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ABSTRACT

Utilizing vision and language models (VLMs) pre-trained on internet-scale image-
text pairs is becoming a promising paradigm for open-vocabulary vision tasks.
This work conducts an extensive study for multimodal open-vocabulary video
classification via pre-trained VLMs by leveraging motion and audio that naturally
exist in the video. We design an asymmetrical cross-modal fusion mechanism
to aggregate multimodal information differently for video and optical flow / au-
dio. Experiments on Kinetics and VGGSound show that introducing more modal-
ities significantly improves the accuracy on seen classes, while generalizing better
to unseen classes over existing approaches. Despite its simplicity, our method
achieves state-of-the-art results on UCF and HMDB zero-shot video action recog-
nition benchmarks, significantly outperforming traditional zero-shot techniques,
video-text pre-training methods and recent VLM-based approaches. Code and
models will be released.

1 INTRODUCTION

Building open-vocabulary models capable of predicting beyond a fixed set of training classes is of
crucial importance in computer vision. Recently, vision and language models (VLMs) pre-trained
on internet-scale image-text pairs, e.g., CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021),
demonstrate impressive transferability on a wide range of vision tasks. Utilizing strong pre-trained
VLMs is becoming a promising paradigm for open-vocabulary vision tasks including object detec-
tion (Gu et al., 2022) and image segmentation (Ghiasi et al., 2021; Li et al., 2022a).

In this work, we focus on the novel challenging task of multimodal open-vocabulary video classifi-
cation via pre-trained VLMs. We set up open-vocabulary video benchmarks by utilizing two existing
large-scale multimodal video datasets: Kinetics-700 (Carreira et al., 2019) and VGGSound (Chen
et al., 2020). Specifically, we constructed two sets of classes: base (seen) and novel (unseen). For
base classes, we have both training and testing videos, aiming at helping the pre-trained VLMs adapt
to the video domain. While for novel classes, we only have testing videos, mimicking the real-world
challenge of open-vocabulary video classification. To the best of our knowledge, we are the first to
study how to leverage pre-trained VLMs for multimodal open-vocabulary video classification.

We start with directly fine-tuning the vision encoder of CLIP (Radford et al., 2021) with the language
encoder fixed, using the training videos from base classes. As shown in Fig. 1 (a-d), although there
is a decent performance gain for base classes, the accuracy for novel classes decreases significantly.
This observation corroborates with Zhou et al. (2022) on adapting pre-trained VLMs.

On the other hand, despite rich multimodal contents in internet videos, signals such as audio and
motion are less explored in recent open-vocabulary models. This is in stark contrast to the human
perception system that heavily relies on multimodal signals (Smith & Gasser, 2005). Can we lever-
age multimodal information to improve open-vocabulary models?

Instead of using specially designed modality-specific encoders (Wang et al., 2016; Hershey et al.,
2017), we choose a more straightforward path by directly utilizing the pre-trained vision encoder
from VLMs with minimal modifications to deal with optical flow and audio spectrogram.

We then conduct the same experiments by fine-tuning CLIP’s vision encoder but instead using flow
or audio as the input. As shown in Fig. 1 (e-h), surprisingly, we find that fine-tuning on base classes
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Figure 1: Fine-tuning pre-trained CLIP with video, flow and audio modalities. For all three
modalities, fine-tuning on labeled base classes leads to significant accuracy improvement (a, c, e, g).
However, when evaluating the same model on novel classes, the video modality shows decreasing
performance (b, d), while the performance for both flow and audio modality is improving (f, h).

is able to also improve the performance on novel classes. This suggests that we may use flow or
audio modality to improve the base to novel generalization of video modality.

In light of these observations, we propose MOV, a simple yet effective method for Multimodal
Open-Vocabulary video classification. Fig. 2 shows an overview of our method. In MOV, we design
a novel asymmetrical cross-modal fusion mechanism using cross-attention to leverage complemen-
tary multimodal information differently for video and optical flow / audio. The core idea is to exploit
the strong transferability in the pre-trained vision encoder, while allowing greater flexibility in fine-
tuning flow and audio encoders. MOV is trained using multimodal inputs from base classes and is
able to predict both base and novel classes during inference.

We carry out extensive experiments and ablation studies on Kinetics-700 (Carreira et al., 2019)
and VGGSound (Chen et al., 2020). MOV shows clear improvements over CLIP (Radford et al.,
2021), recent CLIP adaptation techniques (Zhou et al., 2021; Gao et al., 2021), as well as video-
text pre-training methods (Akbari et al., 2021) on both base and novel classes. MOV also achieves
state-of-the-art results on UCF and HMDB zero-shot video action recognition benchmarks, signifi-
cantly outperforming traditional zero-shot methods, state-of-the-art VLM adaption techniques, and
a variety of video-text pre-training approaches. Furthermore, MOV is scalable with much stronger
backbones, indicating its potential to be incorporated with large vision and language models.

