the concentration for the sample Fréchet mean in the standard sense, the following  
 148 proposition gives the concentration in  $L_p$  sense.

149 **Proposition 2.** *Under the hypotheses of Theorem 1, there exist explicit constants  $C_p(K, D)$  such  
 150 that for any integer  $n \geq 1$  and  $p \geq 1$ ,*

$$\mathbb{E}[d^p(\hat{\mu}_n, \mu)] \leq C_p(K, D)(n^{-p/2}). \quad (5)$$

151 That is,  $d(\hat{\mu}_n, \mu)$  converges to 0 in  $L^p$  at a rate on the order of  $n^{-p/2}$ .

152 Moreover, the following theorem gives the pointwise consistency of nonparametric Fréchet regression  
 153 in a  $\text{CAT}(K)$  space. The main idea parallels classical kernel-based regression arguments in  $\mathbb{R}^d$ , but  
 154 replaces ordinary arithmetic means by Fréchet means in the metric space  $(\mathcal{M}, d)$ .

155 **Assumption 1** (Kernel LLN condition). *For any bounded (or square-integrable) function  $f: \mathcal{M} \rightarrow \mathbb{R}$ ,  
 156 nonnegative weights  $\{w_{n,i}(x)\}_{i=1}^n$  satisfies*

$$\sum_{i=1}^n w_{n,i}(x) f(Y_i) \xrightarrow[n \rightarrow \infty]{a.s.} \mathbb{E}[f(x) \mid X = x]. \quad (6)$$

157 **Theorem 2** (Pointwise consistency of nonparametric Fréchet regression). *Let  $\{(X_i, Y_i)\}_{i=1}^n$  be i.i.d.  
 158 sample with  $X_i \in \mathbb{R}^d$  and  $Y_i \in \mathcal{M}$ , where  $(\mathcal{M}, d)$  is a complete  $\text{CAT}(K)$  space with diameter  
 159  $\text{diam}(\mathcal{M}) \leq D$ . Define the population Fréchet regression function:*

$$\mu^*(x) := \arg \min_{z \in \mathcal{M}} \mathbb{E}[d^2(Y, z) \mid X = x].$$

160 Assume that  $\mu^*(x)$  is well-defined and unique for each  $x$ , provided as Theorem 5. Also, let  
161  $\{w_{n,i}(x)\}_{i=1}^n$  be nonnegative weights that sum to 1 for each fixed  $x$ . For instance, in kernel re-  
162 gression, one sets

$$w_{n,i}(x) = \frac{W(\|x - X_i\|/h_n)}{\sum_{j=1}^n W(\|x - X_j\|/h_n)},$$

163 where  $W(\cdot)$  is a usual kernel (with compact support or exponential decay), and  $h_n \rightarrow 0$  is a  
164 bandwidth. Define the nonparametric Fréchet-regression estimator at  $x$  by

$$\hat{\mu}_n^*(x) = \arg \min_{z \in \mathcal{M}} \sum_{i=1}^n w_{n,i}(x) d^2(Y_i, z). \quad (7)$$

165 Then, under mild regularity conditions on the weights in Assumption 1,  $\hat{\mu}_n^*(x) \xrightarrow[n \rightarrow \infty]{a.s.} \mu^*(x)$ , for each  
166 fixed  $x \in \mathbb{R}^d$ .

167 Here, additional assumptions allow us to obtain the convergence rates in  $\text{CAT}(K)$  spaces.

168 **Theorem 3** (Convergence rates in  $\text{CAT}(K)$  spaces). *Under the assumptions of Theorem 2, suppose  
169 additionally:*

- 170 •  $\mu^* : \mathbb{R}^d \rightarrow \mathcal{M}$  is  $\beta$ -Hölder (or Lipschitz) continuous, with respect to the usual Euclidean  
171 norm on  $\mathbb{R}^d$  and the distance  $d$  on  $\text{CAT}(K)$ . That is, there exists  $L > 0$  and  $\beta > 0$  such  
172 that

$$d(\mu^*(x), \mu^*(x')) \leq L \cdot \|x - x'\|^\beta, \quad (8)$$

173 for all  $x, x' \in \mathbb{R}^d$ .

- 174 • The kernel weights  $w_{n,i}(x)$  satisfy standard nonparametric conditions:

$$\sum_{i=1}^n w_{n,i}(x) = 1, \quad w_{n,i}(x) \approx W\left(\frac{\|x - X_i\|}{h_n}\right), \quad h_n \rightarrow 0, \quad nh_n^d \rightarrow +\infty. \quad (9)$$

- 175 • Each conditional distribution  $Y \mid X = x$  has finite second moments in the  $\text{CAT}(K)$  space  
176 and a unique Fréchet mean  $\mu^*(x)$ .
- 177 • The distribution of  $Y \mid X = x$  varies smoothly in a local neighborhood of  $x$ . Formally, one  
178 assumes that for  $x'$  near  $x$ , the conditional distributions  $\mathbb{P}[Y \in \cdot \mid X = x']$  do not differ too  
179 much, ensuring small bias when  $x' \approx x$ .

180 Then for the nonparametric Fréchet regression estimator  $\hat{\mu}_n^*$ ,

$$\sup_{x \in \mathcal{X}_0} \mathbb{E} [d^2(\hat{\mu}_n^*(x), \mu^*(x))] = O\left(\frac{1}{nh_n^d} + h_n^{2\beta}\right), \quad (10)$$

181 where  $\mathcal{X}_0 \subseteq \mathbb{R}^d$  is any compact subset over which the kernel is applied.

182 From the above theorem, one can see that the usual  $\left(\frac{1}{nh_n^d} + h_n^\beta\right)$  trade-off from Euclidean nonpara-  
183 metric statistics carries over to the  $\text{CAT}(K)$  setting, once one accounts for i) geodesic convexity for  
184 controlling variance and ii) the Hölder continuity of  $\mu^*(x)$  for controlling bias.

185 **Implications:** Section 3.2 provides the statistical properties of Fréchet regression estimators within  
186  $\text{CAT}(K)$  spaces. Theorem 1 offers exponential concentration bounds for the sample Fréchet mean,  
187 indicating that the estimator converges to the true mean with high probability as the sample size  
188 increases. Proposition 2 further quantifies this convergence in an  $L^p$  sense, demonstrating that the  
189 expected distance between the sample and population Fréchet means decreases at a rate proportional to  
190  $n^{-1/2}$ . These results are pivotal for understanding the efficiency and reliability of Fréchet regression  
191 estimators. They assure that given sufficient data, the regression estimates will not only be consistent  
192 but also achieve convergence rates comparable to those observed in classical Euclidean nonparametric  
193 regression.

194 **3.3 Angle Stability for Conditional Fréchet Means**

195 Understanding not just the position but also the directional relationships around the Fréchet mean is  
 196 crucial for capturing the local geometry of the data distribution. Angle stability ensures that small  
 197 perturbations in the underlying probability measures or data configurations do not lead to significant  
 198 distortions in the angular relationships among points relative to the Fréchet mean. This property is  
 199 particularly valuable when analyzing directional data or when the regression function's local behavior  
 200 depends on angular relationships, such as shape analysis or directional statistics.

201 First, the following lemma for the angle comparison in  $\text{CAT}(K)$  spaces is provided.

202 **Lemma 6.** *Let  $(\mathcal{M}, d)$  be a  $\text{CAT}(K)$  space, and let  $\triangle xyz \subset \mathcal{M}$  be a geodesic triangle of perimeter  
 203  $\leq \pi/\sqrt{K}$  when  $K > 0$ . Let  $\triangle \bar{x}\bar{y}\bar{z}$  be its comparison triangle in the simply connected model  
 204 space of constant curvature  $K$ . Then for each vertex  $x$  and the corresponding comparison vertex  $\bar{x}$ ,  
 205  $\angle_x(y, z) \leq \angle_{\bar{x}}(\bar{y}, \bar{z})$ , where  $\angle_x(y, z)$  is the Alexandrov angle (or geodesic angle) at  $x$  formed by the  
 206 geodesic segments  $[xy]$  and  $[xz]$ .*

207 Note the assumption that the perimeter of  $\triangle xyz$  is  $\leq \pi/\sqrt{K}$  (when  $K > 0$ ) is used to ensure i)  
 208 The geodesics  $[xy]$ ,  $[yz]$ ,  $[zx]$  are short enough so that the entire triangle  $\triangle xyz$  (and sub-triangles  
 209  $\triangle xy'z'$ ) can be compared in the standard simply connected model space (the sphere of radius  $1/\sqrt{K}$   
 210 if  $K > 0$ ). ii) One avoids the potential degeneracy where side lengths might exceed  $\pi/\sqrt{K}$ , which  
 211 could cause the model triangle in spherical geometry to become ambiguous or wrap around the sphere.  
 212 In the case  $K \leq 0$ , there is no maximum perimeter restriction because the simply connected model  
 213 space (Euclidean or hyperbolic) is unbounded in diameter.

214 Next, the lemma for the angle continuity under small perturbation is provided.

215 **Lemma 7.** *Let  $\triangle pqr$  and  $\triangle p'q'r'$  be two geodesic triangles in a  $\text{CAT}(K)$  space  $(\mathcal{M}, d)$ . Suppose  
 216 each has a perimeter  $\pi/\sqrt{K}$  when  $K > 0$  (no restriction is needed if  $K \leq 0$ ). Also assume  
 217  $d(p, p') + d(q, q') + d(r, r')$  is small. Then, for the angles at  $p$  in  $\triangle pqr$  and at  $p'$  in  $\triangle p'q'r'$ ,*

$$|\angle_p(q, r) - \angle_{p'}(q', r')| \leq C\delta_{pp'qq'rr'}, \quad (11)$$

218 where  $C > 0$  is a constant depending only on  $K$  and the maximum side length (or perimeter)  
 219 constraints, and

$$\delta_{pp'qq'rr'} := d(p, p') + d(q, q') + d(r, r'). \quad (12)$$

220 Based on the above lemmas, the following statements are obtained.

221 **Proposition 3** (Angle perturbation via conditional measures). *Let  $\{\nu_x\}$  be a family of probability  
 222 measures on a  $\text{CAT}(K)$  space  $(\mathcal{M}, d)$ , each supported in a geodesic ball of diameter  $\leq D =$   
 223  $\pi/2\sqrt{K}$  when  $K > 0$ . Let  $\mu^*(x)$  be the unique Fréchet mean of  $\nu_x$ . Suppose  $\nu_x$  and  $\nu_{x'}$  are close in  
 224 the Wasserstein metric on measures:  $d_W(\nu_x, \nu_{x'}) \leq \epsilon$ . Then, for any fixed  $u, v \in \mathcal{M}$ , one has*

$$|\angle_{\mu^*(x)}(u, v) - \angle_{\mu^*(x')}(u, v)| \leq C\epsilon,$$

225 where the constant  $C > 0$  depends on the strong-convexity modulus  $\alpha(K, D)$ . In particular, smaller  
 226  $\epsilon$  implies the angles at  $\mu^*(x)$  and  $\mu^*(x')$  to points  $u, v$  differ by at most  $O(\epsilon)$ .

227 **Theorem 4** (Angle stability for conditional Fréchet means). *Let  $\{(X_i, Y_i)\} \subset \mathbb{R}^d \times \mathcal{M}$  with  $\mathcal{M}$  a  
 228  $\text{CAT}(K)$  space of diameter  $\leq D = \pi/2\sqrt{K}$  if  $K > 0$ . For each  $x \in \mathbb{R}^d$ , let  $\nu_x(\cdot)$  be the conditional  
 229 distribution of  $Y$  given  $X = x$ . Assume each  $\nu_x$  has the unique Fréchet mean  $\mu^*(x)$ . Moreover,  
 230 suppose that for  $x, x'$  sufficiently close, the measures  $\mu^*(x)$  and  $\mu^*(x')$  differ by at most  $\epsilon(\|x - x'\|)$   
 231 in the Wasserstein distance. Then for any finite set of points  $\{u_1, \dots, u_m\} \subset \mathcal{M}$ ,*

$$\sup_{1 \leq i < j \leq m} |\angle_{\mu^*(x)}(u_i, u_j) - \angle_{\mu^*(x')}(u_i, u_j)| \leq C\epsilon_{xx'},$$

232 where  $C > 0$  is a constant depending on the strong-convexity modulus  $\alpha(K, D)$  and  $\epsilon_{xx'} =$   
 233  $\epsilon(\|x - x'\|)$ . Thus, all angles at  $\mu^*(x)$  relative to a finite set of directions  $u_1, \dots, u_m$  vary continuously  
 234 and Lipschitz with  $x$ .

235 **Implications:** The established angle stability results in Section 3.3 imply that the geometric structure  
 236 surrounding the conditional Fréchet mean remains consistent under minor changes in the data  
 237 distribution. This consistency is essential for applications where the relative orientation of data points  
 238 carries meaningful information, ensuring that the regression estimates preserve intrinsic geometric  
 239 relationships.

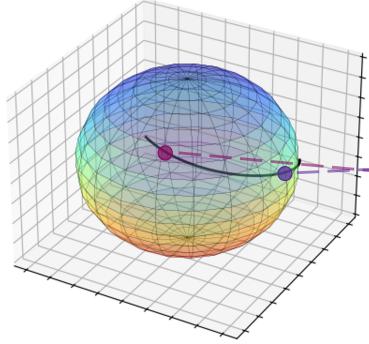
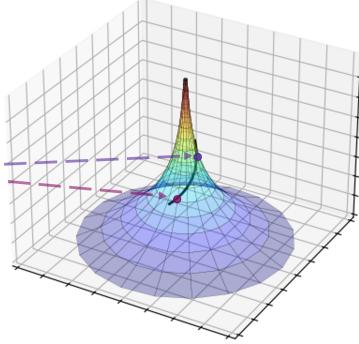
Curvature:  $K = 1$ Curvature:  $K = -1$ 

Figure 1: Mapping from spherical data into hyperbolic space.

240 **3.4 Local Jet Expansion of Fréchet Functionals**

241 **Lemma 8.** Let  $z \in \mathcal{M}$  and let  $\exp_z: T_z \mathcal{M} \rightarrow \mathcal{M}$  be the Riemannian exponential map (in a local  
 242 sense if  $\mathcal{M}$  is a manifold, or a suitable geodesic parameterization if  $\mathcal{M}$  is just a geodesic metric  
 243 space). Then for points  $u, v$  sufficiently close to  $z$ , define  $U := \exp_z^{-1}(u)$  and  $V := \exp_z^{-1}(v)$ . Then,

$$\angle_z(u, v) = \angle_0(U, V) + O(\|\exp_z^{-1}(u)\|^2 + \|\exp_z^{-1}(v)\|^2),$$

244 where  $\angle_0(U, V)$  is the standard Euclidean angle in  $T_z \mathcal{M} \approx \mathbb{R}^m$ , and the big- $O$  term depends on  
 245 curvature bounds near  $z$ .

246 **Proposition 4** (Local Jet expansion of Fréchet functionals). Let  $\nu$  be a probability measure on a suffi-  
 247 ciently regular  $\text{CAT}(K)$  space  $(\mathcal{M}, d)$ . Suppose that  $\mu(x)$  is the Fréchet mean of  $\nu_x$ :  $\mu(x) :=$   
 248  $\arg \min_{z \in \mathcal{M}} \int d^2(y, z) d\nu_x(y)$ , and consider the Fréchet functional  $F_x(z) = \int d^2(y, z) d\nu_x(y)$ .  
 249 Then, in a sufficiently small neighborhood of  $\mu$ , the functional  $F$  can be expanded in the tangent space  
 250  $T_\mu \mathcal{M}$  via the exponential map. Specifically, using local coordinates  $\exp_\mu: T_\mu \mathcal{M} \supset B_r(0) \rightarrow \mathcal{M}$ ,  
 251 for a vector  $v$  with  $\|v\|$  small, define  $z = \exp_\mu(v)$ . The expansion is given by

$$F(\exp_\mu(v)) = F_x(\mu) + \langle \nabla F_x(\mu), v \rangle + \frac{1}{2} \langle H_x v, v \rangle + R(v),$$

252 where  $\nabla F_x(\mu)$  is the gradient (which is zero if  $\mu$  is the unique minimizer),  $H_x$  is the Hessian (a  
 253 linear operator on  $T_\mu \mathcal{M}$ ), and the remainder term  $R(v)$  satisfies  $|R(v)| = O(\|v\|^3)$ .

254 **Implications:** The analysis in Section 3.4 offers a nuanced understanding of the Fréchet functional's  
 255 local behavior around its minimizer, the Fréchet mean. By expanding the Fréchet functional in the  
 256 tangent space via the exponential map, one can gain insights into the functional's curvature and  
 257 higher-order properties.

258 **3.5 Auxiliary Statements**

259 Here, a couple of auxiliary propositions that facilitate a deeper understanding of the structural  
 260 properties of the Fréchet functional within  $\text{CAT}(K)$  spaces are introduced in this section. These  
 261 propositions decompose the Fréchet functional into radial and angular components, enabling a more  
 262 nuanced analysis of variance and stability around the Fréchet mean.

263 **Proposition 5** (Angle Splitting in Distance Sums). Consider the Fréchet functional  $F(z) =$   
 264  $\int d^2(y, z) d\nu(y)$ . For  $z$  near  $\mu^*$ , decompose:

$$d^2(y, z) = d^2(y, \mu^*) + \Pi_d(y, z, \mu^*) + \Pi_\angle(y, z, \mu^*),$$

265 where  $\Pi_d$  captures radial changes in distances  $\Pi_\angle$  represents angular corrections around  $\mu^*$ . If  
 266  $\angle_{\mu^*}(y, z)$  remains small near  $\mu^*$ , then  $\Pi_\angle$  is of order  $\langle \angle_{\mu^*}(y, z) \rangle d(\mu^*, z)$ .

267 **Proposition 6** (Angle–Distance Decomposition of Conditional Variance). Let  $\nu_x$  be the conditional  
 268 distribution of  $Y$  given  $X = x$  on a sufficiently smooth  $\text{CAT}(K)$  space  $(\mathcal{M}, d)$ . Suppose  $\mu^*(x)$  is

| Data manifold           | Mean squared error (MSE) |
|-------------------------|--------------------------|
| Sphere ( $K = 1$ )      | 0.4915( $\pm 0.0086$ )   |
| Hyperbolic ( $K = -1$ ) | 0.4228( $\pm 0.0021$ )   |

Table 1: Evaluation of Fréchet regression on different spaces.

269 the unique Fréchet mean of  $\nu_x$ . Around  $\mu^*(x)$ , let

$$R_x(y) := d(y, \mu^*(x)), \quad \phi_x(y) := \angle_{\mu^*(x)}(u_0, y), \quad (13)$$

270 for a fixed reference point  $u_0 \in \mathcal{M}$ . Then the conditional variance can be partially decomposed into  
271 a radial variance term, an angle-radial covariance term, and higher-order corrections:

$$\begin{aligned} \text{Var}_{\nu_x} [d^2(Y, \mu^*(x))] \\ = \text{Var}[A_x(Y)] + \text{Cov}(\phi_x(Y), R_x(Y)^2) + \beta, \end{aligned} \quad (14)$$

272 where  $A_x$  is the radial part and  $\beta$  is the higher-order term.

273 **Implications:** The auxiliary propositions presented in Subsection 3.5 play an important role in  
274 refining the theoretical underpinnings of Fréchet regression within  $\text{CAT}(K)$  spaces. By decomposing  
275 the Fréchet functional into radial and angular components, these propositions enable a more granular  
276 analysis of variance and stability around the Fréchet mean.

## 277 4 Experiments

278 From the discussion in Section 3, it can be seen that the negative curvature space has better properties  
279 in terms of estimation than the positive curvature space with broader support. To confirm these results,  
280 this section considers numerical experiments. See Appendix A for the intuitive understanding of the  
281 following hyperbolic mapping.

### 282 4.1 Illustrative Example

283 A point on the unit sphere is parameterized as  $x = \sin(\phi) \cos(\theta)$ ,  $y = \sin(\phi) \sin(\theta)$ ,  $z = \cos(\phi)$ ,  
284 where  $\phi \in [0, \pi]$  is the polar angle and  $\theta \in [0, 2\pi]$  is the azimuthal angle. Let  $R$  be the radius of the  
285 sphere. Here, consider the stereographic projection: The plane is tangent to the sphere at the south  
286 pole  $(0, 0, -R)$  and is defined  $z = -R$ , and the north pole  $N = (0, 0, R)$  serves as the projection  
287 point. For a point  $p = (x, y, z)$ , the stereographic projection  $\pi(p) = (u, v)$  on the plane is given by  
288  $u = \frac{Rx}{R+z}$ ,  $v = \frac{Ry}{R+z}$ . This plane can be considered in the hyperbolic space, and one can visualize  
289 it as the pseudosphere (see Figure 1). Also, a point  $(x, y, z)$  can be mapped back to the sphere as

$$x = \frac{2R^2u}{R^2 + u^2 + v^2}, y = \frac{2R^2v}{R^2 + u^2 + v^2}, z = R \frac{u^2 + v^2 - R^2}{R^2 + u^2 + v^2}.$$

290 See Appendix E (including Python code in Listing 2) for the detailed data-generating process.

291 Table 1 shows the evaluation results of Fréchet regression on the spherical and hyperbolic coordinates.  
292 It can be seen that the hyperbolic mapping yields better results. Note that, the previous studies [15, 16]  
293 reported the effectiveness of such mapping for statistical problems of spherical data, and the objective  
294 of experiments in this section is just to confirm the theoretical results.

