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Abstract

Learning with identical train and test distributions has been extensively investigated
both practically and theoretically. Much remains to be understood, however, in
statistical learning under distribution shifts. This paper focuses on a distribution
shift setting where train and test distributions can be related by classes of (data)
transformation maps. We initiate a theoretical study for this framework, investi-
gating learning scenarios where the target class of transformations is either known
or unknown. We establish learning rules and algorithmic reductions to Empirical
Risk Minimization (ERM), accompanied with learning guarantees. We obtain
upper bounds on the sample complexity in terms of the VC dimension of the class
composing predictors with transformations, which we show in many cases is not
much larger than the VC dimension of the class of predictors. We highlight that
the learning rules we derive offer a game-theoretic viewpoint on distribution shift:
a learner searching for predictors and an adversary searching for transformation
maps to respectively minimize and maximize the worst-case loss.

1 Introduction

It is desirable to train machine learning predictors that are robust to distribution shifts. In particular
when data distributions vary based on the environment, or when part of the domain is not sampled
at training such as in reasoning tasks. How can we train predictors that generalize beyond the
distribution from which the training examples are drawn from? A common challenge that arises
when tackling out-of-distribution generalization is capturing the structure of distribution shifts. A
common approach is to mathematically describe such shifts through distance or divergence measures,
as in prior work on domain adaptation theory [e.g., Redko et al., 2020] and distributionally robust
optimization [e.g., Duchi and Namkoong, 2021].

In this paper, we put forward a new formulation for out-of-distribution generalization. Our formulation
offers a conceptually different perspective from prior work, where we describe the structure of
distribution shifts through data transformations. We consider an unknown distribution D over X × Y
which can be thought of as the “training” or “source” distribution from which training examples are
drawn, and a collection of data transformation maps T = {T : X → X} which can be thought of as
encoding “target” distribution shifts, hence denoted as {T (D)}T∈T . We consider a covariate shift
setting where labels are not altered or changed under transformations T ∈ T , and we write T (D)
for notational convenience. Our goal, which will be formalized further shortly, is to learn a single
predictor ĥ that performs well uniformly across all distributions {T (D)}T∈T .

We view this formulation as enabling a different way to describe distribution shifts through transfor-
mations T = {T : X → X}. The collection of transformations T can be viewed as either: (a) given
to the learning algorithm as part of the problem, or (b) chosen by the learning algorithm.View (a)
represents scenarios where the target distribution shifts are known and specified by some downstream
application (e.g., learning a classifier that is invariant to image rotations and translations). View (b)
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represents scenarios where there is uncertainty or there are no pre-specified target distribution shifts
and we would like to perform maximally well relative to an expressive collection of transformations.
We highlight next several problems of interest that can be captured by this formulation. We refer the
reader to Section 7 for a more detailed discussion in the context of prior work.

• Covariate Shift & Domain Adaptation. By Brenier’s theorem [Brenier, 1991], when X = Rd, then
under mild assumptions, for any source distribution P over X and target distribution Q over X ,
there exists a transformation T : X → X such that Q = T (P ). Thus, by choosing an expressive
collection of transformations T , we can address arbitrary covariate shifts.

• Transformation-Invariant Learning. In many applications, it is desirable to train predictors that are
invariant to transformations or data preprocessing procedures representing different “environments”
(e.g., an image classifier deployed in different hospitals, or a self-driving car operating in different
cities).

• Representative Sampling. In many applications, there may be challenges in collecting “represen-
tative” training data. For instace, in learning Logic or Arithmetic tasks [Abbe et al., 2023], the
combinatorial nature of the data makes it not possible to cover well all parts of the domain. E.g.,
there is always a limit to the length of the problem considered at training, or features may not
be homogeneously represented at training (bias towards certain digits etc.). Choosing a suitable
collection of transformations T under which the target function is invariant can help to model in
such cases.

• Adversarial Attacks. Test-time adversarial attacks such as adversarial patches in vision tasks
[Brown et al., 2017, Karmon et al., 2018], attack prompts in large language models [Zou et al.,
2023], and “universal attacks” [Moosavi-Dezfooli et al., 2017] can all be viewed as instantiations
constructing specific transformations T .

Our Contributions. Let X be the instance space and Y = {±1} the label space. Let H ⊆ YX

be a hypothesis class, and denote by vc(H) its VC dimension. Consider a collection of transfor-
mations T = {T : X → X}, and some unknown distribution D over X × Y . Let err(h, T (D)) =
Pr(x,y)∼D [h(T (x)) ̸= y] be the error of predictor h on transformed distribution T (D).