2 RELATED WORK

Vision and language models. Learning a joint embedding space from vision and language modali-
ties has been extensively studied during the past decade. Early works usually first encode two modal-
ities separately, using hand-crafted descriptors (Elhoseiny et al., 2013) or deep networks (Lei Ba
et al., 2015) for images, and skip-gram text models for languages (Frome et al., 2013). The cross-
modality alignment is then achieved by metric learning (Frome et al., 2013) or language concepts (Li
et al., 2017). Recently, learning vision and language modalities jointly through contrastive learn-
ing (Hadsell et al., 2006; Oord et al., 2018) becomes a promising direction. Impressive perfor-
mance has been achieved by utilizing stronger encoders for vision (Dosovitskiy et al., 2021), lan-
guage (Vaswani et al., 2017) and web-scale pre-training data (Hinton et al., 2015; Radford et al.,
2021). CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) are two representative approaches
which show strong zero-shot 1 performance on various downstream tasks. Despite this strong base-
line, adapting pre-trained VLMs to specific vision domains in a more effective way remains critical
and is being actively studied. Examples abound, including image classification (Zhou et al., 2021;
2022; Gao et al., 2021), object detection (Gu et al., 2022; Zhong et al., 2022; Kamath et al., 2021; Li
et al., 2022b), image segmentation (Ghiasi et al., 2021; Li et al., 2022a), audio classification (Guzhov
et al., 2022) and video action recognition (Wang et al., 2021; Ju et al., 2021; Ni et al., 2022). Our
method extends the existing research by adapting pre-trained VLMs to multimodal video and inves-
tigating the impact of additional input modalities like flow and audio.

1We use the term “zero-shot” when we need to align with settings described in some existing works. Other-
wise, we would use “open-vocabulary” which we believe is a more precise term.
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Figure 2: Overview of the proposed multimodal open-vocabulary (MOV) method. We use
the same encoder architecture from the pre-trained vision and language model to encode the video
frames, optical flow, and audio spectrogram. We then apply a transformer head for temporal fu-
sion. We design an asymmetrical cross-attention mechanism for fusion across modalities. During
training, we optimize different modalities simultaneously via maximizing their similarities with the
corresponding text embeddings. During inference, we use different paths to leverage video and
audio / flow modalities for base and novel class prediction.

Open-vocabulary video classification. Zero-shot or open-vocabulary video action recognition is a
representative task in this domain. Similar to early works of vision and language learning, the video
input and labeled texts are encoded with modality-specific pre-trained models such as S3D (Xie
et al., 2018), R(2+1)D (Tran et al., 2018) for video, and Word2Vec (Mikolov et al., 2013) for text.
Since the generated video and text embeddings are not aligned, various methods have been pro-
posed to bridge the gap by mapping two modalities into a joint embedding space (Wang & Chen,
2017; Chen & Huang, 2021; Gao et al., 2019; Wu et al., 2016; Xu et al., 2016; Zhu et al., 2018),
mapping vision modality to language space (Bishay et al., 2019; Brattoli et al., 2020; Hahn et al.,
2019; Xu et al., 2017) or mapping language modality to vision space (Mandal et al., 2019; Zhang &
Peng, 2018). These joint embedding mapping methods are further extended to audiovisual classifi-
cation (Mercea et al., 2022; Mazumder et al., 2021; Parida et al., 2020). Our approach shows that
we can significantly improve the performance of open-vocabulary video classification by leveraging
strong pre-trained VLMs and other modalities like flow and audio. To our knowledge, this has not
been done by prior works in this field.

Mutlimodal fusion for video. Videos are a natural source of multimodal data including motion
and audio. Two-stream networks is used to model video and optical flow simultaneously for action
recognition (Simonyan & Zisserman, 2014; Wang et al., 2016; Feichtenhofer et al., 2016; 2017).
Late fusion is adopted (Simonyan & Zisserman, 2014; Wang et al., 2016) and then thoroughly stud-
ied (Feichtenhofer et al., 2016; 2017) on how to better perform spatio-temporal fusion from two
modalities. As in the domain of audiovisual fusion, early methods (Chen & Rao, 1998) usually
adopt straightforward score fusion or stacking input data for early fusion. Later research (Kazakos
et al., 2019; Xiao et al., 2020; Fayek & Kumar, 2020; Nagrani et al., 2021; Chen & Ho, 2022; Chen
et al., 2021; Zhao et al., 2022) focus on developing better mid or late fusion strategies to improve
the final performance. Different from existing works focusing on a fixed set of classes, we use
multimodal fusion to help open-vocabulary video models generalize better to novel classes.

