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Abstract

Fréchet regression extends classical regression methods to non-Euclidean metric1

spaces, enabling the analysis of data relationships on complex structures such2

as manifolds and graphs. This work establishes a rigorous theoretical analysis3

for Fréchet regression through the lens of comparison geometry which leads to4

important considerations for its use in practice. The analysis provides key results5

on the existence, uniqueness, and stability of the Fréchet mean, along with statisti-6

cal guarantees for nonparametric regression, including exponential concentration7

bounds and convergence rates. Additionally, insights into angle stability reveal8

the interplay between curvature of the manifold and the behavior of the regression9

estimator in these non-Euclidean contexts. Empirical experiments validate the10

theoretical findings, demonstrating the effectiveness of proposed hyperbolic map-11

pings, particularly for data with heteroscedasticity, and highlighting the practical12

usefulness of these results.13

1 Introduction14

Fréchet regression [35] is a powerful statistical tool for analyzing relationships between variables15

when the response or predictor lies in a non-Euclidean space. It generalizes classical regression to16

settings where the response variable Y resides in a metric space M. Given predictors X , Fréchet17

regression seeks to estimate the conditional Fréchet mean.18

µ(x) = argmin
m∈M

E
[
d2(Y,m) | X = x

]
, (1)

where d is the metric on M. This approach accommodates data in various non-Euclidean spaces,19

such as manifolds, trees, and graphs [29, 17, 18, 36, 13]. In recent years, several variants of Fréchet20

regression have been proposed [39, 7, 37, 19, 44, 42], each addressing different aspects such as21

variable selection, error modeling, and high-dimensional data handling. However, most existing22

studies primarily focus on specific geometric settings or lack a comprehensive theoretical framework23

that accounts for varying curvature bounds. This study fills this gap by leveraging comparison24

geometry to provide a unified theoretical analysis of Fréchet regression across CAT(K) spaces with25

diverse curvature properties.26

Fréchet regression allows the assumption of a non-Euclidean space in the space of the data, so one27

can expect that its behavior can be described depending on the geometrical properties of the space. To28

investigate this, this study utilizes comparison geometry, which is a fundamental branch of differential29

geometry that investigates the geometric properties of a given space by comparing it to model spaces30

of constant curvature [12, 20, 11, 41]. Unlike information geometry [3, 5, 33, 4, 27, 28], which31

focuses on general statistical manifolds, this framework leverages classical comparison theorems32

to derive insights about the structure and behavior of more complex or less regular spaces. By33

establishing inequalities and structural similarities between a target space and well-understood model34
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spaces (e.g., Euclidean, spherical, or hyperbolic geometries), comparison geometry enables the35

extension of geometric and topological results to broader contexts, including spaces that may lack36

smoothness or traditional manifold structures. In this framework, CAT(K) spaces are pivotal objects37

of study, which are the generalization of constant curvature space [6, 22, 9]. CAT(K) spaces are38

geodesic metric spaces, where geodesic triangles are thinner than their comparison triangles in39

the model space of constant curvature K. Consider several known examples of CAT(K) spaces.40

Euclidean spaces Rn are classic examples with K = 0, exhibiting flat geometry. Hyperbolic spaces,41

which have constant negative curvature (K < 0), serve as models for spaces exhibiting exponential42

growth and are useful in areas like network analysis and evolutionary biology. On the other hand, trees43

can be viewed as CAT(0) spaces, providing a discrete analog with unique geodesics between points.44

Additionally, certain types of manifold structures used in shape analysis and computer graphics45

also qualify as CAT(K) spaces under specific curvature conditions. These examples demonstrate46

the broad applicability of CAT(K) spaces in modeling diverse geometric contexts encountered in47

statistical analysis. By considering such spaces, this study aims to describe the behavior of the Fréchet48

regression in terms of curvature K in particular.49

2 Notation50

In this section, the notations and definitions required for the following analysis are organized. Let51

M be a metric space and d be the metric on M. Here, the metric space (M, d) is geodesic space if52

every pair of points in M can be connected by a geodesic, a curve whose length equals the distance53

between the points.54

Definition 1 (CAT(K) space). Let (M, d) be a geodesic metric space and let K ∈ R. The space55

M is said to be a CAT(K) space if it satisfies the following curvature condition: for any geodesic56

triangle △pqr in M with perimeter less than 2DK (where DK = π/
√
K if K > 0, and DK = ∞57

otherwise), and for any points x, y on the edges [pq] and [qr] respectively, the distance between x and58

y in M does not exceed the distance between the corresponding points x̄ and ȳ on the comparison59

triangle △ ¯pqr in the model space of constant curvature K: d(x, y) ≤ dM2
K
(x̄, ȳ), where the60

comparison triangle △ ¯pqr is a triangle in the simply connected, complete 2-dimensional Riemannian61

manifold M2
K of constant curvature K that preserves the side lengths as dM2

K
(p̄, q̄) = d(p, q),62

dM2
K
(q̄, r̄) = d(q, r), and dM2

K
(r̄, p̄) = d(r, p).63

Definition 2 (Geodesic convexity). A function f : M → R is geodesically convex if for every64

geodesic γ : [0, 1] → M, f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)), for all t ∈ [0, 1].65

Definition 3 (λ-strong geodesic convexity). A function f : M → R is λ-strongly geodesically convex66

around p ∈ M if there exists a constant λ > 0 depending only on K and diam(M) such that67

f(x)− f(p) ≥ λd2(x, p), (2)

for every x ∈ M.68

Definition 4 (Lower semicontinuity). A functional F : M → R ∪ {+∞} is lower semicontinuous at69

a point x ∈ M if for every sequence {xn} converging to x, it satisfies70

F (x) ≤ lim inf
n→+∞

F (xn). (3)

Definition 5 (Weak convergence in metric space). A sequence of probability measures {νn} on M71

is said to converge weakly to a probability measure ν (denoted by νn ⇒ ν) if for every bounded72

continuous function f : M → R,73

lim
n→+∞

∫
M
f(y)dνn(y) =

∫
M
f(y)dν(y).

Definition 6 (Alexandrov angle). The Alexandrov angle ∠x(y, z) is defined as the limit of secular74

angles between short sub-segments. Concretely, if y′ is a point on [xy] with d(x, y′) → 0 and z′ is a75

point on [xz] with d(x, z′) → 0. Then,76

∠x(y, z) := lim
y′→x,z′→x

∠(sec)
x (y′z′),

where ∠(sec)
x (y′z′) is the ordinary angle in the comparison triangle for △xy′z′ in the model space.77
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Definition 7 (Riemannian exponential map). Let TzM be the tangent space of M at a point z ∈ M.78

For a fixed point z, the Riemannian exponential map at z, denoted by expz is a map from the79

tangent space at z to the manifold M: expz : TzM → M. Here, the Riemannian exponential map80

is constructed as i) Choose a tangent vector v ∈ TzM. ii) Consider the unique geodesic γv(t)81

emanating from z with initial velocity v. Formally, γv(t) satisfies γv(0) = z and γ′v(0) = v. iii) The82

exponential map sends the tangent vector v to the point on the manifold reached by traveling along83

the geodesic γv for unit time, expz(v) = γv(1).84

3 Theory85

See Appendix B for complete proofs of all statements.86

3.1 Key Lemmas87

Here, we summarize key lemmas required for our study. These results follow those of previous88

studies [43, 23, 24], but are presented below for the sake of uniformity of notation and to keep the89

manuscript self-contained. First, it can be shown that in CAT(K) spaces with K ≤ 0, the convexity90

properties ensure the existence and uniqueness of the Fréchet mean under mild conditions. For91

CAT(K) spaces with K > 0, additional constraints on the diameter of the space may be necessary92

to ensure uniqueness due to potential multiple minima arising from positive curvature.93

Lemma 1. Let (M, d) be a CAT(K) space for K ≤ 0. For any fixed point p ∈ M, the function94

f : M → R defined by f(x) = d2(p, x) is geodesically convex.95

Lemma 1 establishes that the squared distance function retains geodesic convexity in CAT(K)96

spaces with non-positive curvature. This property is fundamental because it ensures that the Fréchet97

functional, which aggregates squared distances, inherits convexity. Consequently, optimization98

procedures to find the Fréchet mean are well-behaved, avoiding local minima and guaranteeing global99

optimality under the given conditions.100

Lemma 2. Let (M, d) be a complete CAT(K) space. For any probability measure ν on M with101

compact support, there exists at least one minimizer m ∈ M of the Fréchet functional:102

m = argmin
x∈M

∫
M
d2(y, x)dν(y).

Lemma 3. Let (M, d) be a CAT(K) space with K ≤ 0 that is strictly geodesically convex, meaning103

that the squared distance function f(x) = d2(p, x) is strictly geodesically convex for any fixed point104

p ∈ M. Then, for any probability measure ν on M with compact support, the Fréchet mean m is105

unique.106

Based on Lemma 1, which ensures geodesic convexity of the squared distance function in non-107

positively curved CAT(K) spaces, and Lemma 2, which guarantees the existence of a Fréchet108

mean under compact support, one can establish the stability of the Fréchet mean under measure109

perturbations. Furthermore, Lemma 3 ensures uniqueness under strict geodesic convexity, thereby110

enabling Proposition 1 to assert the convergence of Fréchet means in non-positively curved spaces.111

Proposition 1. Let (M, d) be a CAT(K) space with K ≤ 0. Suppose {νn} is a sequence of112

probability measures on M that converges weakly to a probability measure ν. Assume that for each113

n, the measure νn has a unique Fréchet mean mn, and ν also has a unique Fréchet mean m. Then,114

the sequence of Fréchet means {mn} converges to m ∈ M.115

Proposition 1 claims that the CAT(K) condition with K ≤ 0 ensures that the space is non-positively116

curved, which imbues the space with strict convexity properties crucial for the uniqueness and stability117

of minimizers. This geometric structure prevents the existence of multiple local minima, thereby118

facilitating the continuity of minimizers under perturbations of the measure. Here, the stability of119

the Fréchet mean under measure perturbations is foundational for Fréchet regression. It ensures that120

as predictors vary and induce changes in the conditional distributions of responses, the conditional121

Fréchet means (regression estimates) behave predictably and converge appropriately as sample size122

increases.123

Lemma 4. Let (M, d) be a CAT(K) space with positive curvature bound K > 0. If the diameter124

of the support of the probability measure ν, denoted by diam(supp(ν)), satisfies diam(supp(ν)) <125
π

2
√
K

, then the Fréchet mean m of ν is unique.126
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In Lemma 4, the diameter constraint ensures that all points in the support of ν lie within a geodesic127

ball of radius R = π/2
√
K. In CAT(K) spaces with K > 0, such balls are geodesically convex,128

meaning any geodesic between two points within the ball lies entirely inside the ball. This local129

convexity is crucial for preserving strict convexity properties of the Fréchet functional.130

In addition, applying Lemmas 2 and 3, the following statement can be obtained.131

Lemma 5. Let (M, d) be a complete CAT(K) space and consider a conditional distribution νx of132

Y given X = x. If for each x, the support of νx satisfies133

diam(supp(νx)) < DK =

{
+∞ if K ≤ 0,
π√
K

if K > 0,

then then the conditional Fréchet mean in Eq. (1) exists and is unique for each x.134

3.2 Convergence Rates and Concentration135

Let µ̂∗
n denote a nonparametric Fréchet regression estimator (e.g., Nadaraya–Watson–type kernel136

smoothing [32, 40, 8] on the predictor space). Then, the following statements for the concentration137

results, the pointwise consistency, and rates of convergence can be obtained. The important point is138

that one has to rely on exponential concentration inequalities valid in CAT(K) spaces (e.g., specific139

versions of concentration of measure or deviation bounds for Fréchet means).140

Theorem 1 (Concentration for the sample Fréchet mean). Let (M, d) be a complete CAT(K) space141

of diameter at most D. Suppose that Y1, Y2, . . . , Yn are independent and identically distributed142

random points in M, and let µ and µ̂n be the population and sample Fréchet mean.143

µ := argmin
z∈M

E[d2(Y, z)],

µ̂ := argmin
z∈M

1

n

n∑
i=1

d2(Yi, z).

Assume further that each d2(Yi, z) is essentially bounded by D2, or more generally that d2(Yi, z)144

has sub-Gaussian tails uniformly in z. Then there exists δ > 0 such that for every ϵ > 0,145

P [d(µ̂, µ) > ϵ] ≤ 2

(
α(K,D)D

δ

)m

e−
n(α(K,D)ϵ2)2

8D2 , (4)

where m is the dimension of the manifold, and α(K,D) is the strong convexity constant.146

In addition to the concentration for the sample Fréchet mean in the standard sense, the following147

proposition gives the concentration in Lp sense.148

Proposition 2. Under the hypotheses of Theorem 1, there exist explicit constants Cp(K,D) such149

that for any integer n ≥ 1 and p ≥ 1,150

E[dp(µ̂n, µ)] ≤ Cp(K,D)(n−p/2). (5)

That is, d(µ̂n, µ) converges to 0 in Lp at a rate on the order of n−p/2.151

Moreover, the following theorem gives the pointwise consistency of nonparametric Fréchet regression152

in a CAT(K) space. The main idea parallels classical kernel-based regression arguments in Rd, but153

replaces ordinary arithmetic means by Fréchet means in the metric space (M, d).154

Assumption 1 (Kernel LLN condition). For any bounded (or square-integrable) function f : M → R,155

nonnegative weights {wn,i(x)}ni=1 satisfies156

n∑
i=1

wn,i(x)f(Yi)
a.s.→

n→∞
E[f(x) | X = x]. (6)

Theorem 2 (Pointwise consistency of nonparametric Fréchet regression). Let {(Xi, Yi)}ni=1 be i.i.d.157

sample with Xi ∈ Rd and Yi ∈ M, where (M, d) is a complete CAT(K) space with diameter158

diam(M) ≤ D. Define the population Fréchet regression function:159

µ∗(x) := argmin
z∈M

E[d2(Y, z) | X = x].
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Assume that µ∗(x) is well-defined and unique for each x, provided as Theorem 5 Also, let160

{wn,i(x)}ni=1 be nonnegative weights that sum to 1 for each fixed x. For instance, in kernel re-161

gression, one sets162

wn,i(x) =
W (∥x−Xi∥/hn)∑n
j=1W (∥x−Xj∥/hn)

,

where W (·) is a usual kernel (with compact support or exponential decay), and hn → 0 is a163

bandwidth. Define the nonparametric Fréchet-regression estimator at x by164

µ̂∗
n(x) = argmin

z∈M

n∑
i=1

wn,i(x)d
2(Yi, z). (7)

Then, under mild regularity conditions on the weights in Assumption 1, µ̂∗
n(x)

a.s.→
n→∞

µ∗(x), for each165

fixed x ∈ Rd.166

Here, additional assumptions allow us to obtain the convergence rates in CAT(K) spaces.167

Theorem 3 (Convergence rates in CAT(K) spaces). Under the assumptions of Theorem 2, suppose168

additionally:169

• µ∗ : Rd → M is β-Hölder (or Lipschitz) continuous, with respect to the usual Euclidean170

norm on Rd and the distance d on CAT(K). That is, there exists L > 0 and β > 0 such171

that172

d(µ∗(x), µ∗(x′)) ≤ L · ∥x− x′∥β , (8)

for all x, x′ ∈ Rd.173

• The kernel weights wn,i(x) satisfy standard nonparametric conditions:174

n∑
i=1

wn,i(x) = 1, wn,i(x) ≈W

(
∥x−Xi∥

hn

)
, hn → 0, nhdn → +∞. (9)

• Each conditional distribution Y | X = x has finite second moments in the CAT(K) space175

and a unique Fréchet mean µ∗(x).176

• The distribution of Y | X = x varies smoothly in a local neighborhood of x. Formally, one177

assumes that for x′ near x, the conditional distributions P[Y ∈ · | X = x′] do not differ too178

much, ensuring small bias when x′ ≈ x.179

Then for the nonparametric Fréchet regression estimator µ̂∗
n,180

sup
x∈X0

E
[
d2(µ̂∗

n(x), µ
∗(x))

