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Abstract

Fréchet regression extends classical regression methods to non-Euclidean metric
spaces, enabling the analysis of data relationships on complex structures such
as manifolds and graphs. This work establishes a rigorous theoretical analysis
for Fréchet regression through the lens of comparison geometry which leads to
important considerations for its use in practice. The analysis provides key results
on the existence, uniqueness, and stability of the Fréchet mean, along with statisti-
cal guarantees for nonparametric regression, including exponential concentration
bounds and convergence rates. Additionally, insights into angle stability reveal
the interplay between curvature of the manifold and the behavior of the regression
estimator in these non-Euclidean contexts. Empirical experiments validate the
theoretical findings, demonstrating the effectiveness of proposed hyperbolic map-
pings, particularly for data with heteroscedasticity, and highlighting the practical
usefulness of these results.

1 Introduction

Fréchet regression [35] is a powerful statistical tool for analyzing relationships between variables
when the response or predictor lies in a non-Euclidean space. It generalizes classical regression to
settings where the response variable Y resides in a metric space M. Given predictors X, Fréchet
regression seeks to estimate the conditional Fréchet mean.

w(x) = argminE [dz(Y, m) | X =z, @)
meM

where d is the metric on M. This approach accommodates data in various non-Euclidean spaces,
such as manifolds, trees, and graphs [29, (17, [18} 136} [13]]. In recent years, several variants of Fréchet
regression have been proposed [39, [7, 137, |19} 44| |42], each addressing different aspects such as
variable selection, error modeling, and high-dimensional data handling. However, most existing
studies primarily focus on specific geometric settings or lack a comprehensive theoretical framework
that accounts for varying curvature bounds. This study fills this gap by leveraging comparison
geometry to provide a unified theoretical analysis of Fréchet regression across CAT(K) spaces with
diverse curvature properties.

Fréchet regression allows the assumption of a non-Euclidean space in the space of the data, so one
can expect that its behavior can be described depending on the geometrical properties of the space. To
investigate this, this study utilizes comparison geometry, which is a fundamental branch of differential
geometry that investigates the geometric properties of a given space by comparing it to model spaces
of constant curvature [[12, 20, (11, 41]]. Unlike information geometry [3} 15} [33} 14} 27, 28], which
focuses on general statistical manifolds, this framework leverages classical comparison theorems
to derive insights about the structure and behavior of more complex or less regular spaces. By
establishing inequalities and structural similarities between a target space and well-understood model
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spaces (e.g., Euclidean, spherical, or hyperbolic geometries), comparison geometry enables the
extension of geometric and topological results to broader contexts, including spaces that may lack
smoothness or traditional manifold structures. In this framework, CAT (K') spaces are pivotal objects
of study, which are the generalization of constant curvature space [[6, 22, [9]. CAT(K) spaces are
geodesic metric spaces, where geodesic triangles are thinner than their comparison triangles in
the model space of constant curvature K. Consider several known examples of CAT(K) spaces.
Euclidean spaces R™ are classic examples with K = 0, exhibiting flat geometry. Hyperbolic spaces,
which have constant negative curvature (K < 0), serve as models for spaces exhibiting exponential
growth and are useful in areas like network analysis and evolutionary biology. On the other hand, trees
can be viewed as CAT(0) spaces, providing a discrete analog with unique geodesics between points.
Additionally, certain types of manifold structures used in shape analysis and computer graphics
also qualify as CAT(K) spaces under specific curvature conditions. These examples demonstrate
the broad applicability of CAT(K) spaces in modeling diverse geometric contexts encountered in
statistical analysis. By considering such spaces, this study aims to describe the behavior of the Fréchet
regression in terms of curvature K in particular.

2 Notation

In this section, the notations and definitions required for the following analysis are organized. Let
M be a metric space and d be the metric on M. Here, the metric space (M, d) is geodesic space if
every pair of points in M can be connected by a geodesic, a curve whose length equals the distance
between the points.

Definition 1 (CAT(K) space). Let (M,d) be a geodesic metric space and let K € R. The space
M is said to be a CAT(K) space if it satisfies the following curvature condition: for any geodesic

triangle Apqr in M with perimeter less than 2D i (where Dy = w/\/ﬁ if K >0, and Dg = o0
otherwise), and for any points x,y on the edges [pq| and [qr] respectively, the distance between x and
y in M does not exceed the distance between the corresponding points T and i on the comparison
triangle Apqr in the model space of constant curvature K: d(z,y) < dyz (2,9), where the

comparison triangle Apqr is a triangle in the simply connected, complete 2-dimensional Riemannian
manifold M3. of constant curvature K that preserves the side lengths as dyz, (p,q) = d(p,q),
dyz (q,7) = d(q,7), and dygz (7, p) = d(r, p).

Definition 2 (Geodesic convexity). A function f: M — R is geodesically convex if for every
geodesic v: [0,1] = M, f(v(t)) < 1 =) f(v(0)) + tf(v(1)), forall t € [0, 1].

Definition 3 (\-strong geodesic convexity). A function f: M — R is A-strongly geodesically convex
around p € M if there exists a constant A > 0 depending only on K and diam(M) such that

for every x € M.

Definition 4 (Lower semicontinuity). A functional F': M — RU {400} is lower semicontinuous at
a point © € M if for every sequence {x,,} converging to x, it satisfies
< limi .
F(z) < liminf F(z,) ()
Definition 5 (Weak convergence in metric space). A sequence of probability measures {v, } on M

is said to converge weakly to a probability measure v (denoted by v,, = v) if for every bounded
continuous function f: M — R,

lim /M F(y)dvn(y) = /M F(w)dv(y).

n—-+o0o

Definition 6 (Alexandrov angle). The Alexandrov angle /.. (y, z) is defined as the limit of secular
angles between short sub-segments. Concretely, if y' is a point on [zy] with d(z,y') — 0 and 2’ is a
point on [xz] with d(x, 2') — 0. Then,

Zo(y,2) = lim 89 (y2"),

y' —x,z' =z

where /) (y'2") is the ordinary angle in the comparison triangle for Axy' 2’ in the model space.
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Definition 7 (Riemannian exponential map). Let T, M be the tangent space of M at a point z € M.
For a fixed point z, the Riemannian exponential map at z, denoted by exp, is a map from the
tangent space at z to the manifold M: exp,: T, M — M. Here, the Riemannian exponential map
is constructed as i) Choose a tangent vector v € T, M. ii) Consider the unique geodesic 7, (t)
emanating from z with initial velocity v. Formally, -y, (t) satisfies v,(0) = z and ~.,(0) = v. iii) The
exponential map sends the tangent vector v to the point on the manifold reached by traveling along
the geodesic v, for unit time, exp,(v) = v,(1).

3 Theory

See Appendix [B]for complete proofs of all statements.

3.1 Key Lemmas

Here, we summarize key lemmas required for our study. These results follow those of previous
studies [43} 23| [24]], but are presented below for the sake of uniformity of notation and to keep the
manuscript self-contained. First, it can be shown that in CAT (K) spaces with K < 0, the convexity
properties ensure the existence and uniqueness of the Fréchet mean under mild conditions. For
CAT(K) spaces with K > 0, additional constraints on the diameter of the space may be necessary
to ensure uniqueness due to potential multiple minima arising from positive curvature.

Lemma 1. Let (M, d) be a CAT(K) space for K < 0. For any fixed point p € M, the function
f: M — R defined by f(x) = d*(p, z) is geodesically convex.

Lemma |1| establishes that the squared distance function retains geodesic convexity in CAT(K)
spaces with non-positive curvature. This property is fundamental because it ensures that the Fréchet
functional, which aggregates squared distances, inherits convexity. Consequently, optimization
procedures to find the Fréchet mean are well-behaved, avoiding local minima and guaranteeing global
optimality under the given conditions.

Lemma 2. Let (M, d) be a complete CAT(K) space. For any probability measure v on M with
compact support, there exists at least one minimizer m € M of the Fréchet functional:

m = arg min/ d*(y, z)dv(y).
reM M

Lemma 3. Let (M, d) be a CAT(K) space with K < 0 that is strictly geodesically convex, meaning

that the squared distance function f(x) = d?(p, ) is strictly geodesically convex for any fixed point

p € M. Then, for any probability measure v on M with compact support, the Fréchet mean m is

unique.

Based on Lemma [I} which ensures geodesic convexity of the squared distance function in non-
positively curved CAT(K') spaces, and Lemma [2| which guarantees the existence of a Fréchet
mean under compact support, one can establish the stability of the Fréchet mean under measure
perturbations. Furthermore, Lemma [3]ensures uniqueness under strict geodesic convexity, thereby
enabling Proposition 1| to assert the convergence of Fréchet means in non-positively curved spaces.

Proposition 1. Let (M, d) be a CAT(K) space with K < 0. Suppose {vy,} is a sequence of
probability measures on M that converges weakly to a probability measure v. Assume that for each
n, the measure v,, has a unique Fréchet mean m,,, and v also has a unique Fréchet mean m. Then,
the sequence of Fréchet means {m,,} converges to m € M.

Propositionclaims that the CAT(K) condition with K < 0 ensures that the space is non-positively
curved, which imbues the space with strict convexity properties crucial for the uniqueness and stability
of minimizers. This geometric structure prevents the existence of multiple local minima, thereby
facilitating the continuity of minimizers under perturbations of the measure. Here, the stability of
the Fréchet mean under measure perturbations is foundational for Fréchet regression. It ensures that
as predictors vary and induce changes in the conditional distributions of responses, the conditional
Fréchet means (regression estimates) behave predictably and converge appropriately as sample size
increases.

Lemma 4. Let (M, d) be a CAT(K) space with positive curvature bound K > 0. If the diameter

of the support of the probability measure v, denoted by diam(supp(v)), satisfies diam(supp(v)) <

R then the Fréchet mean m of v is unique.
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In Lemma] the diameter constraint ensures that all points in the support of v lie within a geodesic
ball of radius R = 7/2v/K. In CAT(K) spaces with K > 0, such balls are geodesically convex,
meaning any geodesic between two points within the ball lies entirely inside the ball. This local
convexity is crucial for preserving strict convexity properties of the Fréchet functional.

In addition, applying Lemmas 2] and [3] the following statement can be obtained.

Lemma 5. Let (M, d) be a complete CAT(K) space and consider a conditional distribution v,, of
Y given X = x. If for each x, the support of v, satisfies

. +oo ifK <0,
diam(supp(v,)) < Dg = {7r K >0
\/F )

then then the conditional Fréchet mean in Eq. exists and is unique for each x.

3.2 Convergence Rates and Concentration

Let [}, denote a nonparametric Fréchet regression estimator (e.g., Nadaraya—Watson—type kernel
smoothing [32} 40, 8] on the predictor space). Then, the following statements for the concentration
results, the pointwise consistency, and rates of convergence can be obtained. The important point is
that one has to rely on exponential concentration inequalities valid in CAT(K) spaces (e.g., specific
versions of concentration of measure or deviation bounds for Fréchet means).

Theorem 1 (Concentration for the sample Fréchet mean). Let (M, d) be a complete CAT(K) space
of diameter at most D. Suppose that Y1,Ys, ..., Y, are independent and identically distributed
random points in M, and let p and [i,, be the population and sample Fréchet mean.

p = arg min E[d?(Y, 2)],
zeM

A 1
[i == argmin — d“(Yi, z).
zEM n; ( )

Assume further that each d*(Y;, z) is essentially bounded by D?, or more generally that d*(Y;, 2)
has sub-Gaussian tails uniformly in z. Then there exists § > 0 such that for every € > 0,

a(K, D)D) " natk.p)e)?
f e D2

where m is the dimension of the manifold, and o(K, D) is the strong convexity constant.

Bd(i ) > d <2 ( , @

In addition to the concentration for the sample Fréchet mean in the standard sense, the following
proposition gives the concentration in L,, sense.