3 METHOD

An overview of our proposed method is shown in Fig. 2. We next describe each component.
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3.1 MODALITY-SPECIFIC ENCODING

Given a pre-trained vision and language model, e.g., CLIP (Radford et al., 2021), we denote its
vision encoder as h(·|θh) and its language encoder as g(·|θg). For a multimodal video input, we
sample N RGB frames V and calculate the corresponding optical flow images F , resulting in V =
{v1, v2, . . . , vN} and F = {f1, f2, . . . , fN}. We also generate the spectrogram image A from the
raw audio waveform. More implementation details can be found in Sec. 4. We use the same encoder
architecture h(·|·) to extract feature representations for video, flow and audio modalities, denoted
as hv(·|θv), hf (·|θf ), and ha(·|θa) respectively. Model parameters θv , θf and θa are all initialized
with the weight θh from the pre-trained VLM’s vision encoder. Apart from being simple and easy to
implement, this design has two additional advantages: 1) the performance of adopting the pre-trained
VLM’s vision encoder to other modalities is competitive against in-domain methods (a detailed
study in Appendix A); 2) the vision encoder is trained to align with the language encoder, potentially
helping the generalization from base to novel classes. We encode each modality separately as:

v = hv(V |θv), f = hf (F |θf ), a = ha(A|θa), (1)

where v and f are features fromN frames, and a is the representation of a single spectrogram image.

To better aggregate the temporal features of video and flow modalities, we attach temporal fusion
networks φv(·) and φf (·), consisting of L transformer layers each, on top of hv(·|θv) and hf (·|θf ).
We denote the input of the l-th transformer layer as zl and the input z0 can be either v or f . Then
the forward pass of the l-th layer in φv(·) and φf (·) can be formulated as:

yl = MSA(LN(zl)) + zl, (2)

zl+1 = MLP(LN(yl)) + yl, (3)

where LN stands for layer normalization, MSA represents multi-head self-attention, and MLP means
multi-layer perceptron. For audio feature a, we simply attach an MLP module upon the backbone.
We obtain the temporally fused features as:

vt = φv(v), ft = φf (f), at = MLP(a). (4)

Finally, for the text modality, suppose we have p base classes with labels. We fill each of the class
names into 28 video classification prompts provided by CLIP (Radford et al., 2021) like “a video of
a person doing {class name}” and then encode the sentence using the pre-trained language encoder
g(·|θg) from VLM. The embedding of each class is averaged over all templates denoted as {Bi}pi=1.

3.2 ASYMMETRICAL MULTIMODAL FUSION

We adopt an asymmetrical cross-attention mechanism to fuse mutlimodal features. Without loss of
generality, as shown in Fig. 2, our method described here is for fusing one of {flow, audio}modality
with video modality. The algorithm can be easily extended to fusing video with more modalities.

For the video modality, we extract the information from other modalities to enhance the performance
of video feature. Thus we use vt as the input for attention query, and ft or at from the other modality
as the input for attention key and value. The fused multimodal video feature vm can be written as:

vt = MCA(LN(vt),LN(xt)) + vt, xt ∈ {ft,at}, (5)

vm = AvgPool
(
MLP(LN(vt)) + vt

)
, (6)

where MCA denotes multi-head cross-attention, AvgPool denotes temporal average pooling.

For the audio and flow modalities, we adopt an asymmetrical design aiming at incorporating the
information from video modality to enhance the generalization ability of the feature to novel classes.
Since the video temporal fusion network φv(·) for generating the video feature vt are trained on base
classes, vt losses the generalization ability to novel classes (shown in Fig. 1). Therefore we choose
to directly use the frozen vision encoder’s output v instead of vt for better generalization to novel
classes. We obtain the fused multimodal flow and audio feature fm and am as:

ft = MCA(LN(ft),LN(v)) + ft, at = MCA(LN(at),LN(v)) + at, (7)

fm = AvgPool
(
MLP(LN(ft)) + ft

)
, am = AvgPool

(
MLP(LN(at)) + at

)
. (8)
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3.3 TRAINING AND INFERENCE ON BASE CLASSES

During training, each input multimodal video has a corresponding label y belonging to the base
classes. We would optimize different modalities simultaneously via maximizing the video-text,
flow-text and audio-text similarity. The training loss function can be formulated as:

L = α(− log
exp(sim(vm,By)/τ)∑p
i=1 exp(sim(vm,Bi)/τ)

) + (1− α)(− log
exp(sim(xm,By)/τ)∑p
i=1 exp(sim(xm,Bi)/τ)

), (9)

where xm ∈ {fm,am} is the final fused flow or audio feature, α is the weight for balancing two loss
terms, sim(·, ·) is the cosine similarity, τ is a pre-defined temperature parameter. During training,
we freeze the video encoder and the text encoder to retain their strong generalization to novel classes
and save computation, while for other two modalities flow and audio, we fine-tune the encoder end-
to-end. An ablation study on fine-tuning different number of layers can be found in Tab. 6.

For inference on base classes, we compute the probability belonging to the j-th class by:

P (j) =
exp(sim(vm,Bj)/τ)∑p
i=1 exp(sim(vm,Bi)/τ)

, j ∈ {1, 2, . . . , p}. (10)

3.4 GENERALIZATION TO NOVEL CLASSES

Similar to base classes, we obtain the text embeddings for novel classes as {Ni}qi=1, where q is the
number of novel classes. In addition to fused features fm or am, we also incorporate the video fea-
ture v extracted from the frozen video encoder, followed by a temporal average pooling. Similar to
Eq. 10, we compute the probability predictions as (here we only show flow modality for simplicity):

Pf (j) =
exp(sim(fm,Nj)/τf )∑q
i=1 exp(sim(fm,Ni)/τf )

, Pv(j) =
exp(sim(v,Nj)/(τv)∑q

i=1 exp(sim(v,Ni)/(τv))
, j ∈ {1, 2, . . . , q}.