Given a training sample S = {(x1, y1), . . . , (xm, ym)} ∼ Dm, we are interested in learning a
predictor ĥ with uniformly small risk across all transformations T ∈ T . Formally,

sup
T∈T

err(ĥ, T (D)) ≤ OPT∞ + ε, where OPT∞ := inf
h⋆∈H

sup
T∈T

{err(h⋆, T (D))} . (1)

This objective is similar to that considered in prior work on distributionally robust optimization
[Duchi and Namkoong, 2021] and multi-distribution learning [Haghtalab et al., 2022]. The main
difference is that in this work we are describing the collection of “target” distributions {T (D)}T∈T
as transformations of the “source” distribution D. This allows us to obtain new upper bounds on the
sample complexity of learning under distribution shifts based on the VC dimension of the composition
of H with T , denoted vc(H ◦ T ) (see Equation (3)). We describe next our results (informally):

1. In Section 2 (Theorem 2.1), we show that, given the knowledge of any hypothesis class H and
any collection of transformations T , by minimizing the empirical worst case risk, we can solve
Objective 1 with sample complexity bounded by vc(H◦T ). Furthermore, in Theorem 2.2, we show
that the sample complexity of any proper learning rule is bounded from below by Ω(vc(H ◦ T )).

2. In Section 3 (Theorem 3.1), we consider a more challenging scenario in which H is unknown.
Instead, we are only given an ERM oracle for H. We then present a generic algorithmic reduction
(Algorithm 1) solving Objective 1 using only an ERM oracle for H, when the collection T is finite.
This is established by solving a zero-sum game where the H-player runs ERM and the T -player
runs Multiplicative Weights [Freund and Schapire, 1997].

3. In Section 4 (Theorem 4.1), we consider situations where we do not know which transformations
are relevant (or important) for the learning task at hand, and so we pick an expressive collection
T and aim to perform well on as many transformations as possible. We then present a different
generic learning rule (Equation (4)) that learns a predictor ĥ achieving low error (say ε) on as
many target distributions in {T (D)}T∈T as possible.

4. In Section 5 (Theorems 5.1 & E.1), we extend our learning guarantees to a slightly different
objective, Objective 7, that can be favorable to Objective 1 when there is heterogeneity in the noise
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across different transformations. This is inspired by Agarwal and Zhang [2022] who introduced
this objective.

2 Minimizing Worst-Case Risk

If we have access to, or know, the hypothesis class H and the collection of transformations T , then
the most direct and intuitive way of solving Objective 1 is minimizing the empirical worst-case risk.
Specifically,

ĥ ∈ argmin
h∈H

max
T∈T

{
1

m

m∑
i=1

1 [h(T (xi)) ̸= yi]

}
. (2)

We highlight that this learning rule offers a game-theoretic perspective on distribution shift, where the
H-player searches for a predictor h ∈ H to minimize the worst-case error while the T -player searches
for a transformation T ∈ T to maximize the worst-case error. For instance, both predictors H and
transformations T can be parameterized by neural network architectures, which is an interesting
direction to explore further. We note that similar min-max optimization problems have appeared
before in the literature on adversarial examples and generative adversarial networks [e.g., Madry
et al., 2018, Goodfellow et al., 2020].

We present next a PAC-style learning guarantee for this learning rule which offers the interpretation
that solving the min-max optimization problem in Equation (1) yields a predictor ĥ ∈ H that
generalizes to the collection of transformations T . We show that the sample complexity of this
learning rule is bounded by the VC dimension of the composition of H with T , where

H ◦ T := {h ◦ T : h ∈ H, T ∈ T } , where (h ◦ T )(x) = h(T (x)) ∀x ∈ X . (3)

Theorem 2.1. For any class H, any collection of transformations T , any ε, δ ∈ (0, 1/2), any distribu-

tion D, with probability at least 1− δ over S ∼ Dm(ε,δ) where m(ε, δ) = O
(

vc(H◦T )+log(1/δ)
ε2

)
,

sup
T∈T

err(ĥ, T (D)) ≤ OPT∞ + ε.