### 295 4.2 Experiment on Real-world Dataset

296 In addition to the illustrative example, consider the experiments on the real-world datasets. This  
297 section uses the following: i) HYG Steller database<sup>1</sup>, which is a comprehensive dataset containing  
298 information on stars brighter than magnitude 6.5. ii) USGS Earthquake catalogue<sup>2</sup>, represented in  
299 spherical coordinates. iii) NOAA Climate data<sup>3</sup>, from weather satellites. See Appendix 4.2 for the

<sup>1</sup><https://github.com/astronexus/HYG-Database?tab=readme-ov-file>

<sup>2</sup>[https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5\\_week.csv](https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_week.csv)

<sup>3</sup><http://celestrak.org/NORAD/elements/table.php?GROUP=weather&FORMAT=tle>

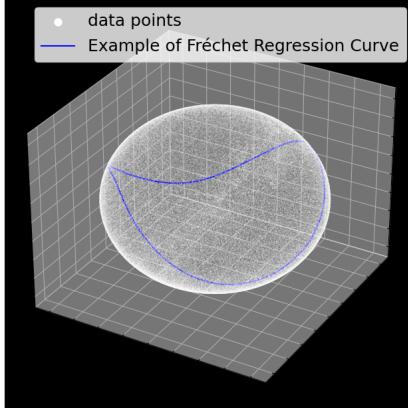


Figure 2: Visualization of the HYG Stellar database.

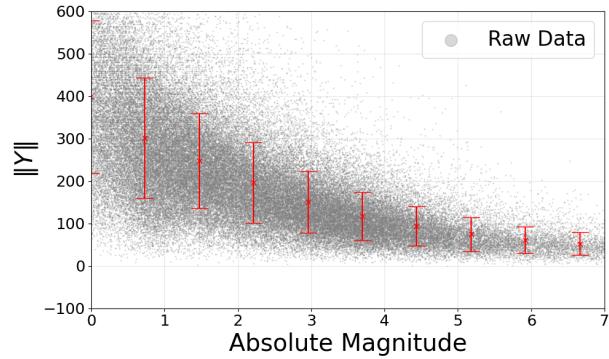


Figure 3: Heteroscedasticity in the HYG Stellar dataset.

| Dataset                      | MSE                    |
|------------------------------|------------------------|
| HYG Stellar                  | 0.3765( $\pm 0.0036$ ) |
| USGS Earthquake              | 0.5832( $\pm 0.0831$ ) |
| NOAA Climate                 | 0.4384( $\pm 0.0678$ ) |
| HYG Stellar (hyperbolic)     | 0.2660( $\pm 0.0032$ ) |
| USGS Earthquake (hyperbolic) | 0.4743( $\pm 0.0541$ ) |
| NOAA Climate (hyperbolic)    | 0.3259( $\pm 0.0683$ ) |

Table 2: Evaluation of Fréchet regression on different spaces.

300 details of this experiment (including Python code in Listing 3 for the visualization and data format  
 301 check of the dataset). Table 2 shows the experimental results of Fréchet regression on different  
 302 coordinates for the real datasets. The mapping procedure is the same as Section 4.1. As with the  
 303 illustrative example, we can confirm that Fréchet regression on hyperbolic surfaces yields better  
 304 results on the real datasets. As discussed in more detail in Appendix A, such a mapping of responses  
 305 to hyperbolic space may be particularly useful when heteroscedasticity is assumed in the data. Indeed,  
 306 heteroscedasticity can be observed in the HYG Stellar dataset (see Figure 3).

## 307 5 Conclusion

308 This study provides a comprehensive theoretical analysis of Fréchet regression within the framework  
 309 of comparison geometry, focusing on  $CAT(K)$  spaces. It establishes foundational results on the  
 310 existence, uniqueness, and stability of the Fréchet mean under varying curvature conditions. Notably,  
 311 the analysis demonstrates how curvature properties influence statistical estimation, with non-positive  
 312 curvature spaces offering advantageous stability and convergence properties. The paper also extends  
 313 statistical guarantees to nonparametric Fréchet regression, including exponential concentration  
 314 bounds and convergence rates, which align with classical Euclidean results. Angle stability and local  
 315 jet expansion further highlight the behavior of Fréchet functionals, offering geometric insights of  
 316 regression in non-Euclidean spaces. Experimental results support the theoretical findings, showing  
 317 that hyperbolic mappings often improve performance under heteroscedasticity assumption.

318 **Limitations:** While this study provides a robust theoretical foundation for Fréchet regression in  
 319  $CAT(K)$  spaces, several limitations exist. Firstly, the analysis predominantly focuses on spaces with  
 320 constant curvature bounds, which may not encompass all practical scenarios where data resides in  
 321 more heterogeneous geometric contexts. Additionally, the reliance on strong convexity conditions  
 322 and diameter constraints in positively curved spaces may restrict the applicability of the results. As  
 323 has been done in the information geometry framework [1, 34, 10, 25, 26, 31, 2], future work could  
 324 explore relaxing assumptions, extending the framework to broader classes of metric spaces, and  
 325 developing efficient algorithms.

326 **References**

- 327 [1] Shotaro Akaho. The e-pca and m-pca: Dimension reduction of parameters by information  
328 geometry. In *2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.*  
329 *04CH37541)*, volume 1, pages 129–134. IEEE, 2004.
- 330 [2] Shun-Ichi Amari. Natural gradient works efficiently in learning. *Neural computation*, 10(2):  
331 251–276, 1998.
- 332 [3] Shun-ichi Amari. *Information geometry and its applications*, volume 194. Springer, 2016.
- 333 [4] Shun-ichi Amari and Hiroshi Nagaoka. *Methods of information geometry*, volume 191. Ameri-  
334 can Mathematical Soc., 2000.
- 335 [5] Nihat Ay, Jürgen Jost, Hông Vn L, and Lorenz Schwachhfer. *Information geometry*, vol-  
336 ume 64. Springer, 2017.
- 337 [6] Werner Ballmann. *Lectures on spaces of nonpositive curvature*, volume 25. Springer Science &  
338 Business Media, 1995.
- 339 [7] Satarupa Bhattacharjee and Hans-Georg Mller. Single index frechet regression. *The Annals of*  
340 *Statistics*, 51(4):1770–1798, 2023.
- 341 [8] Hermanus Josephus Bierens. The nadaraya-watson kernel regression function estimator. 1988.
- 342 [9] Martin R Bridson and Andr Haefliger. *Metric spaces of non-positive curvature*, volume 319.  
343 Springer Science & Business Media, 2013.
- 344 [10] Kevin M Carter, Raviv Raich, William G Finn, and Alfred O Hero III. Information-geometric  
345 dimensionality reduction. *IEEE Signal Processing Magazine*, 28(2):89–99, 2011.
- 346 [11] Jeff Cheeger and Karsten Grove. *Metric and comparison geometry*, volume 11. International  
347 Press, 2007.
- 348 [12] Jeff Cheeger, David G Ebin, and David Gregory Ebin. *Comparison theorems in Riemannian*  
349 *geometry*, volume 9. North-Holland publishing company Amsterdam, 1975.
- 350 [13] Yaqing Chen and Hans-Georg Mller. Uniform convergence of local frechet regression with  
351 applications to locating extrema and time warping for metric space valued trajectories. *The*  
352 *Annals of Statistics*, 50(3):1573–1592, 2022.
- 353 [14] Brad C Davis, P Thomas Fletcher, Elizabeth Bullitt, and Sarang Joshi. Population shape  
354 regression from random design data. *International journal of computer vision*, 90:255–266,  
355 2010.
- 356 [15] TD Downs. Spherical regression. *Biometrika*, 90(3):655–668, 2003.
- 357 [16] Kajal Eybpoosh, Mansoor Rezghi, and Abbas Heydari. Applying inverse stereographic projec-  
358 tion to manifold learning and clustering. *Applied Intelligence*, pages 1–15, 2022.
- 359 [17] Daniel Ferguson and Franois G Meyer. Computation of the sample frechet mean for sets of  
360 large graphs with applications to regression. In *Proceedings of the 2022 SIAM International*  
361 *Conference on Data Mining (SDM)*, pages 379–387. SIAM, 2022.
- 362 [18] Aritra Ghosal. *Application of the single index methodology to the local Frechet regression in*  
363 *the context of Object oriented data analysis (OODA)*. University of California, Santa Barbara,  
364 2023.
- 365 [19] Aritra Ghosal, Wendy Meiring, and Alexander Petersen. Frechet single index models for object  
366 response regression. *Electronic Journal of Statistics*, 17(1):1074–1112, 2023.
- 367 [20] Karsten Grove and Peter Petersen. *Comparison geometry*, volume 30. Cambridge University  
368 Press, 1997.
- 369 [21] Matthias Hein. Robust nonparametric regression with metric-space valued output. *Advances in*  
370 *neural information processing systems*, 22, 2009.

- 371 [22] Jürgen Jost. *Nonpositive curvature: geometric and analytic aspects*. Birkhäuser, 2012.
- 372 [23] Hermann Karcher. Riemannian center of mass and mollifier smoothing. *Communications on*  
373 *pure and applied mathematics*, 30(5):509–541, 1977.
- 374 [24] David G Kendall. Shape manifolds, procrustean metrics, and complex projective spaces. *Bulletin*  
375 *of the London mathematical society*, 16(2):81–121, 1984.
- 376 [25] Masanari Kimura. Generalized t-sne through the lens of information geometry. *IEEE Access*, 9:  
377 129619–129625, 2021.
- 378 [26] Masanari Kimura and Howard Bondell. Density ratio estimation via sampling along generalized  
379 geodesics on statistical manifolds. *arXiv preprint arXiv:2406.18806*, 2024.
- 380 [27] Masanari Kimura and Hideitsu Hino.  $\alpha$ -geodesical skew divergence. *Entropy*, 23(5):528, 2021.
- 381 [28] Masanari Kimura and Hideitsu Hino. Information geometrically generalized covariate shift  
382 adaptation. *Neural Computation*, 34(9):1944–1977, 2022.
- 383 [29] Zhenhua Lin and Hans-Georg Müller. Total variation regularized fréchet regression for metric-  
384 space valued data. *The Annals of Statistics*, 49(6):3510–3533, 2021.
- 385 [30] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.  
386 *Mathematical programming*, 45(1):503–528, 1989.
- 387 [31] Noboru Murata, Takashi Takenouchi, Takafumi Kanamori, and Shinto Eguchi. Information  
388 geometry of u-boost and bregman divergence. *Neural Computation*, 16(7):1437–1481, 2004.
- 389 [32] Elizbar A Nadaraya. On estimating regression. *Theory of Probability & Its Applications*, 9(1):  
390 141–142, 1964.
- 391 [33] Frank Nielsen. An elementary introduction to information geometry. *Entropy*, 22(10):1100,  
392 2020.
- 393 [34] Adrian M Peter and Anand Rangarajan. Information geometry for landmark shape analysis:  
394 Unifying shape representation and deformation. *IEEE Transactions on Pattern Analysis and*  
395 *Machine Intelligence*, 31(2):337–350, 2008.
- 396 [35] Alexander Petersen and Hans-Georg Müller. Fréchet regression for random objects with  
397 euclidean predictors. *The Annals of Statistics*, 47(2):691–719, 2019.
- 398 [36] Rui Qiu, Zhou Yu, and Ruoqing Zhu. Random forest weighted local fréchet regression with  
399 random objects. *Journal of Machine Learning Research*, 25(107):1–69, 2024.
- 400 [37] Dogyoon Song and Kyunghee Han. Errors-in-variables fr\`echet regression with low-rank  
401 covariate approximation. *Advances in Neural Information Processing Systems*, 36:80575–80607,  
402 2023.
- 403 [38] Florian Steinke and Matthias Hein. Non-parametric regression between manifolds. *Advances in*  
404 *neural information processing systems*, 21, 2008.
- 405 [39] Danielle C Tucker, Yichao Wu, and Hans-Georg Müller. Variable selection for global fréchet  
406 regression. *Journal of the American Statistical Association*, 118(542):1023–1037, 2023.
- 407 [40] Geoffrey S Watson. Smooth regression analysis. *Sankhyā: The Indian Journal of Statistics,*  
408 *Series A*, pages 359–372, 1964.
- 409 [41] Guofang Wei and Will Wylie. Comparison geometry for the bakry-emery ricci tensor. *Journal*  
410 *of differential geometry*, 83(2):337–405, 2009.
- 411 [42] Xingyu Yan, Xinyu Zhang, and Peng Zhao. Frequentist model averaging for global fréchet  
412 regression. *IEEE Transactions on Information Theory*, 2024.
- 413 [43] Takumi Yokota. Convex functions and barycenter on cat (1)-spaces of small radii. *Journal of*  
414 *the Mathematical Society of Japan*, 68(3):1297–1323, 2016.
- 415 [44] Qi Zhang, Lingzhou Xue, and Bing Li. Dimension reduction for fréchet regression. *Journal of*  
416 *the American Statistical Association*, 119(548):2733–2747, 2024.

417 **A Intuitive Understanding for Hyperbolic Mapping**

418 In regression analysis, transforming the response variable can often lead to improved model performance  
 419 by stabilizing variance, normalizing distributions, or linearizing relationships. A classical  
 420 example is the logarithmic transformation  $Y \mapsto \log(Y)$  which can enhance the performance of a  
 421 linear regression model under certain conditions. Similarly, mapping spherical responses into hyper-  
 422 bolic space can offer analogous benefits, particularly in scenarios where the data exhibits inherent  
 423 geometric or hierarchical structures.

424 **Log Transformation in Linear Regression** Consider the simple linear regression model:

$$Y = \beta X + \epsilon,$$

425 where  $Y$  is the response variable,  $X$  is the predictor,  $\beta$  is the regression coefficient, and  $\epsilon$  is the error  
 426 term with  $\mathbb{E}[\epsilon] = 0$  and  $\text{Var}(\epsilon) = \sigma^2$ . Applying a logarithmic transformation to  $Y$  yields

$$\begin{aligned} \log(Y) &= \beta X + \epsilon, \\ Y &= \exp(\beta X + \epsilon) = \exp(\beta X) \cdot \exp(\epsilon). \end{aligned}$$

427 Assuming  $\epsilon$  is small and approximately normally distributed,  $\exp(\epsilon)$  introduces multiplicative noise  
 428 to  $Y$  effectively stabilizing variance across different levels of  $X$ . This transformation often re-  
 429 duces heteroscedasticity in the residuals, leading to improved regression performance. Here, the  
 430 heteroscedasticity refers to the phenomenon where the variability of the errors (or residuals) in a  
 431 regression model is not constant across the range of predictor variables.

432 **Definition 8** (Heteroscedasticity). *Consider a regression model:*

$$Y_i = \beta X_i + \epsilon_i,$$

433 where  $\epsilon_i \sim \mathcal{N}(0, \sigma^2(X_i))$ . Here, the variance of the error term  $\sigma^2(X)$  depends on  $X$ . In a  
 434 heteroscedastic model, the variance of  $\epsilon_i$  is a function of the predictors  $X_i$ :

$$\text{Var}(\epsilon_i | X_i) = \sigma^2(X_i).$$

435 In contrast, for homoscedasticity, the variance of  $\epsilon_i$  is constant.

436 **Hyperbolic Mapping via Stereographic Projection** Analogous to the log transformation, hyper-  
 437 bolic mapping transforms the response variable into a space where the geometric structure can  
 438 lead to improved regression characteristics. The procedure involves mapping points from a spherical  
 439 representation to a hyperbolic plane using stereographic projection. A point on the unit sphere of  
 440 radius  $R$  is parameterized using spherical coordinates:

$$\begin{aligned} x &= R \sin(\phi) \cos(\theta), \\ y &= R \sin(\phi) \sin(\theta), \\ z &= R \cos(\phi), \end{aligned}$$

441 where  $\phi \in [0, \pi]$  is the polar angle and  $\theta \in [0, 2\pi]$  is the azimuthal angle. The stereographic  
 442 projection maps a point  $p = (x, y, z)$  on the sphere to a point  $p \mapsto \psi(p) = (u, v)$  on the plane tangent  
 443 to the sphere at the south pole  $(0, 0, -R)$  and defined by  $z = -R$ . The north pole  $N = (0, 0, R)$   
 444 serves as the projection point. The projection formulas are

$$\begin{aligned} u &= \frac{Rx}{R + z}, \\ v &= \frac{Ry}{R + z}. \end{aligned}$$

445 This plane can be interpreted as a model of hyperbolic space, specifically visualized as a pseudosphere,  
 446 which inherently possesses properties conducive to handling hierarchical or tree-like data structures.

447 Both the logarithmic transformation and hyperbolic mapping aim to stabilize variance and linearize  
 448 relationships, through different geometric transformations. To understand the benefits of hyperbolic  
 449 mapping, consider the effect of each transformation on the variance of the response variable. Starting  
 450 with  $Y = \beta X + \epsilon$ , applying the log transformation yields

$$\log Y = \beta X + \epsilon.$$

451 Assuming  $\epsilon \sim \mathcal{N}(0, \sigma^2)$ , The variance of  $\log Y$  remains  $\sigma^2$  which can be advantageous if the original  
 452  $Y$  exhibits multiplicative noise:

$$\text{Var}(Y) = \text{Var}(\exp(\beta X + \epsilon)) = \exp(2\beta X) \cdot (\exp(\sigma^2) - 1).$$

453 The transformation effectively decouples the variance from  $X$  stabilizing it across different predictor  
 454 values.

455 For hyperbolic mapping, consider a response variable represented as a point on the sphere. The  
 456 stereographic projection transforms this spherical representation into the hyperbolic plane. Let  
 457  $Y$  be the original response mapped to a point  $p = (x, y, z)$  on the sphere, and  $\psi(p) = (u, v)$  its  
 458 hyperbolic projection. Assuming small deviations around a mean direction, the hyperbolic mapping  
 459 can linearize angular variations similarly to how the log transformation linearizes multiplicative  
 460 variations. Specifically, fluctuations in  $Y$  around the mean direction correspond to additive noise  
 461 in the hyperbolic plane, potentially reducing variance in a manner akin to the log transformation.  
 462 Formally, if  $Y$  is modeled on the sphere with

$$Y = R \cdot p + \epsilon,$$

463 where  $\epsilon$  represents angular noise, the hyperbolic projection yields

$$\psi(Y) = \left( \frac{Rx}{R+z}, \frac{Ry}{R+z} \right) + \epsilon',$$

464 where  $\epsilon'$  is the transformed noise. Under specific conditions (e.g., small angular deviations),  $\epsilon'$   
 465 exhibits reduced variance compared to  $\epsilon$ , analogous to the variance stabilization achieved by the log  
 466 transformation.

467 **Example 1** (Stabilizing Variance in Hierarchical Data). *Consider a dataset where the response  
 468 variable  $Y$  represents hierarchical relationships, such as the popularity of topics in a taxonomy. The  
 469 inherent tree-like structure implies that differences between nodes (topics) grow exponentially with  
 470 depth. Direct regression on  $Y$  would face increasing variance as depth increases. By mapping  $Y$  into  
 471 hyperbolic space via stereographic projection, the exponential growth inherent in hierarchical data  
 472 is linearized. This transformation stabilizes variance across different levels of the hierarchy, enabling  
 473 more effective regression modeling. Specifically, the hyperbolic mapping aligns the geometric  
 474 properties of the data with the regression framework, similar to how the log transformation aligns  
 475 multiplicative relationships with additive modeling.*

476 Let  $Y$  be mapped to hyperbolic space via stereographic projection:

$$u = \frac{Rx}{R+z},$$

$$v = \frac{Ry}{R+z}.$$

477 Assuming  $Y$  lies close to the north pole  $N = (0, 0, R)$ , small perturbations  $\epsilon$  around  $N$  imply

$$z = R \cos(\phi) \approx R \left( 1 - \frac{\phi^2}{2} \right),$$

$$x = R \sin(\phi) \cos(\theta) \approx R\phi \cos(\theta),$$

$$y = R \sin(\phi) \sin(\theta) \approx R\phi \sin(\theta).$$

478 Substituting into the projection formulas,

$$u \approx \frac{R \cdot R\phi \cos(\theta)}{R + R \left( 1 - \frac{\phi^2}{2} \right)} = \frac{R^2 \phi \cos(\theta)}{2R - \frac{\phi^2}{2}} \approx \frac{R\phi \cos(\theta)}{2},$$

$$v \approx \frac{R \cdot R\phi \sin(\theta)}{R + R \left( 1 - \frac{\phi^2}{2} \right)} = \frac{R^2 \phi \sin(\theta)}{2R - \frac{\phi^2}{2}} \approx \frac{R\phi \sin(\theta)}{2}.$$

479 Thus, small angular deviations  $\phi$  result in approximately linear changes in  $u$  and  $v$ , effectively  
 480 reducing the variance from multiplicative to additive in the hyperbolic plane:

$$\text{Var}(u, v) \approx \left( \frac{R}{2} \right)^2 \text{Var}(\phi).$$

481 Compared to the original spherical variance  $\text{Var}(\phi)$ , the hyperbolic mapping scales and linearizes the  
 482 variance, analogous to the stabilizing effect of the log transformation. Figure 4 shows the illustrative  
 483 example of transformed responses for  $Y = \beta X + \epsilon$  with heteroscedastic errors  $\epsilon = \mathcal{N}(0, g(\sigma X))$ ,  
 484  $\sigma = 0.2$  and  $\beta = 2$ . This figure shows  $g(\sigma X) = \sigma X$  and  $g(\sigma X) = \exp(\sigma X)$  cases.