(11)
We denote the probability distribution followed by {pf (j)|qj=1} and {pv(j)|qj=1} as Df and Dv .
In our experiments we find the curve of Dv tends to be much flatter (or have higher information
entropy) than Df when the temperatures τv and τf are both set to the CLIP’s default value of 0.01,
resulting in poor performance. We find simply lowering τv to 0.003 while keeping τf and τa as 0.01
solves this issue. A detailed ablation study about the temperature can be found in Appendix B.

The final probability predictions for novel classes are calculated by a weighted sum:

P (j) = βPf (j) + (1− β)Pv(j). (12)

4 EXPERIMENTS

4.1 DATASETS

We describe the details of dataset splits for benchmarking multimodal open-vocabulary video clas-
sification and preparing flow and audio modalities.

Kinetics-700 (Carreira et al., 2019) splits. Kinetics-700 contains around 650k video clips anno-
tated with 700 human action classes. Apart from the visual appearance, motion plays an important
role for distinguishing different action classes. For dataset split, we randomly select 400 classes as
base classes and the testing videos of the rest 300 classes are used for novel class evaluation.

Kinetics-700 optical flow. We follow a standard procedure (Xie et al., 2018; Han et al., 2020a;b)
to use the TV-L1 algorithm (Zach et al., 2007) to extract optical flow in an unsupervised manner. To
accommodate for pre-trained vision encoders, we first truncate the vertical and horizontal motion
values to [−20, 20], then append a third all-zero channel. Finally we do a shift and scale transfor-
mation to map [−20, 20] to [0, 255].

VGGSound (Chen et al., 2020) splits. VGGSound contains around 200k video clips belonging to
a total number of 309 classes. Different from other audiovisual datasets like AudioSet (Gemmeke
et al., 2017), VGGSound ensures the source of the sound is visually present inside the same video.
Thus we consider this dataset as an excellent test bed for our proposed method. We randomly select
154 base classes for training and leave the rest 155 classes for novel classes evaluation.
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VGGSound audio spectrogram. We use the pre-processing practice of audio spectrogram trans-
former (AST) (Gong et al., 2021) to convert wavforms to spectrogram images. Each raw audio signal
is re-sampled to 16kHz and converted to mono channel. We then calculate the log Mel spectrogram
with 128 frequency bins. The processing Hamming window is 25ms with a hop length set to 10ms.
For t second audio input, the generated 2D spectrogram would have the shape of 128 × 100t. We
normalize the spectrogram by subtracting its mean value and dividing its standard deviation.

4.2 IMPLEMENTATION

Data augmentation and tokenization. For each video, we first randomly sample 16 frames with a
stride of 4 from the whole video sequence. We then apply the standard image augmentation used on
ImageNet (He et al., 2016; 2019) with the same augmentation parameters across all frames to keep
temporal consistency (Qian et al., 2021). For optical flow, we follow the practice of Xie et al. (2018)
and Han et al. (2020a;b) by directly treating it as images and apply the same augmentation with
the video. The augmented output tensors have the shape of (16, 224, 224, 3) from both modalities
which can be directly fed into CLIP’s ViT encoder. For audio, we apply specialized augmentations
designed for spectrogram following Gong et al. (2021) and Nagrani et al. (2021). As the videos in
VGGSound are all 10-second long, the generated spectrogram has a shape of (128, 100 × 10). We
first conduct random cropping of (128, 800), sampling all frequency bands with a time duration of
8 seconds. SpecAugment (Park et al., 2019) is applied subsequently with a time masking range of
192 frames and frequency masking of 48 bins. Finally, to accommodate this single channel output
with the pre-trained tokenization layer, we make two necessary changes as in Gong et al. (2021):
1) expanding the spectrogram to three duplicated channels, 2) bilinearly interpolating the original
positional encoding for spectrogram images with a different spatial resolution.

Network architecture. We adopt CLIP’s ViT encoder for video, flow, and audio and the trans-
former encoder for text. We use 2 transformer layers for temporal fusion (L = 2) and 1 transformer
layer for cross-attention, each layer has an embedding dimension of 512 and 8 attention heads. For
cross-attention, query and key-value inputs use separate layer normalization.

Training hyper-parameters. We adopt the same hyper-parameters for experiments on Kinetics-
700 and VGGSound except for training epochs. We use a batch size of 1024 on 128 Cloud TPUv3
cores, AdamW (Loshchilov & Hutter, 2017) optimizer with a weight decay of 0.05 and an initial
learning rate of 1e-4 followed by half-cosine decay (He et al., 2019). We set the weight in Eq. 9 as
α = 0.5. We train 100 epochs on Kinetics-700 and 20 epochs on VGGSound since we observe an
overfit using audio modality when trained longer.