]
= O

(
1

nhdn
+ h2βn

)
, (10)

where X0 ⊆ Rd is any compact subset over which the kernel is applied.181

From the above theorem, one can see that the usual
(

1
nhd

n
+ hβn

)
trade-off from Euclidean nonpara-182

metric statistics carries over to the CAT(K) setting, once one accounts for i) geodesic convexity for183

controlling variance and ii) the Hölder continuity of µ∗(x) for controlling bias.184

Implications: Section 3.2 provides the statistical properties of Fréchet regression estimators within185

CAT(K) spaces. Theorem 1 offers exponential concentration bounds for the sample Fréchet mean,186

indicating that the estimator converges to the true mean with high probability as the sample size187

increases. Proposition 2 further quantifies this convergence in an Lp sense, demonstrating that the188

expected distance between the sample and population Fréchet means decreases at a rate proportional to189

n−1/2. These results are pivotal for understanding the efficiency and reliability of Fréchet regression190

estimators. They assure that given sufficient data, the regression estimates will not only be consistent191

but also achieve convergence rates comparable to those observed in classical Euclidean nonparametric192

regression.193
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3.3 Angle Stability for Conditional Fréchet Means194

Understanding not just the position but also the directional relationships around the Fréchet mean is195

crucial for capturing the local geometry of the data distribution. Angle stability ensures that small196

perturbations in the underlying probability measures or data configurations do not lead to significant197

distortions in the angular relationships among points relative to the Fréchet mean. This property is198

particularly valuable when analyzing directional data or when the regression function’s local behavior199

depends on angular relationships, such as shape analysis or directional statistics.200

First, the following lemma for the angle comparison in CAT(K) spaces is provided.201

Lemma 6. Let (M, d) be a CAT(K) space, and let △xyz ⊂ M be a geodesic triangle of perimeter202

≤ π/
√
K when K > 0. Let △x̄ȳz̄ be its comparison triangle in the simply connected model203

space of constant curvature K. Then for each vertex x and the corresponding comparison vertex x̄,204

∠x(y, z) ≤ ∠x̄(ȳ, z̄), where ∠x(y, z) is the Alexandrov angle (or geodesic angle) at x formed by the205

geodesic segments [xy] and [xz].206

Note the assumption that the perimeter of △xyz is ≤ π/
√
K (when K > 0) is used to ensure i)207

The geodesics [xy], [yz], [zx] are short enough so that the entire triangle △xyz (and sub-triangles208

△xy′z′) can be compared in the standard simply connected model space (the sphere of radius 1/
√
K209

if K > 0). ii) One avoids the potential degeneracy where side lengths might exceed π/
√
K, which210

could cause the model triangle in spherical geometry to become ambiguous or wrap around the sphere.211

In the case K ≤ 0, there is no maximum perimeter restriction because the simply connected model212

space (Euclidean or hyperbolic) is unbounded in diameter.213

Next, the lemma for the angle continuity under small perturbation is provided.214

Lemma 7. Let △pqr and △p′q′r′ be two geodesic triangles in a CAT(K) space (M, d). Suppose215

each has a perimeter π/
√
K when K > 0 (no restriction is needed if K ≤ 0). Also assume216

d(p, p′) + d(q, q′) + d(r, r′) is small. Then, for the angles at p in △pqr and at p′ in △p′q′r′,217

|∠p(q, r)− ∠p′(q′, r′)| ≤ Cδpp′qq′rr′ , (11)
where C > 0 is a constant depending only on K and the maximum side length (or perimeter)218

constraints, and219

δpp′qq′rr′ := d(p, p′) + d(q, q′) + d(r, r′). (12)

Based on the above lemmas, the following statements are obtained.220

Proposition 3 (Angle perturbation via conditional measures). Let {νx} be a family of probability221

measures on a CAT(K) space (M, d), each supported in a geodesic ball of diameter ≤ D =222

π/2
√
K when K > 0. Let µ∗(x) be the unique Fréchet mean of νx. Suppose νx and νx′ are close in223

the Wasserstein metric on measures: dW (νx, νx′) ≤ ϵ. Then, for any fixed u, v ∈ M, one has224

|∠µ∗(x)(u, v)− ∠µ∗(x′)(u, v)| ≤ Cϵ,

where the constant C > 0 depends on the strong-convexity modulus α(K,D). In particular, smaller225

ϵ implies the angles at µ∗(x) and µ∗(x′) to points u, v differ by at most O(ϵ).226

Theorem 4 (Angle stability for conditional Fréchet means). Let {(Xi, Yi)} ⊂ Rd ×M with M a227

CAT(K) space of diameter ≤ D = π/2
√
K if K > 0. For each x ∈ Rd, let νx(·) be the conditional228

distribution of Y given X = x. Assume each νx has the unique Fréchet mean µ∗(x). Moreover,229

suppose that for x, x′ sufficiently close, the measures µ∗(x) and µ∗(x′) differ by at most ϵ(∥x− x′∥)230

in the Wasserstein distance. Then for any finite set of points {u1, . . . , um} ⊂ M,231

sup
1≤i<j≤m

|∠µ∗(x)(ui, uj)− ∠µ∗(x′)(ui, uj)| ≤ Cϵxx′ ,

where C > 0 is a constant depending on the strong-convexity modulus α(K,D) and ϵxx′ =232

ϵ(∥x−x′∥). Thus, all angles at µ∗(x) relative to a finite set of directions u1, . . . , um vary continuously233

and Lipschitzly with x.234

Implications: The established angle stability results in Section 3.3 imply that the geometric structure235

surrounding the conditional Fréchet mean remains consistent under minor changes in the data236

distribution. This consistency is essential for applications where the relative orientation of data points237

carries meaningful information, ensuring that the regression estimates preserve intrinsic geometric238

relationships.239
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Figure 1: Mapping from spherical data into hyperbolic space.

3.4 Local Jet Expansion of Fréchet Functionals240

Lemma 8. Let z ∈ M and let expz : TzM → M be the Riemannian exponential map (in a local241

sense if M is a manifold, or a suitable geodesic parameterization if M is just a geodesic metric242

space). Then for points u, v sufficiently close to z, define U := exp−1
z (u) and V := exp−1

z (v). Then,243

∠z(u, v) = ∠0(U, V ) +O(∥ exp−1
z (u)∥2 + ∥ exp−1

z (v)∥2),

where ∠0(U, V ) is the standard Euclidean angle in TzM ≈ Rm, and the big-Oh term depends on244

curvature bounds near z.245

Proposition 4 (Local Jet expansion of Fréchet functionals). Let ν be a probability measure on a suffi-246

ciently regular CAT(K) space (M, d). Suppose that µ(x) is the Fréchet mean of νx: µ(x) :=247

argminz∈M
∫
d2(y, z)dνx(y), and consider the Fréchet functional Fx(z) =

∫
d2(y, z)dνx(y).248

Then, in a sufficiently small neighborhood of µ, the functional F can be expanded in the tangent space249

TµM via the exponential map. Specifically, using local coordinates expµ : TµM ⊃ Br(0) → M,250

for a vector v with ∥v∥ small, define z = expµ(v). The expansion is given by251

F (expµ(v)) = Fx(µ) + ⟨∇Fx(µ), v⟩+
1

2
⟨Hxv, v⟩+R(v),

where ∇Fx(µ) is the gradient (which is zero if µ is the unique minimizer), Hx is the Hessian (a252

linear operator on TµM), and the remainder term R(v) satisfies |R(v)| = O(∥v∥3).253

Implications: The analysis in Section 3.4 offers a nuanced understanding of the Fréchet functional’s254

local behavior around its minimizer, the Fréchet mean. By expanding the Fréchet functional in the255

tangent space via the exponential map, one can gain insights into the functional’s curvature and256

higher-order properties.257

3.5 Auxiliary Statements258

Here, a couple of auxiliary propositions that facilitate a deeper understanding of the structural259

properties of the Fréchet functional within CAT(K) spaces are introduced in this section. These260

propositions decompose the Fréchet functional into radial and angular components, enabling a more261

nuanced analysis of variance and stability around the Fréchet mean.262

Proposition 5 (Angle Splitting in Distance Sums). Consider the Fréchet functional F (z) =263 ∫
d2(y, z)dν(y). For z near µ∗, decompose:264

d2(y, z) = d2(y, µ∗) + Πd(y, z, µ
∗) + Π∠(y, z, µ

∗),

where Πd captures radial changes in distances Π∠ represents angular corrections around µ∗. If265

∠µ∗(y, z) remains small near µ∗, then Π∠ is of order ⟨∠µ∗(y, z)⟩d(µ∗, z).266

Proposition 6 (Angle–Distance Decomposition of Conditional Variance). Let νx be the conditional267

distribution of Y given X = x on a sufficiently smooth CAT(K) space (M, d). Suppose µ∗(x) is268

7



Data manifold Mean squared error (MSE)
Sphere (K = 1) 0.4915(±0.0086)

Hyperbolic (K = −1) 0.4228(±0.0021)

Table 1: Evaluation of Fréchet regression on different spaces.

the unique Fréchet mean of νx. Around µ∗(x), let269

Rx(y) := d(y, µ∗(x)), ϕx(y) := ∠µ∗(x)(u0, y), (13)

for a fixed reference point u0 ∈ M. Then the conditional variance can be partially decomposed into270

a radial variance term, an angle–radial covariance term, and higher-order corrections:271

Varνx

[
d2(Y, µ∗(x))

]
= Var[Ax(Y )] + Cov

(
ϕx(Y ), Rx(Y )2

)
+ β, (14)

where Ax is the radial part and β is the higher-order term.272

Implications: The auxiliary propositions presented in Subsection 3.5 play an important role in273

refining the theoretical underpinnings of Fréchet regression within CAT(K) spaces. By decomposing274

the Fréchet functional into radial and angular components, these propositions enable a more granular275

analysis of variance and stability around the Fréchet mean.276

4 Experiments277

From the discussion in Section 3, it can be seen that the negative curvature space has better properties278

in terms of estimation than the positive curvature space with broader support. To confirm these results,279

this section considers numerical experiments. See Appendix A for the intuitive understanding of the280

following hyperbolic mapping.281

4.1 Illustrative Example282

A point on the unit sphere is parameterized as x = sin(ϕ) cos(θ), y = sin(ϕ) sin(θ), z = cos(ϕ),283

where ϕ ∈ [0, π] is the polar angle and θ ∈ [0, 2π] is the azimuthal angle. Let R be the radius of the284

sphere. Here, consider the stereographic projection: The plane is tangent to the sphere at the south285

pole (0, 0,−R) and is defined z = −R, and the north pole N = (0, 0, R) serves as the projection286

point. For a point p = (x, y, z), the stereographic projection π(p) = (u, v) on the plane is given by287

u = Rx
R+z , v = Ry

R+z . This plane can be considered in the hyperbolic space, and one can visualize288

it as the pseudosphere (see Figure 1). Also, a point (x, y, z) can be mapped back to the sphere as289

x =
2R2u

R2 + u2 + v2
, y =

2R2v

R2 + u2 + v2
, z = R

u2 + v2 −R2

R2 + u2 + v2
.

See Appendix E (including Python code in Listing 2) for the detailed data-generating process.290

Table 1 shows the evaluation results of Fréchet regression on the spherical and hyperbolic coordinates.291

It can be seen that the hyperbolic mapping yields better results. Note that, the previous studies [15, 16]292

reported the effectiveness of such mapping for statistical problems of spherical data, and the objective293

of experiments in this section is just to confirm the theoretical results.294

4.2 Experiment on Real-world Dataset295

In addition to the illustrative example, consider the experiments on the real-world datasets. This296

section uses the following: i) HYG Steller database 1, which is a comprehensive dataset containing297

information on stars brighter than magnitude 6.5. ii) USGS Earthquake catalogue 2, represented in298

spherical coordinates. iii) NOAA Climate data 3, from weather satellites. See Appendix 4.2 for the299

1https://github.com/astronexus/HYG-Database?tab=readme-ov-file
2https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_week.csv
3http://celestrak.org/NORAD/elements/table.php?GROUP=weather&FORMAT=tle
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Figure 2: Visualization of the HYG Stel-
lar database.

Figure 3: Heteroscedasticity in the HYG Stellar dataset.

Dataset MSE
HYG Stellar 0.3765(±0.0036)

USGS Earthquake 0.5832(±0.0831)
NOAA Climate 0.4384(±0.0678)

HYG Stellar (hyperbolic) 0.2660(±0.0032)
USGS Earthquake (hyperbolic) 0.4743(±0.0541)

NOAA Climate (hyperbolic) 0.3259(±0.0683)

Table 2: Evaluation of Fréchet regression on different spaces.

details of this experiment (including Python code in Listing 3 for the visualization and data format300

check of the dataset). Table 2 shows the experimental results of Fréchet regression on different301

coordinates for the real datasets. The mapping procedure is the same as Section 4.1. As with the302

illustrative example, we can confirm that Fréchet regression on hyperbolic surfaces yields better303

results on the real datasets. As discussed in more detail in Appendix A, such a mapping of responses304

to hyperbolic space may be particularly useful when heteroscedasticity is assumed in the data. Indeed,305

heteroscedasticity can be observed in the HYG Stellar dataset (see Figure 3).306

5 Conclusion307

This study provides a comprehensive theoretical analysis of Fréchet regression within the framework308

of comparison geometry, focusing on CAT(K) spaces. It establishes foundational results on the309

existence, uniqueness, and stability of the Fréchet mean under varying curvature conditions. Notably,310

the analysis demonstrates how curvature properties influence statistical estimation, with non-positive311

curvature spaces offering advantageous stability and convergence properties. The paper also extends312

statistical guarantees to nonparametric Fréchet regression, including exponential concentration313

bounds and convergence rates, which align with classical Euclidean results. Angle stability and local314

jet expansion further highlight the behavior of Fréchet functionals, offering geometric insights of315

regression in non-Euclidean spaces. Experimental results support the theoretical findings, showing316

that hyperbolic mappings often improve performance under heteroscedasticity assumption.317

Limitations: While this study provides a robust theoretical foundation for Fréchet regression in318

CAT(K) spaces, several limitations exist. Firstly, the analysis predominantly focuses on spaces with319

constant curvature bounds, which may not encompass all practical scenarios where data resides in320

more heterogeneous geometric contexts. Additionally, the reliance on strong convexity conditions321

and diameter constraints in positively curved spaces may restrict the applicability of the results. As322

has been done in the information geometry framework [1, 34, 10, 25, 26, 31, 2], future work could323

explore relaxing assumptions, extending the framework to broader classes of metric spaces, and324

developing efficient algorithms.325
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A Intuitive Understanding for Hyperbolic Mapping417

In regression analysis, transforming the response variable can often lead to improved model perfor-418

mance by stabilizing variance, normalizing distributions, or linearizing relationships. A classical419

example is the logarithmic transformation Y 7→ log(Y ) which can enhance the performance of a420

linear regression model under certain conditions. Similarly, mapping spherical responses into hyper-421

bolic space can offer analogous benefits, particularly in scenarios where the data exhibits inherent422

geometric or hierarchical structures.423

Log Transformation in Linear Regression Consider the simple linear regression model:424

Y = βX + ϵ,

where Y is the response variable, X is the predictor, β is the regression coefficient, and ϵ is the error425

term with E[ϵ] = 0 and Var(ϵ) = σ2. Applying a logarithmic transformation to Y yields426

log(Y ) = βX + ϵ,

Y = exp(βX + ϵ) = exp(βX) · exp(ϵ).
Assuming ϵ is small and approximately normally distributed, exp(ϵ) introduces multiplicative noise427

to Y effectively stabilizing variance across different levels of X . This transformation often re-428

duces heteroscedasticity in the residuals, leading to improved regression performance. Here, the429

heteroscedasticity refers to the phenomenon where the variability of the errors (or residuals) in a430

regression model is not constant across the range of predictor variables.431

Definition 8 (Heteroscedasticity). Consider a regression model:432

Yi = βXi + ϵi,

where ϵi ∼ N (0, σ2(Xi)). Here, the variance of the error term σ2(X) depends on X . In a433

heteroscedastic model, the variance of ϵi is a function of the predictors Xi:434

Var(ϵi | Xi) = σ2(Xi).