Proof. The proof follows from invoking uniform convergence guarantees with respect to the com-
position H ◦ T (see Proposition A.1 in Appendix A) and the definition of ĥ described in Equa-
tion (2). Let h⋆ ∈ H be an a-priori fixed predictor (independent of sample S) attaining OPT∞ =

infh∈H supT∈T err(h, T (D)) (or ε-close to it). By setting m(ε, δ) = O
(

vc(H◦T )+log(1/δ)
ε2

)
and

invoking Proposition A.1, we have the guarantee that with probability at least 1−δ over S ∼ Dm(ε,δ),

(∀h ∈ H) (∀T ∈ T ) : |err(h, T (S))− err(h, T (D))| ≤ ε.

Since ĥ, h⋆ ∈ H, the inequality above implies that

∀T ∈ T : err(ĥ, T (D)) ≤ err(ĥ, T (S)) + ε.

∀T ∈ T : err(h⋆, T (S)) ≤ err(h⋆, T (D)) + ε.

Furthermore, by definition, since ĥ minimizes the empirical objective, it holds that

sup
T∈T

err(ĥ, T (S)) ≤ sup
T∈T

err(h⋆, T (S)).

By combining the above, we get

sup
T∈T

err(ĥ, T (D)) ≤ sup
T∈T

err(ĥ, T (S)) + ε ≤ sup
T∈T

err(h⋆, T (S)) + ε ≤ OPT∞ + 2ε.

We show next that vc(H ◦ T ) can be much higher than vc(H) and the dependency on vc(H ◦ T ) is
tight for all proper learning rules, which includes the learning rule described in Equation (2) and
more generally any learning rule that is restricted to outputting a classifier in H.
Theorem 2.2. ∀k ∈ N, ∃X ,H, T such that vc(H) = 1 but vc(H◦T ) ≥ k, and the sample complexity
of any proper learning rule A : (X × Y)∗ → H solving Objective 1 is at least Ω(vc(H ◦ T )).
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A proof is deferred to Appendix C. We remark that the sample complexity cannot be improved by
proper learning rules and this leaves open the possibility of improving the sample complexity with
improper learning rules. There are many examples in the literature where there are sample complexity
gaps between proper and improper learning [e.g., Angluin, 1987, Daniely and Shalev-Shwartz, 2014,
Foster et al., 2018, Montasser et al., 2019, Alon et al., 2021]. In particular, it appears that we encounter
in this work a phenomena similar to what occurs in adversarially robust learning [Montasser et al.,
2019]. Nonetheless, even at the expense of (potentially) higher sample complexity, we believe that
there is value in the simplicity of the learning rule described in Equation (2), and exploring ways of
implementing it is an interesting direction beyond the scope of this work.

2.1 Examples and Instantiations of Guarantees

To demonstrate the utility of our generic result in Theorem 2.1, we discuss next a few general cases
where we can bound the VC dimension of H composed with T , vc(H ◦ T ). This allows us to obtain
new learning guarantees with respect to classes of distribution shifts that are not covered by prior
work, to the best of our knowledge.

Linear Transformations. Consider T being a (potentially infinite) collection of linear transforma-
tions. For example, in vision tasks, this includes many transformations that have been widely studied
in practice such as rotations, translations, maskings, adding random noise (or any fixed a-priori
arbitrary noise), and their compositions [Engstrom et al., 2019, Hendrycks and Dietterich, 2019].

Interestingly, for a broad range of hypothesis classes H, we can show that vc(H ◦ T ) ≤ vc(H)
without incurring any dependence on the complexity of T . Specifically, the result applies to any
function class H that consists of a linear mapping followed by an arbitrary mapping. This includes
feed-forward neural networks with any activation function, and modern neural network architectures
(e.g., CNNs, ResNets, Transformers). We find the implication of this bound to be interesting, because
it suggests (along with Theorem 2.1) that the learning rule in Equation (2) can generalize to linear
transformations with sample complexity that is not greater than the sample complexity of standard
PAC learning. We formally present the lemma below, and defer the proof to Appendix B.
Lemma 2.3. For any collection of linear transformations T and any hypothesis class of the form
H =

{
f ◦W : Rd → Y | W ∈ Rk×d ∧ f : Rk → Y

}
, it holds that vc(H ◦ T ) ≤ vc(H).