Inference hyper-parameters. For video and flow, we use 4×3 views following Arnab et al. (2021)
and Liu et al. (2022), where a video is uniformly sampled into 4 clips temporally, and 3 spatial crops
for each clip. For audio, we use 12 temporal views without spatial cropping. The final score is
averaged over 12 views. For novel classes, we set the weight β in Eq. 12 to 0.25.

4.3 MULTIMODAL OPEN-VOCABULARY VIDEO CLASSIFICATION

We evaluate MOV on Kinetics-700 to utilize modalities of video, optical flow, and text, and on
VGGSound to explore the combination of video, audio and text.

Comparison baselines. We evaluate four baselines: 1) CLIP (Radford et al., 2021), which directly
encodes the video and class names into embeddings with pre-trained encoders. The final prediction
is given by comparing similarity scores between video and text embeddings; 2) CoOp (Zhou et al.,
2021), which learns continuous text prompt embeddings instead of manually selected templates for
better adaptation to downstream tasks; 3) CLIP-Adapter (Gao et al., 2021), which attaches adapter
heads to both video and text encoder; 4) VATT (Akbari et al., 2021), which is a state-of-the-art
multimodal video pre-trainning method and can do zero-shot inference for video classification. We
use the same datasets, backbone and hyper-parameters as ours introduced in Sec. 4.2 to train (CLIP
and VATT do not require training) and evaluate all methods.

Results. Tab. 1 shows results on Kinetics-700. Both CoOp and CLIP-Adapter achieve better perfor-
mance than CLIP on base class prediction. While for novel classes, we observe a large accuracy drop
compared with CLIP. The degraded performance in harmonic mean of these two methods indicates
their loss of the generalization ability on novel classes outweigh their improvement on base classes.
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Table 1: Open-vocabulary video classification on Kinetics-700 (Carreira et al., 2019). Modali-
ties are V: Vision, F: Optical Flow and T: Text. MOV obtains the best performance on both base and
novel classes, surpassing CLIP (Radford et al., 2021) by 24.1% and 1.4%, respectively.

method modalities base acc. novel acc. harmonic mean

VATT (Akbari et al., 2021) V, T 19.8 21.6 20.7
CLIP (Radford et al., 2021) V, T 51.2 56.7 53.8
CoOp (Zhou et al., 2021) V, T 58.9 45.7 51.5
CLIP-Adapter (Gao et al., 2021) V, T 66.5 36.2 46.9
MOV (Ours) V, F, T (+8.8) 75.3 (+1.4) 58.1 (+11.8) 65.6

Table 2: Open-vocabulary video classification on VGGSound (Chen et al., 2020). Modalities
are V: Vision, A: Audio and T: Text. MOV achieves the best performance on both base and novel
classes, surpassing CLIP (Radford et al., 2021) by 19.9% and 2.7%, respectively.

method modalities base acc. novel acc. harmonic mean

VATT (Akbari et al., 2021) V, A, T 21.6 23.7 22.6
CLIP (Radford et al., 2021) V, T 48.5 48.8 48.6
CoOp (Zhou et al., 2021) V, T 56.9 42.0 48.3
CLIP-Adapter (Gao et al., 2021) V, T 60.0 27.5 37.7
MOV (Ours) V, A, T (+8.4) 68.4 (+2.7) 51.5 (+10.2) 58.8

Our method outperforms CLIP-Adapter by 8.8% on base classes, demonstrating the effectiveness
of leveraging multimodal information. On novel classes, we observe an improvement of 1.4% over
CLIP, indicating that bringing in flow modality improves the generalization of the video model.

We observe similar trends on VGGSound in Tab. 2. CoOp and CLIP-Adapter improve base classes
but fail to generalize to novel classes, resulting in a lower harmonic mean of accuracy compared with
CLIP. MOV, when fused with rich audio information, obtains a performance gain of 2.7% over CLIP
on novel classes. We also conduct an additional study of generalized open-vocabulary prediction in
Appendix C, where the information of whether a class is from base or novel is not known.

Backbone scaling. It is also important to analyze the scalability of MOV with stronger backbones.
We experiment with the largest ViT-L/14 model released by CLIP as the vision encoder and a text
encoder with embedding dimension increased to 768 and attention heads increased to 12. ViT-L/14
contains 3× more parameters than ViT-B/16 and we observe around 8% improvement on direct
CLIP zero-shot evaluation on Kinetics-700 and 5% improvement on VGGSound, as indicated in the
first 2 rows of Tab. 3. MOV is able to preserve the performance gain brought by using stronger CLIP
models (last 2 rows of Tab. 3). Despite the significantly stronger CLIP baseline, MOV still improves
20.5% and 1.6% on Kinetics-700, and 19.3% and 2.0% on VGGSound, when comparing row 2 and
row 4 of Tab. 3. The scaling performance shows that MOV has a great potential to be incorporated
into recent giant vision and language models (Yuan et al., 2021; Yu et al., 2022).