Proposition 2. Under the hypotheses of Theorem|l} there exist explicit constants Cy,(K, D) such
that for any integern > 1l andp > 1,
E[d” (jin, )] < Cp(K, D)(n""2). 3)

That is, d(fin, 1) converges to 0 in LP at a rate on the order of n=P/2,

Moreover, the following theorem gives the pointwise consistency of nonparametric Fréchet regression
in a CAT(K) space. The main idea parallels classical kernel-based regression arguments in R¢, but
replaces ordinary arithmetic means by Fréchet means in the metric space (M, d).

Assumption 1 (Kernel LLN condition). For any bounded (or square-integrable) function f: M — R,
nonnegative weights {w, ;(x)}_, satisfies

n— oo

an,i(w)f(Yi) = E[f(z) | X =a]. (6)

Theorem 2 (Pointwise consistency of nonparametric Fréchet regression). Let {(X;,Y;)}! , be i.i.d.
sample with X; € R? and Y; € M, where (M, d) is a complete CAT(K) space with diameter
diam(M) < D. Define the population Fréchet regression function:

p*(x) = argminE[d*(Y, z) | X = z].
zEM
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Assume that p*(z) is well-defined and unique for each x, provided as Theorem E] Also, let
{wn;(z)}7_, be nonnegative weights that sum to 1 for each fixed x. For instance, in kernel re-
gression, one sets

Wl Xill/hw)
S Wz = X 0/ha)

where W (-) is a usual kernel (with compact support or exponential decay), and h, — 0 is a
bandwidth. Define the nonparametric Fréchet-regression estimator at x by

i (x) = argmin Z wy, i (2)d? (Y3, 2). 7
zeM T

Then, under mild regularity conditions on the weights in Assumption @i (x) Y3 p(x), for each
n—roo
fixed x € R,

Here, additional assumptions allow us to obtain the convergence rates in CAT(K) spaces.

Theorem 3 (Convergence rates in CAT(K) spaces). Under the assumptions of Theorem@ suppose
additionally:

o u*: RY — M is B-Hélder (or Lipschitz) continuous, with respect to the usual Euclidean
norm on R and the distance d on CAT(K). That is, there exists L > 0 and 3 > 0 such
that

d(u*(z), 1" (2")) < L- ||z —a'||”, ®)
forall x,z' € R%.

* The kernel weights w,, ;(x) satisfy standard nonparametric conditions:

n o Xz
§ w7L,i(5C) =1, wn,z(x) ~W (”x h ”) , hy,, — 0, nhi — +400. )
i=1 n

* Each conditional distribution Y | X = x has finite second moments in the CAT (K) space
and a unique Fréchet mean p*(x).

o The distribution of Y | X = x varies smoothly in a local neighborhood of x. Formally, one
assumes that for «’ near x, the conditional distributions P[Y € - | X = z'] do not differ too
much, ensuring small bias when z' =~ x.

Then for the nonparametric Fréchet regression estimator i},

sup B (¢4 (o) ()] = O (o + 1), (10)

+
TEX) nh;iL

where Xy C R is any compact subset over which the kernel is applied.

From the above theorem, one can see that the usual (# + h,ﬁl) trade-off from Euclidean nonpara-

metric statistics carries over to the CAT(K) setting, once one accounts for i) geodesic convexity for
controlling variance and ii) the Holder continuity of p*(z) for controlling bias.

Implications: Section [3.2]provides the statistical properties of Fréchet regression estimators within
CAT(K) spaces. Theorem [l|offers exponential concentration bounds for the sample Fréchet mean,
indicating that the estimator converges to the true mean with high probability as the sample size
increases. Proposition 2] further quantifies this convergence in an L sense, demonstrating that the
expected distance between the sample and population Fréchet means decreases at a rate proportional to
n~1/2. These results are pivotal for understanding the efficiency and reliability of Fréchet regression
estimators. They assure that given sufficient data, the regression estimates will not only be consistent
but also achieve convergence rates comparable to those observed in classical Euclidean nonparametric
regression.
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3.3 Angle Stability for Conditional Fréchet Means

Understanding not just the position but also the directional relationships around the Fréchet mean is
crucial for capturing the local geometry of the data distribution. Angle stability ensures that small
perturbations in the underlying probability measures or data configurations do not lead to significant
distortions in the angular relationships among points relative to the Fréchet mean. This property is
particularly valuable when analyzing directional data or when the regression function’s local behavior
depends on angular relationships, such as shape analysis or directional statistics.

First, the following lemma for the angle comparison in CAT(K) spaces is provided.
Lemma 6. Let (M, d) be a CAT(K) space, and let Axyz C M be a geodesic triangle of perimeter

< x/ VK when K > 0. Let AZjjz be its comparison triangle in the simply connected model
space of constant curvature K. Then for each vertex x and the corresponding comparison vertex Z,
Loy, 2) < ZLz(, Z), where £, (y, z) is the Alexandrov angle (or geodesic angle) at x formed by the
geodesic segments [xy] and [xz].

Note the assumption that the perimeter of Axyz is < 7/ VK (when K > 0) is used to ensure i)
The geodesics [xy], [yz], [zx] are short enough so that the entire triangle Azyz (and sub-triangles
Axy'z") can be compared in the standard simply connected model space (the sphere of radius 1/ VK
if K > 0). ii) One avoids the potential degeneracy where side lengths might exceed 7/ VK, which
could cause the model triangle in spherical geometry to become ambiguous or wrap around the sphere.
In the case K < 0, there is no maximum perimeter restriction because the simply connected model
space (Euclidean or hyperbolic) is unbounded in diameter.

Next, the lemma for the angle continuity under small perturbation is provided.

Lemma 7. Let Apqr and Ap'¢'r'" be two geodesic triangles in a CAT(K) space (M, d). Suppose

each has a perimeter T/ VK when K > 0 (no restriction is needed if K < 0). Also assume

d(p,p’) +d(q,q") + d(r,r") is small. Then, for the angles at p in Apqr and at p' in Np'q'r’,
14p(q,7) = Zp(d',7")| < Coppragrrrs (1)

where C' > 0 is a constant depending only on K and the maximum side length (or perimeter)

constraints, and

Oppraqer = d(p,p") +d(q,q") + d(r,7"). (12)

Based on the above lemmas, the following statements are obtained.

Proposition 3 (Angle perturbation via conditional measures). Let {v, } be a family of probability
measures on a CAT(K) space (M, d), each supported in a geodesic ball of diameter < D =
7r/2\/f when K > 0. Let /* () be the unique Fréchet mean of v,. Suppose v, and v, are close in
the Wasserstein metric on measures: dyy (Vy, Ve) < €. Then, for any fixed u,v € M, one has

‘lu*(w) (u,v) — AH*(I/)(U,UH S CE,

where the constant C' > 0 depends on the strong-convexity modulus o(K, D). In particular, smaller
e implies the angles at u* () and p* (') to points u, v differ by at most O(e).
Theorem 4 (Angle stability for conditional Fréchet means). Let {(X;,Y;)} C R% x M with M a
CAT(K) space of diameter < D = 71 /2v/ K if K > 0. For each x € RY, let v,,(-) be the conditional
distribution of Y given X = x. Assume each v, has the unique Fréchet mean p*(x). Moreover,
suppose that for x, x' sufficiently close, the measures p* () and p*(x') differ by at most €(||x — «'||)
in the Wasserstein distance. Then for any finite set of points {u1, ..., um} C M,

SUp | £ () (Uis ) = £y (o) (U4, )| < Cegyr,

1<i<j<m

where C' > 0 is a constant depending on the strong-convexity modulus o(K, D) and €., =
e(||lz—2'|)). Thus, all angles at p*(x) relative to a finite set of directions uy, . . . , U, vary continuously
and Lipschitzly with x.

Implications: The established angle stability results in Section [3.3]imply that the geometric structure
surrounding the conditional Fréchet mean remains consistent under minor changes in the data
distribution. This consistency is essential for applications where the relative orientation of data points
carries meaningful information, ensuring that the regression estimates preserve intrinsic geometric
relationships.
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Figure 1: Mapping from spherical data into hyperbolic space.

3.4 Local Jet Expansion of Fréchet Functionals

Lemma 8. Let z € M and let exp,: T, M — M be the Riemannian exponential map (in a local
sense if M is a manifold, or a suitable geodesic parameterization if M is just a geodesic metric
space). Then for points u, v sufficiently close to z, define U = exp, *(u) and V := exp_ *(v). Then,

Z:(u,v) = Zo(U, V) + O(|l expZ " () |* + || expZ* (0)[[),

where Zo(U, V) is the standard Euclidean angle in T, M ~ R™, and the big-Oh term depends on
curvature bounds near z.

Proposition 4 (Local Jet expansion of Fréchet functionals). Let v be a probability measure on a suffi-
ciently regular CAT(K) space (M, d). Suppose that u(x) is the Fréchet mean of vy: p(x) =
argmin_ v, [ d?(y, z)dv,(y), and consider the Fréchet functional F,(z) = [ d*(y,z)dv,(y).
Then, in a sufficiently small neighborhood of 1, the functional F' can be expanded in the tangent space
T,,M via the exponential map. Specifically, using local coordinates exp,,: T,M D B.(0) — M,
for a vector v with ||v|| small, define z = exp,,(v). The expansion is given by

F(exp, (v) = Fi() + (VE (), v) + 3 (How, ) + R(),

where VF, (1) is the gradient (which is zero if u is the unique minimizer), H, is the Hessian (a
linear operator on T, M), and the remainder term R(v) satisfies |R(v)| = O(||v||?).

Implications: The analysis in Section [3.4]offers a nuanced understanding of the Fréchet functional’s
local behavior around its minimizer, the Fréchet mean. By expanding the Fréchet functional in the
tangent space via the exponential map, one can gain insights into the functional’s curvature and
higher-order properties.

3.5 Auxiliary Statements

Here, a couple of auxiliary propositions that facilitate a deeper understanding of the structural
properties of the Fréchet functional within CAT(K) spaces are introduced in this section. These
propositions decompose the Fréchet functional into radial and angular components, enabling a more
nuanced analysis of variance and stability around the Fréchet mean.

Proposition 5 (Angle Splitting in Distance Sums). Consider the Fréchet functional F(z) =
[ d*(y, z)dv(y). For z near u*, decompose:

d2(y7 Z) = dQ(y“LL*) + Hd(y7 Z,M*) + HA(@/; ZaM*)>

where 11 captures radial changes in distances 11, represents angular corrections around p*. If
2+ (y, z) remains small near p*, then I, is of order (£ - (y, z))d(p*, z).

Proposition 6 (Angle-Distance Decomposition of Conditional Variance). Let v, be the conditional
distribution of Y given X = x on a sufficiently smooth CAT(K) space (M, d). Suppose p*(x) is
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Data manifold \ Mean squared error (MSE)
Sphere (K = 1) 0.4915(+0.0086)
Hyperbolic (K = —1) 0.4228(4-0.0021)

Table 1: Evaluation of Fréchet regression on different spaces.

the unique Fréchet mean of v,.. Around p*(x), let

Rw(y) = d(y7 W (.I)), ¢x(y) = Zu*(z) (UOa y)v (13)

for a fixed reference point ug € M. Then the conditional variance can be partially decomposed into
a radial variance term, an angle—radial covariance term, and higher-order corrections:

Var,, [d*(Y, p*(2))]
= Var[A4,(Y)] + Cov (¢.(Y), R(Y)?) + 5, (14)

where A, is the radial part and 3 is the higher-order term.

Implications: The auxiliary propositions presented in Subsection play an important role in
refining the theoretical underpinnings of Fréchet regression within CAT(K) spaces. By decomposing
the Fréchet functional into radial and angular components, these propositions enable a more granular
analysis of variance and stability around the Fréchet mean.

4 Experiments

From the discussion in Section [3] it can be seen that the negative curvature space has better properties
in terms of estimation than the positive curvature space with broader support. To confirm these results,
this section considers numerical experiments. See Appendix [A]for the intuitive understanding of the
following hyperbolic mapping.