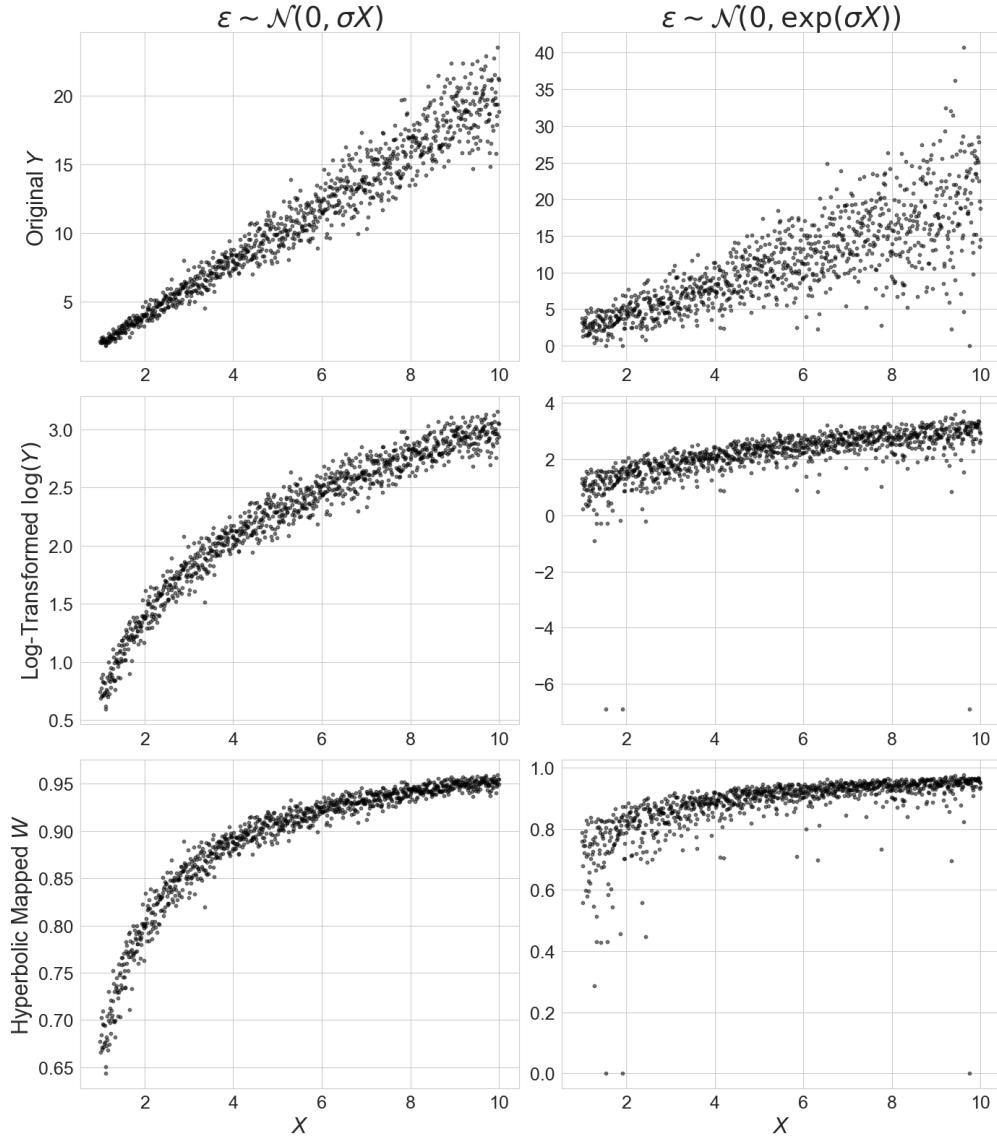


Figure 4: Illustrative example of transformed responses. Under the heteroscedastic errors assumption, the appropriate transformations of response variable yield stabilized variance. In this figure,  $Y$  is the original response variables,  $\log(Y)$  is the log-transformed variables and  $W$  is the hyperbolic mapped variables.

485 **B Proofs**

486 **B.1 Proofs for Section 3.1**

487 *Proof for Lemma 1.* To establish the geodesic convexity of the squared distance function  $f(x) =$   
 488  $d^2(p, x)$  in a  $\text{CAT}(K)$  space  $(\mathcal{M}, d)$  with  $K \leq 0$ , one must show that for any two points  $x, y \in \mathcal{M}$   
 489 and any geodesic  $\gamma: [0, 1] \rightarrow \mathcal{M}$  connecting  $x$  to  $y$ , the function  $t \mapsto f(\gamma(t))$  is convex on the  
 490 interval  $[0, 1]$ .

491 In the model space  $\mathbb{M}_K^2$  of constant curvature  $K \leq 0$ , construct a comparison triangle  $\bar{\Delta}$  corresponding  
 492 to  $\Delta = \{p, x, y\}$  in  $\mathcal{M}$ . Let  $\bar{p}, \bar{x}, \bar{y}$  be the vertices of  $\bar{\Delta}$  in  $\mathbb{M}_K^2$  with side lengths matching those  
 493 of  $\Delta$ . Then, for any points  $a, b$  on the sides  $[x, y]$  and  $[p, x]$  or  $[p, y]$ , the distance  $d(a, b)$  in  $\mathcal{M}$  is at  
 494 most the distance  $d_{\mathbb{M}_K^2}(\bar{a}, \bar{b})$  in the model space.

495 Let  $\gamma(t)$  corresponds to a point  $\bar{\gamma}(t)$  on the side  $[\bar{x}, \bar{y}]$  in  $\bar{\Delta}$ . By the  $\text{CAT}(K)$  property,

$$d(p, \gamma(t)) \leq d_{\mathbb{M}_K^2}(\bar{p}, \bar{\gamma}(t)).$$

496 In  $\mathbb{M}_K^2$ , which is a uniquely geodesic space, the squared distance satisfies the law of cosines

$$d^2(\bar{p}, \bar{\gamma}(t)) \leq (1-t)d^2(\bar{p}, \bar{x}) + td^2(\bar{p}, \bar{y}) - t(1-t)c_K,$$

497 where  $c_K$  is a non-negative constant dependent on  $K$  and the geometry of the triangle. Here, since  
 498  $K \leq 0$ , the space  $\mathbb{M}_K^2$  exhibits non-positive curvature, which implies that the term  $-t(1-t)c_K$  does  
 499 not negatively affect the inequality. Therefore,

$$d^2(p, \gamma(t)) \leq d_{\mathbb{M}_K^2}^2(\bar{p}, \bar{\gamma}(t)) \leq (1-t)d^2(p, x) + td^2(p, y),$$

500 and  $f$  is geodesically convex.  $\square$

501 *Proof for Lemma 2.* Consider a sequence  $\{x_n\}$  in  $\mathcal{M}$  that converges to  $x \in \mathcal{M}$ . Given the continuity  
 502 of the distance function in metric spaces, for each  $y \in \mathcal{M}$ ,  $d(y, x_n) \rightarrow d(y, x)$  as  $n \rightarrow +\infty$ . Since  
 503  $d^2(y, x)$  is continuous in  $x$ , by Fatou's lemma,

$$\liminf_{n \rightarrow +\infty} d^2(y, x_n) \leq d^2(y, x).$$

504 Integrating both sides with respect to  $\nu$ ,

$$\liminf_{n \rightarrow +\infty} \int_{\mathcal{M}} d^2(y, x_n) d\nu(y) \leq \int_{\mathcal{M}} d^2(y, x) d\nu(y).$$

505 Thus,  $F$  is lower semicontinuous. Also, since

$$F(x) = \int_{\mathcal{M}} d^2(y, x) d\nu(y) \geq 0,$$

506 for any  $x \in \mathcal{M}$ ,  $F$  is bounded below by zero. Therefore, there exists a sequence  $\{m_m\}$  in  $\mathcal{M}$  such  
 507 that

$$F(m_n) \rightarrow \inf_{x \in \mathcal{M}} F(x),$$

508 as  $n \rightarrow +\infty$ . Let  $\{m_n\}$  be called a minimizing sequence. Given that the support of  $\nu$ , denoted by  
 509  $\text{supp}(\nu)$ , is compact, denote it by  $S \subseteq \mathcal{M}$ . That is,  $S$  is compact and  $\nu(S) = 1$ .

510 To ensure that the existence of a convergent subsequence, one need to show that  $\{m_n\}$  is contained  
 511 within a compact subset of  $\mathcal{M}$ . Since  $S$  is compact, it is bounded. Thus, there exists a radius  $R > 0$   
 512 and a point  $p \in \mathcal{M}$  such that  $S \subseteq B(p, R)$ , where  $B(p, R) = \{x \in \mathcal{M} \mid d(p, x) \leq R\}$ . Using the  
 513 triangle inequality in metric spaces,

$$d(y, m_n) \geq d(p, m_n) - d(y, p) \geq d(p, m_n) - R.$$

514 Then,

$$\begin{aligned} F(m_n) &= \int_S d^2(y, m_n) d\nu(y) \\ &\geq \int_S \{d(p, m_n) - d(y, p)\}^2 d\nu(y) \\ &= \int_S \{d(p, m_n)^2 - 2d(p, m_n) + d^2(y, p)\} d\nu(y) \\ &= d(p, m_n)^2 - 2d(p, m_n) \int_S d(y, p) d\nu(y) + \int_S d^2(y, p) d\nu(y) \leq C \end{aligned}$$

515 Let  $A = \int_S d(y, p)\nu(y)$  and  $B = \int_S d^2(y, p)d\nu(y)$ , both finite due to the compactness. Thus,

$$d(p, m_n)^2 - 2Ad(p, m_n) + B \leq C$$

$$d(p, m_n) \leq A \pm \sqrt{A^2 + C - B}.$$

516 Hence, the sequence  $\{m_n\}$  lies within the closed ball  $\overline{B}(p, A + \sqrt{A^2 + C - B})$ , which is compact  
517 if  $\mathcal{M}$  is proper. Here,  $\text{CAT}(K)$  spaces are not necessarily proper in general, but since  $\text{supp}(\nu)$  is  
518 compact and  $\{m_n\}$  is bounded, one can extract a convergent subsequence under the assumption  
519 that  $\mathcal{M}$  is complete. Given that  $\{m_n\}$  is bounded and  $\mathcal{M}$  is complete, one can utilize the Bolzano-  
520 Weierstrass theorem in  $\text{CAT}(K)$  spaces to extract a convergent subsequence. Specifically, since  $\mathcal{M}$   
521 is a geodesic space and  $\{m_n\}$  is bounded, there exists a subsequence  $\{m_{n_k}\}$  that converges to some  
522  $m \in \mathcal{M}$ .

523 Since  $F$  is lower semicontinuous and  $m_{n_k} \rightarrow m$ ,

$$F(m) \leq \liminf_{k \rightarrow +\infty} F(m_{n_k}) = \inf_{x \in \mathcal{M}} F(x).$$

524 This implies that  $m$  achieves the infimum of  $F$ ,

$$F(m) = \inf_{x \in \mathcal{M}} F(x).$$

525 Therefore,  $m$  is a minimizer of the Fréchet functional.  $\square$

526 *Proof for Lemma 3.* For the sake of contradiction, suppose that there are two distinct points  $m_1, m_2 \in$   
527  $\mathcal{M}$  such that both are minimizers of the Fréchet functional.

$$m_1 = \arg \min_{x \in \mathcal{M}} \int_{\mathcal{M}} d^2(y, x)d\nu(y),$$

$$m_2 = \arg \min_{x \in \mathcal{M}} \int_{\mathcal{M}} d^2(y, x)d\nu(y),$$

528 with  $m_1 \neq m_2$ . Since  $\mathcal{M}$  is a  $\text{CAT}(K)$  space and thus a geodesic metric space, there exists a unique  
529 geodesic  $\gamma: [0, 1] \rightarrow \mathcal{M}$  connecting  $m_1$  to  $m_2$ .

$$\gamma(0) = m_1,$$

$$\gamma(1) = m_2,$$

$$d(\gamma(t), \gamma(t')) = |t - t'| \cdot d(m_1, m_2), \quad \forall t, t' \in [0, 1].$$

530 Define a function  $F: [0, 1] \rightarrow \mathbb{R}$  by evaluating the Fréchet functional along the geodesic  $\gamma(t)$ :

$$F(t) = \int_{\mathcal{M}} d^2(y, \gamma(t))d\nu(y).$$

531 Since both  $m_1$  and  $m_2$  are minimizers,

$$F(0) = F(1) = \inf_{x \in \mathcal{M}} F(x).$$

532 Given that  $\mathcal{M}$  is strictly geodesically convex, the squared distance function  $f(x) = d^2(y, x)$  is strictly  
533 convex along any geodesic. Therefore, for each fixed  $y \in \mathcal{M}$ , the function  $t \mapsto d^2(y, \gamma(t))$  satisfies

$$d^2(y, \gamma(t)) < (1 - t)d^2(y, m_1) + td^2(y, m_2),$$

534 for all  $t \in (0, 1)$ .

535 Integrate the strict inequality with respect to the measure  $\nu$  yields

$$\begin{aligned} F(t) &= \int_{\mathcal{M}} d^2(y, \gamma(t))d\nu(y) \\ &< \int_{\mathcal{M}} \{(1 - t)d^2(y, m_1) + td^2(y, m_2)\} d\nu(y) \\ &= (1 - t) \int_{\mathcal{M}} d^2(y, m_1)d\nu(y) + t \int_{\mathcal{M}} d^2(y, m_2)d\nu(y). \end{aligned}$$

536 But since  $m_1$  and  $m_2$  are both minimizers,

$$\int_{\mathcal{M}} d^2(y, m_1) d\nu(y) = \int_{\mathcal{M}} d^2(y, m_2) d\nu(y) = \int_{x \in \mathcal{M}} F(x).$$

537 Thus,

$$F(t) < (1-t) \inf_{x \in \mathcal{M}} F(x) + t \inf_{x \in \mathcal{M}} F(x) = \inf_{x \in \mathcal{M}} F(x).$$

538 However, this is a contradiction because  $F(x)$  cannot be less than the infimum  $\inf_{x \in \mathcal{M}} F(x)$ . The  
539 contradiction arises from the assumption that two distinct minimizers  $m_1$  and  $m_2$  exist. Therefore,  
540 there can be at most one minimizer. Given that the Fréchet functional attains its infimum by Lemma 2,  
541 this minimizer is unique.  $\square$

542 *Proof for Proposition 1.* The Fréchet functional  $x \mapsto F_\nu(x)$  for a measure  $\nu$  is defined as

$$F_\nu(x) = \int_{\mathcal{M}} d^2(y, x) d\nu(y).$$

543 Given that the squared distance function  $d^2(y, x)$  is continuous in  $y$  for each fixed  $x$ , weak conver-  
544 gence  $\nu_n \Rightarrow \nu$  implies that for each fixed  $x \in \mathcal{M}$ ,

$$\lim_{n \rightarrow +\infty} F_{\nu_n}(x) = F_\nu(x).$$

545 In addition, given that  $d^2(y, x)$  is continuous and bounded by zero, and assuming that the measures  
546  $\nu_n$  and  $\nu$  have compact supports, as established in Lemma 2, the convergence  $\nu_n \Rightarrow \nu$  implies that

$$\lim_{n \rightarrow +\infty} F_{\nu_n}(x) = F_\nu(x), \quad \text{uniformly for } x \in \mathcal{M}.$$

547 This uniform convergence is a consequence of the boundedness of the squared distance function  
548 over compact supports, and the equicontinuity provided by the geometric properties of the  $\text{CAT}(K)$   
549 spaces.

550 Suppose that  $m_n$  does not converge to  $m$ . Then, there exist an  $\epsilon > 0$  and a subsequence  $\{m_{n_k}\}$  such  
551 that

$$d(m_{n_k}, m) \geq \epsilon,$$

552 for all  $k$ . Since  $\mathcal{M}$  is a  $\text{CAT}(K)$  space with  $K \leq 0$  and hence a geodesic and proper metric space  
553 under the assumption of compact support from Lemma 2, the sequence  $\{m_{n_k}\}$  has a convergent  
554 subsequence. Without loss of generality, assume that  $m_{n_k} \rightarrow m'$  as  $k \rightarrow +\infty$ . By the continuity of  
555 the Fréchet functional,

$$\begin{aligned} \lim_{k \rightarrow +\infty} F_{\nu_{n_k}}(m_{n_k}) &= \lim_{k \rightarrow +\infty} \inf_{x \in \mathcal{M}} F_{\nu_{n_k}}(x) \\ &= F_\nu(m'), \end{aligned}$$

556 since  $m$  is the unique minimizer for  $\nu$ .

557 Consider  $\nu_n \Rightarrow \nu$  and  $m_{n_k} \rightarrow m'$ ,

$$\lim_{k \rightarrow +\infty} F_{\nu_{n_k}}(m_{n_k}) = F_\nu(m').$$

558 Then,

$$F_\nu(m') = F_\nu(m).$$

559 Therefore,  $m'$  is also a minimizer of  $F_\nu(x)$ . Since  $\nu$  has a unique Fréchet mean  $m$ , it must be that  
560  $m' = m$ . Recall that  $d(m_{n_k}, m) \geq \epsilon$  for all  $k$ , but  $m_{n_k} \rightarrow m' = m$ , which implies that

$$\lim_{k \rightarrow +\infty} d(m_{n_k}, m) = d(m', m) = 0,$$

561 contradicting  $d(m_{n_k}, m) \geq \epsilon$ . Therefore, it must be that

$$m_n \rightarrow m, \quad \text{as } n \rightarrow +\infty.$$

562  $\square$

563 *Proof for Proposition 4.* For  $K > 0$ , the comparison space is the standard sphere  $\mathbb{S}^n$  with radius  
 564  $1/\sqrt{K}$ . In  $\mathbb{S}^n$ , geodesics are great circles, and the distance between two points is given by the  
 565 central angle multiplied by  $1/\sqrt{K}$ . The diameter of  $\mathbb{S}^n$  is  $\pi/\sqrt{K}$ , meaning that the maximal distance  
 566 between any two points is  $\pi/\sqrt{K}$ .

567 Given  $R < \pi/2\sqrt{K}$ , the geodesic ball  $B(p, R)$  lies entirely within a hemisphere of  $\mathbb{S}^n$ . In this  
 568 setting, any two points  $x, y \in B(p, R)$  are separated by a distance  $d(x, y)$ , satisfying

$$\begin{aligned} d(x, y) &\leq d(x, p) + d(p, y) \\ &< \frac{\pi}{2\sqrt{K}} + \frac{\pi}{2\sqrt{K}} \\ &= \frac{\pi}{\sqrt{K}}. \end{aligned}$$

569 Since  $d(x, y) < \pi/\sqrt{K}$ , there exists a unique minimal geodesic connecting  $x$  and  $y$  within  $\mathbb{S}^n$ .

570 Assume, for contradiction, that the minimal geodesic  $\gamma$  between  $x$  and  $y$  exits  $B(p, R)$ . Then, there  
 571 exists a point  $z \in \gamma$  such that  $d(p, z) = R$ . Consider the geodesic triangles  $\triangle pzx$  and  $\triangle pzy$ . Since  
 572  $d(p, x) < R$  and  $d(p, y) < R$ , and  $\gamma$  is minimal, the angle at  $p$  opposite the side  $\gamma$  must satisfy certain  
 573 angular constraints derived from the spherical law of cosines. However, because  $R < \pi/2\sqrt{K}$ , the  
 574 triangle  $\triangle pzx$  lies within a convex hemisphere, ensuring that the path from  $p$  to  $z$  to  $x$  remains within  
 575  $B(p, R)$ . This contradicts the assumption that  $\gamma$  exits  $B(p, R)$ . Therefore, since any two points in  
 576  $B(p, R)$  can be connected by a unique minimal geodesic that remains entirely within  $B(p, R)$ , the  
 577 geodesic ball  $B(p, R)$  is geodesically convex in  $\mathbb{S}^n$  for all radius  $R < \pi/2\sqrt{K}$ . This ensures that  
 578  $\text{CAT}(K)$  condition preserves the strict convexity.

579 Given that  $\text{diam}(\text{supp}(\nu)) < \pi/2\sqrt{K}$ , for any geodesic  $t \mapsto \gamma(t)$  connecting two distinct points  
 580  $m_1, m_2 \in \mathcal{M}$ , the Fréchet functional satisfies

$$F(\gamma(t)) < (1-t)F(m_1) + tF_2(m_2),$$

581 for all  $t \in (0, 1)$ , provided  $m_1 \neq m_2$ . Here, strict convexity of  $F(x)$  ensures that any local minimum  
 582 is a global minimum, and further, that such a minimum is unique within the convex neighborhood.  $\square$

583 **B.2 Proofs for Section 3.2**

584 *Proof for Theorem 1.* Define the population Fréchet functional  $F(z)$  and empirical Fréchet functional  
585  $F_n(z)$  as follows.

$$F(z) := \mathbb{E}[d^2(Y, m)],$$

$$F_n(z) := \frac{1}{n} \sum_{i=1}^n d^2(Y_i, z).$$

586 By definition,

$$\mu = \arg \min_{z \in \mathcal{M}} F(z),$$

$$\hat{\mu}_n = \arg \min_{z \in \mathcal{M}} F_n(z).$$

587 Assume that  $\mu$  is unique, which holds if  $\text{diam}(\mathcal{M}) < \pi/2\sqrt{K}$  when  $K > 0$  or automatically if  
588  $K \leq 0$ , from Lemmas 2, 3 and Propositions 1, 4.