Table 3: Scalability of MOV. MOV scales well with a stronger ViT-L/14 backbone.

method backbone Kinetics-700 VGGSound
base acc. novel acc. base acc. novel acc.

CLIP (Radford et al., 2021) ViT-B/16 51.2 56.7 48.5 48.8
CLIP (Radford et al., 2021) ViT-L/14 59.6 65.3 52.6 54.1
MOV (Ours) ViT-B/16 75.3 58.1 68.4 51.5
MOV (Ours) ViT-L/14 (+4.8) 80.1 (+8.8) 66.9 (+3.5) 71.9 (+4.6) 56.1

4.4 CROSS-DATASET TRANSFER

Pre-training an open-vocabulary or zero-shot video classification model on large datasets like Ki-
netics (Carreira et al., 2019), ImageNet (Deng et al., 2009) or Sports-1M (Karpathy et al., 2014)
and evaluating on UCF101 (Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011) is the most
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Table 4: Cross-dataset zero-shot transfer on UCF101 and HMDB51. We evaluate our proposed
MOV without any additional training on two classic video action classification benchmarks. MOV
shows the best performance, outperforming classic zero-shot video classification methods, a variety
of video and language pre-training approaches, as well as recent CLIP adaptation methods Action-
CLIP and X-CLIP, demonstrating a strong cross-dataset generalization ability.

method vision† + text‡ pre-train§ UCF∗/UCF HMDB∗/HMDB

GA (Mishra et al., 2018) C3D + W2V S1M 17.3±1.1 / - 19.3±2.1 / -
TARN (Bishay et al., 2019) C3D + W2V S1M 19.0±2.3 / - 19.5±4.2 / -
CWEGAN (Mandal et al., 2019) I3D + W2V IN, K400 26.9±2.8 / - 30.2±2.7 / -
TS-GCN (Gao et al., 2019) GLNet + W2V IN-shuffle 34.2±3.1 / - 23.2±3.0 / -
PS-GNN (Gao et al., 2020) GLNet + W2V IN-shuffle 36.1±4.8 / - 25.9±4.1 / -
E2E (Brattoli et al., 2020) R(2+1)D + W2V K700 48.0 / 37.6 32.7 / 26.9
DASZL (Kim et al., 2021) TSM + Attributes IN, K400 48.9±5.8 / - - / -
ER (Chen & Huang, 2021) TSM + BERT IN, K400 51.8±2.9 / - 35.3±4.6 / -
ResT (Lin et al., 2022) RN101 + W2V K700 58.7±3.3 / 40.6 41.1±3.7 / 34.4
MIL-NCE (Miech et al., 2020) S3D + W2V HT100M - / 29.3 - / 10.4
VideoCLIP (Xu et al., 2021) S3D + TSF HT100M - / 22.5 - / 11.3
VATT (Akbari et al., 2021) ViT + TSF HT100M - / 18.4 - / 13.2
CLIP (Radford et al., 2021) ViT-B/16 + TSF WIT 79.9±3.8 / 73.0 54.0±4.1 / 46.1
ActionCLIP (Wang et al., 2021) ViT-B/16 + TSF WIT+ - / 69.5 - / 50.5
X-CLIP (Ni et al., 2022) ViT-B/16 + TSF WIT+ - / 72.0 - / 44.6
MOV (Ours) ViT-B/16 + TSF WIT+ 82.6±4.1 / 76.2 60.8±2.8 / 52.1
MOV (Ours) ViT-L/14 + TSF WIT+ 87.1±3.2 / 80.9 64.7±3.2 / 57.8
† vision encoder: C3D (Tran et al., 2015), I3D (Carreira & Zisserman, 2017), GLNet (Szegedy et al., 2015), R(2+1)D (Tran et al., 2018),
TSM (Lin et al., 2019), RN101 (He et al., 2016), S3D (Xie et al., 2018), ViT (Dosovitskiy et al., 2021).
‡ text encoder: W2V (Mikolov et al., 2013), BERT (Devlin et al., 2019), TSF (Vaswani et al., 2017).
§ pre-train data: S1M (Karpathy et al., 2014), IN (Deng et al., 2009), K400 (Kay et al., 2017), IN-shuffle (Mettes et al., 2016), K700 (Carreira
et al., 2019), HT100M (Radford et al., 2021), WIT (Radford et al., 2021), WIT+ has additional training on Kinetics.

common paradigm in the literature. Two settings are used for performance evaluation (Brattoli et al.,
2020). The first is randomly choosing half of the classes in the test set and evaluate on the selected
subset. To alleviate fluctuations caused by randomness, the evaluation is conducted independently
for 10 times and we report the mean accuracy with standard deviation of all trials. We donate this
setting as UCF∗ and HMDB∗ in Tab. 4. The second evaluation setting is directly evaluating on the
whole dataset, which is suitable for methods pre-trained purely on other datasets (Brattoli et al.,
2020; Wang et al., 2021; Lin et al., 2022). We train MOV only using 400 base classes subsampled
from Kinectis-700, with video, flow and text. For evaluating on UCF and HMDB, we also use the
same three modalities. The flow processing follows the same procedure described in Sec. 4.1.