4.1 TIlustrative Example

A point on the unit sphere is parameterized as x = sin(¢) cos(d), y = sin(¢) sin(), z = cos(¢),
where ¢ € [0, 7] is the polar angle and 0 € [0, 27] is the azimuthal angle. Let R be the radius of the
sphere. Here, consider the stereographic projection: The plane is tangent to the sphere at the south
pole (0,0, —R) and is defined z = —R, and the north pole N = (0,0, R) serves as the projection
point. For a point p = (x, y, z), the stereographic projection 7(p) = (u, v) on the plane is given by
Iffz, v = RR—fz. This plane can be considered in the hyperbolic space, and one can visualize
it as the pseudosphere (see Figure . Also, a point (x,y, z) can be mapped back to the sphere as
2R?u 2Ry u? +v% — R?

TR+ T Ry T TR 02
See Appendix [E] (including Python code in Listing [2)) for the detailed data-generating process.

u =

xT

Table[T]shows the evaluation results of Fréchet regression on the spherical and hyperbolic coordinates.
It can be seen that the hyperbolic mapping yields better results. Note that, the previous studies [15}[16]
reported the effectiveness of such mapping for statistical problems of spherical data, and the objective
of experiments in this section is just to confirm the theoretical results.

4.2 Experiment on Real-world Dataset

In addition to the illustrative example, consider the experiments on the real-world datasets. This
section uses the following: i) HYG Steller database F_l which is a comprehensive dataset containing
information on stars brighter than magnitude 6.5. ii) USGS Earthquake catalogue represented in
spherical coordinates. iii) NOAA Climate dataﬂ from weather satellites. See Appendix 4.2 for the

'https://github.com/astronexus/HYG-Database?tab=readme-ov-file
"https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_week.csv
*http://celestrak.org/NORAD/elements/table . php?GROUP=weather&FORMAT=t1e


https://github.com/astronexus/HYG-Database?tab=readme-ov-file
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_week.csv
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Figure 2: Visualization of the HYG Stel- Figure 3: Heteroscedasticity in the HYG Stellar dataset.
lar database.

Dataset MSE
HYG Stellar 0.3765(%0.0036)
USGS Earthquake 0.5832(40.0831)
NOAA Climate 0.4384(+0.0678)
HYG Stellar (hyperbolic) 0.2660(+0.0032)
USGS Earthquake (hyperbolic) | 0.4743(20.0541)
NOAA Climate (hyperbolic) | 0.3259(%0.0683)

Table 2: Evaluation of Fréchet regression on different spaces.

details of this experiment (including Python code in Listing 3 for the visualization and data format
check of the dataset). Table 2] shows the experimental results of Fréchet regression on different
coordinates for the real datasets. The mapping procedure is the same as Section[d.I] As with the
illustrative example, we can confirm that Fréchet regression on hyperbolic surfaces yields better
results on the real datasets. As discussed in more detail in Appendix [A] such a mapping of responses
to hyperbolic space may be particularly useful when heteroscedasticity is assumed in the data. Indeed,
heteroscedasticity can be observed in the HYG Stellar dataset (see Figure [3).

5 Conclusion

This study provides a comprehensive theoretical analysis of Fréchet regression within the framework
of comparison geometry, focusing on CAT(K) spaces. It establishes foundational results on the
existence, uniqueness, and stability of the Fréchet mean under varying curvature conditions. Notably,
the analysis demonstrates how curvature properties influence statistical estimation, with non-positive
curvature spaces offering advantageous stability and convergence properties. The paper also extends
statistical guarantees to nonparametric Fréchet regression, including exponential concentration
bounds and convergence rates, which align with classical Euclidean results. Angle stability and local
jet expansion further highlight the behavior of Fréchet functionals, offering geometric insights of
regression in non-Euclidean spaces. Experimental results support the theoretical findings, showing
that hyperbolic mappings often improve performance under heteroscedasticity assumption.

Limitations: While this study provides a robust theoretical foundation for Fréchet regression in
CAT(K) spaces, several limitations exist. Firstly, the analysis predominantly focuses on spaces with
constant curvature bounds, which may not encompass all practical scenarios where data resides in
more heterogeneous geometric contexts. Additionally, the reliance on strong convexity conditions
and diameter constraints in positively curved spaces may restrict the applicability of the results. As
has been done in the information geometry framework 23] [2]], future work could
explore relaxing assumptions, extending the framework to broader classes of metric spaces, and
developing efficient algorithms.
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A Intuitive Understanding for Hyperbolic Mapping

In regression analysis, transforming the response variable can often lead to improved model perfor-
mance by stabilizing variance, normalizing distributions, or linearizing relationships. A classical
example is the logarithmic transformation Y +— log(Y") which can enhance the performance of a
linear regression model under certain conditions. Similarly, mapping spherical responses into hyper-
bolic space can offer analogous benefits, particularly in scenarios where the data exhibits inherent
geometric or hierarchical structures.

Log Transformation in Linear Regression Consider the simple linear regression model:
Y =BX +¢,
where Y is the response variable, X is the predictor, 3 is the regression coefficient, and ¢ is the error
term with E[e] = 0 and Var(e) = o2. Applying a logarithmic transformation to Y yields
log(Y) = X +,
Y = exp(BX +¢) = exp(BX) - exp(e).

Assuming e is small and approximately normally distributed, exp(€) introduces multiplicative noise
to Y effectively stabilizing variance across different levels of X. This transformation often re-
duces heteroscedasticity in the residuals, leading to improved regression performance. Here, the

heteroscedasticity refers to the phenomenon where the variability of the errors (or residuals) in a
regression model is not constant across the range of predictor variables.

Definition 8 (Heteroscedasticity). Consider a regression model.:
}/i = B X? + €iy

where ¢; ~ N(0,0%(X;)). Here, the variance of the error term o*(X) depends on X. In a
heteroscedastic model, the variance of €; is a function of the predictors X;:

Var(e; | X;) = o%(X;).

In contrast, for homoscedasticity, the variance of €; is constant.

Hyperbolic Mapping via Stereographic Projection Analogous to the log transformation, hy-
perbolic mapping transforms the response variable into a space where the geometric structure can
lead to improved regression characteristics. The procedure involves mapping points from a spherical
representation to a hyperbolic plane using stereographic projection. A point on the unit sphere of
radius R is parameterized using spherical coordinates:

x = Rsin(¢) cos(h),

y = Rsin(¢)sin(6),

2z = Rcos(¢),
where ¢ € [0, 7] is the polar angle and 6 € [0,2m) is the azimuthal angle. The stereographic
projection maps a point p = (z, y, z) on the sphere to a point p — 1 (p) = (u, v) on the plane tangent

to the sphere at the south pole (0,0, —R) and defined by z = —R. The north pole N = (0,0, R)
serves as the projection point. The projection formulas are

Rz
YT Rtz
_y
T Rys

This plane can be interpreted as a model of hyperbolic space, specifically visualized as a pseudosphere,
which inherently possesses properties conducive to handling hierarchical or tree-like data structures.

Both the logarithmic transformation and hyperbolic mapping aim to stabilize variance and linearize
relationships, through different geometric transformations. To understand the benefits of hyperbolic
mapping, consider the effect of each transformation on the variance of the response variable. Starting
with Y = X + ¢, applying the log transformation yields

logY = 58X +e.

12
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Assuming € ~ N(0, 0?), The variance of log Y remains o which can be advantageous if the original
Y exhibits multiplicative noise:

Var(Y) = Var(exp(8X +¢€)) = exp(28X) - (exp(c?) — 1)

The transformation effectively decouples the variance from X stabilizing it across different predictor
values.

For hyperbolic mapping, consider a response variable represented as a point on the sphere. The
stereographic projection transforms this spherical representation into the hyperbolic plane. Let
Y be the original response mapped to a point p = (x,y, z) on the sphere, and ¥ (p) = (u,v) its
hyperbolic projection. Assuming small deviations around a mean direction, the hyperbolic mapping
can linearize angular variations similarly to how the log transformation linearizes multiplicative
variations. Specifically, fluctuations in Y around the mean direction correspond to additive noise
in the hyperbolic plane, potentially reducing variance in a manner akin to the log transformation.
Formally, if Y is modeled on the sphere with

Y=R p+e,
where € represents angular noise, the hyperbolic projection yields

Rz Ry ,
Y =
YY) (R+zﬂR+z>+€’

whre ¢ is the transformed noise. Under specific conditions (e.g., small angular deviations), ¢’
exhibits reduced variance compared to €, analogous to the variance stabilization achieved by the log
transformation.

Example 1 (Stabilizing Variance in Hierarchical Data). Consider a dataset where the response
variable Y represents hierarchical relationships, such as the popularity of topics in a taxonomy. The
inherent tree-like structure implies that differences between nodes (topics) grow exponentially with
depth. Direct regression on'Y would face increasing variance as depth increases. By mapping Y into
hyperbolic space via stereographic projection, the exponential growth inherent in hierarchical data
is linearized. This transformation stabilizes variance across different levels of the hierarchy, enabling
more effective regression modeling. Specifically, the hyperbolic mapping aligns the geometric
properties of the data with the regression framework, similar to how the log transformation aligns
multiplicative relationships with additive modeling.

Let Y be mapped to hyperbolic space via stereographic projection:

Rx
u =
R+ 2’
v = Ity
 R+2
Assuming Y lies close to the north pole N = (0,0, R), small perturbations € around N imply
2
z = Rcos(¢) ~ R <1 - ¢2> ,
x = Rsin(¢) cos(f) =~ R¢ cos(6),
y = Rsin(¢)sin(f) = R¢sin(h).

Substituting into the projection formulas,

R-Répcos(d)  R?¢pcos(d) _ Recos(d)

~ ~

R+R(1-%) 2R-% 2
_ R-R¢sin(0)  R?¢sin(0) _ Resin(h)
R+r(1-%) 2R-% 2

Thus, small angular deviations ¢ result in approximately linear changes in u and v, effectively
reducing the variance from multiplicative to additive in the hyperbolic plane:

Var(u, v) ~ (5)2 Var(g).

13



as1  Compared to the original spherical variance Var(¢), the hyperbolic mapping scales and linearizes the
a2 variance, analogous to the stabilizing effect of the log transformation. Figure[d|shows the illustrative
483 example of transformed responses for Y = X + € with heteroscedastic errors € = N'(0, g(c X)),
a4 o = 0.2 and B = 2. This figure shows g(0X) = 0 X and g(c X) = exp(cX) cases.

£~ N0, oX) £~ N(0, exp(aX))
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Figure 4: Illustrative example of transformed responses. Under the heteroscedastic errors assumption,
the appropriate transformations of response variable yield stabilized variance. In this figure, Y is the

original response variables, log(Y") is the log-transformed variables and W is the hyperbolic mapped
variables.
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B Proofs

B.1 Proofs for Section 3.1]

Proof for Lemmal(l] To establish the geodesic convexity of the squared distance function f(x) =
d?(p,z) in a CAT(K) space (M, d) with K < 0, one must show that for any two points x,y € M
and any geodesic v: [0,1] — M connecting z to y, the function ¢t — f(~(¢)) is convex on the
interval [0, 1].

In the model space M% of constant curvature K < 0, construct a comparison triangle A correspond-
ingto A = {p,z,y} in M. Let p, 7, § be the vertices of A in M3 with side lengths matching those
of A. Then, for any points a, b on the sides [z, y] and [p, z] or [p, y], the distance d(a, b) in M is at
most the distance dyy2 (@, b) in the model space.