In contrast, for homoscedasticity, the variance of ϵi is constant.435

Hyperbolic Mapping via Stereographic Projection Analogous to the log transformation, hy-436

perbolic mapping transforms the response variable into a space where the geometric structure can437

lead to improved regression characteristics. The procedure involves mapping points from a spherical438

representation to a hyperbolic plane using stereographic projection. A point on the unit sphere of439

radius R is parameterized using spherical coordinates:440

x = R sin(ϕ) cos(θ),

y = R sin(ϕ) sin(θ),

z = R cos(ϕ),

where ϕ ∈ [0, π] is the polar angle and θ ∈ [0, 2π) is the azimuthal angle. The stereographic441

projection maps a point p = (x, y, z) on the sphere to a point p 7→ ψ(p) = (u, v) on the plane tangent442

to the sphere at the south pole (0, 0,−R) and defined by z = −R. The north pole N = (0, 0, R)443

serves as the projection point. The projection formulas are444

u =
Rx

R+ z
,

v =
Ry

R+ z
.

This plane can be interpreted as a model of hyperbolic space, specifically visualized as a pseudosphere,445

which inherently possesses properties conducive to handling hierarchical or tree-like data structures.446

Both the logarithmic transformation and hyperbolic mapping aim to stabilize variance and linearize447

relationships, through different geometric transformations. To understand the benefits of hyperbolic448

mapping, consider the effect of each transformation on the variance of the response variable. Starting449

with Y = βX + ϵ, applying the log transformation yields450

log Y = βX + ϵ.
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Assuming ϵ ∼ N (0, σ2), The variance of log Y remains σ2 which can be advantageous if the original451

Y exhibits multiplicative noise:452

Var(Y ) = Var(exp(βX + ϵ)) = exp(2βX) ·
(
exp(σ2)− 1

)
.

The transformation effectively decouples the variance from X stabilizing it across different predictor453

values.454

For hyperbolic mapping, consider a response variable represented as a point on the sphere. The455

stereographic projection transforms this spherical representation into the hyperbolic plane. Let456

Y be the original response mapped to a point p = (x, y, z) on the sphere, and ψ(p) = (u, v) its457

hyperbolic projection. Assuming small deviations around a mean direction, the hyperbolic mapping458

can linearize angular variations similarly to how the log transformation linearizes multiplicative459

variations. Specifically, fluctuations in Y around the mean direction correspond to additive noise460

in the hyperbolic plane, potentially reducing variance in a manner akin to the log transformation.461

Formally, if Y is modeled on the sphere with462

Y = R · p+ ϵ,

where ϵ represents angular noise, the hyperbolic projection yields463

ψ(Y ) =

(
Rx

R+ z
,
Ry

R+ z

)
+ ϵ′,

whre ϵ′ is the transformed noise. Under specific conditions (e.g., small angular deviations), ϵ′464

exhibits reduced variance compared to ϵ, analogous to the variance stabilization achieved by the log465

transformation.466

Example 1 (Stabilizing Variance in Hierarchical Data). Consider a dataset where the response467

variable Y represents hierarchical relationships, such as the popularity of topics in a taxonomy. The468

inherent tree-like structure implies that differences between nodes (topics) grow exponentially with469

depth. Direct regression on Y would face increasing variance as depth increases. By mapping Y into470

hyperbolic space via stereographic projection, the exponential growth inherent in hierarchical data471

is linearized. This transformation stabilizes variance across different levels of the hierarchy, enabling472

more effective regression modeling. Specifically, the hyperbolic mapping aligns the geometric473

properties of the data with the regression framework, similar to how the log transformation aligns474

multiplicative relationships with additive modeling.475

Let Y be mapped to hyperbolic space via stereographic projection:476

u =
Rx

R+ z
,

v =
Ry

R+ z
.

Assuming Y lies close to the north pole N = (0, 0, R), small perturbations ϵ around N imply477

z = R cos(ϕ) ≈ R

(
1− ϕ2

2

)
,

x = R sin(ϕ) cos(θ) ≈ Rϕ cos(θ),

y = R sin(ϕ) sin(θ) ≈ Rϕ sin(θ).

Substituting into the projection formulas,478

u ≈ R ·Rϕ cos(θ)

R+R
(
1− ϕ2

2

) =
R2ϕ cos(θ)

2R− ϕ2

2

≈ Rϕ cos(θ)

2
,

v ≈ R ·Rϕ sin(θ)

R+R
(
1− ϕ2

2

) =
R2ϕ sin(θ)

2R− ϕ2

2

≈ Rϕ sin(θ)

2
.

Thus, small angular deviations ϕ result in approximately linear changes in u and v, effectively479

reducing the variance from multiplicative to additive in the hyperbolic plane:480

Var(u, v) ≈
(
R

2

)2

Var(ϕ).
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Compared to the original spherical variance Var(ϕ), the hyperbolic mapping scales and linearizes the481

variance, analogous to the stabilizing effect of the log transformation. Figure 4 shows the illustrative482

example of transformed responses for Y = βX + ϵ with heteroscedastic errors ϵ = N (0, g(σX)),483

σ = 0.2 and β = 2. This figure shows g(σX) = σX and g(σX) = exp(σX) cases.484

Figure 4: Illustrative example of transformed responses. Under the heteroscedastic errors assumption,
the appropriate transformations of response variable yield stabilized variance. In this figure, Y is the
original response variables, log(Y ) is the log-transformed variables and W is the hyperbolic mapped
variables.
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B Proofs485

B.1 Proofs for Section 3.1486

Proof for Lemma 1. To establish the geodesic convexity of the squared distance function f(x) =487

d2(p, x) in a CAT(K) space (M, d) with K ≤ 0, one must show that for any two points x, y ∈ M488

and any geodesic γ : [0, 1] → M connecting x to y, the function t 7→ f(γ(t)) is convex on the489

interval [0, 1].490

In the model space M2
K of constant curvature K ≤ 0, construct a comparison triangle △̄ correspond-491

ing to △ = {p, x, y} in M. Let p̄, x̄, ȳ be the vertices of △̄ in M2
K with side lengths matching those492

of △. Then, for any points a, b on the sides [x, y] and [p, x] or [p, y], the distance d(a, b) in M is at493

most the distance dM2
K
(ā, b̄) in the model space.494

Let γ(t) corresponds to a point γ̄(t) on the side [x̄, ȳ] in △̄. By the CAT(K) property,495

d(p, γ(t)) ≤ dM2
K
(p̄, γ̄(t)).

In M2
K , which is a uniquely geodesic space, the squared distance satisfies the law of cosines496

d2(p̄, γ̄(t)) ≤ (1− t)d2(p̄, x̄) + td2(p̄, ȳ)− t(1− t)cK ,

where cK is a non-negative constant dependent on K and the geometry of the triangle. Here, since497

K ≤ 0, the space M2
K exhibits non-positive curvature, which implies that the term −t(1− t)cK does498

not negatively affect the inequality. Therefore,499

d2(p, γ(t)) ≤ d2M2)K(p̄, γ̄(t)) ≤ (1− t)d2(p, x) + td2(p, y),

and f is geodesically convex.500

Proof for Lemma 2. Consider a sequence {xn} in M that converges to x ∈ M. Given the continuity501

of the distance function in metric spaces, for each y ∈ M, d(y, xn) → d(y, x) as n→ +∞. Since502

d2(y, x) is continuous in x, by Fatou’s lemma,503

lim inf
n→+∞

d2(y, xn) ≤ d2(y, x).

Integrating both sides with respect to ν,504

lim inf
n→+∞

∫
M
d2(y, xn)dν(y) ≤

∫
M
d2(y, x)dν(y).

Thus, F is lower semicontinuous. Also, since505

F (x) =

∫
M
d2(y, x)dν(y) ≥ 0,

for any x ∈ M, F is bounded below by zero. Therefore, there exists a sequence {mm} in M such506

that507

F (mn) → inf
x∈M

F (x),

as n→ +∞. Let {mn} be called a minimizing sequence. Given that the support of ν, denoted by508

supp(ν), is compact, denote it by S ⊆ M. That is, S is compact and ν(S) = 1.509

To ensure that the existence of a convergent subsequence, one need to show that {mn} is contained510

within a compact subset of M. Since S is compact, it is bounded. Thus, there exists a radius R > 0511

and a point p ∈ M such that S ⊆ B(p,R), where B(p,R) = {x ∈ M | d(p, x) ≤ R}. Using the512

triangle inequality in metric spaces,513

d(y,mn) ≥ d(p,mn)− d(y, p) ≥ d(p,mn)−R.

Then,514

F (mn) =

∫
S

d2(y,mn)dν(y)

≥
∫
S

{d(p,mn)− d(y, p)}2 dν(y)

=

∫
S

{
d(p,mn)

2 − 2d(p,mn) + d2(y, p)
}
dν(y)

= d(p,mn)
2 − 2d(p,mn)

∫
S

d(y, p)dν(y) +

∫
S

d2(y, p)dν(y) ≤ C
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Let A =
∫
S
d(y, p)ν(y) and B =

∫
S
d2(y, p)dν(y), both finite due to the compactness. Thus,515

d(p,mn)
2 − 2Ad(p,mn) +B ≤ C

d(p,mn) ≤ A±
√
A2 + C −B.

Hence, the sequence {mn} lies within the closed ball B(p,A+
√
A2 + C −B), which is compact516

if M is proper. Here, CAT(K) spaces are not necessarily proper in general, bu since supp(ν) is517

compact and {mn} is bounded, one can extract a convergent subsequence under the assumption518

that M is complete. Given that {mn} is bounded and M is complete, one can utilize the Bolzano-519

Weierstrass theorem in CAT(K) spaces to extract a convergent subsequence. Specifically, since M520

is a geodesic space and {mn} is bounded, there exists a subsequence {mnk
} that converges to some521

m ∈ M.522

Since F is lower semicontinuous and mnk
→ m,523

F (m) ≤ lim inf
k→+∞

F (mnk
) = inf

x∈M
F (x).

This implies that m achieves the infimum of F ,524

F (m) = inf
x∈M

F (x).

Therefore, m is a minimizer of the Fréchet functional.525

Proof for Lemma 3. For the sake of contradiction, suppose that there are two distinct pointsm1,m2 ∈526

M such that both are minimizers of the Fréchet functional.527

m1 = argmin
x∈M

∫
M
d2(y, x)dν(y),

m2 = argmin
x∈M

∫
M
d2(y, x)dν(y),

with m1 ̸= m2. Since M is a CAT(K) space and thus a geodesic metric space, there exists a unique528

geodesic γ : [0, 1] → M connecting m1 to m2.529

γ(0) = m1,

γ(1) = m2,

d(γ(t), γ(t′)) = |t− t′| · d(m1,m2), ∀t, t′ ∈ [0, 1].

Define a function F : [0, 1] → R by evaluating the Fréchet functional along the geodesic γ(t):530

F (t) =

∫
M
d2(y, γ(t))dν(y).

Since both m1 and m2 are minimizers,531

F (0) = F (1) = inf
x∈M

F (x).

Given that M is strictly geodesically convex, the squared distance function f(x) = d2(y, x) is strictly532

convex along any geodesic. Therefore, for each fixed y ∈ M, the function t 7→ d2(y, γ(t)) satisfies533

d2(y, γ(t)) < (1− t)d2(y,m1) + td2(y,m1),

for all t ∈ (0, 1).534

Integrate the strict inequality with respect to the measure ν yields535

F (t) =

∫
M
d2(y, γ(t))dν(y)

<

∫
M

{
(1− t)d2(y,m1) + td2(y,m2)

}
dν(y)

= (1− t)

∫
M
d2(y,m1)dν(y) + t

∫
M
d2(y,m2)dν(y).
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But since m1 and m2 are both minimizers,536 ∫
M
d2(y,m1)dν(y) =

∫
M
d2(y,m2)dν(y) =

∫
x∈M

F (x).

Thus,537

F (t) < (1− t) inf
x∈M

F (x) + t inf
x∈M

F (x) = inf
x∈M

F (x).

However, this is a contradiction because F (x) cannot be less than the infimum infx∈M F (x). The538

contradiction arises from the assumption that two distinct minimizers m1 and m2 exist. Therefore,539

there can be at most one minimizer. Given that the Fréchet functional attains its infimum by Lemma 2,540

this minimizer is unique.541

Proof for Proposition 1. The Fréchet functional x 7→ Fν(x) for a measure ν is defined as542

Fν(x) =

∫
M
d2(y, x)dν(y).

Given that the squared distance function d2(y, x) is continuous in y for each fixed x, weak conver-543

gence νn ⇒ ν implies that for each fixed x ∈ M,544

lim
n→+∞

Fνn
(x) = Fν(x).

In addition, given that d2(y, x) is continuous and bounded by zero, and assuming that the measures545

νn and ν have compact supports, as established in Lemma 2, the convergence νn ⇒ ν implies that546

lim
n→+∞

Fνn
(x) = Fν(x), uniformly for x ∈ M.

This uniform convergence is a consequence of the boundedness of the squared distance function547

over compact supports, and the equicontinuity provided by the geometric properties of the CAT(K)548

spaces.549

Suppose that mn does not converge to m, Then, there exist an ϵ > 0 and a subsequence {mnk
} such550

that551

d(mnk
,m) ≥ ϵ,

for all k. Since M is a CAT(K) space with K ≤ 0 and hence a geodesic and proper metric space552

under the assumption of compact support from Lemma 2, the sequence {mnk
} has a convergent553

subsequence. Without loss of generality, assume that mnk
→ m′ as k → +∞. By the continuity of554

the Fréchet functional,555

lim
k→+∞

Fνnk
(mnk

) = lim
k→+∞

inf
x∈M

Fνnk
(x)

= Fν(m),

since m is the unique minimizer for ν.556

Consider νn ⇒ ν and mnk
→ m′,557

lim
k→+∞

Fνnk
(mnk

) = Fν(m
′).

Then,558

Fν(m
′) = Fν(m).

Therefore, m′ is also a minimizer of Fν(x). Since ν has a unique Fréchet mean m, it must be that559

m′ = m. Recall that d(mnk
,m) ≥ ϵ for all k, but mnk

→ m′ = m, which implies that560

lim
k→+∞

d(mnk
,m) = d(m′,m) = 0,

contradicting d(mnk
,m) ≥ ϵ. Therefore, it must be that561

mn → m, as n→ +∞.

562
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Proof for Proposition 4. For K > 0, the comparison space is the standard sphere Sn with radius563

1/
√
K. In Sn, geodesics are great circles, and the distance between two points is given by the564

central angle multiplied by 1/
√
K. The diameter of Sn is π/

√
K, meaning that the maximal distance565

between any two points is π/
√
K.566

Given R < π/2
√
K, the geodesic ball B(p,R) lies entirely within a hemisphere of Sn. In this567

setting, any two points x, y ∈ B(p,R) are separated by a distance d(x, y), satisfying568

d(x, y) ≤ d(x, p) + d(p, y)

<
π

2
√
K

+
π

2
√
K

=
π√
K
.