We present a comprehensive comparison in Tab. 4. As in Lin et al. (2022), we list the vision and text
encoder and pre-train data used. We compare with three types of state-of-the-art methods: 1) zero-
shot video classification approaches (top part), 2) video and language pre-training methods (Miech
et al., 2020; Xu et al., 2021; Akbari et al., 2021) (middle part), 3) CLIP adaptation methods (Wang
et al., 2021; Ni et al., 2022) (bottom part). Compared to these methods, we find utilizing pre-
trained vision and language models like CLIP yield much stronger performance. MOV achieves
performance gains over CLIP with around 3% on UCF101 and around 6% on HMDB51. Compared
with recently proposed adaptation methods like ActionCLIP and X-CLIP, MOV performs 4.2% to
6.7% better on UCF101 and 1.6% to 7.5% better on HMDB51.

4.5 ABLATION STUDY

Multimodal fusion for base classes. As demonstrated in Fig. 1 and Fig. 2, the asymmetrical cross-
attention mechanism is proposed to improve the generalization to novel classes. Here we justify
cross-attention also has the advantage for base classes. Tab. 5 shows, for Kinetics-700, simply using
the optical flow as input obtains 54.2% on base classes. When using score fusion, compared with
video modality, we observe identical performance on base classes. Equipped with the proposed
multimodal cross-attention fusion mechanism, we obtain 2.6% improvement on base classes. For
VGGSound, the performance of audio only is quite close to video only, and the score fusion facil-
itates base classes with a significant 6.5% improvement. Our cross-attention mechanism is able to
further improve upon this strong baseline by 0.7%.
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Table 5: Ablation on multimodal fusion. Mutlimodal fusion improves upon using single modality,
and the proposed cross-attention works better than score fusion.

fusion method Kinetics-700 base acc. VGGSound base acc.

Flow or Audio only 54.2 59.5
Video only 72.7 61.2
Mutlimodal score fusion 72.7 67.7
Mutlimodal cross-attention (+2.6) 75.3 (+0.7) 68.4

Fine-tuning. We fine-tune different layers of the encoder for flow and audio modality and show
results in Tab. 6. As mentioned in Sec. 3, we use the same ViT-B/16 encoder and the same initial-
ization weight for video, flow and audio. We iterate choices of fine-tuning the last 1, 3, 6, 9, and all
12 layers and find consistent performance gains with the increasing number of trainable layers on
both modalities. Thus, we adopt the setting of fine-tuning all layers for flow and audio modality.

Table 6: Ablation on fine-tuning the vision encoder with flow and audio. We report results on
base classes of both datasets. The best setting is fine-tuning all layers of the vision encoder.

trainable layers Kinetics-700 VGGSound
modality base acc. modality base acc.

Last 1 layer Flow 30.5 Audio 40.1
Last 3 layers Flow 38.3 Audio 47.8
Last 6 layers Flow 46.0 Audio 50.8
Last 9 layers Flow 51.6 Audio 57.1
All 12 layers Flow 54.2 Audio 59.5

Per-class accuracy analysis. We analyze and interpret class-wise performance differences between
MOV and CLIP baseline, which only uses video and text. As illustrated in Fig. 3a, we observe strong
gains on classes that require motion understanding, e.g. yawning and long jump. While we also find
decreased performance on classes with subtle or ambiguous motions, e.g. look in mirror and geo-
caching. In Fig. 3b, we observe audio modality can significantly help disambiguate classes sharing
similar visual contents, e.g. people nose blowing and people laughing. For classes being difficult in
the audio domain, e.g. sloshing water and wind noise, we observe decreased performances.

10

0

10

20

30

40 yawning
throwing softball

long jump

10

0

10

20

30

40

looking in
   mirror

mix colors  
geocaching

novel classes (sorted by improvements)

(a) Kinetics with additional flow modality
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(b) VGGSound with additional audio modality

Figure 3: Per-class improvement. We show top 20 classes with the most improvement (%) and top
20 classes with the most degradation (%) when compare the proposed MOV against CLIP.

5 CONCLUSION

We propose a multimodal open-vocabulary video classification method named MOV via adopting
pre-trained vision and language models. Motivated by observing drastic performance differences
when using video, audio, and optical flow to generalize from base to novel classes, we design a
novel asymmetrical cross-modal fusion mechanism to aggregate multimodal information. Extensive
experiments on Kinetics, VGGSound, UCF, and HMDB benchmarks demonstrate the effectiveness
of our method and the potential of scaling to giant vision and language models.
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6 REPRODUCIBILITY STATEMENT

We plan to release our code, dataset splits, and models to facilitate reproducibility. We provided
details of our model, data, implementation and experiments in Sec. 3, Sec. 4 and Appendix B. The
CLIP model (Radford et al., 2021) and all datasets used in this work (Carreira et al., 2019; Chen
et al., 2020; Soomro et al., 2012; Kuehne et al., 2011) are publicly available.