Non-Linear Transformations. Consider T being a (potentially infinite) collection of non-linear
transformations parameterized by a feed-forward neural network architecture, where each T =
WL ◦ ϕ ◦ · · ·ϕ ◦ W2 ◦ ϕ ◦ W1 and ϕ(·) = max {0, ·} is the ReLU activation function. Similarly,
consider a hypothesis class H that is parameterized by a (different) feed-forward neural network
architecture, where each h = sign ◦W̃H ◦ ϕ ◦ · · ·ϕ ◦ W̃2 ◦ ϕ ◦ W̃1. Observe that the composition
H◦T consists of (deeper) feed-forward neural networks, where h◦T = sign ◦W̃H ◦ϕ◦ · · ·ϕ◦ W̃2 ◦
ϕ ◦ W̃1 ◦WL ◦ ϕ ◦ · · ·ϕ ◦W2 ◦ ϕ ◦W1. Thus, we can bound vc(H ◦ T ) by appealing to classical
results bounding the VC dimension of feed-forward neural networks. For example, according to
Bartlett et al. [2019], it holds that vc(H ◦ T ) ≤ O ((H + L)PH◦T log(PH◦T )), where H + L is the
depth of the networks in H ◦ T and PH◦T is the number of parameters of the networks in H ◦ T
(which is PH + PT ). In this context, Theorem 2.1 and Equation (2) present a new learning guarantee
against distribution shifts parameterized by non-linear transformations induced with feed-forward
neural networks.

Transformations on the Boolean hypercube. The Boolean hypercube has also received attention
recently as a case-study for distribution shifts in Logic or Arithmetic tasks[Abbe et al., 2023].
We show next that when the instance space X = {0, 1}d, we can bound the VC dimension of
H ◦ T from above by the sum of the VC dimension of H and the VC dimensions of {Ti}di=1
where each Ti = {x 7→ T (x)i : T ∈ T } is a function class resulting from restricting transformations
T : {0, 1}d → {0, 1}d ∈ T to output only the ith bit. The proof is deferred to Appendix B

Lemma 2.4. When X = {0, 1}d, for any hypothesis class H and any collection of transformations
T , vc(H ◦ T ) ≤ O(log d)(vc(H) +

∑d
i=1 vc(Ti)), where each Ti = {x 7→ T (x)i : T ∈ T }.

In this context, Theorem 2.1 and Equation (2) present a new learning guarantee against arbitrary
distribution shifts parameterized by transformations on the Boolean hypercube, where the sample
complexity (potentially) grows with the complexity of the transformations as measured by the VC

4



dimension. We note however that this learning guarantee does not address the problem of length
generalization, since we restrict to transformations that preserve domain length.

Adversarial Attacks. In adversarially robust learning, a test-time attacker is typically modeled as
a pertubation function U : X → 2X , which specifies for each test-time example x a set of possible
adversarial attacks U(x) ⊆ X that the attacker can choose from at test-time [Montasser et al., 2019].
The robust risk of a predictor ĥ is then defined as: E(x,y)∼D

[
supz∈U(x) 1

[
ĥ(z) ̸= y

]]
. On the

other hand, the framework we consider in this paper can be viewed as restricting a test-time attacker
to commit to a set of attacks T = {T : X → X} without knowledge of the test-time samples,
and the risk of a predictor ĥ is then defined as: supT∈T E(x,y)∼D 1

[
ĥ(T (x)) ̸= y

]
. While less

general, our framework still captures several interesting adversarial attacks in practice which are
constructed before seeing test-time examples, such as adversarial patches in vision tasks [Brown
et al., 2017, Karmon et al., 2018] and attack prompts for large language models [Zou et al., 2023] can
be represented with linear transformations.

3 Unknown Hypothesis Class: Algorithmic Reductions to ERM

Implementing the learning rule in Equation (2) crucially requires knowing the base hypothesis class
H and the transformations T , which may not be feasible in many scenarios. Moreover, in many
applications we only have black-box access to an off-the-shelve supervised learning method such as
an ERM for H. Hence, in this section, we study the following question:

Can we solve Objective 1 using only an ERM oracle for H?

We prove yes, and we present next generic oracle-efficient reductions solving Objective 1 using only
an ERM oracle for H. We consider two cases,

Realizable Case. When OPT∞ = 0, i.e., ∃h⋆ ∈ H such that ∀T ∈ T : err(h⋆, T (D)) = 0,
there is a simple reduction to solve Objective 1 using a single call to an ERM oracle for H.
The idea is to inflate the training dataset S to include all possible transformations T (S) =
{(T (x), y) : (x, y) ∈ S ∧ T ∈ T } (similar to data augmentation), and then run ERM on T (S). For-
mal guarantee and proof are deferred to Appendix D. It is also possible, via a fairly standard
boosting argument, to achieve a similar learning guarantee using multiple ERM calls (specifically,
O(log |T (S)|) ≤ O(log(|S| |T |))), where each ERM call is on a sample of size O(vc(H)). So, we
get a tradeoff between the size of a dataset given to ERM on a single call, and the total number of
calls to ERM.