589 A key geometric fact in  $\text{CAT}(K)$  spaces is that the map

$$z \mapsto \mathbb{E}[d^2(Y, z)] = F(z)$$

590 is  $\lambda$ -strongly geodesically convex around  $\mu$ , provided  $\text{diam}(\mathcal{M})$  is small enough. Concretely, there  
591 exists a constant

$$\alpha = \alpha(K, D) > 0,$$

592 such that for every  $z \in \mathcal{M}$ ,

$$F(z) - F(\mu) \geq \alpha d^2(z, \mu).$$

593 A fully explicit formula for  $\alpha(K, D)$  can be extracted from standard  $\text{CAT}(K)$  lemmas.

- 594 • If  $K \leq 0$ , one can take  $\alpha(K, D) = \frac{1}{2}$ . Indeed,  $\text{CAT}(K)$  spaces are sometimes called  
595 Hadamard spaces, for which  $d^2(y, \cdot)$  is 1-convex along geodesics.
- 596 • If  $K > 0$  but  $\text{diam}(\mathcal{M}) = D < \pi/2\sqrt{K}$ , one obtains an explicit lower bound

$$\alpha(K, D) \geq \frac{\sin(2\sqrt{K}R)}{2R},$$

597 where  $R = D/2$ . One often sees, for example,

$$\alpha(K, D) = \frac{2}{\pi} \sqrt{K} \sin\left(\frac{\pi}{2} - \sqrt{K}D\right).$$

598 Since  $\hat{\mu}_n$  is the minimizer of  $F_n$ , one can obtain

$$F_n(\hat{\mu}_n) \leq F_n(\mu).$$

599 Here, rewriting  $F_n = F_n - F + F$ ,

$$\begin{aligned} F_n(\hat{\mu}_n) - F_n(\mu) &= \{F_n(\hat{\mu}_n) - F(\hat{\mu}_n)\} - \{F_n(\mu) - F(\mu)\} + \{F(\mu_n) - F(\mu)\} \\ &\leq 0, \\ F(\hat{\mu}_n) - F(\mu) &\leq \{F_n(\mu) - F(\mu)\} - \{F_n(\hat{\mu}_n) - F(\hat{\mu}_n)\} \\ &\leq |F_n(\mu) - F(\mu)| + |F_n(\hat{\mu}_n) - F(\hat{\mu}_n)| \\ &\leq 2 \sup_{z \in \mathcal{M}} |F_n(z) - F(z)|. \end{aligned}$$

600 On the other hand, by the strong convexity of  $F(z)$ ,

$$F(\hat{\mu}_n) - F(\mu) \geq \alpha(K, D)d^2(\hat{\mu}_n, \mu).$$

601 Therefore, by combining them, if  $d(\hat{\mu}_n, \mu) \geq \epsilon$ , then

$$\begin{aligned}\alpha(K, D)\epsilon^2 &\leq F(\hat{\mu}_n) - F(\mu) \\ &\leq 2 \sup_{z \in \mathcal{M}} |F_n(z) - F(z)|.\end{aligned}$$

602 Hence,

$$\{d(\hat{\mu}_n, \mu) \geq \epsilon\} \subseteq \left\{ \sup_{z \in \mathcal{M}} |F_n(z) - F(z)| \geq \frac{\alpha(K, D)}{2} \epsilon^2 \right\},$$

603 and

$$\mathbb{P}[d(\hat{\mu}_n, \mu) \geq \epsilon] \leq \mathbb{P} \left[ \sup_{z \in \mathcal{M}} |F_n(z) - F(z)| \geq \frac{\alpha(K, D)}{2} \epsilon^2 \right].$$

604 So, it suffices to control  $\sup_{z \in \mathcal{M}} |F_n(z) - F(z)|$  by an exponential tail.

605 Recall that

$$F_n(z) - F(z) = \frac{1}{n} \sum_{i=1}^n \{d^2(Y_i, z) - \mathbb{E}[d^2(Y, z)]\}.$$

606 Define

$$X_i(z) = d^2(Y_i, z) - \mathbb{E}[d^2(Y, z)].$$

607 Then,  $\mathbb{E}[X_i(z)] = 0$  and

$$F_n(z) - F(z) = \frac{1}{n} \sum_{i=1}^n X_i(z).$$

608 Because  $\mathcal{M}$  has diameter  $\text{diam}(\mathcal{M}) \leq D$ ,  $d^2(\cdot, \cdot) \leq D^2$ . Hence, for any  $z$ ,

$$X_i(z) \in [-D^2, D^2].$$

609 By Hoeffding's inequality, for a fixed  $z$ ,

$$\begin{aligned}\mathbb{P}[|F_n(z) - F(z)| \geq t] &= \mathbb{P} \left[ \left| \sum_{i=1}^n X_i(z) \right| \geq nt \right] \\ &\leq 2 \exp \left( -\frac{nt^2}{2D^4} \right).\end{aligned}$$

610 Here, for every fixed  $\epsilon$ , one obtains a bound of the form

$$\mathbb{P} \left[ \sup_{z \in \mathcal{M}} |F_n(z) - F(z)| \geq t \right] \leq c'_1 \exp(-c'_2 nt^2),$$

611 for constants  $c'_1, c'_2 > 0$  depending on  $K, D$  and on the metric complexity of  $\mathcal{M}$ ,

$$\begin{aligned}c'_1 &= 2 \left( \frac{\alpha(K, D)D}{\delta} \right)^m, \\ c'_2 &= \frac{\alpha(K, D)}{8D^2},\end{aligned}$$

612 that are from standard references in manifold-valued statistics.

613 Putting it all together,

$$\begin{aligned}\mathbb{P}[d(\hat{\mu}_n, \mu) \geq \epsilon] &\leq \mathbb{P} \left[ \sup_{z \in \mathcal{M}} |F_n(z) - F(z)| \geq \frac{\alpha(K, D)}{2} \epsilon^2 \right] \\ &\leq c'_1 \exp \left\{ -c'_2 n \left( \frac{\alpha(K, D)}{2} \epsilon^2 \right)^2 \right\}.\end{aligned}$$

614 This concludes the required proof.  $\square$

615 *Proof for Proposition 2.* By Theorem 1, there exist positive constants  $c_1 = c_1(K, D)$  and  $c_2 =$   
616  $c_2(K, D)$ , such that for every  $\epsilon > 0$ ,

$$\mathbb{P}[d(\hat{\mu}_n, \mu) > \epsilon] \leq c_1 \exp(-c_2 n \epsilon^2).$$

617 For any nonnegative random variable  $Z$  and any  $p \geq 1$ , one has the standard identity

$$\mathbb{E}[Z^p] = \int_0^\infty p \epsilon^{p-1} \mathbb{P}(Z > \epsilon) d\epsilon.$$

618 This follows from writing  $\mathbb{E}[Z^p] = \int_0^\infty p \epsilon^{p-1} \mathbb{1}(Z > \epsilon) d\epsilon$  and exchanging expectation and integral.  
619 Applying this to  $Z = d(\hat{\mu}_n, \mu)$ ,

$$\mathbb{E}[d^p(\hat{\mu}_n, \mu)] = \int_0^\infty p \epsilon^{p-1} \mathbb{P}[d(\hat{\mu}_n, \mu) > \epsilon] d\epsilon.$$

620 Therefore,

$$\begin{aligned} \mathbb{E}[d^p(\hat{\mu}_n, \mu)] &\leq \int_0^\infty p \epsilon^{p-1} [c_1 \exp(-c_2 n \epsilon^2)] d\epsilon \\ &= c_1 \int_0^\infty p \epsilon^{p-1} \exp(-c_2 n \epsilon^2) d\epsilon. \end{aligned}$$

621 Let  $u = \sqrt{n}\epsilon$ . Then,  $\epsilon = u/\sqrt{n}$  and  $d\epsilon = \frac{1}{\sqrt{n}} du$ . Also,

$$\begin{aligned} \epsilon^{p-1} &= \left(\frac{u}{\sqrt{n}}\right)^{p-1} = n^{-(p-1)/2} u^{p-1}, \\ \exp(-c_2 n \epsilon^2) &= \exp(-c_2 u^2). \end{aligned}$$

622 So,

$$\begin{aligned} \int_0^\infty \epsilon^{p-1} \exp(-c_2 n \epsilon^2) d\epsilon &= \int_0^\infty n^{-(p-1)/2} u^{p-1} \exp(-c_2 u^2) \frac{1}{\sqrt{n}} du \\ &= n^{-\frac{p-1}{2}} n^{-\frac{1}{2}} \int_0^\infty u^{p-1} \exp(-c_2 u^2) du \\ &= n^{-\frac{p}{2}} \int_0^\infty u^{p-1} \exp(-c_2 u^2) du. \end{aligned}$$

623 Now, evaluate  $\int_0^\infty u^{p-1} \exp(-c_2 u^2) du$ . This is a known integral that can be expressed via the  
624 Gamma function. Indeed,

$$\int_0^\infty u^{p-1} \exp(-c_2 u^2) du = \frac{1}{2} c_2^{-\frac{p}{2}} \Gamma\left(\frac{p}{2}\right),$$

625 and

$$\int_0^\infty \epsilon^{p-1} \exp(-c_2 n \epsilon^2) d\epsilon = n^{-\frac{p}{2}} \left[ \frac{1}{2} c_2^{-\frac{p}{2}} \Gamma\left(\frac{p}{2}\right) \right].$$

626 Therefore,

$$\mathbb{E}[d^p(\hat{\mu}_n, \mu)] \leq c_1 p \left\{ n^{-\frac{p}{2}} \left[ \frac{1}{2} c_2^{-\frac{p}{2}} \Gamma\left(\frac{p}{2}\right) \right] \right\}.$$

627 Collecting constants and it gives the proof.  $\square$

628 *Proof for Theorem 2.* Fix a point  $x \in \mathbb{R}^d$ . Define the weighted empirical measure of  $Y$  given  $x$  as

$$\nu_{n,x} := \sum_{i=1}^n w_{n,i}(x) \delta_{Y_i},$$

629 where  $\delta_{Y_i}$  denotes the Dirac measure at  $Y_i$ . Because  $\sum_{i=1}^n w_{n,i}(x) = 1$ , this is indeed a probability  
630 measure on  $\mathcal{M}$ . Similarly, let  $\nu_x$  be the true conditional distribution of  $Y$  given  $X = x$  as

$$\nu_x := \mathbb{P}[Y \in A \mid X = x],$$

631 for Borel sets  $A \subseteq \mathcal{M}$ . Then, observe that the estimator  $\hat{\mu}_n^*(x)$  can be written as

$$\begin{aligned}\hat{\mu}_n^*(x) &= \arg \min_{z \in \mathcal{M}} \sum_{i=1}^n w_{n,i}(x) d^2(Y_i, z) \\ &= \arg \min_{z \in \mathcal{M}} \int_{-\infty}^{+\infty} d^2(y, z) d\nu_{n,x}(y).\end{aligned}$$

632 That is,  $\hat{\mu}_n^*(x)$  is precisely the Fréchet mean of the measure  $\nu_{n,x}$ . Meanwhile,  $\mu^*(x)$  is the Fréchet  
633 mean of  $\nu_x$ :

$$\mu^*(x) = \arg \min_{z \in \mathcal{M}} \int_{-\infty}^{+\infty} d^2(y, z) d\nu_x(y).$$

634 Hence, the problem reduces to showing that as  $n \rightarrow +\infty$ ,  $\nu_{n,x}$  converges to  $\nu_x$  in a sense strong  
635 enough to force their Fréchet means to converge.

636 From Assumption 1, one can expect that for any bounded function  $f: \mathcal{M} \rightarrow \mathbb{R}$ ,

$$\int f d\nu_{n,x} = \sum_{i=1}^n w_{n,i}(x) f(Y_i) \xrightarrow[n \rightarrow \infty]{a.s.} \mathbb{E}[f(Y) \mid X = x] = \int f d\nu_x.$$

637 Thus,  $\nu_{n,x}$  converges to  $\nu_x$  in the weak topology on probability measures.

638 For each measure  $\nu$ , define its Fréchet functional  $F_\nu: \mathcal{M} \rightarrow \mathbb{R}$  by

$$F_\nu(z) := \int d^2(y, z) d\nu(y).$$

639 Here,

$$\begin{aligned}\hat{\mu}_n^*(x) &= \arg \min_{z \in \mathcal{M}} F_{\nu_{n,x}}(z), \\ \mu^*(x) &= \arg \min_{z \in \mathcal{M}} F_{\nu_x}(z).\end{aligned}$$

640 One want  $F_{\nu_{n,x}} \rightarrow F_{\nu_x}$  in a suitable sense that implies  $\arg \min$  convergence. In fact, for pointwise  
641 consistency, it suffices to show that for each  $z \in \mathcal{M}$ ,

$$F_{\nu_{n,x}}(z) = \sum_{i=1}^n w_{n,i}(x) d^2(Y_i, z) \xrightarrow{a.s.} \int d^2(y, z) d\nu_x(y) = F_{\nu_x}(z).$$

642 By Assumption 1, this convergence holds for each  $z \in \mathcal{M}$ .

643 To pass from pointwise convergence of  $F_{\nu_{n,x}}$  to convergence of the minimizers  $\hat{\mu}_n^*(x) \rightarrow \mu^*(x)$ ,  
644 one can rely on the strict geodesic convexity of  $d^2(\cdot, \cdot)$  in a  $\text{CAT}(K)$  space with small diameter.  
645 Concretely, from earlier arguments, there is a constant  $\alpha(K, D)$  such that

$$F_{\nu_x}(z) - F_{\nu_x}(\mu^*(x)) \geq \alpha(K, D) d^2(z, \mu^*(x)),$$

646 for all  $z \in \mathcal{M}$ . This follows from the strong geodesic convexity of  $z \mapsto \int d^2(y, z) d\nu_x(y)$ . Equiv-  
647 alently, if  $z$  is  $\epsilon$ -far from  $\mu^*(x)$ , then  $F_{\nu_x}(z)$  exceeds the global minimum  $F_{\nu_x}(\mu^*(x))$  at least  
648  $\alpha(K, D)\epsilon^2$ .

649 Now, let  $\epsilon > 0$ . Suppose, contrary to what one want, that

$$d(\hat{\mu}_n^*(x), \mu^*(x)) \geq \epsilon.$$

650 By  $\text{CAT}(K)$ -convexity,

$$F_{\nu_x}(\hat{\mu}_n^*(x)) - F_{\nu_x}(\mu^*(x)) \geq \alpha(K, D)\epsilon^2.$$

651 On the other hand,

$$F_{\nu_x}(\hat{\mu}_n^*(x)) - F_{\nu_x}(\mu^*(x)) = \{F_{\nu_{n,x}}(\hat{\mu}_n^*(x)) - F_{\nu_{n,x}}(\mu^*(x))\} + (F_{\nu_x} - F_{\nu_{n,x}})(\hat{\mu}_n^*(x)) - (F_{\nu_x} - F_{\nu_{n,x}})(\mu^*(x)).$$

652 Since  $\hat{\mu}_n^*(x)$  minimizes  $F_{\nu_{n,x}}$ ,

$$F_{\nu_{n,x}}(\hat{\mu}_n^*(x)) \leq F_{\nu_{n,x}}(\mu^*(x)).$$

653 Thus,

$$F_{\nu_{n,x}}(\hat{\mu}_n^*(x)) - F_{\nu_x}(\mu^*(x)) \leq (F_{\nu_x} - F_{\nu_{n,x}})(\hat{\mu}_n^*(x)) - (F_{\nu_x} - F_{\nu_{n,x}})(\mu^*(x)).$$

654 Hence,

$$\alpha(K, D)\epsilon^2 \leq |(F_{\nu_x} - F_{\nu_{n,x}})(\hat{\mu}_n^*(x))| + |(F_{\nu_x} - F_{\nu_{n,x}})(\mu^*(x))|.$$

655 But as  $n \rightarrow +\infty$ ,

$$F_{\nu_{n,x}}(z) \rightarrow F_{\nu_x}(z),$$

656 pointwise for each  $z$ , so the difference  $|F_{\nu_x}(z) - F_{\nu_{n,x}}(z)| \rightarrow 0$ . By dominated convergence theorem,

$$\sup_{z \in \{\hat{\mu}_n^*(x), \mu^*(x)\}} |F_{\nu_{n,x}}(z) - F_{\nu_x}(z)| \xrightarrow[n \rightarrow 0]{a.s.} 0.$$

657 Hence, for large  $n$ , the right-hand side in the above inequality is smaller than  $\frac{1}{2}\alpha(K, D)\epsilon^2$ , which is  
658 incompatible. Thus, for large  $n$ ,

$$d(\hat{\mu}_n^*(x), \mu^*(x)) < \epsilon,$$

659 and

$$\hat{\mu}_n^*(x) \xrightarrow{a.s.} \mu^*(x).$$

660 This completes the proof of pointwise consistency.  $\square$

661 *Proof for Theorem 3.* For each  $x$ , define the empirical weighted measure as follows.

$$\nu_{n,x} := \sum_{i=1}^n w_{n,i}(x) \delta_{Y_i},$$

662 where  $\delta_y$  is the Dirac measure at  $y$ . Then,

$$\hat{\mu}_n^*(x) = \arg \min_{z \in \mathcal{M}} \int d^2(y, z) d\nu_{n,x}(y).$$

663 Simultaneously, define the local population measure near  $x$ :

$$\pi_{n,x} := \frac{\mathbb{E} \left[ W \left( \frac{\|x-X\|}{h_n} \right) \mathbb{1}(Y \in \cdot) \right]}{\mathbb{E} \left[ W \left( \frac{\|x-X\|}{h_n} \right) \right]},$$

664 which is the ideal measure that the kernel weighting is trying to approximate. Then define the local  
665 population Fréchet mean as

$$\tilde{\mu}_n^*(x) = \arg \min_{z \in \mathcal{M}} \int d^2(y, z) d\pi_{n,x}(y).$$

666 Here,  $\tilde{\mu}_n^*(x)$  is the minimizer of the population version of the local kernel functional, and  $\hat{\mu}_n^*(x)$  is  
667 the minimizer of the empirical version. Then one can write

$$d(\hat{\mu}_n^*(x), \mu^*(x)) \leq d(\hat{\mu}_n^*(x), \tilde{\mu}_n^*(x)) + d(\tilde{\mu}_n^*(x), \mu^*(x)).$$

668 Squaring and taking expectation, and applying  $2ab \leq a^2 + b^2$ , one can get a bias-variance decompo-  
669 sition:

$$\mathbb{E}[d^2(\hat{\mu}_n^*(x), \mu^*(x))] \leq 2\mathbb{E}[d^2(\hat{\mu}_n^*(x), \tilde{\mu}_n^*(x))] + 2d^2(\tilde{\mu}_n^*(x), \mu^*(x)).$$

670 The first term in the right-hand side is the variance term, capturing how the empirical local measure  
671  $\nu_{n,x}$  fluctuates around  $\pi_{n,x}$ . The second term in the right-hand side is the bias term, capturing how  
672 the local population mean  $\tilde{\mu}_n^*(x)$  differs from  $\mu^*(x)$ .