Let (¢) corresponds to a point §(t) on the side [z, 7] in A. By the CAT(K) property,
d(p,7(t)) < duz_ (P, 7(2))-
In M2, which is a uniquely geodesic space, the squared distance satisfies the law of cosines
d(p. (1)) < (1= 1)d*(p,7) +td*(p,7) — t(1 — t)exe,
where cx is a non-negative constant dependent on K and the geometry of the triangle. Here, since

K <0, the space M%( exhibits non-positive curvature, which implies that the term —¢(1 — ¢)cx does
not negatively affect the inequality. Therefore,

d*(p,7(t)) < digey (B, 7(1)) < (1= 1)d>(p, x) + td*(p, y),
and f is geodesically convex. O

Proof for Lemma[2] Consider a sequence {x,, } in M that converges to z € M. Given the continuity
of the distance function in metric spaces, for each y € M, d(y, z,) — d(y,z) as n — +o0. Since
d?(y, x) is continuous in x, by Fatou’s lemma,

liminf d*(y, z,) < d*(y,z).

n—-+oo

Integrating both sides with respect to v,

lim inf /M d*(y, x,)dv(y) < /M d*(y, x)dv(y).

n—-+o00

Thus, F' is lower semicontinuous. Also, since
Fo) = [ @y 2o,
M

for any x € M, F is bounded below by zero. Therefore, there exists a sequence {m.,, } in M such
that

F(m, inf F(z),
(ma) = inf Fz)

as n — +o0o. Let {m,,} be called a minimizing sequence. Given that the support of v, denoted by
supp(v), is compact, denote it by S C M. That is, S is compact and v(S) = 1.

To ensure that the existence of a convergent subsequence, one need to show that {m,, } is contained
within a compact subset of M. Since S is compact, it is bounded. Thus, there exists a radius R > 0
and a point p € M such that S C B(p, R), where B(p, R) = {x € M | d(p,z) < R}. Using the
triangle inequality in metric spaces,

d(y,myn) > d(p, mn) — d(y,p) > d(p,mn) — R.
Then,

F(m,) = /S 02y, m ()
> /S {d(p, ) — d(y, )} dv(y)
- /S {d(p, m)? — 2d(p.mn) + d(y,p) } di(y)

= d(p,mn)? — 2d(p,my) /S d(y. p)dv(y) + /S @ (y,p)dv(y) < C
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Let A= [,d(y,p)v(y) and B = [, d?(y,p)dv(y), both finite due to the compactness. Thus,
s s P
d(p,my)? — 2Ad(p,m,) + B < C

d(p,m,) <A+ A2+ C - B.

Hence, the sequence {m,, } lies within the closed ball B(p, A + v A% + C — B), which is compact
if M is proper. Here, CAT(K') spaces are not necessarily proper in general, bu since supp(v) is
compact and {m,, } is bounded, one can extract a convergent subsequence under the assumption
that M is complete. Given that {m,, } is bounded and M is complete, one can utilize the Bolzano-
Weierstrass theorem in CAT(K) spaces to extract a convergent subsequence. Specifically, since M
is a geodesic space and {m,, } is bounded, there exists a subsequence {m.,, } that converges to some

m e M.
Since F' is lower semicontinuous and m,,, — m,

F(m) < liminf F'(my,) nf F(x).
k——+oco

=1
reM
This implies that m achieves the infimum of F',

F = inf F(x).
(m) = inf P(a)
Therefore, m is a minimizer of the Fréchet functional. O

Proof for Lemma[3] For the sake of contradiction, suppose that there are two distinct points 1y, ma €
M such that both are minimizers of the Fréchet functional.

my = argmin/ d*(y, x)dv(y),
reEM M

me = argmin/ d?(y, z)dv(y),
zeEM  JM

with my # mg. Since M is a CAT(K) space and thus a geodesic metric space, there exists a unique
geodesic v: [0, 1] — M connecting m; to ma.

7(0) = my,
7(1) = M2,
d(y(t),7(t')) = [t = t'| - d(m1,m2), V¢t €0,1].

Define a function F': [0, 1] — R by evaluating the Fréchet functional along the geodesic y(t):

F(t) = /M &2 (y. (1)) v (y).

Since both m; and moy are minimizers,

F(0) = F(1) = inf F(a).

Given that M is strictly geodesically convex, the squared distance function f(x) = d?(y, x) is strictly
convex along any geodesic. Therefore, for each fixed y € M, the function ¢ — d?(y, (t)) satisfies

dz(ya’)/(t)) < (1 - t)d2(y7m1) + td2(y’m1)a
forallt € (0,1).

Integrate the strict inequality with respect to the measure v yields
FO) = [ Ewa0))
M
< [ A0 =0 () + (g ma) )
M

— (-t /M @2 (y, my )du(y) +t /M 02y, ms)dv(y).
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But since my and ms are both minimizers,

/M &y, )dv(y) = /M Pl ma)dvly) = [ F).

reM
Thus,

F(t) < (1-1t) 11611{4 F(z) + tzlenjf/1 F(z) = :clen./{‘/t F(z).

However, this is a contradiction because F'(x) cannot be less than the infimum inf, c o¢ F'(z). The
contradiction arises from the assumption that two distinct minimizers m, and ms exist. Therefore,
there can be at most one minimizer. Given that the Fréchet functional attains its infimum by Lemma[2]
this minimizer is unique. 0

Proof for Proposition[I} The Fréchet functional z — F, (z) for a measure v is defined as
Fo) = [ P .)vly)
M

Given that the squared distance function d?(y, =) is continuous in y for each fixed x, weak conver-
gence v, = v implies that for each fixed x € M,
lim F, (z)=F,(x).
nt B v (T) v(2)

In addition, given that d?(y, x) is continuous and bounded by zero, and assuming that the measures
vy, and v have compact supports, as established in Lemma 2] the convergence v,, = v implies that

hIJ? F, ()= F,(x), uniformly forx € M.
n—-+0o0

This uniform convergence is a consequence of the boundedness of the squared distance function
over compact supports, and the equicontinuity provided by the geometric properties of the CAT(K)
spaces.

Suppose that m,, does not converge to m, Then, there exist an € > 0 and a subsequence {m,,, } such
that

d(muy,, ,m) > €,

for all k. Since M is a CAT(K) space with K < 0 and hence a geodesic and proper metric space
under the assumption of compact support from Lemma [2] the sequence {m,,, } has a convergent
subsequence. Without loss of generality, assume that m,,, — m’ as k — +o00. By the continuity of
the Fréchet functional,

lim F,, (mgp,)= lim inf F, (z)
k—+oco 'k k—+ocozeM Tk
= F,(m),

since m is the unique minimizer for v.
: I
Consider v, = v and m,, — m’,

lim F,, (my,)=F,(m).

k—+o00 k
Then,
F,(m") = F,(m).

Therefore, m' is also a minimizer of F, (x). Since v has a unique Fréchet mean m, it must be that
m’ = m. Recall that d(m,, ,m) > € for all k, but m,,, — m’ = m, which implies that

. _ ! _
kEI—iI-loo d(my,,,m) =d(m’',m) =0,

contradicting d(my,, ,m) > €. Therefore, it must be that

m, — m, asn — +oo.
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Proof for Proposition[d, For KK > 0, the comparison space is the standard sphere S™ with radius
1/ VK. In S™, geodesics are great circles, and the distance between two points is given by the
central angle multiplied by 1/+/K. The diameter of S” is 7 /+/K, meaning that the maximal distance
between any two points is 7/ VK.

Given R < 7/2V K, the geodesic ball B(p, R) lies entirely within a hemisphere of S™. In this
setting, any two points z,y € B(p, R) are separated by a distance d(z, y), satisfying

d(z,y) < d(z,p) +d(p,y)

i
< —+
WK WK
™

- =

Since d(z,y) < n/v K, there exists a unique minimal geodesic connecting = and y within S™.

Assume, for contradiction, that the minimal geodesic -y between x and y exits B(p, R). Then, there
exists a point z € v such that d(p, z) = R. Consider the geodesic triagles Apzx and Apzy. Since
d(p,z) < Rand d(p,y) < R, and 7y is minimal, the angle at p opposite the side v must satisfy certain
angular constraints derived from the spherical law of cosines. However, because R < 7/ 2V K, the
triangle Apzx lies within a convex hemisphere, ensuring that the path from p to z to x remains within
B(p, R). This contradicts the assumption that -y exits B(p, R). Therefore, since any two points in
B(p, R) can be connected by a unique minimal geodesic that remains entirely within B(p, R), the
geodesic ball B(p, R) is geodesically convex in S” for all radius R < 7/2v/K. This ensures that
CAT(K) condition preserves the strict convexity.

Given that diam(supp(v)) < w/2v K, for any geodesic ¢t — ~y(t) connecting two distinct points
my, mg € M, the Fréchet functional satisfies

F(y(t) < (1 =t)F(m1) + tFa(ma),

forall ¢ € (0,1), provided m; # mq. Here, strict convexity of F'(z) ensures that any local minimum
is a global minimum, and further, that such a minimum is unique within the convex neighborhood. [
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583 B.2 Proofs for Section

sss  Proof for Theorem[I} Define the population Fréchet functional F'(z) and empirical Fréchet functional
ses I, (2) as follows.

F(2) = Eld*(Y,m)],
F,.(z) = %ZCF(Y;,Z).
i=1

sss By definition,

p = argmin F(z),
zEM
fin, = argmin F),(2).
zeEM

ss7 Assume that y is unique, which holds if diam(M) < 7/2v/K when K > 0 or automatically if
ss8 K < 0, from Lemmas|[2} [3]and Propositions T} {4

ss9 A key geometric fact in CAT(K') spaces is that the map
2z Bld*(Y, 2)] = F(2)

590 is A-strongly geodesically convex around p, provided diam (M) is small enough. Concretely, there
591 exists a constant

a=aK,D) >0,
592 such that for every z € M,
F(z) = F(p) > ad®(z, ).

ses A fully explicit formula for a( K, D) can be extracted from standard CAT(K) lemmas.

594 * If K < 0, one can take (K, D) = i. Indeed, CAT(K) spaces are sometimes called
595 Hadamard spaces, for which d?(y, -) is 1-convex along geodesics.
596 * If K > 0but diam(M) = D < 7/2v/K, one obtains an explicit lower bound
sin(2VKR)
K,D)> ————~
a(K. D) > SRR,
597 where R = D /2. One often sees, for example,

a(K,D) = %\/Esin (g - \/ED)

s98 Since [i,, is the minimizer of F},, one can obtain

Fo(fin) < Fo(p).
s99 Here, rewriting F,, = F,, — F' + F,

Fo(fin) = Fo(p) = {Fa(fin) = F(jiin)} = {Fa(p) = F(u)} + {F(n) — F(p)}
S Oa
F(fin) — F(p) < {Fu(p) — F(u)} — {F(fin) — F(fin)}
<|Fn(p) — F(p)| + |Fn(itn) — F(fin)]

<2 sup [Fa(z) - F(2)].
zeM

s00  On the other hand, by the strong convexity of F'(z),

F(jin) = F(p) > a(K, D)d? (jin, ).
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614

Therefore, by combining them, if d(fi,,, i) > €, then

a(Ka D)62 < F(ﬂn) - F(/’L)

< 2sup |Fy(z) — F(z)|.
zeM

Hence,

{amﬁnzdg{;ﬁwua—Funza%f”é}

and

K,D
Pwmmmzdgp[wpwu@—F@Nza(’>8]
zeEM 2
So, it suffices to control sup, ¢ v |F,(2) — F'(2)| by an exponential tail.

Recall that
Fo(2) — F(z) = % > {d*(¥i,2) — E[d*(Y,2)]} .
i=1

Define
Xi(2) = (Y, ) — B[d(Y; 2)].
Then, E[X;(z)] = 0 and

Because M has diameter diam(M) < D, d?(-,-) < D?. Hence, for any z,
X;(z) € [-D?, D?.
By Hoeffding’s inequality, for a fixed z,

MMM@—F@N>ﬂ=P[

nt?
< 2exp ~5pi )

Here, for every fixed ¢, one obtains a bound of the form

P%WUM@N@zﬂsqmmcwﬂ,
zEM

for constants ¢}, ¢, > 0 depending on K, D and on the metric complexity of M,
4 =2 (a(K,aD)D> ,
, _ oK, D)
Co = D2
that are from standard references in manifold-valued statistics.
Putting it all together,
a(K, D) 2}

PmeMzdsp[wpfua—F@nzize
zeEM

2
< ¢} exp {—czn (CY(KQ’D)g) } .
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Proof for Proposition[2] By Theorem [I] there exist positive constants ¢; = ¢;(K, D) and ¢y =
¢o(K, D), such that for every € > 0,

P [d(fin, 1) > €] < c1exp (—62n62) .