7 ETHICS STATEMENT

The proposed method shows better classification performance on multimodal videos with novel
classes on Kinetics, VGGSound, UCF, and HMDB datasets, indicating its potential for real world
applications. Our method is built upon vision and language models pre-trained on large-scale data
from the internet, which may contain deficiencies and biases. Our models are used only for the
purpose of evaluating research ideas. More rigorous studies for bias, fairness, etc., are required
before using our models for any other purposes.
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APPENDIX

A COMPARISON WITH MODALITY-SPECIFIC PRE-TRAINED NETWORKS

As we haved metioned in the introduction, instead of using modality-specfic pre-trained encoder
networks or methods (Wang et al., 2016; Hershey et al., 2017), we choose a more straightforward
path by directly utilizing the pre-trained vision encoder from VLMs with minimal modifications
to deal with optical flow and audio spectrogram. Here we list the experimental results using the
audio of VGGSound in Tab. 7 to show the effectiveness of our design choice. All methods only use
the audio training data and evaluate on audios. Our MOV based on CLIP’s vision encoder shows
competitive performance compared to other audio specific encoders.

Table 7: Comparison with audio-specific pre-trained networks. MOV shows competitive perfor-
mance compared to other audio specific encoders.

method audio specific VGGSound acc.

Acoustic scene classifier (Wang et al., 2020) 3 39.7
Best baseline of (Chen et al., 2020) 3 51.0
Audio-Slowfast (Kazakos et al., 2021) 3 52.5
MOV (Ours) 7 (+2.1) 54.6

B TEMPERATURE TUNING

As described in Sec. 3.4, in addition to fused flow and audio features of {fm,am}, we also incor-
porate the video feature v extracted from the frozen video backbone to enhance the performance
of generalization to novel classes. We denote the probability distribution followed by {pf (j)|qj=1},
{pa(j)|qj=1} and {pv(j)|qj=1} as Df , Da and Dv . In our experiments we find the curve of Dv tends
to be much flatter (or have higher information entropy) than Df and Da when the temperatures τv ,
τf and τa are all set to the CLIP’s default value of 0.01. Neglecting this difference and combining
the scores as in Eq. 12 would lead to poor performance. We address this problem by lowering τv
so that the distribution of Dv would be more similar to Df and Da (or having similar information
entropy). As shown in Tab. 8, adjusting τv to 0.003 while keeping τf and τa as 0.01 greatly improves
the performance by 20.1% on Kinetics-700 and 15.8% on VGGSound.

Table 8: Ablation on temperature tuning. Compared with using CLIP’s default temperature (the
first row), using a smaller temperature of 0.003 could greatly improve the performance by 20.1% on
Kinetics-700 and 15.8% on VGGSound.

(a) τv tuning on Kinectics-700.

v acc. fm acc. τv final acc.

56.7 30.4 0.01 38.0
56.7 30.4 0.003 58.1
56.7 30.4 0.001 57.1
56.7 30.4 0.0003 56.0
56.7 30.4 0.0001 56.4

(b) τv tuning on VGGSound.

v acc. am acc. τv final acc.

48.8 24.8 0.01 35.7
48.8 24.8 0.003 51.5
48.8 24.8 0.001 49.5
48.8 24.8 0.0003 49.1
48.8 24.8 0.0001 49.0

C DISCUSSION ON GENERALIZED OPEN-VOCABULARY PREDICTION

Our model adopt different inference paths for base and novel classes. The evaluation setting of
dividing classes into base and novel is a very common practice in existing open-vocabulary liter-
ature (Zhou et al., 2021; 2022; Gu et al., 2022; Ghiasi et al., 2021). We follow this established
open-vocabulary setting to conduct experiments and evaluate our method.
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If label category information isn’t given, evaluating purely on unseen classes is the classic setting
of zero-shot evaluation (Xian et al., 2018). We benchmark our method in this zero-shot setting in
Sec. 4.4 Cross-Dataset Transfer. Our method achieves state-of-the-art performance on commonly
used UCF and HMDB zero-shot video classification benchmarks.

Here we consider another setting of generalized open-vocabulary prediction where we train our
model on base classes but the model doesn’t know whether a class is from base or not during infer-
ence. A simple solution is to treat all classes as novel (i.e., use only the “Novel Class Prediction”
path illustrated in Fig. 2). We conduct such experiment on Kinetics-700 by training MOV on 400
base classes and evaluating on all 700 classes by treating all of them as novel classes. In this sce-
nario, we observe detrimental performances for both our method MOV and the CLIP baseline. Since
the number of classes is 2× more (300 to 700), we consider it a reasonable result. MOV improves
upon CLIP in both original (+1.4%) and generalized (+0.7%) open-vocabulary settings for predict-
ing novel classes.

Table 9: Original and generalized open-vocabulary settings on Kinetics-700. MOV outperforms
CLIP in both settings for predicting novel classes.

method original (300-class) generalized (700-class)

CLIP (Radford et al., 2021) 56.7 46.0
MOV (Ours) (+1.4) 58.1 (+0.7) 46.7
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