673 Recall that in a  $CAT(K)$  space, of diameter  $\text{diam}(\mathcal{M}) \leq D$ , there is a strong geodesic convexity  
674 constant  $\alpha(K, D)$  such that

$$\int d^2(y, z) d\nu(y) - \int d^2(y, z^*) d\nu(z^*) \geq \alpha(K, D) d^2(z, z^*),$$

675 for all probability measures  $\nu$  on  $\mathcal{M}$ , provided the measure is fully supported in a ball of diameter  
676  $\text{diam}(\mathcal{M}) \leq D$ . Hence, for the local measure  $\pi_{n,x}$ ,

$$\int d^2(y, \hat{\mu}_n^*(x)) d\pi_{n,x} - \int d^2(y, \tilde{\mu}_n^*(x)) d\pi_{n,x}(y) \geq \alpha(K, D) d^2(\hat{\mu}_n^*(x), \tilde{\mu}_n^*(x)).$$

677 Because  $\hat{\mu}_n^*(x)$  minimizes  $\int d^2(y, z) d\nu_{n,x}(y)$ ,

$$\int d^2(y, \hat{\mu}_n^*(x)) d\nu_{n,x}(y) \leq \int d^2(y, \tilde{\mu}_n^*(x)) d\nu_{n,x}(y).$$

678 By subtracting the corresponding population measure integrals,

$$\begin{aligned} [\nu_{n,x} - \pi_{n,x}] d^2(\cdot, \hat{\mu}_n^*(x)) - [\nu_{n,x} - \pi_{n,x}] d^2(\cdot, \tilde{\mu}_n^*(x)) &\leq \int d^2(y, \hat{\mu}_n^*(x)) d\pi_{n,x}(y) - \int d^2(y, \hat{\mu}_n^*(x)) d\pi_{n,x}(y) \\ \int d^2(y, \hat{\mu}_n^*(x)) d\pi_{n,x}(y) - \int d^2(y, \tilde{\mu}_n^*(x)) d\pi_{n,x}(y) &\leq \Delta_n(x), \end{aligned}$$

679 where

$$\Delta_n(x) := |[\nu_{n,x} - \pi_{n,x}] d^2(\cdot, \hat{\mu}_n^*(x))| + |[\nu_{n,x} - \pi_{n,x}] d^2(\cdot, \tilde{\mu}_n^*(x))|.$$

680 Combining with the strong convexity inequality,

$$\begin{aligned} \alpha(K, D) d^2(\hat{\mu}_n^*(x), \tilde{\mu}_n^*(x)) &\leq \Delta_n(x) \\ d^2(\hat{\mu}_n^*(x), \tilde{\mu}_n^*(x)) &\leq \frac{\Delta_n(x)}{\alpha(K, D)}. \end{aligned}$$

681 Taking expectation with respect to the sample  $\{(X_i, Y_i)\}_{i=1}^n$ ,

$$\mathbb{E}[d^2(\hat{\mu}_n^*(x), \tilde{\mu}_n^*(x))] \leq \frac{\mathbb{E}[\Delta_n(x)]}{\alpha(K, D)}.$$

682 Recall that

$$\begin{aligned} \Delta_n(x) &= |[\nu_{n,x} - \pi_{n,x}] d^2(\cdot, \hat{\mu}_n^*(x))| + |[\nu_{n,x} - \pi_{n,x}] d^2(\cdot, \tilde{\mu}_n^*(x))| \\ &= \left| \sum_{i=1}^n w_{n,i}(x) \{ d^2(Y_i, \hat{\mu}_n^*(x)) - \mathbb{E}[d^2(Y, \tilde{\mu}_n^*(x) \mid X \approx x)] \} \right| \\ &\quad + \left| \sum_{i=1}^n w_{n,i}(x) \{ d^2(Y_i, \hat{\mu}_n^*(x)) - \mathbb{E}[d^2(Y, \tilde{\mu}_n^*(x) \mid X \approx x)] \} \right|. \end{aligned}$$

683 Since  $\hat{\mu}_n^*$  itself depends on the sample, a straightforward application of Hoeffding's inequality is  
684 tricky. However, one can use Efron–Stein or Bennett–type inequalities for U-statistics, or the bounded  
685 differences approach, carefully analyzing how a single  $Y_i$  affects  $\hat{\mu}_n^*$ . Such arguments appear in  
686 standard references on manifold-valued kernel regression. Thus, one can obtain

$$\mathbb{E}[\Delta_n(x)] = O\left((nh_n^d)^{-1/2}\right).$$

687 Hence,

$$\mathbb{E}[d^2(\hat{\mu}_n^*(x), \tilde{\mu}_n^*(x))] \leq \frac{C_{\text{var}}}{\alpha(K, D)} (nh_n^d)^{-1/2},$$

688 where  $C_{\text{var}}$  is a constant depending on the kernel shape, the distribution of  $(X, Y)$  near  $x$  and the  
689 geometry constants  $(K, D)$ .

690 Next, recall that

$$\begin{aligned} \tilde{\mu}_n^*(x) &= \arg \min_{z \in \mathcal{M}} \int d^2(y, z) d\pi_{n,x}(y), \\ \mu^*(x) &= \arg \min_{z \in \mathcal{M}} \int d^2(y, z) d\nu_x(y), \end{aligned}$$

691 where  $\nu_x(\cdot) = \mathbb{P}[Y \in \cdot \mid X = x]$ . As one move from  $X = x$  to a local neighborhood  $\{x' \mid$   
 692  $\|x - x'\| \leq O(h_n)\}$ , it can be expected that  $\tilde{\mu}_n^*(x)$  to approximate  $\mu^*(x')$  for some  $x' \approx x$ . Then  
 693  $\mu^*(x')$  is close to  $\mu^*(x)$  if  $\mu^*$  is  $\beta$ -Hölder.

694 Because  $\pi_{n,x}$  is essentially the distribution of  $Y \mid X \in \{x' \mid \|x' - x\| \leq ch_n\}$ , let  $x^\natural$  be some  
 695 effective point near  $x$ . Then by using smoothness or local Lipschitz condition on the conditional  
 696 distributions,

$$d(\tilde{\mu}_n^*(x), \mu^*(x')) \leq C_{\text{bias}}(h_n^\beta),$$

697 for some constant  $C_{\text{bias}} > 0$ . Then one adds

$$d(\mu^*(x'), \mu^*(x)) \leq L \cdot \|x' - x\| \approx Lh_n^\beta.$$

698 Hence,

$$d(\tilde{\mu}_n^*(x), \mu^*(x)) \leq d(\tilde{\mu}_n^*(x), \mu^*(x')) + d(\mu^*(x'), \mu^*(x)) = O(h_n^\beta),$$

699 and

$$d^2(\tilde{\mu}_n^*(x), \mu^*(x)) = O(h_n^{2\beta}).$$

700 Putting it all together in the bias–variance decomposition, it completes the required proof.  $\square$

701 **B.3 Proofs for Section 3.3**

702 *Proof for Lemma 6.* Let  $y'$  be a point on the geodesic segment  $[xy]$  such that  $y'$  is very close to  $x$ .  
703 Similarly, pick  $z'$  on  $[xz]$ . So,

$$\begin{aligned} d(x, y') &= \delta, \\ d(x, z') &= \delta, \end{aligned}$$

704 for some  $\delta > 0$ . The triangle  $\triangle xy'z'$  has perimeter  $\leq d(x, y) + d(y, z) + d(z, x)$ , which is assumed  
705  $\leq \pi/\sqrt{K}$  if  $K > 0$ . For  $\delta$  small enough, the side lengths of  $\triangle xy'z'$  are also  $\leq \pi/\sqrt{K}$ . By the  
706  $\text{CAT}(K)$  definition,

$$d(y', z') \leq d_{\mathbb{M}_k}(\bar{y}', \bar{z}'),$$

707 and

$$\begin{aligned} d(x, y') &= d(\bar{x}, \bar{y}') = \delta, \\ d(x, z') &= d(\bar{x}, \bar{z}') = \delta. \end{aligned}$$

708 The triangle  $\triangle \bar{x}\bar{y}'\bar{z}'$  is in the same model plane as  $\triangle \bar{x}\bar{y}\bar{z}$ , but its typically much smaller near  $\bar{x}$ .

709 By definition of the Alexandrov angle,

$$\angle_x(y, z) = \lim_{\delta \rightarrow 0} \angle_x^{(\text{sec})}(y', z'),$$

710 where  $\angle_x^{(\text{sec})}(y', z')$  is the secular angle of  $\triangle xy'z'$  at  $x$ . Equivalently, it is the Euclidean angle  
711  $\angle_{\bar{x}}(\bar{y}', \bar{z}')$  in the comparison triangle  $\triangle \bar{x}\bar{y}'\bar{z}'$ . Thus,

$$\angle_x(y, z) = \lim_{\delta \rightarrow 0} \angle_{\bar{x}}(\bar{y}', \bar{z}').$$

712 One also have the angle  $\angle_{\bar{x}}(\bar{y}, \bar{z})$  in the large triangle  $\triangle \bar{x}\bar{y}\bar{z}$ , and want to show

$$\angle_{\bar{x}}(\bar{y}', \bar{z}') \leq \angle_{\bar{x}}(\bar{y}, \bar{z}),$$

713 for each small  $\delta$ , from which it will follow in the limit that  $\angle_x(y, z) \leq \angle_{\bar{x}}(\bar{y}, \bar{z})$ .

714 The  $\text{CAT}(K)$  condition states that  $\triangle xy'z'$  is no thicker than the model  $\triangle \bar{x}\bar{y}'\bar{z}'$ . More precisely, if  
715 one place  $\triangle xy'z'$  and  $\triangle \bar{x}\bar{y}'\bar{z}'$  side by side so that  $x \leftrightarrow \bar{x}$ ,  $y' \leftrightarrow \bar{y}'$ ,  $z' \leftrightarrow \bar{z}'$  correspond, one have

$$d(y', z') \leq d_{\mathbb{M}_K}(\bar{y}', \bar{z}').$$

716 Meanwhile,  $\triangle \bar{x}\bar{y}'\bar{z}' \subset \triangle \bar{x}\bar{y}\bar{z}$  or can be inscribed in it, with the property that  $asy' \rightarrow x$  and  $z' \rightarrow x$ ,  
717 the points  $\bar{y}' \rightarrow \bar{x}$  and  $\bar{z}' \rightarrow \bar{x}$ .

718 Geometrically, on the model side, it is known (from classical geometry in constant curvature) that

$$\angle_{\bar{x}}(\bar{y}', \bar{z}') \leq \angle_{\bar{x}}(\bar{y}, \bar{z}). \quad (15)$$

719 This is because in a convex geometry (like a sphere of radius  $1/\sqrt{K}$  or a Euclidean plane if  $K = 0$ ),  
720 drawing smaller radii  $\bar{x}\bar{y}'$  and  $\bar{x}\bar{z}'$  inside the bigger radii  $\bar{x}\bar{y}$  and  $\bar{x}\bar{z}$  yields smaller or equal angles  
721 from the center  $\bar{x}$ .

722 More precisely, if one revolve the segment  $\bar{y}'\bar{z}'$  about  $\bar{x}$  within the triangle  $\triangle \bar{x}\bar{y}\bar{z}$ , the angle  $\angle_{\bar{x}}(\bar{y}', \bar{z}')$   
723 cannot exceed  $\angle_{\bar{x}}(\bar{y}, \bar{z})$ .

724 One thus have, for each small  $\delta > 0$ ,

$$\angle_{\bar{x}}(\bar{y}', \bar{z}') \leq \angle_{\bar{x}}(\bar{y}, \bar{z}).$$

725 By the definition,

$$\angle_x(y, z) = \lim_{\delta \rightarrow 0} \angle_{\bar{x}}(\bar{y}', \bar{z}') \leq \angle_{\bar{x}}(\bar{y}, \bar{z}).$$

726 This completes the proof. Thus the angle at  $x$  in the real triangle  $\triangle xyz$  is bounded above by the  
727 corresponding angle at  $\bar{x}$  in the comparison triangle  $\triangle \bar{x}\bar{y}\bar{z}$ .  $\square$

728 *Proof for Lemma 7.* Let  $\triangle pqr \subset \mathcal{M}$  have side lengths

$$a = d(p, q), \quad b = d(q, r), \quad c = d(r, p),$$

729 and let  $\angle_p(q, r)$  denote the Alexandrov angle at  $p$ . Similarly, let  $\triangle p'q'r'$  have side lengths

$$a' = d(p', q'), \quad b' = d(q', r'), \quad c' = d(r', p'),$$

730 with angle  $\angle_{p'}(q', r')$ .

731 Assume that both triangles have perimeter  $\leq \pi/\sqrt{K}$  if  $K > 0$ , ensuring they can be compared to  
732 triangles in the simply connected model space of curvature  $K$  (sphere of radius  $1/\sqrt{K}$  if  $K > 0$ ,  
733 Euclidean plane if  $K = 0$ , or hyperbolic plane if  $K < 0$ ). Then, the goal is to show that

$$|\angle_p(q, r) - \angle_{p'}(q', r')| \leq C [d(p, p') + d(q, q') + d(r, r')],$$

734 for some constant  $C$  depending on  $\alpha(K, D)$  or directly  $\pi/\sqrt{K}$ .

735 From the triangle inequality, one get for instance

$$\begin{aligned} |a - a'| &= |d(p, q) - d(p', q')| \\ &\leq d(p, p') + d(q, q'), \end{aligned}$$

736 and similarly,

$$\begin{aligned} |b - b'| &\leq d(q, q') + d(r, r'), \\ |c - c'| &\leq d(r, r') + d(p, p'). \end{aligned}$$

737 Hence, each difference in corresponding side lengths is at most

$$\max\{|a - a'|, |b - b'|, |c - c'|\} \leq d(p, p') + d(q, q') + d(r, r') =: \delta_{pp'qq'rr'}.$$

738 Then,

$$|a - a'| \leq \delta_{pp'qq'rr'}, \quad |b - b'| \leq \delta_{pp'qq'rr'}, \quad |c - c'| \leq \delta_{pp'qq'rr'}.$$

739 In classical geometry of constant curvature  $K$  (sphere, Euclidean plane, and hyperbolic plane),  
740 the side lengths  $(a, b, c)$  uniquely determine the shape of a triangle (up to rigid motion) provided  
741  $a, b, c$  satisfy the triangle inequality. The angle  $\eta := \angle_p(q, r)$  (or its model-space counterpart  $\bar{\eta}$ ) is a  
742 continuous function of  $(a, b, c)$ .

- If  $K = 0$  (Euclidean), one have the law of cosines

$$c^2 = a^2 + b^2 - 2ab \cos(\eta),$$

744 so

$$\cos(\eta) = \frac{a^2 + b^2 + c^2}{2ab}.$$

745 This is a rational, continuous function of  $(a, b, c)$ .

- If  $K > 0$  (spherical), the spherical law of cosines yield

$$\cos(\sqrt{K}c) = \cos(\sqrt{K}a) \cos(\sqrt{K}b) + \sin(\sqrt{K}a) \sin(\sqrt{K}b) \cos(\eta).$$

- If  $K < 0$  (hyperbolic), one have similar hyperbolic law of cosines with  $\cosh$  and  $\sinh$ .

$$\cosh(c/K) = \cosh(a/K) \cosh(b/K) - \sinh(a/K) \sinh(b/K) \cos(\eta).$$

748 In each case, as long as  $a, b, c \leq \pi/\sqrt{|K|}$ , one remain in a region where the side-length-angle  
749 relation is well-defined and continuously differentiable. Then, there exists a function

$$F: \{(a, b, c)\} \subset \mathbb{R}_{>0}^3 \rightarrow [0, \pi],$$

750 so that if  $\triangle xyz$  in the model space has sides  $(a, b, c)$ , then the angle at  $x$  is  $F(a, b, c)$ . Moreover,  
751  $F$  is Lipschitz continuous on the domain  $\{(a, b, c) \mid a + b + c \leq \pi/\sqrt{K}\}$ . Hence, if  $(a, b, c)$  and  
752  $(a', b', c')$  are close in  $\mathbb{R}^3$ , then

$$|F(a, b, c) - F(a', b', c')| \leq K_0 (|a - a'| + |b - b'| + |c - c'|),$$

753 for some constant  $K_0$  depending only on  $\max(a, b, c) \leq \pi/\sqrt{K}$ .

754 Now connect the actual angles  $\angle_p(q, r), \angle_{p'}(q', r')$  in  $\text{CAT}(K)$  to their comparison angles  $\bar{\alpha}, \bar{\alpha}'$  in  
755 the model space. For  $\triangle pqr \subset M$ , choose the comparison triangle  $\triangle \bar{p}\bar{q}\bar{r} \subset \bar{M}$  in the model space of  
756 curvature  $K$ , with side lengths  $\bar{p}\bar{q} = a, \bar{q}\bar{r} = b, \bar{r}\bar{p} = c$ . Let  $\bar{\eta} = \angle_{\bar{p}}(\bar{q}, \bar{r})$ . For  $\triangle p'q'r' \subset M$ , choose  
757  $\triangle \bar{p}'\bar{q}'\bar{r}' \subset \bar{M}$  similarly with side lengths  $a', b', c'$ . Let  $\bar{\eta}' = \angle_{\bar{p}'}(\bar{q}', \bar{r}')$ .

758 By Lemma 6 in  $\text{CAT}(K)$ :

$$\begin{aligned} \angle_p(q, r) &\leq \bar{\eta}, \\ \angle_{p'}(q', r') &\leq \bar{\eta}'. \end{aligned}$$

759 Symmetrically reversing the roles, one also get

$$\bar{\eta} \leq \angle_p(q, r).$$

760 Here,  $\angle_p(q, r) \approx \bar{\eta}$  and  $\angle_{p'}(q', r') \approx \bar{\eta}'$ . Hence

$$|\angle_p(q, r) - \angle_{p'}(q', r')| \leq |\bar{\alpha} - \bar{\eta}| + |\angle_p(q, r) - \bar{\eta}| + |\angle_{p'}(q', r') - \bar{\eta}'|.$$

761 But each difference  $|\angle_p(q, r) - \bar{\eta}|$  is known to be small by the usual  $\text{CAT}(K)$  thin triangle property.  
762 Specifically, if the perimeter is  $\leq \pi/\sqrt{K}$ , the difference  $\angle_p(q, r) - \bar{\eta}$  can be bounded by a constant  
763 times the diameter of  $\triangle pqr$ ; but that diameter is  $\leq \max(a, b, c)$ , already controlled.

764 In fact, in standard statements, one typically get an inequality of the form

$$|\angle_p(q, r) - \bar{\eta}| \leq \varepsilon_1(a, b, c) \quad \text{with } \varepsilon_1 \rightarrow 0 \text{ as } a, b, c \rightarrow 0,$$

765 and similarly for  $|\angle_{p'}(q', r') - \bar{\eta}'|$ . Since one are only after a linear bound in the final statement, it suffices  
766 that each difference is bounded by a universal constant (depending on  $\pi/\sqrt{K}$ ). Thus, effectively

$$|\angle_p(q, r) - \angle_{p'}(q', r')| \leq 2(\text{const}) + |\bar{\eta} - \bar{\eta}'|.$$

767 Hence collecting all,

$$|\angle_p(q, r) - \angle_{p'}(q', r')| \leq C_1 + C_2 \Delta$$

768 for constants  $C_1$  and  $C_2$ . In typical statements of the lemma, one either arranges that  $\Delta$  is small so  
769 that the additive constant  $C_1$  is overshadowed, or uses a slightly refined thinness difference argument  
770 to show  $\angle_p(q, r)$  and  $\bar{\eta}$  differ by  $\leq \tilde{C} \cdot \Delta$ . In either case, one get a final bound of the form

$$|\angle_p(q, r) - \angle_{p'}(q', r')| \leq C\Delta = C(d(p, p') + d(q, q') + d(r, r')).$$

771 This completes the proof.  $\square$

772 *Proof for Proposition 3.* First, from the geodesic convexity, if  $\nu_x$  and  $\nu_{x'}$  are close in distribution,  
773 then

$$d(\mu^*(x), \mu^*(x')) = C''\epsilon,$$

774 for some constant  $C''$  depending on  $\alpha(K, D)$  and distributional assumptions (e.g. sub-Gaussianity or  
775 bounded diameter ensuring all integrals are finite).

776 Compare angles  $\angle_{\mu^*(x)}(u, v)$  and  $\angle_{\gamma^*(x')}(u, v)$ . Let  $[\mu^*(x), u]$  be the geodesic from  $\mu^*(x)$  to  $u$ ,  
777  $[\mu^*(x'), u]$  be the geodesic from  $\mu^*(x')$  to  $u$ , and similarly for  $[\mu^*(x), v]$  and  $[\mu^*(x'), v]$ . Consider  
778 two triangles  $\triangle(\mu^*(x), u, \mu^*(x'))$  and  $\triangle(\mu^*(x), v, \mu^*(x'))$ . Observe that  $\text{diam}(\mathcal{M}) \leq D$ , so if  
779  $\mu^*(x)$  and  $\mu^*(x')$  are also  $\leq O(\epsilon)$  apart, then each of these triangles has perimeter  $2D + O(\epsilon)$ . If  
780  $K > 0$ ,  $2D + O(\epsilon) < \pi/(\sqrt{K})$  by the initial assumption  $D < \frac{\pi}{2\sqrt{K}}$  and  $\epsilon$  small enough. Hence,  
781 each triangle is validly contained in a region where one can apply  $\text{CAT}(K)$  angle comparisons (and  
782 the model-space comparison).

783 Let

$$p = \mu^*(x), \quad q = u, \quad r = \mu^*(x'),$$

784 and

$$p' = \mu^*(x'), \quad q' = u, \quad r' = \mu^*(x).$$

785 Then the pair  $\triangle pqr$  and  $\triangle p'q'r'$  have corresponding points:

$$p \leftrightarrow p', \quad q \leftrightarrow q', \quad r \leftrightarrow r'.$$

786 Notice that  $q = q'$  is actually the same point  $u$ . The sum of vertex perturbations is

$$\begin{aligned} d(p, p') + d(q, q') + d(r, r') &= d(\mu^*(x), \mu^*(x')) + 0 + d(\mu^*(x'), \mu^*(x)) \\ &= 2d(\mu^*(x), \mu^*(x')), \end{aligned}$$

787 and  $d(\mu^*(x), \mu^*(x')) \leq C'' \epsilon$ . By Lemma 7,

$$|\angle_p(q, r) - \angle_{p'}(q', r')| \leq C_1 [d(p, p') + d(q, q') + d(r, r')].$$

788 Hence

$$\begin{aligned} |\angle_{\mu^*(x)}(u, \mu^*(x')) - \angle_{\mu^*(x')}(u, \mu^*(x))| &\leq C_1 (2d(\mu^*(x), \mu^*(x')) \\ &\leq 2C_1 C'' \epsilon. \end{aligned}$$

789 Similarly, for  $\triangle \mu^*(x) v \mu^*(x')$ , one get the same type of bound in terms of  $\epsilon$ .

790 Recall that  $\angle_{\mu^*(x)}(u, v)$  is the Alexandrov angle between geodesics  $[\mu^*(x)u]$  and  $[\mu^*(x)v]$ . In a  
791 CAT( $K$ ) space, the angle  $\angle_{\mu^*(x)}(u, v)$  can be added or compared if we know angles involving a  
792 third point  $\mu^*(x')$ . Thus,

$$|\angle_{\mu^*(x)}(u, v) - (\angle_{\mu^*(x)}(u, \mu^*(x')) + \angle_{\mu^*(x')}(u, v) - \pi)| \leq C_2 \cdot d(\mu^*(x), \mu^*(x')),$$

793 for some constant  $C_2$ .