Since d(x, y) < π/
√
K, there exists a unique minimal geodesic connecting x and y within Sn.569

Assume, for contradiction, that the minimal geodesic γ between x and y exits B(p,R). Then, there570

exists a point z ∈ γ such that d(p, z) = R. Consider the geodesic triagles △pzx and △pzy. Since571

d(p, x) < R and d(p, y) < R, and γ is minimal, the angle at p opposite the side γ must satisfy certain572

angular constraints derived from the spherical law of cosines. However, because R < π/2
√
K, the573

triangle △pzx lies within a convex hemisphere, ensuring that the path from p to z to x remains within574

B(p,R). This contradicts the assumption that γ exits B(p,R). Therefore, since any two points in575

B(p,R) can be connected by a unique minimal geodesic that remains entirely within B(p,R), the576

geodesic ball B(p,R) is geodesically convex in Sn for all radius R < π/2
√
K. This ensures that577

CAT(K) condition preserves the strict convexity.578

Given that diam(supp(ν)) < π/2
√
K, for any geodesic t 7→ γ(t) connecting two distinct points579

m1,m2 ∈ M, the Fréchet functional satisfies580

F (γ(t)) < (1− t)F (m1) + tF2(m2),

for all t ∈ (0, 1), provided m1 ̸= m2. Here, strict convexity of F (x) ensures that any local minimum581

is a global minimum, and further, that such a minimum is unique within the convex neighborhood.582
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B.2 Proofs for Section 3.2583

Proof for Theorem 1. Define the population Fréchet functional F (z) and empirical Fréchet functional584

Fn(z) as follows.585

F (z) := E[d2(Y,m)],

Fn(z) :=
1

n

n∑
i=1

d2(Yi, z).

By definition,586

µ = argmin
z∈M

F (z),

µ̂n = argmin
z∈M

Fn(z).

Assume that µ is unique, which holds if diam(M) < π/2
√
K when K > 0 or automatically if587

K ≤ 0, from Lemmas 2, 3 and Propositions 1, 4.588

A key geometric fact in CAT(K) spaces is that the map589

z 7→ E[d2(Y, z)] = F (z)

is λ-strongly geodesically convex around µ, provided diam(M) is small enough. Concretely, there590

exists a constant591

α = α(K,D) > 0,

such that for every z ∈ M,592

F (z)− F (µ) ≥ αd2(z, µ).

A fully explicit formula for α(K,D) can be extracted from standard CAT(K) lemmas.593

• If K ≤ 0, one can take α(K,D) = 1
2 . Indeed, CAT(K) spaces are sometimes called594

Hadamard spaces, for which d2(y, ·) is 1-convex along geodesics.595

• If K > 0 but diam(M) = D < π/2
√
K, one obtains an explicit lower bound596

α(K,D) ≥ sin(2
√
KR)

2R
,

where R = D/2. One often sees, for example,597

α(K,D) =
2

π

√
K sin

(π
2
−

√
KD

)
.

Since µ̂n is the minimizer of Fn, one can obtain598

Fn(µ̂n) ≤ Fn(µ).

Here, rewriting Fn = Fn − F + F ,599

Fn(µ̂n)− Fn(µ) = {Fn(µ̂n)− F (µ̂n)} − {Fn(µ)− F (µ)}+ {F (µn)− F (µ)}
≤ 0,

F (µ̂n)− F (µ) ≤ {Fn(µ)− F (µ)} − {Fn(µ̂n)− F (µ̂n)}
≤ |Fn(µ)− F (µ)|+ |Fn(µ̂n)− F (µ̂n)|
≤ 2 sup

z∈M
|Fn(z)− F (z)| .

On the other hand, by the strong convexity of F (z),600

F (µ̂n)− F (µ) ≥ α(K,D)d2(µ̂n, µ).

19



Therefore, by combining them, if d(µ̂n, µ) ≥ ϵ, then601

α(K,D)ϵ2 ≤ F (µ̂n)− F (µ)

≤ 2 sup
z∈M

|Fn(z)− F (z)| .

Hence,602

{d(µ̂n, µ) ≥ ϵ} ⊆
{
sup
z∈M

|Fn(z)− F (z)| ≥ α(K,D)

2
ϵ2
}
,

and603

P [d(µ̂n, µ) ≥ ϵ] ≤ P
[
sup
z∈M

|Fn(z)− F (z)| ≥ α(K,D)

2
ϵ2
]
.

So, it suffices to control supz∈M |Fn(z)− F (z)| by an exponential tail.604

Recall that605

Fn(z)− F (z) =
1

n

n∑
i=1

{
d2(Yi, z)− E[d2(Y, z)]

}
.

Define606

Xi(z) = d2(Yi, z)− E[d2(Y, z)].

Then, E[Xi(z)] = 0 and607

Fn(z)− F (z) =
1

n

n∑
i=1

Xi(z).

Because M has diameter diam(M) ≤ D, d2(·, ·) ≤ D2. Hence, for any z,608

Xi(z) ∈ [−D2, D2].

By Hoeffding’s inequality, for a fixed z,609

P [|Fn(z)− F (z)| ≥ t] = P

[∣∣∣∣∣
n∑

i=1

Xi(z)

∣∣∣∣∣ ≥ nt

]

≤ 2 exp

(
− nt2

2D4

)
.

Here, for every fixed ϵ, one obtains a bound of the form610

P
[
sup
z∈M

|Fn(z)− F (z)| ≥ t

]
≤ c′1 exp

(
−c′2nt2

)
,

for constants c′1, c
′
2 > 0 depending on K,D and on the metric complexity of M,611

c′1 = 2

(
α(K,D)D

δ

)m

,

c′2 =
α(K,D)

8D2
,

that are from standard references in manifold-valued statistics.612

Putting it all together,613

P [d(µ̂n, µ) ≥ ϵ] ≤ P
[
sup
z∈M

|Fn(z)− F (z)| ≥ α(K,D)

2
ϵ2
]

≤ c′1 exp

{
−c2n

(
α(K,D)

2
ϵ2
)2

}
.

This concludes the required proof.614
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Proof for Proposition 2. By Theorem 1, there exist positive constants c1 = c1(K,D) and c2 =615

c2(K,D), such that for every ϵ > 0,616

P [d(µ̂n, µ) > ϵ] ≤ c1 exp
(
−c2nϵ2

)
.

For any nonnegative random variable Z and any p ≥ 1, one has the standard identity617

E[Zp] =

∫ ∞

0

pϵp−1P(Z > ϵ)dϵ.

This follows from writing E[Zp] =
∫∞
0
pϵp−1

1(Z > ϵ)dϵ and exchanging expectation and integral.618

Applying this to Z = d(µ̂n, µ),619

E[dp(µ̂n, µ)] =

∫ ∞

0

pϵp−1P[d(µ̂n, µ) > ϵ]dϵ.

Therefore,620

E[dp(µ̂n, µ)] ≤
∫ ∞

0

pϵp−1
[
c1 exp(−c2nϵ2)

]
dϵ

= c1

∫ ∞

0

pϵp−1 exp(−c2nϵ2)dϵ.

Let u =
√
nϵ. Then, ϵ = u/

√
n and dϵ = 1√

n
du. Also,621

ϵp−1 = (
u√
n
)p−1 = n−(p−1)/2up−1,

exp(−c2nϵ2) = exp(−c2u2).
So,622 ∫ ∞

0

ϵp−1 exp(−c2nϵ2)dϵ =
∫ ∞

0

n−(p−1)/2up−1 exp(−c2u2)
1√
n
du

= n−
p−1
2 n−

1
2

∫ ∞

0

up−1 exp(−c2u2)du

= n−
p
2

∫ ∞

0

up−1 exp(−c2u2)du.

Now, evaluate
∫∞
0
up−1 exp(−c2u2)du. This is a known integral that can be expressed via the623

Gamma function. Indeed,624 ∫ ∞

0

up−1 exp(−c2u2)du =
1

2
c
− p

2
2 Γ

(p
2

)
,

and625 ∫ ∞

0

ϵp−1 exp(−c2nϵ2)dϵ = n−
p
2

[
1

2
c
− p

2
2 Γ

(p
2

)]
.

Therefore,626

E [dp(µ̂n, µ)] ≤ c1p

{
n−

p
2

[
1

2
c
− p

2
2 Γ

(p
2

)]}
.

Collecting constants and it gives the proof.627

Proof for Theorem 2. Fix a point x ∈ Rd. Define the weighted empirical measure of Y given x as628

νn,x :=

n∑
i=1

wn,i(x)δYi
,

where δYi
denotes the Dirac measure at Yi. Because

∑n
i=1 wn,i(x) = 1, this is indeed a probability629

measure on M. Similarly, let νx be the true conditional distribution of Y given X = x as630

νx := P [Y ∈ A | X = x] ,
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for Borel sets A ⊆ M. Then, observe that the estimator µ̂∗
n(x) can be written as631

µ̂∗
n(x) = argmin

z∈M

n∑
i=1

wn,i(x)d
2(Yi, z)

= argmin
z∈M

∫ +∞

−∞
d2(y, z)dνn,x(y).

That is, µ̂∗
n(x) is precisely the Fréchet mean of the measure νn,x. Meanwhile, µ∗(x) is the Fréchet632

mean of νx:633

µ∗(x) = argmin
z∈M

∫ +∞

−∞
d2(y, z)dνx(y).

Hence, the problem reduces to showing that as n → +∞, νn,x converges to νx in a sense strong634

enough to force their Fréchet means to converge.635

From Assumption 1, one can expect that for any bounded function f : M → R,636 ∫
fdνn,x =

n∑
i=1

wn,i(x)f(Yi)
a.s.→

n→∞
E[f(Y ) | X = x] =

∫
fdνx.

Thus, νn,x converges to νx in the weak topology on probability measures.637

For each measure ν, define its Fréchet functional Fν : M → R by638

Fν(z) :=

∫
d2(y, z)dν(y).

Here,639

µ̂∗
n(x) = argmin

z∈M
Fνn,x

(z),

µ∗(x) = argmin
z∈M

Fνx
(z).

One want Fνn,x
→ Fνx

in a suitable sense that implies argmin convergence. In fact, for pointwise640

consistency, it suffices to show that for each z ∈ M,641

Fνn,x
(z) =

n∑
i=1

wn,i(x)d
2(Yi, z)

a.s.→
∫
d2(y, z)dνx(y) = Fνx

(z).

By Assumption 1, this convergence holds for each z ∈ M.642

To pass from pointwise convergence of Fνn,x
to convergence of the minimizers µ̂∗

n(x) → µ∗
(x),643

one can rely on the strict geodesic convexity of d2(·, ·) in a CAT(K) space with small diameter.644

Concretely, from earlier arguments, there is a constant α(K,D) such that645

Fνx
(z)− Fνx

(µ∗(x)) ≥ α(K,D)d2(z, µ∗(x)),

for all z ∈ M. This follows from the strong geodesic convexity of z 7→
∫
d2(y, z)dνx(y). Equiv-646

alently, if z is ϵ-far from µ∗(x), then Fνx
(z) exceeds the global minimum Fνx

(µ∗(x)) at least647

α(K,D)ϵ2.648

Now, let ϵ > 0. Suppose, contrary to what one want, that649

d(µ̂∗
n(x), µ

∗(x)) ≥ ϵ.

By CAT(K)-convexity,650

Fνx
(µ̂∗

n(x))− Fνx
(µ∗(x)) ≥ α(K,D)ϵ2.

On the other hand,651

Fνx
(µ̂∗

n(x))− Fνx
(µ∗(x)) =

{
Fνn,x

(µ̂∗
n(x))− Fνn,x

(µ∗(x))
}
+ (Fνx

− Fνn,x
)(µ̂∗

n(x))− (Fνx
− Fνn,x

)(µ∗(x)).

Since µ̂∗
n(x) minimizes Fνn,x

,652

Fν,x(µ̂
∗
n(x)) ≤ Fνn,x(µ

∗(x)).
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Thus,653

Fνn,x(µ̂
∗
n(x))− Fνx(µ

∗(x)) ≤ (Fνx − Fνn,x)(µ̂
∗
n(x))− (Fνx − Fνn,x)(µ

∗(x)).

Hence,654

α(K,D)ϵ2 ≤
∣∣(Fνx

− Fνn,x
)(µ̂∗

n(x))
∣∣+ ∣∣(Fνx

− Fνn,x
)(µ∗(x))

∣∣ .
But as n→ +∞,655

Fνn,x
(z) → Fνx

(z),

pointwise for each z, so the difference |Fνx
(z)−Fνn,x

(z)| → 0. By dominated convergence theorem,656

sup
z∈{µ̂∗

n(x),µ
∗(x)}

∣∣Fνn,x
(z)− Fνx

(z)
∣∣ a.s.→
n→0

0.

Hence, for large n, the right-hand side in the above inequality is smaller than 1
2α(K,D)ϵ2, which is657

incompatible. Thus, for large n,658

d(µ̂∗
n(x), µ

∗(x)) < ϵ,

and659

µ̂∗
n(x)

a.s.→ µ∗(x).

This completes the proof of pointwise consistency.660

Proof for Theorem 3. For each x, define the empirical weighted measure as follows.661

νn,x :=

n∑
i=1

wn,i(x)δYi
,

where δy is the Dirac measure at y. Then,662

µ̂∗
n(x) = argmin

z∈M

∫
d2(y, z)dνn,x(y).

Simultaneously, define the local population measure near x:663

πn,x :=
E
[
W

(
∥x−X∥

hn

)
1(Y ∈ ·)

]
E
[
W

(
∥x−X∥

hn

)] ,

which is the ideal measure that the kernel weighting is trying to approximate. Then define the local664

population Fréchet mean as665

µ̃∗
n(x) = argmin

z∈M

∫
d2(y, z)dπn,x(y).

Here, µ̃∗
n(x) is the minimizer of the population version of the local kernel functional, and µ̂∗

n(x) is666

the minimizer of the empirical version. Then one can write667

d(µ̂∗
n(x), µ

∗(x)) ≤ d(µ̂∗
n(x), µ̃

∗
n(x)) + d(µ̃∗

n(x), µ
∗(x)).

Squaring and taking expectation, and applying 2ab ≤ a2 + b2, one can get a bias–variance decompo-668

sition:669

E[d2(µ̂∗
n(x), µ

∗(x))] ≤ 2E[d2(µ̂∗
n(x), µ̃

∗
n(x))] + 2d2(µ̃∗

n(x), µ
∗(x)).

The first term in the right-hand side is the variance term, capturing how the empirical local measure670

νn,x fluctuates around πn,x. The second term in the right-hand side is the bias term, capturing how671

the local population mean µ̃∗
n(x) differs from µ∗(x).672

Recall that in a CAT(K) space, of diameter diam(M) ≤ D, there is a strong geodesic convexity673

constant α(K,D) such that674 ∫
d2(y, z)dν(y)−

∫
d2(y, z∗)dν(z∗) ≥ α(K,D)d2(z, z∗),
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for all probability measures ν on M, provided the measure is fully supported in a ball of diameter675

diam(M) ≤ D. Hence, for the local measure πn,x,676 ∫
d2(y, µ̂∗

n(x))dπn,x −
∫
d2(y, µ̃∗

n(x))dπn,x(y) ≥ α(K,D)d2(µ̂∗
n(x), µ̃

∗
n(x)).

Because µ̂∗
n(x) minimizes

∫
d2(y, z)dνn,x(y),677 ∫

d2(y, µ̂∗
n(x))dνn,x(y) ≤

∫
d2(y, µ̃∗

n(x))dνn,x(y).

By subtracting the corresponding population measure integrals,678

[νn,x − πn,x] d
2(·, µ̂∗

n(x))− [νn,x − πn,x] d
2(·, µ̃∗

n(x)) ≤
∫
d2(y, µ̃∗

n(x))dπn,x(y)−
∫
d2(y, µ̂∗

n(x))dπn,x(y)∫
d2(y, µ̂∗

n(x))dπn,x(y)−
∫
d2(y, µ̃∗

n(x))dπn,x(y) ≤ ∆n(x),

where679

∆n(x) :=
∣∣[νn,x − πn,x] d

2(·, µ̂∗
n(x))

∣∣+ ∣∣[νn,x − πn,x] d
2(·, µ̃∗

n(x))
∣∣ .

Combining with the strong convexity inequality,680

α(K,D)d2(µ̂∗
n(x), µ̃

∗
n(x)) ≤ ∆n(x)

d2(µ̂∗
n(x), µ̃

∗
n(x)) ≤

∆n(x)

α(K,D)
.

Taking expectation with respect to the sample {(Xi, Yi)}ni=1,681

E[d2(µ̂∗
n(x), µ̃

∗
n(x))] ≤

E[∆n(x)]

α(K,D)
.