Agnostic Case.When OPT∞ > 0, the simple reduction above no longer works. Specifically, the
issue is that running a single ERM on the inflation T (S) effectively minimizes average error over
transformations T ∈ T as opposed to minimizing maximum error over transformations T ∈ T . So,
OPT∞ > 0, by definition, implies there is no predictor h ∈ H that is consistent (i.e., zero error) on
every transformation T (S), T ∈ T , thus minimizing average error over transformations can be bad.

To overcome this limitation, we present a different reduction (Algorithm 1) that minimizes Objective 1
by solving a zero-sum game where the H-player runs ERM and the T -player runs Multiplicative
Weights [Freund and Schapire, 1997]. This can be viewed as solving a sequence of weighted-ERM
problems (with weights over transformations), where Multiplicative Weights determines the weight
of each transformation.

Theorem 3.1. For any class H, collection of transformations T , distribution D and any ε, δ ∈ (0, 1/2),
with probability at least 1 − δ over S ∼ Dm(ε,δ), where m(ε, δ) ≤ O(vc(H◦T )+log(1/δ)

ε2 ), running
Algorithm 1 on S for R ≥ 8 ln|T |

ε2 rounds produces h̄ = 1
R

∑R
r=1 hr satisfying

∀T ∈ T : Pr
(x,y)∼D

r∼Unif{1,...,R}

[hr(T (x)) ̸= y] ≤ OPT∞ + ε.

Remark 3.2. When T is a finite collection of transformations, we can bound vc(H ◦ T ) from above
by O(vc(H) + log |T |) using the Sauer-Shelah-Perels Lemma [Sauer, 1972]. See Lemma B.1 and
proof in Appendix B.
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Algorithm 1: Reduction to Minimize Worst-Case Risk
Input: Black-box ERMH, dataset S = {(x1, y1), . . . , (xm, ym)}, and transformations T .

1 For each T ∈ T , set Q1(T ) =
1

|T | .

2 Set number of rounds R = 8 ln|T |
ε2 .

3 for 1 ≤ r ≤ R do
4 Run ERMH on mERM i.i.d. samples drawn from the distribution induced by Qr over T and

Unif(S), and let hr denote its output.
5 For each T ∈ T , update Qr+1(T ) =

Qr(T ) exp(−η(1−err(hr,T (S))))
Zr

, where Zr is a
normalization factor such that Qr+1 is a distribution.

Output: 1
R

∑R
t=1 hr.

Proof of Theorem 3.1. Let S = {(x1, y1), . . . , (xm, ym)} be an arbitrary dataset. By setting R ≥
8 ln|T |

ε2 and invoking Lemma D.2, which is a helpful lemma (statement and proof in Appendix D)
that instantiates the regret guarantee of Multiplicative Weights in our context, we are guaranteed that
Algorithm 1 produces a sequence of distributions Q1, . . . , QR over T that satisfy

max
T∈T

1

R

R∑
r=1

err (hr, T (S)) ≤
1

R

R∑
r=1

E
T∼Qr

err(hr, T (S)) +
ε

4
.

At each round r, observe that Step 4 in Algorithm 1 draws an i.i.d. sample from a distribution Pr over
X × Y that is defined by Qr over T and Unif(S), and since ERMH is an (ε, δ)-agnostic-PAC-learner
for H, Step 5 guarantees that

E
T∼Qr

err(hr, T (S)) = E
T∼Qr

1

m

m∑
i=1

1 {hr(T (xi)) ̸= yi} ≤ min
h∈H

E
T∼Qr

err(h, T (S)) +
ε

4
≤ min

h⋆∈H
max
T∈T

err(h⋆, T (S)) +
ε

4
.

Combining the above inequalities implies that

max
T∈T

1

R

R∑
r=1

err (hr, T (S)) ≤ min
h⋆∈H

max
T∈T

err(h⋆, T (S)) +
ε

2
.

Finally, by appealing to uniform convergence over H ◦ T (Proposition A.1), with probability at least
1− δ over S ∼ Dm,

max
T∈T

1

R

R∑
r=1

err (hr, T (D)) ≤ max
T∈T

1

R

R∑
r=1

err (hr, T (S)) +
ε

4
≤ min

h⋆∈H
max
T∈T

err(h⋆, T (S)) +
ε

2
+

ε

4

≤ min
h⋆∈H

max
T∈T

err(h⋆, T (D)) +
ε

2
+ 2

ε

4
= OPT∞ + ε.