794 Putting all these small angle increments together, conclude that

$$|\angle_{\mu^*(x)}(u, v) - \angle_{\mu^*(x')}(u, v)| \leq C d(\mu^*(x), \mu^*(x')) = O(\epsilon).$$

795 Hence the angles at  $\mu^*(x)$  versus  $\mu^*(x')$  differ by a linear factor in  $\epsilon$ .  $\square$

796 *Proof for Theorem 4.* From Proposition 3, if  $\nu_x \approx \nu_{x'}$  (i.e. their distance is  $\leq \epsilon$ ), then for any pair  
797  $(u, v)$ ,

$$|\angle_{\mu^*(x)}(u, v) - \angle_{\mu^*(x')}(u, v)| \leq C_1 \epsilon,$$

798 for some constant  $C_1 > 0$ . Hence for one pair of directions  $(u, v)$ , one get a linear-in- $\epsilon$  bound on  
799 how much the angle can change.

800 Now consider not just one pair, but all pairs  $(u_i, u_j)$  with  $1 \leq i < j \leq m$ . But since each  
801  $\angle_{\mu^*(x)}(u_i, u_j)$  is covered by the same result,

$$|\angle_{\mu^*(x)}(u_i, u_j) - \angle_{\mu^*(x')}(u_i, u_j)| \leq C_1 \epsilon,$$

802 for each pair  $(u_i, u_j)$ . Then the supremum over  $i < j$  is also  $\leq C_1 \epsilon$ . In fact, it is not even needed a  
803 union bound in probability sense, and each pair is bounded by the same linear factor  $C_1 \epsilon$ . Hence

$$\sup_{1 \leq i < j \leq m} |\angle_{\mu^*(x)}(u_i, u_j) - \angle_{\mu^*(x')}(u_i, u_j)| \leq C_1 \epsilon.$$

804 Thus one immediately extend from one pair to all  $\binom{m}{2}$  pairs  $(u_i, u_j)$ .

805 In the hypothesis, it is typically stated that whenever  $\|x - x'\|$  is small, then  $\nu_x$  and  $\nu_{x'}$  differ by  
806  $\epsilon(\|x - x'\|)$ . For instance, in a classical kernel or smoothing scenario, if  $\|x - x'\| \leq \delta$ , then

$$d_W(\nu_x, \nu_{x'}) \leq \epsilon(\delta).$$

807 Hence setting  $\epsilon = \epsilon(\delta)$ , for  $\|x - x'\| \leq \delta$ ,

$$\sup_{1 \leq i < j \leq m} |\angle_{\mu^*(x)}(u_i, u_j) - \angle_{\mu^*(x')}(u_i, u_j)| \leq C_1 \epsilon(\delta).$$

808 Thus the angle difference is a function of  $\delta$ . Hence define  $C := C_1$  (it might also absorb small  
809 distributional constants if needed), and putting it all together yields the proof.  $\square$

810 **B.4 Proofs for Section 3.4**

811 *Proof for Lemma 8.* In a smooth Riemannian manifold, for sufficiently close  $u$  and  $v$ , the unique  
 812 geodesics  $\gamma_u : [0, \|U\|] \rightarrow \mathcal{M}$  and  $\gamma_v : [0, \|V\|] \rightarrow \mathcal{M}$  from  $z$  to  $u$ , respectively from  $z$  to  $v$ ,  
 813 have well-defined initial velocity vectors at  $z$ . Let  $\dot{\gamma}_u(0) \in T_z \mathcal{M}$  be the tangent vector to  $\gamma_u$  at  $z$ .  
 814 By construction, this is precisely  $U$  if we identify  $U \in T_z \mathcal{M}$  with the velocity vector in normal  
 815 coordinates. Similarly,  $\dot{\gamma}_v(0) = V \in T_z \mathcal{M}$ .

816 In Riemannian geometry (without singularities around  $z$ ), one then have:

$$\angle_z(u, v) = \angle(\dot{\gamma}_u(0), \dot{\gamma}_v(0)) = \cos^{-1}\left(\frac{g_z(\dot{\gamma}_u(0), \dot{\gamma}_v(0))}{\|\dot{\gamma}_u(0)\| \|\dot{\gamma}_v(0)\|}\right).$$

817 Here  $g_z(\cdot, \cdot)$  is the Riemannian metric at  $z$ . In simpler notation, if one identify  $\dot{\gamma}_u(0) = U$  and  
 818  $\dot{\gamma}_v(0) = V$ , then

$$\angle_z(u, v) = \cos^{-1}\left(\frac{g_z(U, V)}{\sqrt{g_z(U, U) g_z(V, V)}}\right).$$

819 Use a geodesic coordinate system  $\Phi : T_z \mathcal{M} \supset B_\delta(0) \rightarrow \mathcal{M}$  around  $z$ , with  $\Phi(0) = z$  and  $d\Phi|_0 = \text{Id}$ .  
 820 Concretely,  $\Phi(U) = \exp_z(U)$ . In these coordinates, the metric  $g_{ij}(X)$  at a point  $X$  in a small ball  
 821 around  $0 \in T_z \mathcal{M}$  has the well-known expansions:

$$g_{ij}(X) = \delta_{ij} - \frac{1}{3} R_{ikj\ell}(0) X^k X^\ell + O(\|X\|^3),$$

822 where  $R_{ikj\ell}$  is the Riemann curvature tensor at  $z$ . The  $-\frac{1}{3}$  factor is a standard convention from  
 823 normal coordinate expansions; the main point is that the first non-trivial corrections appear at second  
 824 order in  $\|X\|$ .

825 Hence, for vectors  $U, V \in T_z \mathcal{M}$  with small norms, the inner product in the manifold at  $z$  is

$$g_z(U, V) = \delta_{ij} U^i V^j - \frac{1}{3} \sum_{k, \ell} \left( \frac{1}{2} R_{ikj\ell}(0) \right) \dots + O(\|U\| \|V\| \max(\|U\|, \|V\|)).$$

826 In simpler notation:

$$g_z(U, V) = \langle U, V \rangle_{\text{Eucl}} + O(\|U\| \|V\| \max(\|U\|, \|V\|)).$$

827 From the above expansions,

$$\sqrt{g_z(U, U)} = \|U\|_{\text{Eucl}} [1 + O(\|U\|^2)]^{1/2} = \|U\| + O(\|U\|^3).$$

828 Similarly for  $\|V\|$ . In addition,

$$g_z(U, V) = \langle U, V \rangle_{\text{Eucl}} + O(\|U\| \|V\| \max(\|U\|, \|V\|)).$$

829 Thus

$$\frac{g_z(U, V)}{\sqrt{g_z(U, U) g_z(V, V)}} = \frac{\langle U, V \rangle}{\|U\| \|V\|} + O(\|U\|^2 + \|V\|^2),$$

830 since each correction is second-order in  $\|U\|$  or  $\|V\|$ . Moreover,

$$\angle_z(u, v) = \cos^{-1}\left(\frac{g_z(U, V)}{\sqrt{g_z(U, U) g_z(V, V)}}\right) = \cos^{-1}\left(\frac{\langle U, V \rangle}{\|U\| \|V\|} + O(\|U\|^2 + \|V\|^2)\right).$$

831 When  $\theta_0 = \angle_0(U, V)$  denotes the Euclidean angle in the tangent space,

$$\cos(\theta_0) = \frac{\langle U, V \rangle}{\|U\| \|V\|}.$$

832 Then

$$\cos(\angle_z(u, v)) = \cos(\theta_0) + O(\|U\|^2 + \|V\|^2).$$

833 Since  $\cos$  is locally invertible around angles not equal to  $0, \pi$  (and we assume  $\theta_0$  is not degenerate or  
834 extremely close to  $\pi$  for typical use), a standard expansion yields:

$$\angle_z(u, v) = \theta_0 + O(\|U\|^2 + \|V\|^2).$$

835 Concretely, if  $\theta_1 = \theta_0 + \delta$  satisfies  $\cos(\theta_1) = \cos(\theta_0) + \eta$ , then  $\delta = O(\eta)$  for small  $\eta$ . Here,  
836  $\eta = O(\|U\|^2 + \|V\|^2)$ .

837 Hence,

$$\angle_z(u, v) = \theta_0 + O(\|U\|^2 + \|V\|^2),$$

838 where  $\theta_0 = \angle_0(U, V)$  is the Euclidean angle of  $U$  and  $V$  in  $T_z M$ . This completes the proof.  $\square$

839 *Proof for Proposition 4.* Let  $\gamma(t)$  be a geodesic in  $(\mathcal{M}, g)$  with  $\gamma(0) = \mu^*$  and  $\dot{\gamma}(0) = v$ . Consider  
840  $F(\gamma(t))$ . Then

$$\begin{aligned} \frac{d}{dt} F(\gamma(t)) \Big|_{t=0} &= \frac{d}{dt} \int d^2(y, \gamma(t)) d\nu(y) \Big|_{t=0} \\ &= \int \frac{d}{dt} d^2(y, \gamma(t)) \Big|_{t=0} d\mu(y). \end{aligned}$$

841 By standard Riemannian geometry formulas, if  $\sigma(s)$  is the geodesic  $[y \gamma(t)]$ , then

$$\frac{d}{dt} d^2(y, \gamma(t)) = 2 d(y, \gamma(t)) \left\langle \dot{\gamma}(t), \dot{\sigma}(0) \right\rangle_{g_{\gamma(t)}}.$$

842 At  $t = 0$ , since  $\gamma(0) = \mu^*$ , one interpret  $\dot{\sigma}(0)$  as the initial velocity from  $\mu^*$  toward  $y$ . If  $\mu^*$  is a  
843 minimizer, the directional derivative must vanish for all directions  $v$ . Formally, this implies

$$\nabla F(\gamma^*) = 0.$$

844 Hence the first-order term in the expansion of  $F(z)$  around  $z = \mu^*$  vanishes.

845 Next, examine the second derivative (or Hessian) of  $F$  at  $\gamma^*$ .

$$\text{Hess}_z(F)(v, v) = \frac{d^2}{dt^2} F(\exp_z(t v)) \Big|_{t=0}.$$

846 When  $z = \mu^*$ , and  $\mu^*$  is the unique minimizer, these second derivatives measure how strongly  $F$   
847 curves upward around  $\mu^*$ .

848 In fact, the Gauss–Manasse–Busemann formula for second variation of distance shows that

$$H_{\mu^*}(F)(v, v) = \int H_{\mu^*}[d^2(y, \cdot)](v, v) d\mu(y).$$

849 Each term  $H_{\mu^*}[d^2(y, \cdot)](v, v)$  can be computed from the second variation of  $\rho(\mu^*, y) = d(\mu^*, y)$ .  
850 In standard curvature conditions (especially nonpositive curvature or small diameter in positive  
851 curvature), this Hessian is positive semidefinite, ensuring local convexity around  $\mu^*$ . If  $\text{CAT}(0)$   
852 or if  $\text{diam} < \pi/(2\sqrt{K})$  in  $\text{CAT}(K)$ , then  $d^2(y, \cdot)$  is geodesically convex with a definite strong  
853 convexity modulus  $\alpha > 0$ . Integrating preserves that positivity, giving  $H_{\mu^*}(F) \succeq 0$ . Hence there is a  
854 well-defined linear operator  $H_{\mu^*}$  on  $T_{\mu^*} \mathcal{M}$  representing  $H_{\mu^*}(F)$ .

855 Because  $F$  is at least  $C^2$ , one can write the remainder  $R(v)$  in a standard Taylor expansion form:

$$R(v) = O(\|v\|^3) \quad \text{as } v \rightarrow 0.$$

856 Concretely, one can show this by analyzing the third derivative of  $F$  in normal coordinates:

$$\frac{d^3}{dt^3} F(\exp_{\mu^*}(t v))$$

857 remains bounded as  $t \rightarrow 0$ , so the third-order term is well-defined.

858 Hence the local expansion is

$$F(\exp_{\mu^*}(v)) = F(\mu^*) + \underbrace{\langle \nabla F(\mu^*), v \rangle}_{=0} + \frac{1}{2} \langle H_{\mu^*} v, v \rangle + R(v), \quad R(v) = O(\|v\|^3).$$

859 That is precisely the jet expansion for the Fréchet functional around  $\mu^*$ .  $\square$

860 **B.5 Proofs for Section 3.5**

861 *Proof for Proposition 5.* From the local Riemannian (or  $\text{CAT}(K)$ ) law of cosines in  $\triangle \mu^* y z$ :

$$d^2(y, z) = d^2(y, \mu^*) + d^2(z, \mu^*) - 2 d(y, \mu^*) d(z, \mu^*) \cos(\angle_{\mu^*}(y, z)).$$

862 Rewriting as

$$d^2(y, z) - d^2(y, \mu^*) = d^2(z, \mu^*) - 2 d(y, \mu^*) d(z, \mu^*) \cos(\angle_{\mu^*}(y, z)).$$

863 Here, let

$$\Delta_{\text{dist}}(y, z, \mu^*) := d^2(\mu^*, z) - 2 d(y, \mu^*) d(z, \mu^*),$$

864

$$\Delta_{\text{angle}}(y, z, \mu^*) := 2 d(y, \mu^*) d(z, \mu^*) \left[ 1 - \cos(\angle_{\mu^*}(y, z)) \right].$$

865 Observe that

$$-2 d(y, \mu^*) d(z, \mu^*) \cos(\angle_{\mu^*}(y, z)) = [\Delta_{\text{dist}} - d^2(\mu^*, z)] - \Delta_{\text{angle}},$$

866 and

$$d^2(y, z) = d^2(y, \mu^*) + \Delta_{\text{dist}}(y, z, \mu^*) + \Delta_{\text{angle}}(y, z, \mu^*).$$

867 So the desired identity is obtained.  $\square$

868 *Proof for Proposition 6.* Let

869 •  $r_0 = d(\mu^*(x), u_0)$ . (A constant for each  $x$  if  $u_0$  is fixed.)

870 •  $r(y) = d(\mu^*(x), y) = R_x(y)$ . (A variable depending on  $y$ .)

871 •  $\alpha(y) = d(u_0, y)$ . Another side of the triangle.

872 Then from the local law of cosines,

$$r(y)^2 = r_0^2 + \alpha(y)^2 - 2 r_0 \alpha(y) \cos(\angle_{\mu^*(x)}(u_0, y)).$$

873 But  $\angle_{\mu^*(x)}(u_0, y) = \phi_x(y)$ . So

$$r(y)^2 = r_0^2 + \alpha(y)^2 - 2 r_0 \alpha(y) \cos(\phi_x(y)).$$

874 We write it as

$$\Psi_x(y) = r(y)^2 = r_0^2 + \alpha(y)^2 - 2 r_0 \alpha(y) \cos(\phi_x(y)).$$

875 Now, to link  $\alpha(y) = d(u_0, y)$  with  $r(y)$  and  $\phi_x(y)$ , we may do yet another small expansion or an  
876 additional law-of-cosines approach. If the manifold is small enough in diameter, we can treat  $\alpha(y)$   
877 also as a function of  $(r(y), \phi_x(y))$ .

878 Also, let

$$\alpha(y)^2 = r_0^2 + r(y)^2 - 2 r_0 r(y) \cos(\angle_{u_0}(\mu^*(x), y)).$$

879 But  $\angle_{u_0}(\mu^*(x), y)$  is not necessarily the same as  $\phi_x(y)$ . Then,

$$\alpha(y) = \alpha(r(y), \phi_x(y)) = r_0 + O(r(y))$$

880 plus terms involving  $\phi_x(y)$ . In a small neighborhood, these expansions typically become second-order  
881 in  $\phi_x(y)$ . Hence,  $\alpha(y)$  is not an independent variable; it's determined once  $\phi_x(y)$  and  $r(y) = R_x(y)$   
882 are known.

883 In addition,

$$r(y)^2 = r_0^2 + \alpha(y)^2 - 2 r_0 \alpha(y) \cos(\phi_x(y)).$$

884 This yields a final expression of form

$$r(y)^2 = r_0^2 + \left( \text{some linear or quadratic function in } r(y) \right) + \left( \text{terms in } \phi_x(y) \right).$$

885 In short, the function  $\Psi_x(y) = r(y)^2$  can be viewed as

$$\Psi_x(y) = \underbrace{f_{\text{radial}}(r(y))}_{\text{part ignoring angles}} + \underbrace{f_{\text{angle}}(r(y), \phi_x(y))}_{\text{angle corrections}},$$

886 where  $f_{\text{angle}}$  is typically second-order or cross-term in  $\phi_x(y)$ .

887 Consider

$$\mathbb{E}_{\nu_x}[\Psi_x(Y)] = \int r(y)^2 d\nu_x(y).$$

888 Let

889 •  $\mathbb{E}_{\nu_x}[r(Y)]$  as some average radius.

890 •  $\mathbb{E}_{\nu_x}[\phi_x(Y)]$  as average angle.

891 One obtains expansions, where

$$\Psi_x(Y) - r(y)^2 \Big|_{\phi_x(Y)=0}$$

892 is some cross or higher-order term in  $\phi_x(Y)$ .

893 Then,

$$\mathbb{E}[\Psi_x(Y)^2] = \int [r(y)^2]^2 d\nu_x(y).$$

894 Expanding  $[r(y)^2]^2$  yields

$$[r(y)^2]^2 = r(y)^4 = \left( f_{\text{radial}}(r(y)) + f_{\text{angle}}(r(y), \phi_x(y)) \right)^2.$$

895 One obtains terms:

896 •  $[f_{\text{radial}}(r)]^2$ ,

897 • cross terms  $2 f_{\text{radial}}(r) f_{\text{angle}}(r, \phi)$ ,

898 •  $[f_{\text{angle}}(r, \phi)]^2$ .

899 By taking expectation,

$$\mathbb{E}[r(y)^4] = \mathbb{E}([f_{\text{radial}}(r)]^2) + 2\mathbb{E}(f_{\text{radial}}(r) f_{\text{angle}}(r, \phi)) + \mathbb{E}([f_{\text{angle}}(r, \phi)]^2).$$

900 Then,  $\text{Var}[\Psi_x(Y)] = \mathbb{E}[\Psi_x(Y)^2] - (\mathbb{E}[\Psi_x(Y)])^2$  can be rearranged, grouping the radial part of the  
901 variance from the angle cross terms:

$$\text{Var}[\Psi_x(Y)] = \text{Var}\left(\underbrace{f_{\text{radial}}(r(Y))}_{\text{like } r(Y)^2 \text{ ignoring angles}}\right) + \text{Cov}[\phi_x(Y), r(Y)^2] + (\text{smaller or higher-order expansions in } \phi_x(Y)).$$

902 Explicitly, let

$$A_x(Y) = f_{\text{radial}}(r(Y)) \quad (\text{often } = r(Y)^2)$$

903 ignoring angular corrections, and

$$B_x(Y) = f_{\text{angle}}(r(Y), \phi_x(Y)) \quad (\text{some function capturing dependence on angle } \phi_x(Y)).$$

904 Then

$$\Psi_x(Y) = A_x(Y) + B_x(Y).$$

905 Using

$$\text{Var}[A + B] = \text{Var}[A] + \text{Var}[B] + 2 \text{Cov}(A, B),$$

906 one have

$$\text{Var}[\Psi_x(Y)] = \text{Var}[A_x(Y)] + \text{Var}[B_x(Y)] + 2 \text{Cov}(A_x(Y), B_x(Y)).$$

907 If  $B_x(Y)$  is small or mostly depends on  $\phi_x(Y)$  with some bounding condition, one can interpret  $\text{Var}[B_x(Y)]$  and  $\text{Cov}(A_x(Y), B_x(Y))$  as cross/higher-order expansions. Here,  $\text{Var}[A_x(Y)]$  908 is the purely radial piece  $\text{Var}[R_x(Y)^2]$ . The cross terms or expansions in  $\phi_x(Y)$  become 909  $\text{Cov}(\phi_x(Y), R_x(Y)^2)$ . Hence we get the claimed partial decomposition.  $\square$

911 **C Additional Analysis on  $\epsilon$ -Approximate  $\text{CAT}(K)$  Space**

912 In comparison geometry framework, the theoretical statements are provided on the model space with  
913 constant curvature. In practice, however, real-world datasets may lie in spaces that only approximately  
914 satisfy the curvature conditions. Below we introduce an  $\epsilon$ -approximate version of  $\text{CAT}(K)$  space,  
915 and derive perturbed versions of existence, uniqueness, and convexity-type results.

916 **Definition 9** ( $\epsilon$ -Approximate  $\text{CAT}(K)$  Space). *Let  $\epsilon > 0$ . A geodesic metric space  $(\mathcal{M}, d)$  is said to  
917 be  $\epsilon$ -approximate  $\text{CAT}(K)$  space if for every geodesic triangle  $\triangle pqr$  of perimeter less than  $2D_K$   
918 (where  $D_K = \pi/\sqrt{K}$  if  $K > 0$ , otherwise  $D_K = \infty$ ), and for any points  $x$  and  $y$  on the edges  $[pq]$   
919 and  $[qr]$ , respectively, one has*

$$d(x, y) \leq d_{\mathbb{M}_K^2}(\bar{x}, \bar{y}) + \epsilon, \quad (16)$$

920 where  $\triangle \bar{p}\bar{q}\bar{r} \subset \mathbb{M}_K^2$  is the usual comparison triangle in the simply connected model space of constant  
921 curvature  $K$ .