For any nonnegative random variable Z and any p > 1, one has the standard identity
oo
E[ZP] = / pePIP(Z > €)de.
0

This follows from writing E[ZP] = fooo peP~11(Z > €)de and exchanging expectation and integral.
Applying this to Z = d(jin, 1),

Eld” (fin, p)] = /OOO P’ P[d(fin, 1) > €]de.

Therefore,
B[ (jin, )] < / per1 o1 exp(—cane?)] de
0

oo
= 01/ pel ™! exp(—cone?)de.
0

Let u = y/ne. Then, e = u/y/n and de = ﬁdu. Also,

Pl ( )p*l — Tf(thl)/?uzafl7

-

n
exp(—cane?) = exp(—cou?).

So,

/Oo 1 2 X _p-1)/2, p-1 2y 1
eP™ " exp(—cone)de :/ n~\PTH AP exp(—cou”) —=du
0 0 vn
p—1

o

el _

=n""zn 2/ uP ! exp(—cou?)du
0

» oo
= n_f/ uP ! exp(—cou?)du.
0

Now, evaluate [~ uP~! exp(—cyu?)du. This is a known integral that can be expressed via the

Gamma function. Indeed,
[ee) 1 _p
/ uP exp(—cou?)du = ~c, op (‘73) ,
0 2 2

and

= » |1 —2

/ P! eXp(7C2n€2)d€ —n"z {202 i (g)} .
0
Therefore,
iy _pr _r p

E [ (o, p)] < clp{n : {262 i (2)} }

Collecting constants and it gives the proof. .

Proof for Theorem[2] Fix a point x € R?. Define the weighted empirical measure of Y given x as
n
Unaz = Z u}n,z(x)(sY1 ’
i=1
where Jy, denotes the Dirac measure at ;. Because Z?=1 wp,i(z) = 1, this is indeed a probability

measure on M. Similarly, let v, be the true conditional distribution of Y given X = x as
v, =P[Y €A| X =1z,
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31 for Borel sets A C M. Then, observe that the estimator /i (x) can be written as

i ( —argmmenl YZ,Z)

+oo
= arg min/ d*(y, 2)dvn o (y).

ss2  Thatis, /i) () is precisely the Fréchet mean of the measure v, ,. Meanwhile, 1*(z) is the Fréchet
633 mean of v,,:

—+o0
i (a) = angmin [ @y, 2)da (o).
zEM —00

634 Hence, the problem reduces to showing that as n — +o00, v, , converges to v, in a sense strong
635 enough to force their Fréchet means to converge.

636 From Assumption|l} one can expect that for any bounded function f: M — R,

[ v =3 wnsta)f(v) =5 Bl) X =] = [ pa.
=1

637 Thus, v, , converges to v, in the weak topology on probability measures.

638 For each measure v, define its Fréchet functional F,,: M — R by

muw:/f@wmww

639 Here,

fin(x) = argmin F,,  (2),
zeM '

w*(xz) =argmin F,_(z).
zEM

640 One want F,,  _ — F,_ in asuitable sense that implies arg min convergence. In fact, for pointwise
641 consistency, it suffices to show that for each z € M,

Fou Zwi P(Y2) " [ Py 2)dnly) = B @)

42 By Assumption[I] this convergence holds for each z € M.

e43  To pass from pointwise convergence of F), _ to convergence of the minimizers /i (z) — uz‘x),

s44 one can rely on the strict geodesic convexity of d*(-,-) in a CAT(K) space with small diameter.
e45 Concretely, from earlier arguments, there is a constant «( K, D) such that

Fy,(2) = Fy, (4" (2)) 2 a(K, D)d*(z, 1" (x)),

sss for all z € M. This follows from the strong geodesic convexity of z — [ d*(y, z)dv,(y). Equiv-
e47 alently, if z is e-far from p*(z), then F, (z) exceeds the global minimum F, (p*(z)) at least
s (K, D)e?

649 Now, let € > 0. Suppose, contrary to what one want, that
A (@), 1" () > €.
eso By CAT(K)-convexity,
Fy, (i (x)) = Fo, (1" (2)) = a(K, D)e?
651 On the other hand,
F,, (ﬂ:z(x)) -k, (M* (x)) = {FV,LL(/:‘Z(JU)) - FV'rL,:n (M* (x))} + (Fy, — Fv,w)(ﬂ:;(x)) - (va - Fvn.w)(ﬂ* (x))

es2  Since i} (z) minimizes F,, _,
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Thus,
Ey, (i (2) = o, (0" (2) < (Fy, — Fo, ) (in(2) — (Fy, — Fu, ) (0" (2)).
Hence,
a(K,D)é <|(F,, = Fy, ) (in ()| + [(F, = F, ) (1" (2))] -
But as n — +o00,
F,, . (z2) = F, (2),

pointwise for each z, so the difference |F),_(z) — F,

Vn,z

z) — F,,(2)] o 0.

(z)| — 0. By dominated convergence theorem,

sup ’Fl,” .
ze{p;, (x) w*(z)}

Hence, for large n, the right-hand side in the above inequality is smaller than %a(K , D)e2, which is
incompatible. Thus, for large n,

and
fi ) 5 @)
This completes the proof of pointwise consistency. O

Proof for Theorem[3} For each x, define the empirical weighted measure as follows.

anz 5Y7

where ¢, is the Dirac measure at y. Then,

iy (z) = arg min dQ(y,z)dl/n,x(y).
zeM

Simultaneously, define the local population measure near x:
z—X
E[w (k2 1v e )]
Tn,x = lz—X|| 5
B (5]

n

which is the ideal measure that the kernel weighting is trying to approximate. Then define the local
population Fréchet mean as

IJ’:L —argmm/d ya dﬂ-nw )
zeM

Here, [} (x) is the minimizer of the population version of the local kernel functional, and % () is
the minimizer of the empirical version. Then one can write

d(fi, (), p* (7)) < d(fi, (), g, (7)) + d(fig, (), 1" ()
Squaring and taking expectation, and applying 2ab < a? + b2, one can get a bias—variance decompo-
sition:
Eld®(fiy, (x), 1 (2))] < 2B[d*(fiy, (), fiy, (2)] + 2d° (7, (), p* ().
The first term in the right-hand side is the variance term, capturing how the empirical local measure

Vp, - fluctuates around 7, 5. The second term in the right-hand side is the bias term, capturing how
the local population mean fi% (x) differs from p*(z).

Recall that in a CAT(K) space, of diameter diam(M) < D, there is a strong geodesic convexity
constant «(K, D) such that

/de, Yy /d y, 2 Vd(2%) > a(K, D) (2, ),
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675 for all probability measures v on M, provided the measure is fully supported in a ball of diameter
676 diam(M) < D. Hence, for the local measure 7y, 4,

/fymz ) — /fymxwmw)>MKDW(M)%@»

677 Because i (z) minimizes [ d*(y, z)dv, . (y),

[ i @innto) < [ Em@)in. o).

678 By subtracting the corresponding population measure integrals,

Wi — Tona) B2 B5(2)) — e — o) 2, i (2 / 02 (y, [ () o () — / 02y, 5 (2)) A (9)
/ &2 (y, i () 2 () — / @2 (y, i () 2 (y) < An(2),
679 where

A (@) = |z — Tna (-, (@) + | Ve — Tone] 2, ()]
680 Combining with the strong convexity inequahty,
a(K, D)d*(fi,(x), i, () < An(z)
d*(fin (@), fin (7)) < ——=Fs
es1  Taking expectation with respect to the sample {(X;,Y;)}7,,

B[ (i (). 5 (2))] < w

es2 Recall that
Ap(z) = Hyn,:v - Wn,w] dQ('v ﬂ:z(x))’ + Hyn,w - Wn,w] dz(,ﬂfl(x))’

) {d*(Y;, fiy, (x)) — E[d* (Y, fiy,(z) | X =~ J3]}|

d*(Y;, fis, () = B[&(Y, iy, (x) | X =~ a]}|.

683 Since fi, itself depends on the sample, a straightforward application of Hoeffding’s inequality is
e84 tricky. However, one can use Efron—Stein or Bennett—type inequalities for U-statistics, or the bounded
ess differences approach, carefully analyzing how a single Y; affects ji;,. Such arguments appear in
686 standard references on manifold-valued kernel regression. Thus, one can obtain

E[A,(z)] = O ((nhg)*m) .

687 Hence,

B i o). ()] < s (nhd) 7,

ess  where C\,, is a constant depending on the kernel shape, the distribution of (X, Y") near x and the
es9 geometry constants (K, D).

690 Next, recall that

i (x) = argmin/dz(y,z)dwn’m(y),
zeM

i (2) = argmin | d2(y, 2)dva(y),
zeM
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where v;(-) = P[Y € - | X = z]. As one move from X = z to a local neighborhood {z’ |
|z — 2'|] < O(hy)}, it can be expected that i} (x) to approximate p*(z’) for some 2’ ~ x. Then
w* () is close to p*(x) if p* is S-Holder.

Because 7, is essentially the distribution of Y | X € {2/ | ||’ — z|| < ch,}, let 2 be some
effective point near x. Then by using smoothness or local Lipschitz condition on the conditional
distributions,

d(fy,(z), p* (2")) < CbiaS(h'g)v
for some constant Chj,5 > 0. Then one adds

d(u*(a"), p*(2)) < L- ||z’ — x| ~ Lhy,.

Hence,
d(fiy (), 1" (x)) < d(fiy (@), " (@) + d(p* (2'), 4" (2)) = O(h}),
and
& (jiy, (), p* (x)) = O(R;7).
Putting it all together in the bias—variance decomposition, it completes the required proof. O
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B.3 Proofs for Section

Proof for Lemmal6] Let y' be a point on the geodesic segment [zy such that ¢’ is very close to z.
Similarly, pick 2’ on [zz]. So,

for some & > 0. Thi triangle Axy’z’ has perimeter < d(z,y) + d(y, z) + d(z, ), which is assumed

< 7/VK if K > 0. For § small enough, the side lengths of Azy’z’ are also < 7/v/K. By the
CAT(K) definition,

d(y',2') < du, (¥, 2),
and
d(z,y") = d(z,7') =9,
d(z,?') =d(z,z") = 4.
The triangle AZy'Z’ is in the same model plane as AZjz, but its typically much smaller near Z.

By definition of the Alexandrov angle,
Loy, z) = lim 289 (y/, '),
6—0

where £ (y/, 2/ ) is the secular angle of Axy’z’ at z. Equivalently, it is the Euclidean angle

Zz(y',Z') in the comparison triangle AZg'z’. Thus,
Ly(y,2) = %ig(l) 2y, 7).
One also have the angle 2z (%, Z) in the large triangle AZjZz, and want to show
Z3(y',7) < Zs(3, %),
for each small d, from which it will follow in the limit that £, (y, z) < Zz(7, 2).

The CAT(K) condition states that Axy’z’ is no thicker than the model AZy'z’. More precisely, if
one place Azy’z’ and AZy'z’ side by side so that x <+ T, iy’ <> 7', 2’ <> Z’ correspond, one have

d(y',2") < du,. (¥, 7).

Meanwhile, AZy'zZ’ C AZjZz or can be inscribed in it, with the property that asy’ — x and 2’ — =,
the points ' — Z and z’ — Z.