On finiteness of T . We argue informally that requiring T to be finite is necessary in general when
only an ERM oracle for H is allowed. For example, consider a distribution supported on a single point
(x,−) on the real line where x = 5, and transformations Ti(x) = x+ i for all i ≥ 1 induced by some
collection {Ti}i∈N. Calling ERM on a finite subset of these transformations Ti1 , . . . , Tik could return
a predictor that labels x, x + i1, x + i2, . . . , x + ik with a label − and labels x + ik + 1, . . . with
+ (e.g., if H is thresholds) which fails to satisfy Objective 1. But it would be interesting to explore
additional structural conditions that would enable handling infinite T , and leave this to future work.

4 Unknown Invariant Transformations

When we have a large collection of transformations T and there is uncertainty about which trans-
formations T ∈ T under-which we can simultaneously achieve low error using a base class H, the
learning rule presented in Section 2 (Equation 1) can perform badly. We illustrate this with the
following concrete example:
Example 1. Consider a class H = {h1, h2, h3}, a collection of transformations T = {T1, T2, T3},
and a distribution D with risks (errors) as reported in the table.
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T1(D) T2(D) T3(D)

h1 1% 1% 49%
h2 1% 49% 49%
h3 49% 49% 49%

Then, solving Objective 1 may return predictor h3 where ∀T ∈ T : err(h3, T (D)) = 49%, since we
only need to compete with the worst-case risk OPT∞ = 49%. However, predictor h1 is arguably
better since it achieves a low error of 1% on at least two out of the three transformations.

To address this limitation, we switch to a different learning goal—achieving low error under as
many transformations as possible. We present next a different generic learning rule for any class
H and any collection of transformations T , that enjoys a different guarantee from the learning rule
presented in Section 2. In particular, it can be thought of as greedy since it maximizes the number of
transformations under which low empirical error is possible, but also conservative since it ignores
transformations under which low empirical error is not possible. Specifically, given a training dataset
S, the learning rule searches for a predictor ĥ ∈ H that achieves low empirical error on as many
transformations T ∈ T as possible, say err(ĥ, T (S)) ≤ ε.

ĥ ∈ argmax
h∈H

∑
T∈T

1 [err(h, T (S)) ≤ ε] . (4)

Another way of thinking about this learning rule is that it provides us with more flexibility in choosing
the collection of transformations T , since the learning rule is not stringent on achieving low error on
all transformations but instead attempts to achieve low error on as many transformations as allowed
by the base class H. Thus, this is useful in situations where there is uncertainty in choosing the
collection of transformations. We present next the formal learning guarantee for this learning rule,
Theorem 4.1. For any class H, any countable collection of transformations T , any distribu-
tion D and any ε, δ ∈ (0, 1), with probability at least 1 − δ over S ∼ Dm, where m =

O
(

vc(H◦T ) log(1/ε)+log(1/δ)
ε

)
, then∑

T∈T

1

[
err(ĥ, T (D)) ≤ 3ε

]
≥ max

h⋆∈H

∑
T∈T

1

[
err(h⋆, T (D)) ≤ ε

3

]
.

Furthermore, it holds that ∀T ∈ T : err(ĥ, T (D)) ≤ err(ĥ, T (S)) +
√
err(ĥ, T (S)) ε3 + ε

3 .

Remark 4.2. We can generalize the result above to any prior over the transformations T , en-
coded as a weight function w : T → [0, 1] such that

∑
T∈T w(T ) ≤ 1. By maximizing the

weighted version of Equation (4) according to w, it holds that
∑

T∈T w(T )1[err(ĥ,T (D))≤ε/3] ≥
maxh⋆∈H

∑
T∈T w(T )1[err(h⋆,T (D))≤3ε] with high probability.