Recall that682

∆n(x) =
∣∣[νn,x − πn,x] d

2(·, µ̂∗
n(x))

∣∣+ ∣∣[νn,x − πn,x] d
2(·, µ̃∗

n(x))
∣∣

=

∣∣∣∣∣
n∑

i=1

wn,i(x)
{
d2(Yi, µ̂

∗
n(x))− E[d2(Y, µ̃∗

n(x) | X ≈ x]
}∣∣∣∣∣

+

∣∣∣∣∣
n∑

i=1

wn,i(x)
{
d2(Yi, µ̂

∗
n(x))− E[d2(Y, µ̃∗

n(x) | X ≈ x]
}∣∣∣∣∣ .

Since µ̂∗
n itself depends on the sample, a straightforward application of Hoeffding’s inequality is683

tricky. However, one can use Efron–Stein or Bennett–type inequalities for U-statistics, or the bounded684

differences approach, carefully analyzing how a single Yi affects µ̂∗
n. Such arguments appear in685

standard references on manifold-valued kernel regression. Thus, one can obtain686

E[∆n(x)] = O
(
(nhdn)

−1/2
)
.

Hence,687

E[d2(µ̂∗
n(x), µ̃

∗
n(x))] ≤

Cvar

α(K,D)
(nhdn)

−1/2,

where Cvar is a constant depending on the kernel shape, the distribution of (X,Y ) near x and the688

geometry constants (K,D).689

Next, recall that690

µ̃∗
n(x) = argmin

z∈M

∫
d2(y, z)dπn,x(y),

µ∗(x) = argmin
z∈M

∫
d2(y, z)dνx(y),
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where νx(·) = P[Y ∈ · | X = x]. As one move from X = x to a local neighborhood {x′ |691

∥x − x′∥ ≤ O(hn)}, it can be expected that µ̃∗
n(x) to approximate µ∗(x′) for some x′ ≈ x. Then692

µ∗(x′) is close to µ∗(x) if µ∗ is β-Hölder.693

Because πn,x is essentially the distribution of Y | X ∈ {x′ | ∥x′ − x∥ ≤ chn}, let x♮ be some694

effective point near x. Then by using smoothness or local Lipschitz condition on the conditional695

distributions,696

d(µ̃∗
n(x), µ

∗(x′)) ≤ Cbias(h
β
n),

for some constant Cbias > 0. Then one adds697

d(µ∗(x′), µ∗(x)) ≤ L · ∥x′ − x∥ ≈ Lhβn.

Hence,698

d(µ̃∗
n(x), µ

∗(x)) ≤ d(µ̃∗
n(x), µ

∗(x′)) + d(µ∗(x′), µ∗(x)) = O(hβn),

and699

d2(µ̃∗
n(x), µ

∗(x)) = O(h2βn ).

Putting it all together in the bias–variance decomposition, it completes the required proof.700
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B.3 Proofs for Section 3.3701

Proof for Lemma 6. Let y′ be a point on the geodesic segment [xy such that y′ is very close to x.702

Similarly, pick z′ on [xz]. So,703

d(x, y′) = δ,

d(x, z′) = δ,

for some δ > 0. Thi triangle △xy′z′ has perimeter ≤ d(x, y) + d(y, z) + d(z, x), which is assumed704

≤ π/
√
K if K > 0. For δ small enough, the side lengths of △xy′z′ are also ≤ π/

√
K. By the705

CAT(K) definition,706

d(y′, z′) ≤ dMk
(ȳ′, z̄′),

and707

d(x, y′) = d(x̄, ȳ′) = δ,

d(x, z′) = d(x̄, z̄′) = δ.

The triangle △x̄ȳ′z̄′ is in the same model plane as △x̄ȳz̄, but its typically much smaller near x̄.708

By definition of the Alexandrov angle,709

∠x(y, z) = lim
δ→0

∠(sec)
x (y′, z′),

where ∠(sec)
x (y′, z′) is the secular angle of △xy′z′ at x. Equivalently, it is the Euclidean angle710

∠x̄(ȳ
′, z̄′) in the comparison triangle △x̄ȳ′z̄′. Thus,711

∠x(y, z) = lim
δ→0

∠x̄(ȳ
′, z̄′).

One also have the angle ∠x̄(ȳ, z̄) in the large triangle △x̄ȳz̄, and want to show712

∠x̄(ȳ
′, z̄′) ≤ ∠x̄(ȳ, z̄),

for each small δ, from which it will follow in the limit that ∠x(y, z) ≤ ∠x̄(ȳ, z̄).713

The CAT(K) condition states that △xy′z′ is no thicker than the model △x̄ȳ′z̄′. More precisely, if714

one place △xy′z′ and △x̄ȳ′z̄′ side by side so that x↔ x̄, y′ ↔ ȳ′, z′ ↔ z̄′ correspond, one have715

d(y′, z′) ≤ dMK
(ȳ′, z̄′).

Meanwhile, △x̄ȳ′z̄′ ⊂ △x̄ȳz̄ or can be inscribed in it, with the property that asy′ → x and z′ → x,716

the points ȳ′ → x̄ and z̄′ → x̄.717

Geometrically, on the model side, it is known (from classical geometry in constant curvature) that718

∠x̄(ȳ
′, z̄′) ≤ ∠x̄(ȳ, z̄). (15)

This is because in a convex geometry (like a sphere of radius 1/
√
K or a Euclidean plane if K = 0),719

drawing smaller radii x̄ȳ′ and x̄z̄′ inside the bigger radii x̄ȳ and x̄z̄ yields smaller or equal angles720

from the center x̄.721

More precisely, if one revolve the segment ȳ′z̄′ about x̄ within the triangle △x̄ȳz̄, the angle ∠x̄(ȳ
′, z̄′)722

cannot exceed ∠x̄(ȳ, z̄).723

One thus have, for each small δ > 0,724

∠x̄(ȳ
′, z̄′) ≤ ∠x̄(ȳ, z̄).

By the definition,725

∠x(y, z) = lim
δ→0

∠x̄(ȳ
′, z̄′) ≤ ∠x̄(ȳ, z̄).

This completes the proof. Thus the angle at x in the real triangle △xyz is bounded above by the726

corresponding angle at x̄ in the comparison triangle △x̄ȳz̄.727
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Proof for Lemma 7. Let △pqr ⊂ M have side lengths728

a = d(p, q), b = d(q, r), c = d(r, p),

and let ∠p(q, r) denote the Alexandrov angle at p. Similarly, let △p′q′r′ have side lengths729

a′ = d(p′, q′), b′ = d(q′, r′), c′ = d(r′, p′),

with angle ∠p′(q′, r′).730

Assume that both triangles have perimeter ≤ π/
√
K if K > 0, ensuring they can be compared to731

triangles in the simply connected model space of curvature K (sphere of radius 1/
√
K if K > 0,732

Euclidean plane if K = 0, or hyperbolic plane if K < 0). Then, the goal is to show that733

|∠p(q, r)− ∠p′(q′, r′)| ≤ C [d(p, p′) + d(q, q′) + d(r, r′)] ,

for some constant C depending on α(K,D) or directly π/
√
K.734

From the triangle inequality, one get for instance735

|a− a′| = |d(p, q)− d(p′, q′)|
≤ d(p, p′) + d(q, q′),

and similarly,736

|b− b′| ≤ d(q, q′) + d(r, r′),

|c− c′| ≤ d(r, r′) + d(p, p′).

Hence, each difference in corresponding side lengths is at most737

max{|a− a′|, |b− b′|, |c− c′|} ≤ d(p, p′) + d(q, q′) + d(r, r′) =: δpp′qq′rr′ .

Then,738

|a− a′| ≤ δpp′qq′rr′ , |b− b′| ≤ δpp′qq′rr′ , |c− c′| ≤ δpp′qq′rr′ .

In classical geometry of constant curvature K (sphere, Euclidean plane, and hyperbolic plane),739

the side lengths (a, b, c) uniquely determine the shape of a triangle (up to rigid motion) provided740

a, b, c satisfy the triangle inequality. The angle η := ∠p(q, r) (or its model-space counterpart η̄) is a741

continuous function of (a, b, c).742

• If K = 0 (Euclidean), one have the law of cosines743

c2 = a2 + b2 − 2ab cos(η),

so744

cos(η) =
a2 + b2 + c2

2ab
.

This is a rational, continuous function of (a, b, c).745

• If K > 0 (spherical), the spherical law of cosines yield746

cos(
√
Kc) = cos(

√
Ka) cos(

√
Kb) + sin(

√
Ka) sin(

√
Ka) sin(

√
Kb) cos(η).

• If < 0 (hyperbolic), one have similar hyperbolic law of cosines with cosh and sinh.747

cosh(c/K) = cosh(a/K) cosh(b/K)− sinh(a/K) sinh(b/K) cos(η).

In each case, as long as a, b, c ≤ π/
√
|K|, one remain in a region where the side-length–angle748

relation is well-defined and continuously differentiable. Then, there exists a function749

F : {(a, b, c)} ⊂ R3
>0 → [0, π],
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so that if △xyz in the model space has sides (a, b, c), then the angle at x is F (a, b, c). Moreover,750

F is Lipschitz continuous on the domain {(a, b, c) | a + b + c ≤ π/
√
K}. Hence, if (a, b, c) and751

(a′, b′, c′) are close in R3, then752

|F (a, b, c)− F (a′, b′, c′)| ≤ K0 (|a− a′|+ |b− b′|+ |c− c′|) ,

for some constant K0 depending only on max(a, b, c) ≤ π/
√
K.753

Now connect the actual angles ∠p(q, r), ∠p′(q′, r′) in CAT(K) to their comparison angles ᾱ, ᾱ′ in754

the model space. For △pqr ⊂M , choose the comparison triangle △p̄q̄r̄ ⊂ M̄ in the model space of755

curvature K, with side lengths p̄q̄ = a, q̄r̄ = b, r̄p̄ = c. Let η̄ = ∠p̄(q̄, r̄). For △p′q′r′ ⊂M , choose756

△p̄′q̄′r̄′ ⊂ M̄ similarly with side lengths a′, b′, c′. Let η̄′ = ∠p̄′(q̄′, r̄′).757

By Lemma 6 in CAT(K):758

∠p(q, r) ≤ η̄,

∠p′(q′, r′) ≤ η̄′.

Symmetrically reversing the roles, one also get759

η̄ ≤ ∠p(q, r).

Here, ∠p(q, r) ≈ η̄ and ∠p′(q′, r′) ≈ η̄′. Hence760

|∠p(q, r)− ∠p′(q′, r′)| ≤ |ᾱ− η̄′|+ |∠p(q, r)− η̄|+ |∠p′(q′, r′)− η̄′|.

But each difference |∠p(q, r)− η̄| is known to be small by the usual CAT(K) thin triangle property.761

Specifically, if the perimeter is ≤ π/
√
K, the difference ∠p(q, r)− η̄ can be bounded by a constant762

times the diameter of △pqr; but that diameter is ≤ max(a, b, c), already controlled.763

In fact, in standard statements, one typically get an inequality of the form764

|∠p(q, r)− η̄| ≤ ε1(a, b, c) with ε1 → 0 as a, b, c→ 0,

and similarly for ∠p′(q′, r′). Since one are only after a linear bound in the final statement, it suffices765

that each difference is bounded by a universal constant (depending on π/
√
K). Thus, effectively766

|∠p(q, r)− ∠p′(q′, r′)| ≤ 2 (const) + |η̄ − η̄′|.

Hence collecting all,767 ∣∣∠p(q, r) − ∠p′(q′, r′)
∣∣ ≤ C1 + C2∆

for constants C1 and C2. In typical statements of the lemma, one either arranges that ∆ is small so768

that the additive constant C1 is overshadowed, or uses a slightly refined thinness difference argument769

to show ∠p(q, r) and η̄ differ by ≤ C̃ ·∆. In either case, one get a final bound of the form770 ∣∣∠p(q, r) − ∠p′(q′, r′)
∣∣ ≤ C∆ = C(d(p, p′) + d(q, q′) + d(r, r′)).

This completes the proof.771

Proof for Proposition 3. First, from the geodesic convexity, if νx and νx′ are close in distribution,772

then773

d
(
µ∗(x), µ∗(x′)

)
= C ′′ϵ,

for some constant C ′′ depending on α(K,D) and distributional assumptions (e.g. sub-Gaussianity or774

bounded diameter ensuring all integrals are finite).775

Compare angles ∠µ∗(x)(u, v) and ∠γ∗(x′)(u, v). Let [µ∗(x), u] be the geodesic from µ∗(x) to u,776

[µ∗(x′), u] be the geodesic from µ∗(x′) to u, and similarly for [µ∗(x), v] and [µ(x′), v]. Consider777

two triangles △
(
µ∗(x), u, µ∗(x′)

)
and △

(
µ∗(x), v, µ∗(x′)

)
. Observe that diam(M) ≤ D, so if778

µ∗(x) and µ∗(x′) are also ≤ O(ϵ) apart, then each of these triangles has perimeter 2D + O(ϵ). If779

K > 0, 2D + O(ϵ) < π/
(√
K
)

by the initial assumption D < π
2
√
K

and ϵ small enough. Hence,780

each triangle is validly contained in a region where one can apply CAT(K) angle comparisons (and781

the model-space comparison).782
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Let783

p = µ∗(x), q = u, r = µ∗(x′),

and784

p′ = µ∗(x′), q′ = u, r′ = µ∗(x).

Then the pair △pqr and △p′q′r′ have corresponding points:785

p↔ p′, q ↔ q′, r ↔ r′.

Notice that q = q′ is actually the same point u. The sum of vertex perturbations is786

d
(
p, p′

)
+ d

(
q, q′

)
+ d

(
r, r′

)
= d

(
µ∗(x), µ∗(x′)

)
+ 0 + d

(
µ∗(x′), µ∗(x)

)
= 2d

(
µ∗(x), µ∗(x′)

)
,

and d(µ∗(x), µ∗(x′)) ≤ C ′′ ϵ. By Lemma 7,787 ∣∣∠p(q, r)− ∠p′(q′, r′)
∣∣ ≤ C1

[
d(p, p′) + d(q, q′) + d(r, r′)

]
.

Hence788 ∣∣∣∠µ∗(x)

(
u, µ∗(x′)

)
− ∠µ∗(x′)

(
u, µ∗(x)

)∣∣∣ ≤ C1

(
2 d(µ∗(x), µ∗(x′))

)
≤ 2C1 C

′′ ϵ.

Similarly, for △µ∗(x) v µ∗(x′), one get the same type of bound in terms of ϵ.789

Recall that ∠µ∗(x)(u, v) is the Alexandrov angle between geodesics [µ∗(x)u] and [µ∗(x)v]. In a790

CAT(K) space, the angle ∠µ∗(x)(u, v) can be added or compared if we know angles involving a791

third point µ∗(x′). Thus,792 ∣∣∠µ∗(x)(u, v) − (∠µ∗(x)(u, µ
∗(x′)) + ∠µ∗(x′)(u, v)− π)

∣∣ ≤ C2 · d(µ∗(x), µ∗(x′)),

for some constant C2.793

Putting all these small angle increments together, conclude that794 ∣∣∠µ∗(x)(u, v) − ∠µ∗(x′)(u, v)
∣∣ ≤ C d(µ∗(x), µ∗(x′)) = O(ϵ).

Hence the angles at µ∗(x) versus µ∗(x′) differ by a linear factor in ϵ.795

Proof for Theorem 4. From Proposition 3, if νx ≈ νx′ (i.e. their distance is ≤ ϵ), then for any pair796

(u, v),797 ∣∣∣∠µ∗(x)(u, v) − ∠µ∗(x′)(u, v)
∣∣∣ ≤ C1 ϵ,

for some constant C1 > 0. Hence for one pair of directions (u, v), one get a linear-in-ϵ bound on798

how much the angle can change.799

Now consider not just one pair, but all pairs (ui, uj) with 1 ≤ i < j ≤ m. But since each800

∠µ∗(x)(ui, uj) is covered by the same result,801 ∣∣∣∠µ∗(x)(ui, uj) − ∠µ∗(x′)(ui, uj)
∣∣∣ ≤ C1 ϵ,

for each pair (ui, uj). Then the supremum over i < j is also ≤ C1 ϵ. In fact, it is not even needed a802

union bound in probability sense, and each pair is bounded by the same linear factor C1 ϵ. Hence803

sup
1≤i<j≤m

∣∣∣∠µ∗(x)(ui, uj) − ∠µ∗(x′)(ui, uj)
∣∣∣ ≤ C1 ϵ.

