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4 Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, CNRS, Inria, Inserm,
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Abstract

Despite their predictive capabilities and rapid advancement, the black-box nature of Ar-
tificial Intelligence (AI) models, particularly in healthcare, has sparked debate regarding
their trustworthiness and accountability. In response, the field of Explainable AI (XAI)
has emerged, aiming to create transparent AI technologies. We present a novel approach to
enhance AI interpretability by leveraging texture analysis, with a focus on cancer datasets.
By focusing on specific texture features and their correlations with a prediction outcome
extracted from medical images, our proposed methodology aims to elucidate the underly-
ing mechanics of AI, improve AI trustworthiness, and facilitate human understanding. The
code is available at https://github.com/xrai-lib/xai-texture.
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1. Introduction

Explainable Artificial Intelligence (XAI) was borne from the need to improve the trans-
parency and interpretability of traditionally opaque AI models. Despite the advancements
made by current XAI techniques (e.g., SHAP and Quantus), these methods provide only
a partial understanding of the decision-making processes underlying AI-driven diagnoses.
One promising avenue involves the utilization of Law’s Texture Energy Measure (LTEM)
as a feature extraction method, coupled with an Artificial Neural Network (ANN) to clas-
sify normal-abnormal and benign-malignant images (Setiawan et al., 2015). Previous re-
search underscores that the classification accuracy strongly depends on the quality of the
extracted texture features, indicating its potential as a tool for explainable classification
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(Bouzar-Benlabiod et al., 2023). This study endeavors to leverage advanced texture analy-
sis methods alongside AI segmentation models to elucidate how AI models arrive at their
decisions, charting a course toward greater transparency and interpretability in medical AI
technologies.

2. Methodology

Dataset and Segmentation Models: The open-source curated Breast Imaging Subset
of the Digital Database for Screening Mammography (CBIS-DDSM) dataset was used (Lee
et al., 2017). Patches of both the image and its equivalent mask containing the region of
interest (ROI) were used in deep learning (DL) training instead of the full-sized images.
The dataset was chosen for its detailed annotations and minimal class imbalance. The DL
models selected for training were U-Net, for its precise localization due to a symmetric
architecture (Ronneberger et al., 2015), DeepLabv3, for its atrous spatial pyramid pooling
components which achieve a higher accuracy (Chen et al., 2017), and FCN for its deep
feature extraction capabilities (He et al., 2016). The backbone of FCN and DeepLabv3 is
ResNet101.
Law’s Texture Energy Measure [LTEM]: The LTEM utilizes four primary image char-
acteristics: Level (L5), Edge (E5), Spot (S5), and Ripple (R5) represented as vectors,
combined two at a time, to create 5x5 masks (Fig. 1 [A]). When applied to cancer images
(Fig. 1 [B]), they extract specific texture features (Fig. 1 [C]).

Figure 1: LTEM L5E5-based DeepLabv3 training.

The combination of the base four LTEMs led to the generation of 16 prospective textures.
Some combinations were symmetrical, as they were mirrors of each other. Thus, there are
a total of 9 unique texture masks (Setiawan et al., 2015). The LTEMs were applied to
the cropped CBIS-DDSM dataset to create 9 datasets, each highlighting a specific texture
energy measure. Ten copies of each model were trained for the 9 LTEM datasets, along
with the original cropped dataset, giving us 30 models in total (i.e., [raw data + 9 LTEM
data] * 3 DL models).
Gray Level Co-occurrence Matrix [GLCM]: GLCM - a set of texture-based statistical
measures - was additionally assessed, including Angular Second Moment (ASM), Contrast,
Correlation, Variance, Inverse Difference Moment (IDM), Sum Average, Sum Entropy, En-
tropy, Difference Entropy, Information Measure of Correlation 1 (IMC1), Information Mea-
sure of Correlation 2 (IMC2) and Autocorrelation (Rout et al., 2022). These measures were
extracted for both raw input images and the final layer feature maps of the trained DL
models.
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XAI-TEXTURE

Rank DeepLabv3 FCN U-Net

IoU CS IoU CS IoU CS
Original Model IoU: 87.02 Original Model IoU: 84.86 Original Model IoU: 62.65

1 L5E5: 82.64 L5E5: 0.3037 L5E5: 81.80 L5R5: 0.3212 L5E5: 60.38 L5R5: 0.3019
2 E5E5: 73.85 E5E5: 0.2461 E5E5: 74.60 L5E5: 0.2946 L5S5: 43.83 E5E5: 0.2785
3 L5S5: 73.43 L5R5: 0.2345 L5S5: 72.78 R5S5: 0.2337 S5S5: 43.42 L5S5: 0.2593

Table 1: LTEM ranked by feature map comparison using Intersection over Union (IoU) and
cosine similarities (CS)

Rank DeepLabv3 FCN U-Net

1 IMC1: 0.00075 IMC1: 0.00060 IMC1: 0.00260
2 Autocorrelation: 0.02375 Autocorrelation: 0.02586 MCC: 0.19584
3 ASM: 0.07456 ASM: 0.15945 Autocorrelation: 0.20374

Table 2: GLCM features ranked by significance

3. Results and Discussion

The DL models were first ranked based on Intersection over Union (IoU) results (Table 1).
For LTEM-based models, those trained on the L5E5 feature performed the best, followed
by E5E5 for DeepLabv3 and FCN, and L5S5 for U-Net. Third place was shared by L5S5
for DeepLabv3 and FCN, and S5S5 for the U-Net. This indicates a clear pattern that the
Level and Edge features of the cancer images contain the most useful information. Second,
using cosine similarity (CS), we compared the feature maps generated by the LTEM models
with the models trained on the original dataset (Table 1). In this analysis, the L5E5,
E5E5 and L5R5 models generated feature maps more similar to the original model, reaf-
firming the significance of the Level and Edge features. The GLCM features of the raw
images were compared to those derived from the feature maps, utilizing average absolute
differences as the metric of comparison. Table 2 highlights the top three features for each
DL model. There was a consistent pattern across all models, identifying IMC1 as the most
critical GLCM feature. IMC1 measures the degree to which the joint entropy of pixel pairs
in the image is reduced compared to the entropy of the individual pixels. Additionally,
Autocorrelation, along with ASM and MCC also emerged as significant features influencing
model behavior.
Both quantitatively and qualitatively (Fig 1 [D]), we can see texture-driven DL models

(particularly L5E5) have comparable performance to DL models fed with raw data, reit-
erating the importance of these features in DL training. With respect to explainability,
the results suggest that the DL algorithm is responding to texture periodicity (size of the
repeating fundamental pattern) and edges, particularly horizontal edge structure embedded
in the textures.
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