Proof. The proof follows from the definition of ĥ and using optimistic generalization bounds (Propo-
sition A.2). By setting m(ε, δ) = O

(
vc(H◦T ) log(1/ε)+log(1/δ)

ε

)
and invoking Proposition A.2, we

have the guarantee that with probability at least 1− δ over S ∼ Dm(ε,δ), (∀h ∈ H)(∀T ∈ T ):

err(h, T (D)) ≤ err(h, T (S)) +

√
err(h, T (S))

ε

3
+

ε

3
, (5)

err(h, T (S)) ≤ err(h, T (D)) +

√
err(h, T (D))

ε

3
+

ε

3
. (6)

Since ĥ ∈ H, inequality (4) above implies that ∀T ∈ T if err(ĥ, T (S)) ≤ ε then err(ĥ, T (D)) ≤ 3ε.
Thus, ∑

T∈T
1

[
err(ĥ, T (D)) ≤ 3ε

]
≥

∑
T∈T

1

[
err(ĥ, T (S)) ≤ ε

]
.

Furthermore, by definition, since ĥ maximizes the empirical objective, it holds that∑
T∈T

1

[
err(ĥ, T (S)) ≤ ε

]
≥

∑
T∈T

1 [err(h⋆, T (S)) ≤ ε] .
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Since h⋆ ∈ H, inequality (5) above implies that ∀T ∈ T if err(h⋆, T (D)) ≤ ε/3 then
err(h⋆, T (S)) ≤ ε. Thus,∑

T∈T
1 [err(h⋆, T (S)) ≤ ε] ≥

∑
T∈T

1 [err(h⋆, T (D)) ≤ ε/3] .

By combining the above three inequalities,∑
T∈T

1

[
err(ĥ, T (D)) ≤ 3ε

]
≥

∑
T∈T

1 [err(h⋆, T (D)) ≤ ε/3] .

5 Extension to Minimizing Worst-Case Regret

When there is heterogeneity in the noise across the different distributions, Agarwal and Zhang [2022]
argue that, in the context of distributionally robust optimization, solving Objective 1 may not be
advantageous. Additionally, they introduced a different objective (see Objective 7) which can be
favorable to minimize. In this section, we extend our guarantees for transformation-invariant learning
to this new objective which we describe next.

For each T ∈ T , let OPTT = infh⋆
T∈H err(h⋆

T , T (D)) be the smallest achievable error
on transformed distribution T (D) with hypothesis class H. Given a training sample S =

{(x1, y1), . . . , (xm, ym)} ∼ Dm, we would like to learn a predictor ĥ : X → Y with uniformly
small regret across all transformations T in T ,

sup
T∈T

err(ĥ, T (D))− OPTT ≤ inf
h⋆∈H

sup
T∈T

{err(h⋆, T (D))− OPTT }+ ε. (7)

We illustrate with a concrete example below how solving Objective 7 can be favorable to Objective 1.
Example 2 (Risk vs. Regret). Consider a class H = {h1, h2}, a collection of transformations
T = {T1, T2, T3, T4}, and a distribution D such that with errors as reported in the table:

T1(D) T2(D) T3(D) T4(D)

h1 0 1/8 1/4 1/2
h2

1/2 1/2 1/2 1/2

Thus, solving Objective 1 may return predictor h2 where ∀T ∈ T : err(h2, T (D)) = 1/2, since we
only need to compete with the worst-case risk OPT∞ = 1

2 . However, solving Objective 7 will return
predictor h1 where ∀T : T : err(h1, T (D)) ≤ OPTT .

More generally, as highlighted by Agarwal and Zhang [2022], whenever there exists h⋆ ∈ H
satisfying ∀T ∈ T : err(h⋆, T (D)) − OPTT ≤ ε, solving Objective 7 is favorable. We present
next a generic learning rule solving Objective 7 for any hypothesis class H and any collection of
transformations T ,

ĥ ∈ argmin
h∈H

max
T∈T

{
1

m

m∑
i=1

1 [h(T (xi)) ̸= yi]− ˆOPTT

}
. (8)

We present next a PAC-style learning guarantee for this learning rule with sample complexity bounded
by the VC dimension of the composition of H with T . The proof is deferred to Appendix E.
Theorem 5.1. For any class H, any collection of transformations T , any ε, δ ∈ (0, 1/2), any distribu-

tion D, with probability at least 1− δ over S ∼ Dm(ε,δ) where m(ε, δ) = O
(

vc(H◦T )+log(1/δ)
ε2

)
,

sup
T∈T

{
err(ĥ, T (D))− OPTT

}
≤ inf

h⋆∈H
sup
T∈T

{err(h⋆, T (D))− OPTT }+ ε.