Thus one immediately extend from one pair to all
(
m
2

)
pairs (ui, uj).804

In the hypothesis, it is typically stated that whenever ∥x − x′∥ is small, then νx and νx′ differ by805

ϵ(∥x− x′∥). For instance, in a classical kernel or smoothing scenario, if ∥x− x′∥ ≤ δ, then806

dW
(
νx, νx′

)
≤ ϵ(δ).

Hence setting ϵ = ϵ(δ), for ∥x− x′∥ ≤ δ,807

sup
1≤i<j≤m

∣∣∣∠µ∗(x)(ui, uj) − ∠µ∗(x′)(ui, uj)
∣∣∣ ≤ C1 ϵ(δ).

Thus the angle difference is a function of δ. Hence define C := C1 (it might also absorb small808

distributional constants if needed), and putting it all together yields the proof.809
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B.4 Proofs for Section 3.4810

Proof for Lemma 8. In a smooth Riemannian manifold, for sufficiently close u and v, the unique811

geodesics γu : [0, ∥U∥] → M and γv : [0, ∥V ∥] → M from z to u, respectively from z to v,812

have well-defined initial velocity vectors at z. Let γ̇u(0) ∈ TzM be the tangent vector to γu at z.813

By construction, this is precisely U if we identify U ∈ TzM with the velocity vector in normal814

coordinates. Similarly, γ̇v(0) = V ∈ TzM.815

In Riemannian geometry (without singularities around z), one then have:816

∠z(u, v) = ∠
(
γ̇u(0), γ̇v(0)

)
= cos−1

(gz(γ̇u(0), γ̇v(0))
∥γ̇u(0)∥ ∥γ̇v(0)∥

)
.

Here gz(·, ·) is the Riemannian metric at z. In simpler notation, if one identify γ̇u(0) = U and817

γ̇v(0) = V , then818

∠z(u, v) = cos−1
( gz(U, V )√

gz(U,U) gz(V, V )

)
.

Use a geodesic coordinate system Φ: TzM ⊃ Bδ(0) → M around z, with Φ(0) = z and dΦ|0 = Id.819

Concretely, Φ(U) = expz(U). In these coordinates, the metric gij(X) at a point X in a small ball820

around 0 ∈ TzM has the well-known expansions:821

gij(X) = δij − 1
3 Rikjℓ(0)X

kXℓ + O(∥X∥3),

where Rikjℓ is the Riemann curvature tensor at z. The − 1
3 factor is a standard convention from822

normal coordinate expansions; the main point is that the first non-trivial corrections appear at second823

order in ∥X∥.824

Hence, for vectors U, V ∈ TzM with small norms, the inner product in the manifold at z is825

gz(U, V ) = δij U
i V j − 1

3

∑
k,ℓ

(1
2
Rikjℓ(0)

)
. . . + O

(
∥U∥∥V ∥max(∥U∥, ∥V ∥)

)
.

In simpler notation:826

gz(U, V ) = ⟨U, V ⟩Eucl + O
(
∥U∥ ∥V ∥ max(∥U∥, ∥V ∥)

)
.

From the above expansions,827 √
gz(U,U) = ∥U∥Eucl

[
1 +O(∥U∥2)

]1/2
= ∥U∥+O(∥U∥3).

Similarly for ∥V ∥. In addition,828

gz(U, V ) = ⟨U, V ⟩Eucl + O(∥U∥ ∥V ∥ max(∥U∥, ∥V ∥)).

Thus829

gz(U, V )√
gz(U,U) gz(V, V )

=
⟨U, V ⟩

∥U∥ ∥V ∥
+ O(∥U∥2 + ∥V ∥2),

since each correction is second-order in ∥U∥ or ∥V ∥. Moreover,830

∠z(u, v) = cos−1
( gz(U, V )√

gz(U,U) gz(V, V )

)
= cos−1

( ⟨U, V ⟩
∥U∥ ∥V ∥

+ O(∥U∥2 + ∥V ∥2)
)
.

When θ0 = ∠0(U, V ) denotes the Euclidean angle in the tangent space,831

cos(θ0) =
⟨U, V ⟩

∥U∥ ∥V ∥
.

Then832

cos(∠z(u, v)) = cos(θ0) +O(∥U∥2 + ∥V ∥2).
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Since cos is locally invertible around angles not equal to 0, π (and we assume θ0 is not degenerate or833

extremely close to π for typical use), a standard expansion yields:834

∠z(u, v) = θ0 + O(∥U∥2 + ∥V ∥2).
Concretely, if θ1 = θ0 + δ satisfies cos(θ1) = cos(θ0) + η, then δ = O(η) for small η. Here,835

η = O(∥U∥2 + ∥V ∥2).836

Hence,837

∠z(u, v) = θ0 + O(∥U∥2 + ∥V ∥2),
where θ0 = ∠0(U, V ) is the Euclidean angle of U and V in TzM . This completes the proof.838

Proof for Proposition 4. Let γ(t) be a geodesic in (M, g) with γ(0) = µ∗ and γ̇(0) = v. Consider839

F (γ(t)). Then840

d

dt
F (γ(t))

∣∣∣
t=0

=
d

dt

∫
d2
(
y, γ(t)

)
dν(y)

∣∣∣
t=0

=

∫
d

dt
d2
(
y, γ(t)

)∣∣∣
t=0

dµ(y).

By standard Riemannian geometry formulas, if σ(s) is the geodesic [ y γ(t)], then841

d

dt
d2
(
y, γ(t)

)
= 2 d(y, γ(t))

〈
γ̇(t), σ̇(0)

〉
gγ(t)

.

At t = 0, since γ(0) = µ∗, one interpret σ̇(0) as the initial velocity from µ∗ toward y. If µ∗ is a842

minimizer, the directional derivative must vanish for all directions v. Formally, this implies843

∇F (γ∗) = 0.

Hence the first-order term in the expansion of F (z) around z = µ∗ vanishes.844

Next, examine the second derivative (or Hessian) of F at γ∗.845

Hessz(F )(v, v) =
d2

dt2
F (expz(t v))

∣∣∣
t=0

.

When z = µ∗, and µ∗ is the unique minimizer, these second derivatives measure how strongly F846

curves upward around µ∗.847

In fact, the Gauss–Manasse–Busemann formula for second variation of distance shows that848

Hµ∗(F )(v, v) =

∫
Hµ∗

[
d2(y, ·)

]
(v, v) dµ(y).

Each term Hµ∗
[
d2(y, ·)

]
(v, v) can be computed from the second variation of ρ(µ∗, y) = d(µ∗, y).849

In standard curvature conditions (especially nonpositive curvature or small diameter in positive850

curvature), this Hessian is positive semidefinite, ensuring local convexity around µ∗. If CAT(0)851

or if diam < π/(2
√
K) in CAT(K), then d2(y, ·) is geodesically convex with a definite strong852

convexity modulus α > 0. Integrating preserves that positivity, giving Hµ∗(F ) ⪰ 0. Hence there is a853

well-defined linear operator Hµ∗ on Tµ∗M representing Hµ∗(F ).854

Because F is at least C2, one can write the remainder R(v) in a standard Taylor expansion form:855

R(v) = O
(
∥v∥3

)
as v → 0.

Concretely, one can show this by analyzing the third derivative of F in normal coordinates:856

d3

dt3
F
(
expµ∗(t v)

)
remains bounded as t→ 0, so the third-order term is well-defined.857

Hence the local expansion is858

F
(
expµ∗(v)

)
= F (µ∗) +

〈
∇F (µ∗), v

〉︸ ︷︷ ︸
=0

+ 1
2

〈
Hµ∗ v, v

〉
+ R(v), R(v) = O(∥v∥3).

That is precisely the jet expansion for the Fréchet functional around µ∗.859
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B.5 Proofs for Section 3.5860

Proof for Proposition 5. From the local Riemannian (or CAT(K)) law of cosines in △µ∗ y z:861

d2(y, z) = d2
(
y, µ∗) + d2

(
z, µ∗) − 2 d

(
y, µ∗) d(µ∗, z

)
cos

(
∠µ∗(y, z)

)
.

Rewriting as862

d2(y, z) − d2
(
y, µ∗) = d2

(
z, µ∗) − 2 d

(
y, µ∗) d(µ∗, z

)
cos

(
∠µ∗(y, z)

)
.

Here, let863

∆dist

(
y, z, µ∗) := d2

(
µ∗, z

)
− 2 d

(
y, µ∗) d(µ∗, z

)
,

864

∆angle

(
y, z, µ∗) := 2 d

(
y, µ∗) d(z, µ∗) [ 1 − cos

(
∠µ∗(y, z)

)]
.

Observe that865

−2 d(y, µ∗) d(µ∗, z) cos(∠µ∗(y, z)) =
[
∆dist − d2(µ∗, z)

]
− ∆angle,

and866

d2(y, z) = d2
(
y, µ∗) + ∆dist

(
y, z, µ∗) + ∆angle

(
y, z, µ∗).

So the desired identity is obtained.867

Proof for Proposition 6. Let868

• r0 = d
(
µ∗(x), u0

)
. (A constant for each x if u0 is fixed.)869

• r(y) = d
(
µ∗(x), y

)
= Rx(y). (A variable depending on y.)870

• α(y) = d(u0, y). Another side of the triangle.871

Then from the local law of cosines,872

r(y)2 = r20 + α(y)2 − 2 r0 α(y) cos
(
∠µ∗(x)(u0, y)

)
.

But ∠µ∗(x)(u0, y) = ϕx(y). So873

r(y)2 = r20 + α(y)2 − 2 r0 α(y) cos
(
ϕx(y)

)
.

We write it as874

Ψx(y) = r(y)2 = r20 + α(y)2 − 2 r0 α(y) cos
(
ϕx(y)

)
.

Now, to link α(y) = d(u0, y) with r(y) and ϕx(y), we may do yet another small expansion or an875

additional law-of-cosines approach. If the manifold is small enough in diameter, we can treat α(y)876

also as a function of (r(y), ϕx(y)).877

Also, let878

α(y)2 = r20 + r(y)2 − 2 r0 r(y) cos
(
∠u0

(µ∗(x), y)
)
.

But ∠u0
(µ∗(x), y) is not necessarily the same as ϕx(y). Then,879

α(y) = α
(
r(y), ϕx(y)

)
= r0 +O

(
r(y)

)
plus terms involving ϕx(y). In a small neighborhood, these expansions typically become second-order880

in ϕx(y). Hence, α(y) is not an independent variable; it’s determined once ϕx(y) and r(y) = Rx(y)881

are known.882

In addition,883

r(y)2 = r20 + α(y)2 − 2 r0 α(y) cos
(
ϕx(y)

)
.
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This yields a final expression of form884

r(y)2 = r20 +
(

some linear or quadratic function in r(y)
)

+
(

terms in ϕx(y)
)
.

In short, the function Ψx(y) = r(y)2 can be viewed as885

Ψx(y) = fradial
(
r(y)

)︸ ︷︷ ︸
part ignoring angles

+ fangle
(
r(y), ϕx(y)

)︸ ︷︷ ︸
angle corrections

,

where fangle is typically second-order or cross-term in ϕx(y).886

Consider887

Eνx

[
Ψx(Y )

]
=

∫
r(y)2 dνx(y).

Let888

• Eνx
[ r(Y ) ] as some average radius.889

• Eνx [ϕx(Y )] as average angle.890

One obtains expansions, where891

Ψx(Y )− r(y)2∣∣ϕx(Y )=0

is some cross or higher-order term in ϕx(Y ).892

Then,893

E
[
Ψx(Y )2

]
=

∫ [
r(y)2

]2
dνx(y).

Expanding
[
r(y)2

]2
yields894 [

r(y)2
]2

= r(y)4 =
(
fradial(r(y)) + fangle(r(y), ϕx(y))

)2

.

One obtains terms:895

•
[
fradial(r)

]2
,896

• cross terms 2 fradial(r) fangle(r, ϕ),897

•
[
fangle(r, ϕ)

]2
.898

By taking expectation,899

E
[
r(y)4

]
= E

([
fradial(r)

]2)
+ 2E

(
fradial(r) fangle(r, ϕ)

)
+ E

([
fangle(r, ϕ)

]2)
.

Then, Var[Ψx(Y )] = E[Ψx(Y )2]− (E[Ψx(Y )])2 can be rearranged, grouping the radial part of the900

variance from the angle cross terms:901

Var
[
Ψx(Y )

]
= Var

(
fradial(r(Y ))︸ ︷︷ ︸

like r(Y )2 ignoring angles

)
+Cov

[
ϕx(Y ), r(Y )2

]
+
(
smaller or higher-order expansions in ϕx(Y )

)
.

Explicitly, let902

Ax(Y ) = fradial
(
r(Y )

)
(often = r(Y )2)

ignoring angular corrections, and903

Bx(Y ) = fangle
(
r(Y ), ϕx(Y )

)
(some function capturing dependence on angle ϕx(Y )).
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Then904

Ψx(Y ) = Ax(Y ) + Bx(Y ).

Using905

Var[A+B] = Var[A] + Var[B] + 2Cov(A,B),

one have906

Var[Ψx(Y )] = Var[Ax(Y )] + Var[Bx(Y )] + 2Cov
(
Ax(Y ), Bx(Y )

)
.

If Bx(Y ) is small or mostly depends on ϕx(Y ) with some bounding condition, one can inter-907

pret Var[Bx(Y )] and Cov(Ax(Y ), Bx(Y )) as cross/higher-order expansions. Here, Var[Ax(Y )]908

is the purely radial piece Var[Rx(Y )2]. The cross terms or expansions in ϕx(Y ) become909

Cov
(
ϕx(Y ), Rx(Y )2

)
. Hence we get the claimed partial decomposition.910
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C Additional Analysis on ϵ-Approximate CAT(K) Space911

In comparison geometry framework, the theoretical statements are provided on the model space with912

constant curvature. In practice, however, real-world datasets may lie in spaces that only approximately913

satisfy the curvature conditions. Below we introduce an ϵ-approximate version of CAT(K) space,914

and derive perturbed versions of existence, uniqueness, and convexity-type results.915

Definition 9 (ϵ-Approximate CAT(K) Space). Let ϵ > 0. A geodesic metric space (M, d) is said to916

be ϵ-approximate CAT(K) space if for every geodesic triangle △pqr of perimater less than 2DK917

(where DK = π/
√
K if K > 0, otherwise DK = ∞), and for any points x and y on the edges [pq]918

and [qr], respectively, one has919

d(x, y) ≤ dM2
K
(x̄, ȳ) + ϵ, (16)

where △p̄q̄r̄ ⊂ M2
K is the usual comparison triangle in the simply connected model space of constant920

curvature K.921

This definition allows a small additive slack ϵ in the usual comparison inequality. When ϵ = 0, we922

recover the standard definition of CAT(K).923

Theorem 5 (Approximate Geodesic Convexity of Squared Distance). Let (M, d) be an ϵ-approximate924

CAT(K) space with K < 0. Fix any p ∈ M, and define f(x) = d2(p, x). Then, for any geodesic925

γ : [0, 1] → M,926

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)) +O(ϵD), (17)
where D is the diameter of the relevant geodesic segment under consideration, or the whole space if927

bounded.928

Proof. Let γ : [0, 1] → M be a geodesic from γ(0) = x to γ(1) = y. Define γ(t) as the point at929

parameter t. We form a (possibly degenerate) triangle △pxy in M. Then, △p̄x̄ȳ is the comparison930

triangle in the model space M2
K that has side lengths931

dM2
K
(p̄, x̄) = d(p, x), dM2

K
(x̄, ȳ) = d(x, y), M2

K
(ȳ, p̄) = (y, p).