Geometrically, on the model side, it is known (from classical geometry in constant curvature) that
2:(7,2) < Z2(7, 7). (15)

This is because in a convex geometry (like a sphere of radius 1/ V'K or a Euclidean plane if K = 0),
drawing smaller radii Zjj’ and zZ’ inside the bigger radii Zy and ZZ yields smaller or equal angles
from the center z.

More precisely, if one revolve the segment §'z’ about Z within the triangle AZyz, the angle /3 (7, Z’)
cannot exceed £z (7, Z).

One thus have, for each small § > 0,
Za(y,7) < ZLa(y, 7).
By the definition,
Zaly,2) = lim 2oy, ) < Za(y, 2).
This completes the proof. Thus the angle at z in the real triangle Axyz is bounded above by the

corresponding angle at Z in the comparison triangle AZjz. O
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Proof for Lemmal[]] Let Apgr C M have side lengths
a=dp,q), b=d(gr), c=d(rp),
and let Z,,(g, ) denote the Alexandrov angle at p. Similarly, let Ap'q’r’ have side lengths
a=dp.q), V=dd,"), =d0rp),
with angle £,/ (¢, ).

Assume that both triangles have perimeter < 7/+/K if K > 0, ensuring they can be compared to

triangles in the simply connected model space of curvature K (sphere of radius 1/vK if K > 0,
Euclidean plane if K = 0, or hyperbolic plane if K < 0). Then, the goal is to show that

|Zp(a,m) = £y (d',7")| < Cd(p,p') + d(q,¢') + d(r,7")],

for some constant C' depending on (K, D) or directly 7/v/K.
From the triangle inequality, one get for instance

la —d'| =d(p,q) — d(p',q)]

< d(p,p') +d(g,q),

and similarly,

|b—V'| <d(q,q)+d(r,r"),

lc—=d| <d(r,7') +d(p,p).
Hence, each difference in corresponding side lengths is at most

max{|a — d'|,[b—V'|,|c = I} < d(p,p) + d(g, ') + d(r,r") = Oppraqra-
Then,
la —d'| < bppragrrrs b= V| < Opprgqrrrrs e — €| < ppragrrr-
In classical geometry of constant curvature K (sphere, Euclidean plane, and hyperbolic plane),
the side lengths (a, b, ¢) uniquely determine the shape of a triangle (up to rigid motion) provided
a, b, ¢ satisfy the triangle inequality. The angle ) := £, (g, r) (or its model-space counterpart 77) is a
continuous function of (a, b, c).
e If K = 0 (Euclidean), one have the law of cosines
¢ = a® 4+ b* — 2abcos(n),
SO
a? +b*+c?
2ab '

This is a rational, continuous function of (a, b, ¢).

cos(1y) =

» If K > 0 (spherical), the spherical law of cosines yield
cos(VEKe) = cos(VKa) cos(VED) + sin(VKa) sin(vVKa) sin(VEKb) cos(n).
 If < 0 (hyperbolic), one have similar hyperbolic law of cosines with cosh and sinh.

cosh(c¢/K) = cosh(a/K) cosh(b/K) — sinh(a/K) sinh(b/K) cos(n).

In each case, as long as a,b,¢ < 7/+/|K]|, one remain in a region where the side-length—angle
relation is well-defined and continuously differentiable. Then, there exists a function

F: {(a,b,c)} C R3>0 — [0, 7],
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so that if Azyz in the model space has sides (a, b, ¢), then the angle at « is F(a, b, c). Moreover,
F is Lipschitz continuous on the domain {(a,b,c) | a + b+ ¢ < 7/v/K}. Hence, if (a,b, c) and
(a',b,c) are close in R3, then

|F(a,b,c) — F(a',V,d)| < Ko(la—d|+1o0=0b|+|c—{]),
for some constant K depending only on max(a, b, c) < 7/VK.

Now connect the actual angles Z,(q,7), Z,(¢', ") in CAT(K) to their comparison angles &, & in
the model space. For Apgr C M, choose the comparison triangle Apgr C M in the model space of
curvature K, with side lengths pg = a, g7 = b, 7p = c. Let ij = £5(q, 7). For Ap'q'r’ C M, choose
ApP'q'7 C M similarly with side lengths a’, b, ¢’. Let ' = Zp (q', 7).

By Lemma [6]in CAT(K):
Zplg,m) <1,
Ly(d',r') <17
Symmetrically reversing the roles, one also get
< Zpla,r).

Here, Z,(q,r) ~ fjand Z,/(¢’,7") ~ 7. Hence
1Zp(a,7) = Zp(d ) < la =7+ |Zp(q,r) =0l + | £ (¢, 7)) = 7.

But each difference | £, (g, ) — 7] is known to be small by the usual CAT(K) thin triangle property.

Specifically, if the perimeter is < 7/+/K, the difference £,,(q, ) — 7 can be bounded by a constant
times the diameter of Apgr; but that diameter is < max(a, b, c¢), already controlled.

In fact, in standard statements, one typically get an inequality of the form
|Z,(q,7) — 7| <er1(a,b,c) withey - 0asa,b,c— 0,
and similarly for Z,/(¢’,7"). Since one are only after a linear bound in the final statement, it suffices

that each difference is bounded by a universal constant (depending on 7/+/ K). Thus, effectively
12p(a:7) = Zp(d',7")] < 2 (const) + [ — 7.

Hence collecting all,
!417(‘17” - 4p’(q/»7“/)‘ <O+ G A
for constants C; and Cs. In typical statements of the lemma, one either arranges that A is small so

that the additive constant C; is overshadowed, or uses a slightly refined thinness difference argument
to show £, (g, ) and 7 differ by < C' - A. In either case, one get a final bound of the form

[Zp(a,m) — Zy(d' )| < CA=C(dp,p) +d(g,q) + d(r,1")).
This completes the proof. O

Proof for Proposition[3] First, from the geodesic convexity, if v, and v, are close in distribution,
then

d(p*(x), p*(2")) = C",

for some constant C" depending on (K, D) and distributional assumptions (e.g. sub-Gaussianity or
bounded diameter ensuring all integrals are finite).

Compare angles £, () (u,v) and £« () (u,v). Let [u*(x), u] be the geodesic from p*(x) to u,
[11*(2), u] be the geodesic from z*(2) to u, and similarly for [;*(x),v] and [u(z"), v]. Consider
two triangles A (p* (), u, p*(2')) and A(p*(z), v, p*(z’)). Observe that diam(M) < D, so if
w*(x) and p*(2') are also < O(e) apart, then each of these triangles has perimeter 2D + O(e). If

K >0,2D+0(e¢) < F/(\/E) by the initial assumption D < 2\/7% and € small enough. Hence,

each triangle is validly contained in a region where one can apply CAT (K) angle comparisons (and
the model-space comparison).
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Let

and
p=p), ¢ =u, v = pt(2).
Then the pair Apgr and Ap’q'r’ have corresponding points:
peyp, godqd, rer.
Notice that ¢ = ¢’ is actually the same point u. The sum of vertex perturbations is
d(p.p') +d(q,q") +d(r,r") = d(p*(z), p* (@) + 0+ d(p* ('), p* (z))
— 2d(pr* (), 1" (),

and d(p* (), p*(z')) < C" e. By Lemmal]
|Zp ( r) = Zy(d' ;)] < Ci[d(p,p") + d(g.q') + d(r,r")].
Hence
| Loy (12" (@) = Ze oy (2" (@) | < C1 (2" (), 1" (@)
<20, C0C"e.

Similarly, for Ap*(z) v u*(z'), one get the same type of bound in terms of €.

Recall that Z,«(;)(u,v) is the Alexandrov angle between geodesics [ (x)u] and [u*(x)v]. In a
CAT(K) space, the angle £, () (u, v) can be added or compared if we know angles involving a
third point x*(2"). Thus,

|2y (0, 0) = (Lpr (s 17(21)) + Lye oy (w,v) = )| < Cp - d(p*(2), 1" (2)),
for some constant Cs.
Putting all these small angle increments together, conclude that

’Ap, (:E ) - 4#*(9:’)(”7 U)| < C d(,u* (.73), H* ('T/)) = O(G)

Hence the angles at u*(x ) versus p*(z') differ by a linear factor in e. O

Proof for TheoremH] From Proposition[3] if v, ~ v, (i.e. their distance is < ¢), then for any pair
(u,v),
’ 4“*(%) (’LL, ’U) — Alt*(x/)(u, U) ‘ S C1 €,

for some constant C; > 0. Hence for one pair of directions (u, v), one get a linear-in-e bound on
how much the angle can change.
Now consider not just one pair, but all pairs (u;,u;) with 1 < ¢ < j < m. But since each
Z () (s, uj) is covered by the same result,

‘ZM *(z) u“uj) - lu*(av’)(uhuj)’ < Cie

for each pair (u;, uj). Then the supremum over i < j is also < (] €. In fact, it is not even needed a
union bound in probability sense, and each pair is bounded by the same linear factor C; €. Hence
sup ‘4#*@)(%,%) - Zu*(m/)(ui,uj) ‘ < Cl €.
1<i<j<m
Thus one immediately extend from one pair to all ( ) pairs (u;, u;).

In the hypothesis, it is typically stated that whenever ||« — || is small, then v, and v, differ by
€(||z — «|]). For instance, in a classical kernel or smoothing scenario, if ||z — z’|| < J, then

dw(l/z,l/z/) S 6(5)
Hence setting € = €(9), for ||z — 2’| <6,

sup ‘ ZM*(;C)(UZ',U]‘) — lu*(x’)(uhuj) S Cl 6(5)
1<i<j<m

Thus the angle difference is a function of §. Hence define C' := C; (it might also absorb small

distributional constants if needed), and putting it all together yields the proof. O
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B.4 Proofs for Section

Proof for Lemma@ In a smooth Riemannian manifold, for sufficiently close u and v, the unique
geodesics v, : [0, [|[U]]] = M and v, : [0,||V]] — M from z to u, respectively from z to v,
have well-defined initial velocity vectors at z. Let ,,(0) € T..M be the tangent vector to -, at z.
By construction, this is precisely U if we identify U € T, M with the velocity vector in normal
coordinates. Similarly, 4, (0) =V € T, M.

In Riemannian geometry (without singularities around z), one then have:
9:(1(0), %(0)))
[ (O] 1 (O) |

Here g.(-,) is the Riemannian metric at z. In simpler notation, if one identify +,,(0) = U and
4»(0) =V, then

Z(u,v) = 4(%(0)7 %(O)) = Cosil(

gz(U7 V) )
V' 9:(U,0) g(V,V)

Z.(u,v) = cos_l(

Use a geodesic coordinate system ®: T, M D B;s(0) — M around z, with ®(0) = z and d®|y = Id.
Concretely, ®(U) = exp, (U). In these coordinates, the metric g;;(X) at a point X in a small ball
around 0 € T, M has the well-known expansions:

9i;(X) = 8ij — 3 Ruje(0) X* X° + O(| X|]°),

where R;;j, is the Riemann curvature tensor at z. The — % factor is a standard convention from
normal coordinate expansions; the main point is that the first non-trivial corrections appear at second
order in || X ||.
Hence, for vectors U, V' € T, M with small norms, the inner product in the manifold at z is
UV) =6;U' Vi — 1 R o(||u|||v ull,||v
9:(U, V) = 0y = 3 2 (5Rase(0)) ... + O(UNV | max(|U, [V]))-

2
ke

In simpler notation:

9:(U,V) = (U, V)gua + O(IU] VI max (U}, [V]))-
From the above expansions,

9:0.0) = [Ullgaa[1+00WUI]* = U]+ O(IUI).
Similarly for |V||. In addition,

9:(U, V) = (U, V)gua + O(IU|[ [Vl max (U], [V]])).