922 This definition allows a small additive slack  $\epsilon$  in the usual comparison inequality. When  $\epsilon = 0$ , we  
923 recover the standard definition of  $\text{CAT}(K)$ .

924 **Theorem 5** (Approximate Geodesic Convexity of Squared Distance). *Let  $(\mathcal{M}, d)$  be an  $\epsilon$ -approximate  
925  $\text{CAT}(K)$  space with  $K < 0$ . Fix any  $p \in \mathcal{M}$ , and define  $f(x) = d^2(p, x)$ . Then, for any geodesic  
926  $\gamma: [0, 1] \rightarrow \mathcal{M}$ ,*

$$f(\gamma(t)) \leq (1-t)f(\gamma(0)) + tf(\gamma(1)) + O(\epsilon D), \quad (17)$$

927 where  $D$  is the diameter of the relevant geodesic segment under consideration, or the whole space if  
928 bounded.

929 *Proof.* Let  $\gamma: [0, 1] \rightarrow \mathcal{M}$  be a geodesic from  $\gamma(0) = x$  to  $\gamma(1) = y$ . Define  $\gamma(t)$  as the point at  
930 parameter  $t$ . We form a (possibly degenerate) triangle  $\triangle pxy$  in  $\mathcal{M}$ . Then,  $\triangle \bar{p}\bar{x}\bar{y}$  is the comparison  
931 triangle in the model space  $\mathbb{M}_K^2$  that has side lengths

$$d_{\mathbb{M}_K^2}(\bar{p}, \bar{x}) = d(p, x), \quad d_{\mathbb{M}_K^2}(\bar{x}, \bar{y}) = d(x, y), \quad d_{\mathbb{M}_K^2}(\bar{y}, \bar{p}) = (y, p).$$

932 Let  $\bar{\gamma}(t)$  be the point on  $[\bar{x}, \bar{y}] \subset \triangle \bar{p}\bar{x}\bar{y}$  at fraction  $t$ . Because  $\gamma$  is a geodesic and  $[\bar{x}, \bar{y}]$  is also a  
933 geodesic in  $\mathbb{M}_K^2$ , the pair  $\gamma(t) \leftrightarrow \bar{\gamma}(t)$  correspond naturally for the sub-segment ratio  $t$ . Here, we  
934 have

$$d(p, \gamma(t)) \leq d_{\mathbb{M}_K^2}(\bar{p}, \bar{\gamma}(t)) + C_1\epsilon,$$

935 for some constant  $C_1$ . By taking squares,

$$d^2(p, \gamma(t)) \leq \left(d_{\mathbb{M}_K^2}(\bar{p}, \bar{\gamma}(t))\right)^2 + 2C_1\epsilon d_{\mathbb{M}_K^2}(\bar{p}, \bar{\gamma}(t)) + (C_1\epsilon)^2.$$

936 Since  $K < 0$ , the model space  $\mathbb{M}_K^2$  is either Euclidean or hyperbolic. In both cases, it is known that

$$\{\bar{\gamma}(t) \mid t \in [0, 1]\} \subset [\bar{x}, \bar{y}],$$

937 which yields  $\bar{\gamma}(t)$  satisfying the usual convexity of the squared distance in a non-positive curvature  
938 setting.

$$\left(d_{\mathbb{M}_K^2}(\bar{p}, \bar{\gamma}(t))\right)^2 \leq (1-t)\left(d_{\mathbb{M}_K^2}(\bar{p}, \bar{x})\right)^2 + t\left(d_{\mathbb{M}_K^2}(\bar{p}, \bar{y})\right)^2.$$

939 Therefore,

$$d_{\mathbb{M}_K^2}(\bar{p}, \bar{\gamma}(t))^2 \leq (1-t)d^2(p, x) + td^2(p, y),$$

940 and

$$\begin{aligned} d^2(p, \gamma(t)) &\leq (1-t)d^2(p, x) + td^2(p, y) + 2C_1\epsilon \left(d_{\mathbb{M}_K^2}(\bar{p}, \bar{\gamma}(t))\right) + (C_1\epsilon)^2 \\ &\leq (1-t)d^2(p, x) + td^2(p, y) + 2C_1\epsilon D' + (C_1\epsilon)^2 \\ &\leq (1-t)d^2(p, x) + td^2(p, y) + C_2\epsilon D, \end{aligned}$$

941 for some constant  $C_2 > 0$ , where  $D'$  is the diameter of the model space, and can be bounded by local  
942 diameter  $D$ . This can be written as

$$f(\gamma(t)) = d^2(p, \gamma(t)) \leq (1-t)f(\gamma(0)) + tf(\gamma(1)) + C_2\epsilon D,$$

943 and it exactly states the approximate geodesic convexity for  $f(x) = d^2(p, x)$ .  $\square$

944 **Corollary 1** (Approximate Uniqueness of Fréchet Mean). *Under the same  $\epsilon$ -approximate  $\text{CAT}(K)$   
945 assumptions, consider the Fréchet functional*

$$F(x) = \int_{\mathcal{M}} d^2(y, x) d\nu(y), \quad (18)$$

946 for a compactly supported probability measure  $\nu$ . Then, one has the following.

- 947 • A minimizer of  $F$  exists for any  $\epsilon > 0$ .  
948 • If  $\epsilon$  is small, any two minimizers  $m_1$  and  $m_2$  must lie within a small neighborhood of each  
949 other:

$$d(m_1, m_2) \leq O(\sqrt{\epsilon}). \quad (19)$$

950 Hence, strict uniqueness is replaced by an  $\epsilon$ -dependent bound.

951 **Proposition 7** (Local Existence and Uniqueness). *Let  $\mathcal{M}$  be a geodesic metric space that is  $\text{CAT}(K)$   
952 (or  $\epsilon$ -approximately  $\text{CAT}(K)$  space) locally in a geodesic ball  $B(p_0, R)$ . That is, for any geodesic  
953 triangle fully contained in  $B(p_0, R)$ , the usual  $\text{CAT}(K)$  (or approximate) triangle comparison  
954 property holds. Suppose  $\nu$  is a probability measure on  $\mathcal{M}$  whose support  $\text{supp}(\nu)$  is contained in  
955  $B(p_0, R)$ . Define the Fréchet functional*

$$F(x) = \int_{\mathcal{M}} d^2(y, x) d\nu(y).$$

956 Then, one has the following.

- 957 • The function  $F(x)$  attains its minimum at some  $m \in B(p_0, R)$ .  
958 • If  $K > 0$  but  $\text{diam}(\text{supp}(\nu)) < \frac{\pi}{2\sqrt{K}}$ , or if  $K \leq 0$  (no diameter restriction), then  $m$  is  
959 unique within  $B(p_0, R)$ .

960 In other words, the Fréchet mean  $m$  exists in the local ball  $B(p_0, R)$  and is unique when the (local)  
961 curvature constraints enforce strict geodesic convexity.

962 **Proposition 8** (Heavy-Tailed Distributions and Slower Convergence). *Let  $\mathcal{M}$  be either a strict  
963  $\text{CAT}(K)$  space or an  $\epsilon$ -approximate  $\text{CAT}(K)$  space of diameter  $\leq D$ . Suppose  $Y_1, Y_2, \dots, Y_n$  are  
964 i.i.d. random points in  $\mathcal{M}$  with common distribution  $\nu$ . Denote by*

$$\begin{aligned} \mu &= \arg \min_{z \in \mathcal{M}} \mathbb{E}[d^2(Y, z)] \\ \hat{\mu} &= \arg \min_{z \in \mathcal{M}} \frac{1}{n} \sum_{i=1}^n d^2(Y_i, z). \end{aligned}$$

965 Assume that

- 966 1.  $\nu$  has finite second moments  $\mathbb{E}[d^2(Y, z_0)] < \infty$  for some reference point  $z_0$ , and  
967 2. the random variable  $d^2(Y, z_0)$  satisfies a sub-exponential-type tail bound: there exist  
968 constants  $\alpha \geq 0, \gamma \in (0, 1]$  such that

$$\mathbb{P}(d^2(Y, z_0) > t) \leq \exp(-\alpha t^\gamma), \quad (20)$$

969 for all  $t > 0$ .

970 Then, there exist constants  $c, C$  such that for all  $n \geq 1$  and all  $\epsilon > 0$ ,

$$\mathbb{P}(d(\hat{\mu}_n, \mu) \geq \epsilon) \leq C \exp(-cn\epsilon^{2\gamma}). \quad (21)$$

971 Hence  $\hat{\mu}_n$  converges to  $\mu$  in probability, and its deviation tails decay sub-exponentially with rate  $\epsilon^{2\gamma}$ .

972 *Proof.* Define the population and empirical Fréchet functionals

$$F(z) = \mathbb{E}[d^2(Y, z)], \quad F_n(z) = \frac{1}{n} \sum_{i=1}^n d^2(Y_i, z).$$

973 By definition,

$$\mu = \arg \min_{z \in \mathcal{M}} F(z), \quad \hat{\mu}_n = \arg \min_{z \in \mathcal{M}} F_n(z).$$

974 Observe that

$$\begin{aligned} F(\hat{\mu}_n) - F(\mu) &= \{F(\hat{\mu}_n) - F_n(\hat{\mu}_n)\} + \{F_n(\hat{\mu}_n) - F_n(\mu)\} + \{F_n(\mu) - F(\mu)\} \\ &\leq \{F(\hat{\mu}_n) - F_n(\hat{\mu}_n)\} - \{F(\mu) - F_n(\mu)\}, \\ |F(\hat{\mu}_n) - F(\mu)| &\leq |F(\hat{\mu}_n) - F_n(\hat{\mu}_n)| + |F(\mu) - F_n(\mu)|. \end{aligned}$$

975 Therefore,

$$\{d(\hat{\mu}_n, \mu) \geq \epsilon\} \subseteq \{F(\hat{\mu}_n) - F(\mu) \geq \alpha(K, D)\epsilon^2\} \subseteq \left\{ \sup_{z \in \mathcal{M}} \left| F_n(z) - F(z) \geq \frac{\alpha(K, D)}{2}\epsilon^2 \right| \right\}.$$

976 Here,

$$\sup_{z \in \mathcal{M}} |F_n(z) - F(z)| \leq \max_{1 \leq j \leq N_\delta} |F_n(z_j) - F(z_j)| + \eta(\delta),$$

977 where  $N_\delta \leq \exp(C_1(D/\delta)^m)$  is a  $\delta$ -net for some  $m$  and  $\eta(\delta) \rightarrow 0$  as  $\delta \rightarrow 0$ . Taking  $\delta \rightarrow 0$ ,

$$\begin{aligned} \mathbb{P} \left( \sup_{z \in \mathcal{M}} |F_n(z) - F(z)| \geq t \right) &\leq N_\delta \cdot 2 \exp(-c'nt^\gamma) + \mathbb{P}(\eta(\delta) \geq t/2) \\ &\approx \exp(\ln N_\delta - c'nt^\gamma). \end{aligned}$$

978 For fixed  $D$ ,  $\log N_\delta$  is polynomial in  $(1/\delta)$  so we can absorb that into a constant factor.  $\square$

## 979 D Relation to Geodesic Regression

980 A Riemannian manifold  $(\mathcal{M}, g)$  is a smooth manifold endowed with a Riemannian metric  $g$ , which  
981 locally induces a norm on each tangent space  $T_p \mathcal{M}$ . In such a setting, the geodesic distance between  
982 two points  $p, q \in \mathcal{M}$  is given by

$$d(p, q) = \inf_{\gamma} \int_0^1 \sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t))} dt,$$

983 where the infimum is taken over all smooth curves  $\gamma$  joining  $p$  and  $q$ . For points  $q$  in a normal  
984 neighborhood of  $p$ , the exponential map  $\exp_p: T_p \mathcal{M} \rightarrow \mathcal{M}$  is a diffeomorphism and we have the  
985 local relation

$$d^2(p, q) = \|\exp_p^{-1}(q)\|^2.$$

986 Moreover, assuming the sectional curvatures of  $\mathcal{M}$  are bounded above by  $K$ , the manifold is  
987 also a  $\text{CAT}(K)$  space. In this smooth setting, one can use differential calculus; for example,  
988 the Fréchet functional  $F(z) = \int_{\mathcal{M}} d^2(y, z) d\nu(y)$  is differentiable (at least locally), with gradient  
989  $\nabla F(z) = -2 \int_{\mathcal{M}} \exp_z^{-1}(y) d\nu(y)$ , and a second-order expansion

$$F(\exp_z(v)) = F(z) + \langle \nabla F(z), v \rangle + \frac{1}{2} \langle H_z v, v \rangle + O(\|v\|^3).$$

990 Here, a  $\text{CAT}(K)$  space is a geodesic metric space  $(\mathcal{M}, d)$  satisfying a comparison condition: for  
991 any geodesic triangle  $\triangle pqr$  with perimeter less than a critical value (for  $K > 0$ ) and any points  $x$   
992 and  $y$  on two of its sides, the distance  $d(x, y)$  is bounded above by the corresponding distance in the  
993 model space  $\mathbb{M}_K^2$  of constant curvature  $K$ . In particular, if  $\gamma: [0, 1] \rightarrow \mathcal{M}$  is a geodesic, one has the  
994 following (strong) convexity inequality for the squared distance function:

$$d^2(y, \gamma(t)) \leq (1-t)d^2(y, \gamma(0)) + t d^2(y, \gamma(1)) - \alpha t(1-t) d^2(\gamma(0), \gamma(1)),$$

995 where  $\alpha = \alpha(K, D)$  is a constant depending on the curvature bound  $K$  and the diameter  $D$  of  
996 the region under consideration. The above inequality replaces the role of second-order (Hessian)  
997 information.

998 In geodesic regression on a Riemannian manifold, we assume that the regression function follows a  
 999 geodesic curve. For example, for a predictor  $x \in \mathbb{R}^d$ , one common formulation is:

$$\mu(x) = \exp_p((\alpha + \beta^\top x) v), \quad \text{with } v \in T_p \mathcal{M},$$

1000 or equivalently, writing the geodesic  $\gamma$  from  $p$  with initial velocity  $v$ ,

$$\mu(x) = \gamma(\alpha + \beta^\top x).$$

1001 Here,  $p \in \mathcal{M}$  is a base point,  $v \in T_p \mathcal{M}$  is a tangent vector at  $p$ ,  $\exp_p$  is the Riemannian exponential  
 1002 map, and  $\alpha, \beta$  are the regression parameters. This model implies that the conditional mean of  $Y$   
 1003 given  $X = x$  lies exactly on the geodesic determined by  $p$  and  $v$ . Fréchet regression is defined more  
 1004 generally and does not restrict the mean to lie on a pre-specified geodesic. For each  $x$ , the conditional  
 1005 Fréchet mean is given by

$$\mu(x) = \arg \min_{z \in \mathcal{M}} \mathbb{E}[d^2(Y, z) \mid X = x].$$

1006 If  $\mathcal{M}$  is a Riemannian manifold and the conditional distribution of  $Y$  given  $X = x$  is concentrated  
 1007 and symmetric around a geodesic curve, then one may find that the minimizer satisfies

$$\mu(x) = \exp_p((\alpha + \beta^\top x) v),$$

1008 thus recovering the geodesic regression solution. However, in general, Fréchet regression allows  
 1009 for much more flexible conditional mean structures. In summary, we can relate these two concepts  
 1010 (Fréchet regression and geodesic regression). Riemannian manifolds allow a local linearization via  
 1011 the exponential map and a full Taylor expansion, making geodesic regression a natural parametric  
 1012 model, and  $\text{CAT}(K)$  spaces provide a more general setting where one relies on strong convexity  
 1013 properties of the squared distance function rather than differentiability. Both approaches are unified  
 1014 under the Fréchet regression framework, with geodesic regression emerging as a parametric case  
 1015 when the conditional means lie on a geodesic.

1016 **E Details of Experiments**

1017 This section describes the details of experiments in Section 4.

1018 **Model Details** Throughout the experiment, we use an implementation of Fréchet regression based  
1019 on the Nadaraya-Watson estimator [14, 21, 38].

$$\mu^*(x) = \arg \min_{z \in \mathcal{M}} \frac{1}{n} \sum_{i=1}^n K_h(X_i - x) d^2(Y_i, z),$$

1020 where  $K_h$  is a smoothing kernel that corresponds to a probability density with  $K_h(\cdot) = h^{-1}K(\cdot/h)$ .  
1021 For the optimization, we use Limited-memory BFGS [30].

---

```
1      import numpy as np
2      from scipy.optimize import minimize
3
4      # Kernel function (Gaussian kernel)
5      def gaussian_kernel(x, x_data, bandwidth):
6          dists = np.linalg.norm(x_data - x, axis=1)
7          weights = np.exp(-0.5 * (dists / bandwidth) ** 2)
8          return weights / np.sum(weights)
9
10     # Fréchet objective function
11     def frechet_objective(y, responses, weights, distance_func):
12         dists = np.array([distance_func(y, r) for r in responses])
13         return np.sum(weights * dists**2)
14
15     # Fréchet regression function
16     def frechet_regression(X, Y, x_query, bandwidth, distance_func):
17         weights = gaussian_kernel(x_query, X, bandwidth)
18         y_init = np.mean(Y, axis=0)
19         result = minimize(
20             frechet_objective,
21             y_init,
22             args=(Y, weights, distance_func),
23             method='L-BFGS-B'
24         )
25         return result.x
```

---

Listing 1: Python code for the Fréchet regression.

1022 **Stereographic Projection** Listing 2 shows the Python code for the stereographic projection from  
1023 sphere surface to hyperbolic plane.

---

```
1      # Define the stereographic projection function
2      def stereographic_projection(x, y, z, R):
3          u = R * x / (R + z)
4          v = R * y / (R + z)
5          return u, v
```

---

Listing 2: Python code for the stereographic projection.

1024 **E.1 Details for Illustrative Example 4.1**

1025 **Data Generating Process** To assess the performance of the Fréchet regression estimator, consider  
 1026 to generate simulated data. The regression function is

$$\mu(x)(\cdot) = ((1 - x^2)1/2 \cos(\pi x), (1 - x^2)^{1/2} \sin(\pi x), x), \quad x \in (0, 1),$$

1027 which maps a spiral on the sphere. To generate a random sample  $\{(X_i, Y_i)\}_{i=1}^n$ , let  $X_i \sim \mathcal{U}(0, 1)$   
 1028 followed by a bivariate normal random vector  $U_i$ , and

$$Y_i = \cos(\|U_i\|)\mu(X_i) + \sin(\|U_i\|)\frac{U_i}{\|U_i\|}.$$

1029 The sample size of the simulation data is  $n = 50$ , and Gaussian noise with variance 0.4 is added to  
 1030 each instance.

1031 **E.2 Details for Experiments on Real-world Datasets 4.2**

1032 **Details of Datasets**

- 1033 • **HYG Stellar**: The HYG Stellar Database is a comprehensive star catalog that amalgamates  
 1034 data from several prominent astronomical catalogs, including HIPPARCOS, the Yale Bright  
 1035 Star Catalog, and the Gliese Catalog of Nearby Stars. This integration provides detailed  
 1036 information on stars' positions, brightness, spectral types, and various identifiers such as  
 1037 traditional names and Bayer designations. It contains detailed information on 119,614 stars  
 1038 including position data, photometric data and luminosity and variability.
- 1039 • **USGS Earthquake**: The USGS Earthquake catalogue provides information on earthquakes  
 1040 worldwide with a magnitude of 2.5 and above that have occurred over the past week, and it  
 1041 contains 300 instances.
- 1042 • **NOAA Climate**: The NOAA Climate data provides Two-Line Element (TLE) sets for  
 1043 weather satellites, including those operated by NOAA, and contains 72 instances. A TLE  
 1044 consists of two 69-character lines of data, each containing specific parameters that describe  
 1045 the satellite's orbit.

1046 Table 3 shows the detailed breakdown of variables  $X$  and  $Y$  for each dataset.

| Dataset         | Sample size | Predictor $X$                                                                                                                                                                                                              | Response $Y$                     |
|-----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| HYG Stellar     | 119,614     | <ul style="list-style-type: none"> <li>• Observation time <math>t</math></li> <li>• Brightness of the star <math>m</math></li> <li>• Absolute Magnitude <math>m'</math></li> <li>• Spectral type <math>s</math></li> </ul> | Position on the celestial sphere |
| USGS Earthquake | 300         | <ul style="list-style-type: none"> <li>• Observation time <math>t</math></li> <li>• Magnitude of the earthquake <math>m</math></li> <li>• Depth of the earthquake <math>d</math></li> </ul>                                | Earthquake location              |
| NOAA Climate    | 72          | <ul style="list-style-type: none"> <li>• Timestamp of the TLE <math>t</math></li> <li>• Orbital parameters <math>\theta</math></li> <li>• Inclination <math>i</math></li> </ul>                                            | Satellite position               |

Table 3: Detailed breakdown of variables for each dataset.