Let γ̄(t) be the point on [x̄, ȳ] ⊂ △p̄x̄ȳ at fraction t. Because γ is a geodesic and [x̄, ȳ] is also a932

geodesic in M2
K , the pair γ(t) ↔ γ̄(t) correspond naturally for the sub-segment ratio t. Here, we933

have934

d(p, γ(t)) ≤ dM2
K
(p̄, γ̄(t)) + C1ϵ,

for some constant C1. By taking squares,935

d2(p, γ(t)) ≤
(
dM2

K
(p̄, γ̄(t))

)2

+ 2C1ϵdM2
K
(p̄, γ̄(t)) + (C1ϵ)

2.

Since K < 0, the model space M2
K is either Euclidean or hyperbolic. In both cases, it is known that936

{γ̄(t) | t ∈ [0, 1]} ⊂ [x̄, ȳ],

which yields γ̄(t) satisfying the usual convexity of the squared distance in a non-positive curvature937

setting.938 (
dM2

K
(p̄, γ̄(t))

)2

≤ (1− t)
(
dM2

K
(p̄, x̄)

)2

+ t
(
dM2

K
(p̄, ȳ)

)2

.

Therefore,939

dM2
K
(p̄, γ̄(t))2 ≤ (1− t)d2(p, x) + td2(p, y),

and940

d2(p, γ(t)) ≤ (1− t)d2(p, x) + td2(p, y) + 2C1ϵ
(
dM2

K
(p̄, γ̄(t))

)
+ (C1ϵ)

2

≤ (1− t)d2(p, x) + td2(p, y) + 2C1ϵD
′ + (C1ϵ)

2

≤ (1− t)d2(p, x) + td2(p, y) + C2ϵD,

for some constant C2 > 0, where D′ is the diameter of the model space, and can be bounded by local941

diameter D. This can be written as942

f(γ(t)) = d2(p, γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)) + C2ϵD,

and it exactly states the approximate geodesic convexity for f(x) = d2(p, x).943
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Corollary 1 (Approximate Uniqueness of Fréchet Mean). Under the same ϵ-approximate CAT(K)944

assumptions, consider the Fréchet functional945

F (x) =

∫
M
d2(y, x)dν(y), (18)

for a compactly supported probability measure ν. Then, one has the following.946

• A minimizer of F exists for any ϵ > 0.947

• If ϵ is small, any two minimizers m1 and m2 must lie within a small neighborhood of each948

other:949

d(m1,m2) ≤ O(
√
ϵ). (19)

Hence, strict uniqueness is replaced by an ϵ-dependent bound.950

Proposition 7 (Local Existence and Uniqueness). Let M be a geodesic metric space that is CAT(K)951

(or ϵ-approximately CAT(K) space) locally in a geodesic ball B(p0, R). That is, for any geodesic952

triangle fully contained in B(p0, R), the usual CAT(K) (or approximate) triangle comparison953

property holds. Suppose ν is a probability measure on M whose support supp(ν) is contained in954

B(p0, R). Define the Fréchet functional955

F (x) =

∫
M
d2(y, x)dν(y).

Then, one has the following.956

• The function F (x) attains its minimum at some m ∈ B(p0, R).957

• If K > 0 but diam(supp(ν)) < π
2
√
K

, or if K ≤ 0 (no diameter restriction), then m is958

unique within B(p0, R).959

In other words, the Fréchet mean m exists in the local ball B(p0, R) and is unique when the (local)960

curvature constraints enforce strict geodesic convexity.961

Proposition 8 (Heavy-Tailed Distributions and Slower Convergence). Let M be either a strict962

CAT(K) space or an ϵ-approximate CAT(K) space of diameter ≤ D. Suppose Y1, Y2, . . . , Yn are963

i.i.d. random points in M with common distribution ν. Denote by964

µ = argmin
z∈M

E[d2(Y, z)]

µ̂ = argmin
z∈M

1

n

n∑
i=1

d2(Yi, z).

Assume that965

1. ν has finite second moments E[d2(Y, z0)] <∞ for some reference point z0, and966

2. the random variable d2(Y, z0) satisfies a sub-exponential-type tail bound: there exist967

constants α ≥ 0, γ ∈ (0, 1] such that968

P
(
d2(Y, z0) > t

)
≤ exp(−αtγ), (20)

for all t > 0.969

Then, there exist constants c, C such that for all n ≥ 1 and all ϵ > 0,970

P (d(µ̂n, µ) ≥ ϵ) ≤ C exp
(
−cnϵ2γ

)
. (21)

Hence µ̂n converges to µ in probability, and its deviation tails decay sub-exponentially with arte ϵ2γ .971

Proof. Define the population and empirical Fréchet functionals972

F (z) = E[d2(Y, z)], Fn(z) =
1

n

n∑
i=1

d2(Yi, z).

36



By definition,973

µ = argmin
z∈M

F (z), µ̂n = argmin
z∈M

Fn(z).

Observe that974

F (µ̂n)− F (µ) = {F (µ̂n)− Fn(µ̂n)}+ {Fn(µ̂n)− Fn(µ)}+ {Fn(µ)− F (µ)}
≤ {F (µ̂n)− Fn(µ̂n)} − {F (µ)− Fn(µ)} ,

|F (µ̂n)− F (µ)| ≤ |F (µ̂n)− Fn(µ̂n)|+ |F (µ)− Fn(µ)| .

Therefore,975

{d(µ̂n, µ) ≥ ϵ} ⊆
{
F (µ̂n)− F (µ) ≥ α(K,D)ϵ2

}
⊆

{
sup
z∈M

∣∣∣∣Fn(z)− F (z) ≥ α(K,D)

2
ϵ2
∣∣∣∣} .

Here,976

sup
z∈M

|Fn(z)− F (z)| ≤ max
1≤j≤Nδ

|Fn(zj)− F (zj)|+ η(δ),

where Nδ ≤ exp(C1(D/δ)
m) is a δ-net for some m and η(δ) → 0 as δ → 0. Taking δ → 0,977

P
(
sup
z∈M

|Fn(z)− F (z)| ≥ t

)
≤ Nδ · 2 exp (−c′ntγ) + P(η(δ) ≥ t/2)

≈ exp(lnNδ − c′ntγ).

For fixed D, logNδ is polynomial in (1/δ) so we can absorb that into a constant factor.978

D Relation to Geodesic Regression979

A Riemannian manifold (M, g) is a smooth manifold endowed with a Riemannian metric g, which980

locally induces a norm on each tangent space TpM. In such a setting, the geodesic distance between981

two points p, q ∈ M is given by982

d(p, q) = inf
γ

∫ 1

0

√
g
(
γ̇(t), γ̇(t)

)
dt,

where the infimum is taken over all smooth curves γ joining p and q. For points q in a normal983

neighborhood of p, the exponential map expp : TpM → M is a diffeomorphism and we have the984

local relation985

d2(p, q) = ∥ exp−1
p (q)∥2.

Moreover, assuming the sectional curvatures of M are bounded above by K, the manifold is986

also a CAT(K) space. In this smooth setting, one can use differential calculus; for example,987

the Fréchet functional F (z) =
∫
M d2(y, z) dν(y) is differentiable (at least locally), with gradient988

∇F (z) = −2
∫
M exp−1

z (y) dν(y), and a second-order expansion989

F (expz(v)) = F (z) + ⟨∇F (z), v⟩+ 1

2
⟨Hz v, v⟩+O(∥v∥3).

Here, a CAT(K) space is a geodesic metric space (M, d) satisfying a comparison condition: for990

any geodesic triangle △pqr with perimeter less than a critical value (for K > 0) and any points x991

and y on two of its sides, the distance d(x, y) is bounded above by the corresponding distance in the992

model space M2
K of constant curvature K. In particular, if γ : [0, 1] → M is a geodesic, one has the993

following (strong) convexity inequality for the squared distance function:994

d2
(
y, γ(t)

)
≤ (1− t)d2(y, γ(0)) + t d2(y, γ(1))− α t(1− t) d2

(
γ(0), γ(1)

)
,

where α = α(K,D) is a constant depending on the curvature bound K and the diameter D of995

the region under consideration. The above inequality replaces the role of second-order (Hessian)996

information.997
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In geodesic regression on a Riemannian manifold, we assume that the regression function follows a998

geodesic curve. For example, for a predictor x ∈ Rd, one common formulation is:999

µ(x) = expp

(
(α+ β⊤x) v

)
, with v ∈ TpM,

or equivalently, writing the geodesic γ from p with initial velocity v,1000

µ(x) = γ
(
α+ β⊤x

)
.

Here, p ∈ M is a base point, v ∈ TpM is a tangent vector at p, expp is the Riemannian exponential1001

map, and α, β are the regression parameters. This model implies that the conditional mean of Y1002

given X = x lies exactly on the geodesic determined by p and v. Fréchet regression is defined more1003

generally and does not restrict the mean to lie on a pre-specified geodesic. For each x, the conditional1004

Fréchet mean is given by1005

µ(x) = argmin
z∈M

E
[
d2(Y, z) | X = x

]
.

If M is a Riemannian manifold and the conditional distribution of Y given X = x is concentrated1006

and symmetric around a geodesic curve, then one may find that the minimizer satisfies1007

µ(x) = expp

(
(α+ β⊤x) v

)
,

thus recovering the geodesic regression solution. However, in general, Fréchet regression allows1008

for much more flexible conditional mean structures. In summary, we can relate these two concepts1009

(Fréchet regression and geodesic regression). Riemannian manifolds allow a local linearization via1010

the exponential map and a full Taylor expansion, making geodesic regression a natural parametric1011

model, and CAT(K) spaces provide a more general setting where one relies on strong convexity1012

properties of the squared distance function rather than differentiability. Both approaches are unified1013

under the Fréchet regression framework, with geodesic regression emerging as a parametric case1014

when the conditional means lie on a geodesic.1015
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E Details of Experiments1016

This section describes the details of experiments in Section 4.1017

Model Details Throughout the experiment, we use an implementation of Fréchet regression based1018

on the Nadaraya-Watson estimator [14, 21, 38].1019

µ∗(x) = argmin
z∈M

1

n

n∑
i=1

Kh(Xi − x)d2(Yi, z),

where Kh is a smoothing kernel that corresponds to a probability density with Kh(·) = h−1K(·/h).1020

For the optimization, we use Limited-memory BFGS [30].1021

1 import numpy as np
2 from scipy.optimize import minimize
3

4 # Kernel function (Gaussian kernel)
5 def gaussian_kernel(x, x_data, bandwidth):
6 dists = np.linalg.norm(x_data - x, axis=1)
7 weights = np.exp(-0.5 * (dists / bandwidth) ** 2)
8 return weights / np.sum(weights)
9

10 # Fréchet objective function
11 def frechet_objective(y, responses, weights, distance_func):
12 dists = np.array([distance_func(y, r) for r in responses])
13 return np.sum(weights * dists**2)
14

15 # Fréchet regression function
16 def frechet_regression(X, Y, x_query, bandwidth, distance_func):
17 weights = gaussian_kernel(x_query, X, bandwidth)
18 y_init = np.mean(Y, axis=0)
19 result = minimize(
20 frechet_objective,
21 y_init,
22 args=(Y, weights, distance_func),
23 method='L-BFGS-B'
24 )
25 return result.x

Listing 1: Python code for the Fréchet regression.

Stereographic Projection Listing 2 shows the Python code for the stereographic projection from1022

sphere surface to hyperbolic plane.1023

1 # Define the stereographic projection function
2 def stereographic_projection(x, y, z, R):
3 u = R * x / (R + z)
4 v = R * y / (R + z)
5 return u, v

Listing 2: Python code for the stereographic projection.
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E.1 Details for Illustrative Example 4.11024

Data Generating Process To assess the performance of the Fréchet regression estimator, consider1025

to generate simulated data. The regression function is1026

µ(x)(·) = ((1− x2)1/2 cos(πx), (1− x2)1/2 sin(πx), x), x ∈ (0, 1),

which maps a spiral on the sphere. To generate a random sample {(Xi, Yi)}ni=1, let Xi ∼ U(0, 1)1027

followed by a bivariate normal random vector Ui, and1028

Yi = cos(∥Ui∥)µ(Xi) + sin(∥Ui∥)
Ui

∥Ui∥
.

The sample size of the simulation data is n = 50, and Gaussian noise with variance 0.4 is added to1029

each instance.1030

E.2 Details for Experiments on Real-world Datasets 4.21031

Details of Datasets1032

• HYG Stellar: The HYG Stellar Database is a comprehensive star catalog that amalgamates1033

data from several prominent astronomical catalogs, including HIPPARCOS, the Yale Bright1034

Star Catalog, and the Gliese Catalog of Nearby Stars. This integration provides detailed1035

information on stars’ positions, brightness, spectral types, and various identifiers such as1036

traditional names and Bayer designations. It contains detailed information on 119,614 stars1037

including position data, photometric data and luminosity and variability.1038

• USGS Earthquake: The USGS Earthquake catalogue provides information on earthquakes1039

worldwide with a magnitude of 2.5 and above that have occurred over the past week, and it1040

contains 300 instances.1041

• NOAA Climate: The NOAA Climate data provides Two-Line Element (TLE) sets for1042

weather satellites, including those operated by NOAA, and contains 72 instances. A TLE1043

consists of two 69-character lines of data, each containing specific parameters that describe1044

the satellite’s orbit.1045

Table 3 shows the detailed breakdown of variables X and Y for each dataset.1046

Dataset Sample size Predictor X Response Y

HYG Stellar 119,614

• Observation time t
• Brightness of the star m
• Absolute Magnitude m′

• Spectral type s

Position on the celestial sphere

USGS Earthquake 300
• Observation time t
• Magnitude of the earthquake m
• Depth of the earthquake d

Earthquake location

NOAA Climate 72
• Timestamp of the TLE t
• Orbital parameters θ
• Inclination i

Satellite position

Table 3: Detailed breakdown of variables for each dataset.

Visualizations of Real-world Spherical Datasets Figure 5 shows the additional visualizations of1047

real-world spherical datasets, and Figure 6 shows the heteroscedasticity in the NOAA and USGS1048

datasets. In addition, Python code in Listing 3 shows the implementation for the visualization of1049

HYG Steller dataset.1050
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Figure 5: Visualizations for USGS Earthquake catalogue and NOAA Climate dataset.

Figure 6: Heteroscedasticity in the NOAA and USGS datasets.