Thus

9:(U, V) _ o) 2 2
N G

since each correction is second-order in ||U|| or ||V||. Moreover,
9:(U, V) ) _ COS_l( (U, V)
V9-(U.0) g-(V,V) Iivi

Z(uyv) = cos™!( + O + [VI%)
When 0y = Zo(U, V') denotes the Euclidean angle in the tangent space,

CAY
cos(bo) = VT

Then
cos(Zz(u,v)) = cos(fo) + O([U|* + |V[*).
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Since cos is locally invertible around angles not equal to 0, 7 (and we assume 6y is not degenerate or
extremely close to 7 for typical use), a standard expansion yields:

Zx(u,v) = 0o + O(|UIP* + V).

Concretely, if §; = 6y + ¢ satisfies cos(f1) = cos(6y) + 1, then § = O(n) for small . Here,
n=O(lU]* +[V|?).

Hence,
Z:(u,v) = 0o + O(IUI* +VI?),
where 6y = Zo(U, V) is the Euclidean angle of U and V' in T, M. This completes the proof. O

Proof for PropositionH] Let ~(t) be a geodesic in (M, g) with v(0) = p* and 4(0) = v. Consider
F(v(t)). Then

—F(’y(t))‘ = % /dQ(yw(t)) d”(w‘t:o

_ / % 4 (y,7(1)) L:O du(y)-

By standard Riemannian geometry formulas, if o (s) is the geodesic [y v(t)], then

& 2(y.40) = 2d(,4() (3(1), 5(0))

Att = 0, since v(0) = u*, one interpret 6(0) as the initial velocity from p* toward y. If u* is a
minimizer, the directional derivative must vanish for all directions v. Formally, this implies
VE(H*) = 0.

Hence the first-order term in the expansion of F'(z) around z = p* vanishes.

t=0

9~ (1)

Next, examine the second derivative (or Hessian) of F' at vy*.

d2
Hess, (F)(v,v) = p7e] F(exp,(tv)) ‘t:ol

When z = p*, and p* is the unique minimizer, these second derivatives measure how strongly F'
curves upward around p*.

In fact, the Gauss—Manasse—Busemann formula for second variation of distance shows that
Hoe(F)(00) = [ He [(0.9](0,0) diy).

Each term H .- [d*(y, -)] (v, v) can be computed from the second variation of p(p*,y) = d(u*,y).
In standard curvature conditions (especially nonpositive curvature or small diameter in positive
curvature), this Hessian is positive semidefinite, ensuring local convexity around p*. If CAT(0)

or if diam < 7/(2vK) in CAT(K), then d>(y,-) is geodesically convex with a definite strong
convexity modulus v > 0. Integrating preserves that positivity, giving H,,- (F) > 0. Hence there is a
well-defined linear operator H,,« on 7},+ M representing H,, (F').

Because F is at least C, one can write the remainder R(v) in a standard Taylor expansion form:
R(v) = O(||v]|*) asv—0.
Concretely, one can show this by analyzing the third derivative of F' in normal coordinates:
d3
ﬁF(eXpM* (tv))
remains bounded as ¢t — 0, so the third-order term is well-defined.
Hence the local expansion is
F(exp,.(v)) = F(u*) + (VF(u*), v) + 3 (Hyv, v) + R(v), R(v) =O(|[v|).
=0

That is precisely the jet expansion for the Fréchet functional around p*. O
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B.5 Proofs for Section

Proof for Proposition[3] From the local Riemannian (or CAT(K)) law of cosines in Ap* y z:
d*(y,z) = d*(y,n") + d*(z,p") — 2d(y, ") d(p", 2) COS(A,L* (v, Z)>-
Rewriting as
d*(y,z) — d&*(y,p*) = d*(z,p*) — 2d(y, ") d(p*, 2) COS(ZH* (v, 2))-
Here, let

Adise (y, 2, p1°) = d*(p*,2) — 2d(y,p*) d(p*, 2),

Aungte (9, 1°) 1= 2d(y, 1) d(z %) [1 = cos( Ly (9,2)) |
Observe that
—2d(y, n*) d(p*, ) cos(Z(y,2)) = [Aaise — d*(1*,2)] — Dangle,
and
Py, 2) = Py, 1) + Daist (¥, 2, 1) + Danglo(y, 2, 7).
So the desired identity is obtained. O

Proof for Proposition[6] Let
e rg = d(p* (z), uo). (A constant for each x if ug is fixed.)
* r(y) = d(p*(z), y) = Ra(y). (A variable depending on y.)
* a(y) = d(uo,y). Another side of the triangle.

Then from the local law of cosines,

r(y)? = 15 +a(y)® — 2rga(y) cos(Lu @) (uo,y)).

But Z/,1,’*(&:) (u07y) = (bz(y) So
r(y)® = rg+a(y)?® — 2rgaly) cos(da(y)).
We write it as
V. (y) = r(y)* = 15 +aly)® — 2roa(y) cos(d.(y)).

Now, to link a(y) = d(ug,y) with r(y) and ¢, (y), we may do yet another small expansion or an
additional law-of-cosines approach. If the manifold is small enough in diameter, we can treat «(y)
also as a function of (r(y), ¢..(v)).

Also, let

a)? = 13 +r(y)? — 2r97(y) cos(Lu, (1 (z), v))-

But £, (1* (), y) is not necessarily the same as ¢, (y). Then,
a(y) = a(r(y), 6z(y)) = ro+O0(r(y))

plus terms involving ¢,.(y). In a small neighborhood, these expansions typically become second-order
in ¢, (y). Hence, a(y) is not an independent variable; it’s determined once ¢, (y) and 7(y) = R.(y)
are known.

In addition,

r(y)? = g+ o(y)® — 219 a(y) cos(ds(y)).
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gs4 This yields a final expression of form

r(y)? = r¢ + (some linear or quadratic function in r(y)) + (terms in gbr(y))

885 In short, the function ¥, (y) = r(y)? can be viewed as

\I/z(y) = fradial(r(y)) + fangle(r(y)v %(y)),

part ignoring angles angle corrections

sss  where fungle 1S typically second-order or cross-term in ¢, (y).

sg7 Consider

sss Let
889 * E, [r(Y)] as some average radius.
890 * E, [¢(Y)] as average angle.

go1  One obtains expansions, where

g2 is some cross or higher-order term in ¢, (Y).

893 Then,

894 Expanding [r(y)Q]2 yields

2

P2 = @) = (fada(r®) + fange(r(w), 2(1))) -

895 One obtains terms:

896 ® I:fradial(r)}2v
897 e cross terms 2 fiadial (7“) fang‘le(r7 ®),
898 ° [fangle(rv ¢)]2

899 By taking expectation,

El[r(y)*] = ]E([fradial(r)f) + QE(fradial(T) fangle(T, ¢>)) + E([fanglc(ra ¢)]2>~

900 Then, Var[¥, (V)] = E[¥,(Y)?] — (E[¥,(Y)])? can be rearranged, grouping the radial part of the
901 variance from the angle cross terms:

Var[¥,(Y)] = Var( fradial(r(Y)) ) + Cov[¢(Y), 7(Y)?] + (smaller or higher-order expansions in ¢, (Y)).
—_——

like 7(Y")2 ignoring angles

902 Explicitly, let
Ap(Y) = fragiat (r(Y)) (often =r(Y)?)
903 ignoring angular corrections, and

Bo(Y) = fangle(r(Y),2(Y)) (some function capturing dependence on angle ¢, (Y)).

33



904

905

906

907
908
909
910

Then

Using
Var[A + B]| = Var[A] 4 Var[B] + 2 Cov(A, B),
one have
Var[U, (V)] = Var[4,(Y)] + Var[B,(Y)] + 2Cov(A,(Y), B.(Y)).

If B,(Y) is small or mostly depends on ¢, (Y") with some bounding condition, one can inter-
pret Var[B,(Y)] and Cov(A4,(Y), B.(Y)) as cross/higher-order expansions. Here, Var[A,(Y)]
is the purely radial piece Var[R,(Y)?]. The cross terms or expansions in ¢,(Y) become
Cov(¢4(Y), R.(Y)?). Hence we get the claimed partial decomposition. O
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C Additional Analysis on e-Approximate CAT(K') Space

In comparison geometry framework, the theoretical statements are provided on the model space with
constant curvature. In practice, however, real-world datasets may lie in spaces that only approximately
satisfy the curvature conditions. Below we introduce an e-approximate version of CAT(K) space,
and derive perturbed versions of existence, uniqueness, and convexity-type results.

Definition 9 (e-Approximate CAT(K') Space). Let € > 0. A geodesic metric space (M, d) is said to
be e-approximate CAT(K) space if for every geodesic triangle Apqr of perimater less than 2D

(where D = 7/VK if K > 0, otherwise D = o), and for any points x and y on the edges [pq]
and [qr], respectively, one has

d(z,y) < dys (7,7) + €, (16)
where Apgr C M3 is the usual comparison triangle in the simply connected model space of constant

curvature K.

This definition allows a small additive slack € in the usual comparison inequality. When € = 0, we
recover the standard definition of CAT(K).

Theorem 5 (Approximate Geodesic Convexity of Squared Distance). Let (M, d) be an e-approximate
CAT(K) space with K < 0. Fix any p € M, and define f(x) = d*(p,z). Then, for any geodesic
~v:[0,1] = M,

fOy(1) < (1 =) f(7(0)) + tf (v(1)) + O(eD), (17)

where D is the diameter of the relevant geodesic segment under consideration, or the whole space if
bounded.

Proof. Let v: [0,1] — M be a geodesic from v(0) = x to y(1) = y. Define ~(t) as the point at
parameter . We form a (possibly degenerate) triangle Apzy in M. Then, ApZy is the comparison
triangle in the model space M% that has side lengths

dues, (5.%) = d(p, ), duyz (2.9) = d(@,9), ez, (7.5) = (v, D).

Let 4(t) be the point on [Z, §] C ApZy at fraction ¢. Because v is a geodesic and [Z, 7] is also a
geodesic in M%, the pair (t) <+ 4(¢) correspond naturally for the sub-segment ratio ¢. Here, we
have

for some constant C. By taking squares,

2
(p, (1) < (duas, (5.7(1))) + 2Csedygs (5.7(1)) + (Cre)*,
Since K < 0, the model space M% is either Euclidean or hyperbolic. In both cases, it is known that

{7(®) [t e0,1]} C [2,7],
which yields 7(t) satisfying the usual convexity of the squared distance in a non-positive curvature
setting.

(dhey .570))” < (0= 1) (4, 2.9) " +1 (s (0.3))
Therefore,
dyz (P,7(1))* < (1 = t)d*(p, x) + td*(p, y),
and
*(p,y(t)) < (1= t)d*(p, x) + td*(p,y) + 2C1e (de( (ﬁﬂ(t))) + (Cre)®
< (1 =t)d*(p,z) + td*(p,y) + 2C1eD’ + (Cre)?
< (1= t)d*(p, z) + td*(p,y) + CaeD,

for some constant Co > 0, where D’ is the diameter of the model space, and can be bounded by local
diameter D. This can be written as

FOy@) = d*(p, (1)) < (1 =) f(7(0)) + £ ((1)) + CaeD,

and it exactly states the approximate geodesic convexity for f(x) = d?(p, x). O
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944 Corollary 1 (Approximate Uniqueness of Fréchet Mean). Under the same e-approximate CAT (K)
945 assumptions, consider the Fréchet functional

F(z) = /M &2 (y, 2)du(y), (18)

a6 for a compactly supported probability measure v. Then, one has the following.

947 * A minimizer of F exists for any e > (.
948  If e is small, any two minimizers m1 and meo must lie within a small neighborhood of each
949 other:

d(my,mz) < O(VVe). 19)
950 Hence, strict uniqueness is replaced by an e-dependent bound.

951 Proposition 7 (Local Existence and Uniqueness). Let M be a geodesic metric space that is CAT(K)
952 (or e-approximately CAT(K) space) locally in a geodesic ball B(py, R). That is, for any geodesic
953 triangle fully contained in B(po, R), the usual CAT(K) (or approximate) triangle comparison
954 property holds. Suppose v is a probability measure on M whose support supp(v) is contained in
955 B(po, R). Define the Fréchet functional

F(z) = /M &2 (y, 2)dv(y).