1047 **Visualizations of Real-world Spherical Datasets** Figure 5 shows the additional visualizations of  
 1048 real-world spherical datasets, and Figure 6 shows the heteroscedasticity in the NOAA and USGS  
 1049 datasets. In addition, Python code in Listing 3 shows the implementation for the visualization of  
 1050 HYG Stellar dataset.

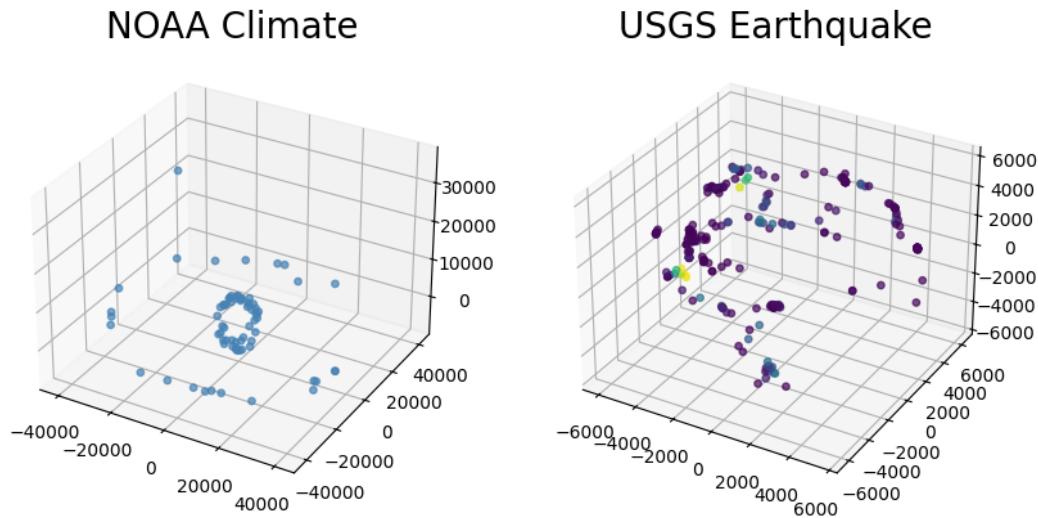


Figure 5: Visualizations for USGS Earthquake catalogue and NOAA Climate dataset.

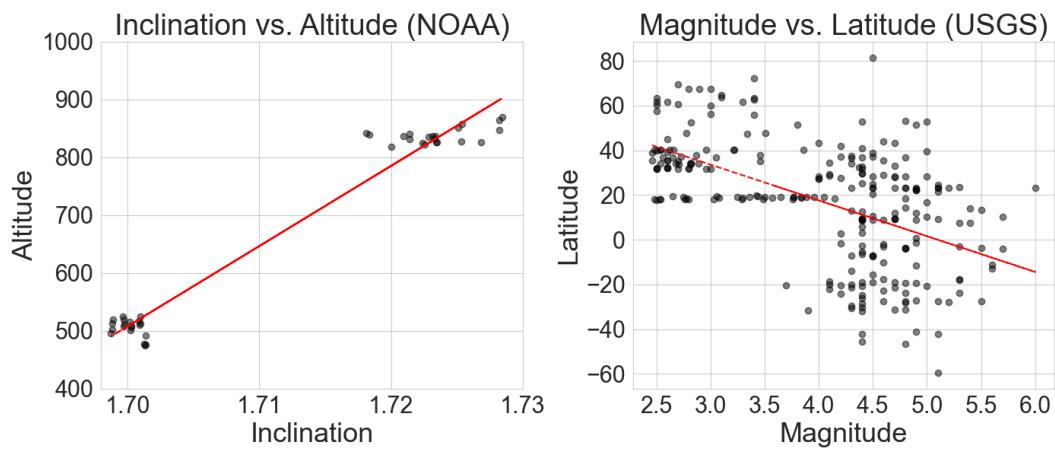


Figure 6: Heteroscedasticity in the NOAA and USGS datasets.

---

```

1
2     import numpy as np
3     import matplotlib.pyplot as plt
4     from astropy.io import ascii
5
6     # Load the Bright Star Catalog
7     url = '{Data URL}' # URL for HYG Steller database
8     data = ascii.read(url)
9
10    # Extract Right Ascension and Declination
11    ra = np.array(data['ra']) # in hours
12    dec = np.array(data['dec']) # in degrees
13
14    # Convert RA from hours to degrees
15    ra_deg = ra * 15
16
17    # Convert RA and Dec to radians for plotting
18    ra_rad = np.radians(ra_deg)
19    dec_rad = np.radians(dec)
20
21
22    # Create a 3D scatter plot
23    fig = plt.figure(figsize=(12, 8))
24    ax = fig.add_subplot(111, projection='3d')
25
26    # Convert spherical coordinates to Cartesian for plotting
27    x = np.cos(dec_rad) * np.cos(ra_rad)
28    y = np.cos(dec_rad) * np.sin(ra_rad)
29    z = np.sin(dec_rad)
30
31    # Plot the stars
32    ax.scatter(x, y, z, color='white', s=0.01, label="data points")
33
34    ax.xaxis.set_ticklabels([])
35    ax.yaxis.set_ticklabels([])
36    ax.zaxis.set_ticklabels([])
37
38    # Set plot parameters
39    ax.set_facecolor('black')
40    ax.set_xlabel('X')
41    ax.set_ylabel('Y')
42    ax.set_zlabel('Z')
43    plt.legend(markerscale=80, fontsize=30)
44    plt.show()

```

---

Listing 3: Python code for the visualization of HYG Steller database.

1051 **NeurIPS Paper Checklist**

1052 The checklist is designed to encourage best practices for responsible machine learning research,  
1053 addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove  
1054 the checklist: **The papers not including the checklist will be desk rejected.** The checklist should  
1055 follow the references and follow the (optional) supplemental material. The checklist does NOT count  
1056 towards the page limit.

1057 Please read the checklist guidelines carefully for information on how to answer these questions. For  
1058 each question in the checklist:

- 1059 • You should answer **[Yes]** , **[No]** , or **[NA]** .
- 1060 • **[NA]** means either that the question is Not Applicable for that particular paper or the  
1061 relevant information is Not Available.
- 1062 • Please provide a short (1–2 sentence) justification right after your answer (even for NA).

1063 **The checklist answers are an integral part of your paper submission.** They are visible to the  
1064 reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it  
1065 (after eventual revisions) with the final version of your paper, and its final version will be published  
1066 with the paper.

1067 The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.  
1068 While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a  
1069 proper justification is given (e.g., "error bars are not reported because it would be too computationally  
1070 expensive" or "we were unable to find the license for the dataset we used"). In general, answering  
1071 "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions are phrased in a binary way, we  
1072 acknowledge that the true answer is often more nuanced, so please just use your best judgment and  
1073 write a justification to elaborate. All supporting evidence can appear either in the main paper or the  
1074 supplemental material, provided in appendix. If you answer **[Yes]** to a question, in the justification  
1075 please point to the section(s) where related material for the question can be found.

1076 **IMPORTANT**, please:

- 1077 • **Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",**
- 1078 • **Keep the checklist subsection headings, questions/answers and guidelines below.**
- 1079 • **Do not modify the questions and only use the provided macros for your answers.**

1080 **1. Claims**

1081 Question: Do the main claims made in the abstract and introduction accurately reflect the  
1082 paper's contributions and scope?

1083 Answer: **[Yes]**

1084 Justification: We summarized our contributions, referring the corresponding sections.

1085 Guidelines:

- 1086 • The answer NA means that the abstract and introduction do not include the claims  
1087 made in the paper.
- 1088 • The abstract and/or introduction should clearly state the claims made, including the  
1089 contributions made in the paper and important assumptions and limitations. A No or  
1090 NA answer to this question will not be perceived well by the reviewers.
- 1091 • The claims made should match theoretical and experimental results, and reflect how  
1092 much the results can be expected to generalize to other settings.
- 1093 • It is fine to include aspirational goals as motivation as long as it is clear that these goals  
1094 are not attained by the paper.

1095 **2. Limitations**

1096 Question: Does the paper discuss the limitations of the work performed by the authors?

1097 Answer: **[Yes]**

1098 Justification: The limitations are discussed in the conclusion section.

1099 Guidelines:

- 1100 • The answer NA means that the paper has no limitation while the answer No means that  
1101 the paper has limitations, but those are not discussed in the paper.
- 1102 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 1103 • The paper should point out any strong assumptions and how robust the results are to  
1104 violations of these assumptions (e.g., independence assumptions, noiseless settings,  
1105 model well-specification, asymptotic approximations only holding locally). The authors  
1106 should reflect on how these assumptions might be violated in practice and what the  
1107 implications would be.
- 1108 • The authors should reflect on the scope of the claims made, e.g., if the approach was  
1109 only tested on a few datasets or with a few runs. In general, empirical results often  
1110 depend on implicit assumptions, which should be articulated.
- 1111 • The authors should reflect on the factors that influence the performance of the approach.  
1112 For example, a facial recognition algorithm may perform poorly when image resolution  
1113 is low or images are taken in low lighting. Or a speech-to-text system might not be  
1114 used reliably to provide closed captions for online lectures because it fails to handle  
1115 technical jargon.
- 1116 • The authors should discuss the computational efficiency of the proposed algorithms  
1117 and how they scale with dataset size.
- 1118 • If applicable, the authors should discuss possible limitations of their approach to  
1119 address problems of privacy and fairness.
- 1120 • While the authors might fear that complete honesty about limitations might be used by  
1121 reviewers as grounds for rejection, a worse outcome might be that reviewers discover  
1122 limitations that aren't acknowledged in the paper. The authors should use their best  
1123 judgment and recognize that individual actions in favor of transparency play an impor-  
1124 tant role in developing norms that preserve the integrity of the community. Reviewers  
1125 will be specifically instructed to not penalize honesty concerning limitations.

1126 **3. Theory assumptions and proofs**

1127 Question: For each theoretical result, does the paper provide the full set of assumptions and  
1128 a complete (and correct) proof?

1129 Answer: [Yes]

1130 Justification: Full proofs for all statements are provided in the appendix.

1131 Guidelines:

- 1132 • The answer NA means that the paper does not include theoretical results.
- 1133 • All the theorems, formulas, and proofs in the paper should be numbered and cross-  
1134 referenced.
- 1135 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 1136 • The proofs can either appear in the main paper or the supplemental material, but if  
1137 they appear in the supplemental material, the authors are encouraged to provide a short  
1138 proof sketch to provide intuition.
- 1139 • Inversely, any informal proof provided in the core of the paper should be complemented  
1140 by formal proofs provided in appendix or supplemental material.
- 1141 • Theorems and Lemmas that the proof relies upon should be properly referenced.

1142 **4. Experimental result reproducibility**

1143 Question: Does the paper fully disclose all the information needed to reproduce the main ex-  
1144 perimental results of the paper to the extent that it affects the main claims and/or conclusions  
1145 of the paper (regardless of whether the code and data are provided or not)?

1146 Answer: [Yes]

1147 Justification: Full experimental protocol is described in the experiments section.

1148 Guidelines:

- 1149 • The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
  - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
  - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
  - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
  - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

## 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: The codes for numerical experiments are submitted as the supplemental material.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

- 1205           • Providing as much information as possible in supplemental material (appended to the  
1206            paper) is recommended, but including URLs to data and code is permitted.

1207           **6. Experimental setting/details**

1208           Question: Does the paper specify all the training and test details (e.g., data splits, hyper-  
1209            parameters, how they were chosen, type of optimizer, etc.) necessary to understand the  
1210            results?

1211           Answer: [\[Yes\]](#)

1212           Justification: Full experimental protocol is described in experiments section.

1213           Guidelines:

- 1214           • The answer NA means that the paper does not include experiments.  
1215           • The experimental setting should be presented in the core of the paper to a level of detail  
1216            that is necessary to appreciate the results and make sense of them.  
1217           • The full details can be provided either with the code, in appendix, or as supplemental  
1218            material.

1219           **7. Experiment statistical significance**

1220           Question: Does the paper report error bars suitably and correctly defined or other appropriate  
1221            information about the statistical significance of the experiments?

1222           Answer: [\[Yes\]](#)

1223           Justification: All results are reported with standard error.

1224           Guidelines:

- 1225           • The answer NA means that the paper does not include experiments.  
1226           • The authors should answer "Yes" if the results are accompanied by error bars, confi-  
1227            dence intervals, or statistical significance tests, at least for the experiments that support  
1228            the main claims of the paper.  
1229           • The factors of variability that the error bars are capturing should be clearly stated (for  
1230            example, train/test split, initialization, random drawing of some parameter, or overall  
1231            run with given experimental conditions).  
1232           • The method for calculating the error bars should be explained (closed form formula,  
1233            call to a library function, bootstrap, etc.)  
1234           • The assumptions made should be given (e.g., Normally distributed errors).  
1235           • It should be clear whether the error bar is the standard deviation or the standard error  
1236            of the mean.  
1237           • It is OK to report 1-sigma error bars, but one should state it. The authors should  
1238            preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis  
1239            of Normality of errors is not verified.  
1240           • For asymmetric distributions, the authors should be careful not to show in tables or  
1241            figures symmetric error bars that would yield results that are out of range (e.g. negative  
1242            error rates).  
1243           • If error bars are reported in tables or plots, The authors should explain in the text how  
1244            they were calculated and reference the corresponding figures or tables in the text.

1245           **8. Experiments compute resources**

1246           Question: For each experiment, does the paper provide sufficient information on the com-  
1247            puter resources (type of compute workers, memory, time of execution) needed to reproduce  
1248            the experiments?

1249           Answer: [\[Yes\]](#)

1250           Justification: The computing resource is described in experiments section.

1251           Guidelines:

- 1252           • The answer NA means that the paper does not include experiments.  
1253           • The paper should indicate the type of compute workers CPU or GPU, internal cluster,  
1254            or cloud provider, including relevant memory and storage.

- 1255           • The paper should provide the amount of compute required for each of the individual  
1256           experimental runs as well as estimate the total compute.  
1257           • The paper should disclose whether the full research project required more compute  
1258           than the experiments reported in the paper (e.g., preliminary or failed experiments that  
1259           didn't make it into the paper).

1260           **9. Code of ethics**

1261           Question: Does the research conducted in the paper conform, in every respect, with the  
1262           NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

1263           Answer: **[Yes]**

1264           Justification: The authors reviewed the NeurIPS Code of Ethics.

1265           Guidelines:

- 1266           • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.  
1267           • If the authors answer No, they should explain the special circumstances that require a  
1268           deviation from the Code of Ethics.  
1269           • The authors should make sure to preserve anonymity (e.g., if there is a special consider-  
1270           ation due to laws or regulations in their jurisdiction).

1271           **10. Broader impacts**

1272           Question: Does the paper discuss both potential positive societal impacts and negative  
1273           societal impacts of the work performed?

1274           Answer: **[NA]**

1275           Justification: This work is a foundational research.

1276           Guidelines:

- 1277           • The answer NA means that there is no societal impact of the work performed.  
1278           • If the authors answer NA or No, they should explain why their work has no societal  
1279           impact or why the paper does not address societal impact.  
1280           • Examples of negative societal impacts include potential malicious or unintended uses  
1281           (e.g., disinformation, generating fake profiles, surveillance), fairness considerations  
1282           (e.g., deployment of technologies that could make decisions that unfairly impact specific  
1283           groups), privacy considerations, and security considerations.  
1284           • The conference expects that many papers will be foundational research and not tied  
1285           to particular applications, let alone deployments. However, if there is a direct path to  
1286           any negative applications, the authors should point it out. For example, it is legitimate  
1287           to point out that an improvement in the quality of generative models could be used to  
1288           generate deepfakes for disinformation. On the other hand, it is not needed to point out  
1289           that a generic algorithm for optimizing neural networks could enable people to train  
1290           models that generate Deepfakes faster.  
1291           • The authors should consider possible harms that could arise when the technology is  
1292           being used as intended and functioning correctly, harms that could arise when the  
1293           technology is being used as intended but gives incorrect results, and harms following  
1294           from (intentional or unintentional) misuse of the technology.  
1295           • If there are negative societal impacts, the authors could also discuss possible mitigation  
1296           strategies (e.g., gated release of models, providing defenses in addition to attacks,  
1297           mechanisms for monitoring misuse, mechanisms to monitor how a system learns from  
1298           feedback over time, improving the efficiency and accessibility of ML).

1299           **11. Safeguards**

1300           Question: Does the paper describe safeguards that have been put in place for responsible  
1301           release of data or models that have a high risk for misuse (e.g., pretrained language models,  
1302           image generators, or scraped datasets)?

1303           Answer: **[NA]**

1304           Justification: The paper poses no such risks.

1305           Guidelines:

- 1306           • The answer NA means that the paper poses no such risks.

- 1307           • Released models that have a high risk for misuse or dual-use should be released with  
1308            necessary safeguards to allow for controlled use of the model, for example by requiring  
1309            that users adhere to usage guidelines or restrictions to access the model or implementing  
1310            safety filters.  
1311           • Datasets that have been scraped from the Internet could pose safety risks. The authors  
1312            should describe how they avoided releasing unsafe images.  
1313           • We recognize that providing effective safeguards is challenging, and many papers do  
1314            not require this, but we encourage authors to take this into account and make a best  
1315            faith effort.

1316           **12. Licenses for existing assets**

1317           Question: Are the creators or original owners of assets (e.g., code, data, models), used in  
1318            the paper, properly credited and are the license and terms of use explicitly mentioned and  
1319            properly respected?

1320           Answer: [Yes]

1321           Justification: All required libraries and resources are correctly cited.

1322           Guidelines:

- 1323           • The answer NA means that the paper does not use existing assets.  
1324           • The authors should cite the original paper that produced the code package or dataset.  
1325           • The authors should state which version of the asset is used and, if possible, include a  
1326            URL.  
1327           • The name of the license (e.g., CC-BY 4.0) should be included for each asset.  
1328           • For scraped data from a particular source (e.g., website), the copyright and terms of  
1329            service of that source should be provided.  
1330           • If assets are released, the license, copyright information, and terms of use in the  
1331            package should be provided. For popular datasets, [paperswithcode.com/datasets](http://paperswithcode.com/datasets)  
1332            has curated licenses for some datasets. Their licensing guide can help determine the  
1333            license of a dataset.  
1334           • For existing datasets that are re-packaged, both the original license and the license of  
1335            the derived asset (if it has changed) should be provided.  
1336           • If this information is not available online, the authors are encouraged to reach out to  
1337            the asset's creators.

1338           **13. New assets**

1339           Question: Are new assets introduced in the paper well documented and is the documentation  
1340            provided alongside the assets?

1341           Answer: [NA]

1342           Justification: The paper does not release new assets.

1343           Guidelines:

- 1344           • The answer NA means that the paper does not release new assets.  
1345           • Researchers should communicate the details of the dataset/code/model as part of their  
1346            submissions via structured templates. This includes details about training, license,  
1347            limitations, etc.  
1348           • The paper should discuss whether and how consent was obtained from people whose  
1349            asset is used.  
1350           • At submission time, remember to anonymize your assets (if applicable). You can either  
1351            create an anonymized URL or include an anonymized zip file.

1352           **14. Crowdsourcing and research with human subjects**

1353           Question: For crowdsourcing experiments and research with human subjects, does the paper  
1354            include the full text of instructions given to participants and screenshots, if applicable, as  
1355            well as details about compensation (if any)?

1356           Answer: [NA]

1357           Justification: The paper does not involve crowdsourcing nor research with human subjects.

1358 Guidelines:

- 1359 • The answer NA means that the paper does not involve crowdsourcing nor research with  
1360 human subjects.
- 1361 • Including this information in the supplemental material is fine, but if the main contribu-  
1362 tion of the paper involves human subjects, then as much detail as possible should be  
1363 included in the main paper.
- 1364 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,  
1365 or other labor should be paid at least the minimum wage in the country of the data  
1366 collector.

1367 **15. Institutional review board (IRB) approvals or equivalent for research with human  
1368 subjects**

1369 Question: Does the paper describe potential risks incurred by study participants, whether  
1370 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)  
1371 approvals (or an equivalent approval/review based on the requirements of your country or  
1372 institution) were obtained?

1373 Answer: [NA]

1374 Justification: The paper does not involve crowdsourcing nor research with human subjects.

1375 Guidelines:

- 1376 • The answer NA means that the paper does not involve crowdsourcing nor research with  
1377 human subjects.
- 1378 • Depending on the country in which research is conducted, IRB approval (or equivalent)  
1379 may be required for any human subjects research. If you obtained IRB approval, you  
1380 should clearly state this in the paper.
- 1381 • We recognize that the procedures for this may vary significantly between institutions  
1382 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the  
1383 guidelines for their institution.
- 1384 • For initial submissions, do not include any information that would break anonymity (if  
1385 applicable), such as the institution conducting the review.

1386 **16. Declaration of LLM usage**

1387 Question: Does the paper describe the usage of LLMs if it is an important, original, or  
1388 non-standard component of the core methods in this research? Note that if the LLM is used  
1389 only for writing, editing, or formatting purposes and does not impact the core methodology,  
1390 scientific rigorousness, or originality of the research, declaration is not required.

1391 Answer: [NA]

1392 Justification: The core method development in this research does not involve LLMs

1393 Guidelines:

- 1394 • The answer NA means that the core method development in this research does not  
1395 involve LLMs as any important, original, or non-standard components.
- 1396 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)  
1397 for what should or should not be described.