41



1

2 import numpy as np
3 import matplotlib.pyplot as plt
4 from astropy.io import ascii
5

6 # Load the Bright Star Catalog
7 url = '{Data URL}' # URL for HYG Steller database
8 data = ascii.read(url)
9

10 # Extract Right Ascension and Declination
11 ra = np.array(data['ra']) # in hours
12 dec = np.array(data['dec']) # in degrees
13

14 # Convert RA from hours to degrees
15 ra_deg = ra * 15
16

17 # Convert RA and Dec to radians for plotting
18 ra_rad = np.radians(ra_deg)
19 dec_rad = np.radians(dec)
20

21

22 # Create a 3D scatter plot
23 fig = plt.figure(figsize=(12, 8))
24 ax = fig.add_subplot(111, projection='3d')
25

26 # Convert spherical coordinates to Cartesian for plotting
27 x = np.cos(dec_rad) * np.cos(ra_rad)
28 y = np.cos(dec_rad) * np.sin(ra_rad)
29 z = np.sin(dec_rad)
30

31 # Plot the stars
32 ax.scatter(x, y, z, color='white', s=0.01, label="data points")
33

34 ax.xaxis.set_ticklabels([])
35 ax.yaxis.set_ticklabels([])
36 ax.zaxis.set_ticklabels([])
37

38 # Set plot parameters
39 ax.set_facecolor('black')
40 ax.set_xlabel('X')
41 ax.set_ylabel('Y')
42 ax.set_zlabel('Z')
43 plt.legend(markerscale=80, fontsize=30)
44 plt.show()

Listing 3: Python code for the visualization of HYG Steller database.
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NeurIPS Paper Checklist1051

The checklist is designed to encourage best practices for responsible machine learning research,1052

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove1053

the checklist: The papers not including the checklist will be desk rejected. The checklist should1054

follow the references and follow the (optional) supplemental material. The checklist does NOT count1055

towards the page limit.1056

Please read the checklist guidelines carefully for information on how to answer these questions. For1057

each question in the checklist:1058

• You should answer [Yes] , [No] , or [NA] .1059

• [NA] means either that the question is Not Applicable for that particular paper or the1060

relevant information is Not Available.1061

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).1062

The checklist answers are an integral part of your paper submission. They are visible to the1063

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it1064

(after eventual revisions) with the final version of your paper, and its final version will be published1065

with the paper.1066

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.1067

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a1068

proper justification is given (e.g., "error bars are not reported because it would be too computationally1069

expensive" or "we were unable to find the license for the dataset we used"). In general, answering1070

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we1071

acknowledge that the true answer is often more nuanced, so please just use your best judgment and1072

write a justification to elaborate. All supporting evidence can appear either in the main paper or the1073

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification1074

please point to the section(s) where related material for the question can be found.1075

IMPORTANT, please:1076

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",1077

• Keep the checklist subsection headings, questions/answers and guidelines below.1078

• Do not modify the questions and only use the provided macros for your answers.1079

1. Claims1080

Question: Do the main claims made in the abstract and introduction accurately reflect the1081

paper’s contributions and scope?1082

Answer: [Yes]1083

Justification: We summarized our contributions, referring the corresponding sections.1084

Guidelines:1085

• The answer NA means that the abstract and introduction do not include the claims1086

made in the paper.1087

• The abstract and/or introduction should clearly state the claims made, including the1088

contributions made in the paper and important assumptions and limitations. A No or1089

NA answer to this question will not be perceived well by the reviewers.1090

• The claims made should match theoretical and experimental results, and reflect how1091

much the results can be expected to generalize to other settings.1092

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1093

are not attained by the paper.1094

2. Limitations1095

Question: Does the paper discuss the limitations of the work performed by the authors?1096

Answer: [Yes]1097

Justification: The limitations are discussed in the conclusion section.1098
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Guidelines:1099

• The answer NA means that the paper has no limitation while the answer No means that1100

the paper has limitations, but those are not discussed in the paper.1101

• The authors are encouraged to create a separate "Limitations" section in their paper.1102

• The paper should point out any strong assumptions and how robust the results are to1103

violations of these assumptions (e.g., independence assumptions, noiseless settings,1104

model well-specification, asymptotic approximations only holding locally). The authors1105

should reflect on how these assumptions might be violated in practice and what the1106

implications would be.1107

• The authors should reflect on the scope of the claims made, e.g., if the approach was1108

only tested on a few datasets or with a few runs. In general, empirical results often1109

depend on implicit assumptions, which should be articulated.1110

• The authors should reflect on the factors that influence the performance of the approach.1111

For example, a facial recognition algorithm may perform poorly when image resolution1112

is low or images are taken in low lighting. Or a speech-to-text system might not be1113

used reliably to provide closed captions for online lectures because it fails to handle1114

technical jargon.1115

• The authors should discuss the computational efficiency of the proposed algorithms1116

and how they scale with dataset size.1117

• If applicable, the authors should discuss possible limitations of their approach to1118

address problems of privacy and fairness.1119

• While the authors might fear that complete honesty about limitations might be used by1120

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1121

limitations that aren’t acknowledged in the paper. The authors should use their best1122

judgment and recognize that individual actions in favor of transparency play an impor-1123

tant role in developing norms that preserve the integrity of the community. Reviewers1124

will be specifically instructed to not penalize honesty concerning limitations.1125

3. Theory assumptions and proofs1126

Question: For each theoretical result, does the paper provide the full set of assumptions and1127

a complete (and correct) proof?1128

Answer: [Yes]1129

Justification: Full proofs for all statements are provided in the appendix.1130

Guidelines:1131

• The answer NA means that the paper does not include theoretical results.1132

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1133

referenced.1134

• All assumptions should be clearly stated or referenced in the statement of any theorems.1135

• The proofs can either appear in the main paper or the supplemental material, but if1136

they appear in the supplemental material, the authors are encouraged to provide a short1137

proof sketch to provide intuition.1138

• Inversely, any informal proof provided in the core of the paper should be complemented1139

by formal proofs provided in appendix or supplemental material.1140

• Theorems and Lemmas that the proof relies upon should be properly referenced.1141

4. Experimental result reproducibility1142

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1143

perimental results of the paper to the extent that it affects the main claims and/or conclusions1144

of the paper (regardless of whether the code and data are provided or not)?1145

Answer: [Yes]1146

Justification: Full experimental protocol is described in the experiments section.1147

Guidelines:1148

• The answer NA means that the paper does not include experiments.1149
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• If the paper includes experiments, a No answer to this question will not be perceived1150

well by the reviewers: Making the paper reproducible is important, regardless of1151

whether the code and data are provided or not.1152

• If the contribution is a dataset and/or model, the authors should describe the steps taken1153

to make their results reproducible or verifiable.1154

• Depending on the contribution, reproducibility can be accomplished in various ways.1155

For example, if the contribution is a novel architecture, describing the architecture fully1156

might suffice, or if the contribution is a specific model and empirical evaluation, it may1157

be necessary to either make it possible for others to replicate the model with the same1158

dataset, or provide access to the model. In general. releasing code and data is often1159

one good way to accomplish this, but reproducibility can also be provided via detailed1160

instructions for how to replicate the results, access to a hosted model (e.g., in the case1161

of a large language model), releasing of a model checkpoint, or other means that are1162

appropriate to the research performed.1163

• While NeurIPS does not require releasing code, the conference does require all submis-1164

sions to provide some reasonable avenue for reproducibility, which may depend on the1165

nature of the contribution. For example1166

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1167

to reproduce that algorithm.1168

(b) If the contribution is primarily a new model architecture, the paper should describe1169

the architecture clearly and fully.1170

(c) If the contribution is a new model (e.g., a large language model), then there should1171

either be a way to access this model for reproducing the results or a way to reproduce1172

the model (e.g., with an open-source dataset or instructions for how to construct1173

the dataset).1174

(d) We recognize that reproducibility may be tricky in some cases, in which case1175

authors are welcome to describe the particular way they provide for reproducibility.1176

In the case of closed-source models, it may be that access to the model is limited in1177

some way (e.g., to registered users), but it should be possible for other researchers1178

to have some path to reproducing or verifying the results.1179

5. Open access to data and code1180

Question: Does the paper provide open access to the data and code, with sufficient instruc-1181

tions to faithfully reproduce the main experimental results, as described in supplemental1182

material?1183

Answer: [Yes]1184

Justification: The codes for numerical experiments are submitted as the supplemental1185

material.1186

Guidelines:1187

• The answer NA means that paper does not include experiments requiring code.1188

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1189

public/guides/CodeSubmissionPolicy) for more details.1190

• While we encourage the release of code and data, we understand that this might not be1191

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1192

including code, unless this is central to the contribution (e.g., for a new open-source1193

benchmark).1194

• The instructions should contain the exact command and environment needed to run to1195

reproduce the results. See the NeurIPS code and data submission guidelines (https:1196

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1197

• The authors should provide instructions on data access and preparation, including how1198

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1199

• The authors should provide scripts to reproduce all experimental results for the new1200

proposed method and baselines. If only a subset of experiments are reproducible, they1201

should state which ones are omitted from the script and why.1202

• At submission time, to preserve anonymity, the authors should release anonymized1203

versions (if applicable).1204
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• Providing as much information as possible in supplemental material (appended to the1205

paper) is recommended, but including URLs to data and code is permitted.1206

6. Experimental setting/details1207

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1208

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1209

results?1210

Answer: [Yes]1211

Justification: Full experimental protocol is described in experiments section.1212

Guidelines:1213

• The answer NA means that the paper does not include experiments.1214

• The experimental setting should be presented in the core of the paper to a level of detail1215

that is necessary to appreciate the results and make sense of them.1216

• The full details can be provided either with the code, in appendix, or as supplemental1217

material.1218

7. Experiment statistical significance1219

Question: Does the paper report error bars suitably and correctly defined or other appropriate1220

information about the statistical significance of the experiments?1221

Answer: [Yes]1222

Justification: All results are reported with standard error.1223

Guidelines:1224

• The answer NA means that the paper does not include experiments.1225

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1226

dence intervals, or statistical significance tests, at least for the experiments that support1227

the main claims of the paper.1228
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• The assumptions made should be given (e.g., Normally distributed errors).1234
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of the mean.1236

• It is OK to report 1-sigma error bars, but one should state it. The authors should1237

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1238

of Normality of errors is not verified.1239

• For asymmetric distributions, the authors should be careful not to show in tables or1240

figures symmetric error bars that would yield results that are out of range (e.g. negative1241

error rates).1242

• If error bars are reported in tables or plots, The authors should explain in the text how1243

they were calculated and reference the corresponding figures or tables in the text.1244

8. Experiments compute resources1245

Question: For each experiment, does the paper provide sufficient information on the com-1246

puter resources (type of compute workers, memory, time of execution) needed to reproduce1247

the experiments?1248

Answer: [Yes]1249

Justification: The computing resource is described in experiments section.1250

Guidelines:1251

• The answer NA means that the paper does not include experiments.1252

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1253

or cloud provider, including relevant memory and storage.1254
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• The paper should provide the amount of compute required for each of the individual1255

experimental runs as well as estimate the total compute.1256

• The paper should disclose whether the full research project required more compute1257

than the experiments reported in the paper (e.g., preliminary or failed experiments that1258

didn’t make it into the paper).1259

9. Code of ethics1260

Question: Does the research conducted in the paper conform, in every respect, with the1261

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1262

Answer: [Yes]1263

Justification: The authors reviewed the NeurIPS Code of Ethics.1264

Guidelines:1265

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1266

• If the authors answer No, they should explain the special circumstances that require a1267

deviation from the Code of Ethics.1268

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1269

eration due to laws or regulations in their jurisdiction).1270

10. Broader impacts1271

Question: Does the paper discuss both potential positive societal impacts and negative1272

societal impacts of the work performed?1273

Answer: [NA]1274

Justification: This work is a foundational research.1275

Guidelines:1276

• The answer NA means that there is no societal impact of the work performed.1277

• If the authors answer NA or No, they should explain why their work has no societal1278

impact or why the paper does not address societal impact.1279

• Examples of negative societal impacts include potential malicious or unintended uses1280

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1281

(e.g., deployment of technologies that could make decisions that unfairly impact specific1282

groups), privacy considerations, and security considerations.1283

• The conference expects that many papers will be foundational research and not tied1284

to particular applications, let alone deployments. However, if there is a direct path to1285

any negative applications, the authors should point it out. For example, it is legitimate1286

to point out that an improvement in the quality of generative models could be used to1287

generate deepfakes for disinformation. On the other hand, it is not needed to point out1288

that a generic algorithm for optimizing neural networks could enable people to train1289

models that generate Deepfakes faster.1290

• The authors should consider possible harms that could arise when the technology is1291

being used as intended and functioning correctly, harms that could arise when the1292

technology is being used as intended but gives incorrect results, and harms following1293

from (intentional or unintentional) misuse of the technology.1294

• If there are negative societal impacts, the authors could also discuss possible mitigation1295

strategies (e.g., gated release of models, providing defenses in addition to attacks,1296

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1297

feedback over time, improving the efficiency and accessibility of ML).1298

11. Safeguards1299

Question: Does the paper describe safeguards that have been put in place for responsible1300

release of data or models that have a high risk for misuse (e.g., pretrained language models,1301

image generators, or scraped datasets)?1302

Answer: [NA]1303

Justification: The paper poses no such risks.1304

Guidelines:1305

• The answer NA means that the paper poses no such risks.1306
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• Released models that have a high risk for misuse or dual-use should be released with1307

necessary safeguards to allow for controlled use of the model, for example by requiring1308

that users adhere to usage guidelines or restrictions to access the model or implementing1309

safety filters.1310

• Datasets that have been scraped from the Internet could pose safety risks. The authors1311

should describe how they avoided releasing unsafe images.1312

• We recognize that providing effective safeguards is challenging, and many papers do1313

not require this, but we encourage authors to take this into account and make a best1314

faith effort.1315

12. Licenses for existing assets1316

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1317

the paper, properly credited and are the license and terms of use explicitly mentioned and1318

properly respected?1319

Answer: [Yes]1320

Justification: All required libraries and resources are correctly cited.1321

Guidelines:1322

• The answer NA means that the paper does not use existing assets.1323

• The authors should cite the original paper that produced the code package or dataset.1324

• The authors should state which version of the asset is used and, if possible, include a1325

URL.1326

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1327

• For scraped data from a particular source (e.g., website), the copyright and terms of1328

service of that source should be provided.1329

• If assets are released, the license, copyright information, and terms of use in the1330

package should be provided. For popular datasets, paperswithcode.com/datasets1331

has curated licenses for some datasets. Their licensing guide can help determine the1332

license of a dataset.1333

• For existing datasets that are re-packaged, both the original license and the license of1334

the derived asset (if it has changed) should be provided.1335

• If this information is not available online, the authors are encouraged to reach out to1336

the asset’s creators.1337

13. New assets1338

Question: Are new assets introduced in the paper well documented and is the documentation1339

provided alongside the assets?1340

Answer: [NA]1341

Justification: The paper does not release new assets.1342

Guidelines:1343

• The answer NA means that the paper does not release new assets.1344

• Researchers should communicate the details of the dataset/code/model as part of their1345

submissions via structured templates. This includes details about training, license,1346

limitations, etc.1347

• The paper should discuss whether and how consent was obtained from people whose1348

asset is used.1349

• At submission time, remember to anonymize your assets (if applicable). You can either1350

create an anonymized URL or include an anonymized zip file.1351

14. Crowdsourcing and research with human subjects1352

Question: For crowdsourcing experiments and research with human subjects, does the paper1353

include the full text of instructions given to participants and screenshots, if applicable, as1354

well as details about compensation (if any)?1355

Answer: [NA]1356

Justification: The paper does not involve crowdsourcing nor research with human subjects.1357
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Guidelines:1358

• The answer NA means that the paper does not involve crowdsourcing nor research with1359

human subjects.1360

• Including this information in the supplemental material is fine, but if the main contribu-1361

tion of the paper involves human subjects, then as much detail as possible should be1362

included in the main paper.1363

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1364

or other labor should be paid at least the minimum wage in the country of the data1365

collector.1366

15. Institutional review board (IRB) approvals or equivalent for research with human1367

subjects1368

Question: Does the paper describe potential risks incurred by study participants, whether1369

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1370

approvals (or an equivalent approval/review based on the requirements of your country or1371

institution) were obtained?1372

Answer: [NA]1373

Justification: The paper does not involve crowdsourcing nor research with human subjects.1374

Guidelines:1375

• The answer NA means that the paper does not involve crowdsourcing nor research with1376

human subjects.1377

• Depending on the country in which research is conducted, IRB approval (or equivalent)1378

may be required for any human subjects research. If you obtained IRB approval, you1379

should clearly state this in the paper.1380

• We recognize that the procedures for this may vary significantly between institutions1381

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1382

guidelines for their institution.1383

• For initial submissions, do not include any information that would break anonymity (if1384

applicable), such as the institution conducting the review.1385

16. Declaration of LLM usage1386

Question: Does the paper describe the usage of LLMs if it is an important, original, or1387

non-standard component of the core methods in this research? Note that if the LLM is used1388

only for writing, editing, or formatting purposes and does not impact the core methodology,1389

scientific rigorousness, or originality of the research, declaration is not required.1390

Answer: [NA]1391

Justification: The core method development in this research does not involve LLMs1392

Guidelines:1393

• The answer NA means that the core method development in this research does not1394

involve LLMs as any important, original, or non-standard components.1395

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1396

for what should or should not be described.1397
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