956 Then, one has the following.

957 * The function F(x) attains its minimum at some m € B(pg, R).
958 e If K > 0 but diam(supp(v)) < sue o7 if K < 0 (no diameter restriction), then m is
959 unique within B(po, R).

960 In other words, the Fréchet mean m exists in the local ball B(py, R) and is unique when the (local)
961 curvature constraints enforce strict geodesic convexity.

962 Proposition 8 (Heavy-Tailed Distributions and Slower Convergence). Let M be either a strict
963 CAT(K) space or an e-approximate CAT(K) space of diameter < D. Suppose Y1,Ys,...,Y,, are
964 1.i.d. random points in M with common distribution v. Denote by

p = argmin E[d*(Y, 2)]
zEM

1 n
jl = arg min — ZdQ(Y;,z).

zemM NI
965 Assume that
966 1. v has finite second moments E[d?(Y, z0)] < oo for some reference point zy, and
967 2. the random variable d*(Y, zy) satisfies a sub-exponential-type tail bound: there exist
968 constants o > 0, v € (0, 1] such that
P (d*(Y, z0) > t) < exp(—at?), (20)

969 forallt > 0.

970 Then, there exist constants c, C' such that for alln > 1 and all € > 0,
P (d(fin, 1) > €) < Cexp (—cne”?). (21

971 Hence [i, converges to [ in probability, and its deviation tails decay sub-exponentially with arte €.

9

N

2 Proof. Define the population and empirical Fréchet functionals

FE) = BEY ), Fal) = - Y d(Y,2)
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By definition,
p=argmin F(z), [i, = argmin F,(2).

zeEM zeEM
Observe that
Fiin) — F(p) = {F(fin) — Fu(in) } + {Fn(fin) — Fu(u)} + {Fn(p) — F(p)}
<A{F(fn) = Fn(in)} — {F (1) — Fa(p)},
|F(fn) = F ()] < [F(fin) = Fa(fn)| + [F(p) = Fa(p)] -
Therefore,
(Al > & € (F (i) = F0) > ali. D)2} € {sup [F2) - F2) = 20| |

Here,

sup [Fu(z) = F()| < max [Fu(z) = F(z)| +100),

where N5 < exp(C1(D/§)™) is a d-net for some m and 7(§) — 0 as & — 0. Taking 6 — 0,

P (Sup |Fn(z) — F(z)| > t) < Ns-2exp (—c'nt?) +P(n(d) > t/2)
zeM

~ exp(In N5 — 'nt?).

For fixed D, log N is polynomial in (1/§) so we can absorb that into a constant factor. O

D Relation to Geodesic Regression

A Riemannian manifold (M, g) is a smooth manifold endowed with a Riemannian metric g, which
locally induces a norm on each tangent space 7, M. In such a setting, the geodesic distance between

two points p, g € M is given by
1
o =it [ \/a(i@.50) de
0

where the infimum is taken over all smooth curves ~ joining p and g. For points ¢ in a normal
neighborhood of p, the exponential map exp,,: T, M — M is a diffeomorphism and we have the
local relation

d*(p,q) = | exp, " (q)II*.

Moreover, assuming the sectional curvatures of M are bounded above by K, the manifold is
also a CAT(K) space. In this smooth setting, one can use differential calculus; for example,
the Fréchet functional F(z) = [, d*(y, z) dv(y) is differentiable (at least locally), with gradient

VF(z) = =2 [, exp; ( )dy( ), and a second-order expansion
1
F(exp,(v)) = F(z) + (VF(2),v) + §<HZ v,v) + O([|lv]|?).

Here, a CAT(K) space is a geodesic metric space (M, d) satisfying a comparison condition: for
any geodesic triangle Apqr with perimeter less than a critical value (for K > 0) and any points x
and y on two of its sides, the distance d(x, y) is bounded above by the corresponding distance in the
model space M2 of constant curvature K. In particular, if v: [0, 1] — M is a geodesic, one has the
following (strong) convexity inequality for the squared distance function:

& (y,7(1) < (1= )d*(y,7(0)) + td*(y,7(1)) — at(l — ) d*(v(0),7(1)),

where @ = «(K, D) is a constant depending on the curvature bound K and the diameter D of
the region under consideration. The above inequality replaces the role of second-order (Hessian)
information.
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In geodesic regression on a Riemannian manifold, we assume that the regression function follows a
geodesic curve. For example, for a predictor x € R?, one common formulation is:

w(x) = exp, ((a +8"x) v), withv € T, M,
or equivalently, writing the geodesic y from p with initial velocity v,

wa) =(a+p ).

Here, p € M is a base point, v € T}, M is a tangent vector at p, exp,, is the Riemannian exponential
map, and «, 3 are the regression parameters. This model implies that the conditional mean of Y’
given X = z lies exactly on the geodesic determined by p and v. Fréchet regression is defined more
generally and does not restrict the mean to lie on a pre-specified geodesic. For each x, the conditional
Fréchet mean is given by

p(x) = arg min E[dQ(Y, 2) | X = JCi|
zeM

If M is a Riemannian manifold and the conditional distribution of Y given X = x is concentrated
and symmetric around a geodesic curve, then one may find that the minimizer satisfies

) = e, ((a-+ 572 0),

thus recovering the geodesic regression solution. However, in general, Fréchet regression allows
for much more flexible conditional mean structures. In summary, we can relate these two concepts
(Fréchet regression and geodesic regression). Riemannian manifolds allow a local linearization via
the exponential map and a full Taylor expansion, making geodesic regression a natural parametric
model, and CAT(K) spaces provide a more general setting where one relies on strong convexity
properties of the squared distance function rather than differentiability. Both approaches are unified
under the Fréchet regression framework, with geodesic regression emerging as a parametric case
when the conditional means lie on a geodesic.
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E Details of Experiments

This section describes the details of experiments in Section 4]

Model Details Throughout the experiment, we use an implementation of Fréchet regression based
on the Nadaraya-Watson estimator [14} 21} 38].

1 n
*(x) = argmin — Kn(X; — z)d*(Y;, 2),
) = g min SR, ) ()

where K7, is a smoothing kernel that corresponds to a probability density with K, (-) = h= K (-/h).
For the optimization, we use Limited-memory BFGS [30].

import numpy as np
from scipy.optimize import minimize

# Kernel function (Gaussian kernel)

def gaussian_kernel(x, x_data, bandwidth):
dists = np.linalg.norm(x_data - x, axis=1)
weights = np.exp(-0.5 * (dists / bandwidth) ** 2)
return weights / np.sum(weights)

# Fréchet objective function

def frechet_objective(y, responses, weights, distance_func):
dists = np.array([distance_func(y, r) for r in responses])
return np.sum(weights * dists**2)

# Fréchet regression function
def frechet_regression(X, Y, x_query, bandwidth, distance_func):
weights = gaussian_kernel(x_query, X, bandwidth)
y_init = np.mean(Y, axis=0)
result = minimize(
frechet_objective,
y_init,
args=(Y, weights, distance_func),
method='L-BFGS-B'
)

return result.x

Listing 1: Python code for the Fréchet regression.

Stereographic Projection Listing 2] shows the Python code for the stereographic projection from
sphere surface to hyperbolic plane.

# Define the stereographic projection function
def stereographic_projection(x, y, z, R):
u=Rx*xx/ R+ 2)
v=R*y/ (R+ 2)
return u, v

Listing 2: Python code for the stereographic projection.
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124 E.1 Details for Illustrative Example 4.1]

1025 Data Generating Process To assess the performance of the Fréchet regression estimator, consider
1026 to generate simulated data. The regression function is

w(z)() = (1 — 2%)1/2cos(rz), (1 — 22)Y?sin(nz), x), = € (0,1),
1027 which maps a spiral on the sphere. To generate a random sample {(X;,Y;)}7,, let X; ~ 4(0,1)
1028 followed by a bivariate normal random vector U;, and
Ui
o

1029 The sample size of the simulation data is n = 50, and Gaussian noise with variance 0.4 is added to
1030 each instance.

Vi = cos([|Ui])u(Xi) + sin(||U]])

1031 E.2 Details for Experiments on Real-world Datasets

1032 Details of Datasets

1033 * HYG Stellar: The HYG Stellar Database is a comprehensive star catalog that amalgamates
1034 data from several prominent astronomical catalogs, including HIPPARCOS, the Yale Bright
1035 Star Catalog, and the Gliese Catalog of Nearby Stars. This integration provides detailed
1036 information on stars’ positions, brightness, spectral types, and various identifiers such as
1037 traditional names and Bayer designations. It contains detailed information on 119,614 stars
1038 including position data, photometric data and luminosity and variability.

1039 » USGS Earthquake: The USGS Earthquake catalogue provides information on earthquakes
1040 worldwide with a magnitude of 2.5 and above that have occurred over the past week, and it
1041 contains 300 instances.

1042 * NOAA Climate: The NOAA Climate data provides Two-Line Element (TLE) sets for
1043 weather satellites, including those operated by NOAA, and contains 72 instances. A TLE
1044 consists of two 69-character lines of data, each containing specific parameters that describe
1045 the satellite’s orbit.

1046 Table 3] shows the detailed breakdown of variables X and Y for each dataset.

Dataset | Sample size  Predictor X Response Y
¢ Observation time ¢
* Brightness of the star m . .
HYG Stellar 119,614 Absolute Magnitude m’ Position on the celestial sphere

Spectral type s

* Observation time ¢
USGS Earthquake 300 < Magnitude of the earthquake m  Earthquake location
* Depth of the earthquake d

* Timestamp of the TLE ¢
NOAA Climate 72 Orbital parameters ¢ Satellite position
¢ Inclination ¢

Table 3: Detailed breakdown of variables for each dataset.

1047 Visualizations of Real-world Spherical Datasets Figure [5|shows the additional visualizations of
1048 real-world spherical datasets, and Figure [f] shows the heteroscedasticity in the NOAA and USGS
1040 datasets. In addition, Python code in Listing [3|shows the implementation for the visualization of
1050 HYG Steller dataset.
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Figure 5: Visualizations for USGS Earthquake catalogue and NOAA Climate dataset.
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Figure 6: Heteroscedasticity in the NOAA and USGS datasets.
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o o =

import numpy as np
import matplotlib.pyplot as plt
from astropy.io import ascii

# Load the Bright Star Catalog
url = '{Data URL}' # URL for HYG Stel
data = ascii.read(url)

ler database

# Extract Right Ascension and Declination

ra = np.array(datal'ra']) # in hours

dec = np.array(datal['dec']) # in degrees

# Convert RA from hours to degrees

ra_deg = ra * 15

# Convert RA and Dec to radians for p
ra_rad = np.radians(ra_deg)
dec_rad = np.radians(dec)

# Create a 3D scatter plot
fig = plt.figure(figsize=(12, 8))

ax = fig.add_subplot(111l, projection='3d')

I

np.cos(dec_rad) * np.cos(ra_rad)
= np.cos(dec_rad) * np.sin(ra_rad)

N < M =
I

np.sin(dec_rad)

# Plot the stars

ax.scatter(x, y, z, color='white', s=0.01, label="data points")

ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
ax.zaxis.set_ticklabels([])

# Set plot parameters
ax.set_facecolor('black')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z")

lotting

Convert spherical coordinates to Cartesian for plotting

plt.legend(markerscale=80, fontsize=30)

plt.show()

Listing 3: Python code for the visualization of HYG Steller database.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We summarized our contributions, referring the corresponding sections.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are discussed in the conclusion section.
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Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Full proofs for all statements are provided in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full experimental protocol is described in the experiments section.

Guidelines:

The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codes for numerical experiments are submitted as the supplemental
material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Full experimental protocol is described in experiments section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All results are reported with standard error.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computing resource is described in experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors reviewed the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This work is a foundational research.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All required libraries and resources are correctly cited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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