Algorithmic Reduction to ERM. Using ideas and techniques similar to those used in Section 3,
we develop a generic oracle-efficient reduction solving Objective 7 using only an ERM oracle for H.
Theorem, proof, and algorithm are deferred to Appendix E.
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Figure 1: Left plot is for learning f⋆
1 , the full parity function in dimension 18, with a train set size of

7000. Transformations are sampled from T1: the set of all permutations. Right plot is for learning f⋆
2 ,

a majority-of-subparities function in dimension 21, with a train set size of 5000. Transformations are
sampled from T2: permutations on which f⋆

2 is invariant. In each case, the test set size is 1000.

6 Basic Experiment

We present results for a basic experiment on learning Boolean functions on the hypercube {±1}d.
We consider a uniform distribution D over {±1}d and two target functions: (1) f⋆

1 (x) = Πd
i=1xi, the

parity function, and (2) f⋆
2 (x) = sign(

∑2
j=0(Π

d/3
i=1xj(d/3)+i)), a majority-of-subparities function.

We consider transformations T1, T2 under which f⋆
1 , f

⋆
2 are invariant, respectively (see Section 2).

Since D is uniform, note that for any ĥ: supT∈T err(ĥ, T (Df⋆)) = err(ĥ, Df⋆).

Algorithms. We use a two-layer feed-forward neural network architecture with 512 hidden units
as our hypothesis class H. We use the squared loss and consider two training algorithms. First,
the baseline is running standard mini-batch SGD on training examples. Second, as a heuristic to
implement Equation (2), we run mini-batch SGD on training examples and permutations of them.
Specifically, in each step we replace correctly classified training examples in a mini-batch with
random permutations of them (drawn from T ), and then perform an SGD update on this modified
mini-batch. We set the mini-batch size to 1 and the learning rate to 0.01. Results are averaged over 5
runs with different seeds and are reported in Figure 1. We ran experiments on freely available Google
CoLab T4 GPUs, and used Python and PyTorch to implement code.

7 Related Work and Discussion

Covariate Shift, Domain Adaptation, Transfer Learning. There is substantial literature studying
theoretical guarantees for learning when there is a “source” distribution P and a “target” distribution
Q [see e.g., survey by Redko et al., 2020, Quinonero-Candela et al., 2008]. Many of these works
explore structural relationships between P and Q using various divergence measures (e.g., total
variation distance or KL divergence), sometimes incorporating the structure of the hypothesis class
H [e.g., Ben-David et al., 2010, Hanneke and Kpotufe, 2019]. Sometimes access to unlabeled (or
few labeled) samples from Q is assumed. Our work differs from this line of work by expressing the
structural relationship between P and Q in terms of a transformation T where Q = T (P ).

Distributionally Robust Optimization. With roots in optimization literature [see e.g., Ben-Tal
et al., 2009, Shapiro, 2017], this framework has been further studied recently in the machine learning
literature [see e.g., Duchi and Namkoong, 2021]. The goal is to learn a predictor ĥ that minimizes
the worst-case error supQ∈P err(ĥ, Q), where P is a collection of distributions. Most prior work
adopting this framework has focused on distributions P that are close to a “source” distribution D
in some divergence measure [e.g., f -divergences Namkoong and Duchi, 2016]. Instead of relying
on divergence measures, our work describes the collection P through data transformations T of D:
{T (D)}T∈T which may be operationally simpler.

Multi-Distribution Learning. This line of work focuses on the setting where there are k arbitrary
distributions D1, . . . ,Dk to be learned uniformly well, where sample access to each distribution
Di is provided [see e.g., Haghtalab et al., 2022]. In contrast, our setting involves access to a
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single distribution D and transformations T1, . . . , Tk, that together describe the target distributions:
T1(D), . . . , Tk(D). From a sample complexity standpoint, multi-distribution learning requires sample
complexity scaling linearly in k while in our case it is possible to learn with sample complexity
scaling logarithmically in k (see Theorem 3.1 and Lemma B.1). The lower sample complexity
in our approach is primarily due to the assumption that the transformations T1, . . . , Tk are known
in advance, allowing the learner to generate k samples from a single draw of D. In contrast, in
multi-distribution learning, the learner pays for k samples in order to see one sample from each of
D1, . . . ,Dk. Therefore, while the sample complexity is lower in our setting, this advantage arises
from the additional information/structure provided rather than an inherent improvement over the
more general setting of multi-distribution learning. From an algorithmic standpoint, our reduction
algorithms employ similar techniques based on regret minimization and solving zero-sum games
[Freund and Schapire, 1997].

Invariant Risk Minimization (IRM). This is another formulation addressing domain generalization
or learning a predictor that performs well across different environments [Arjovsky et al., 2019].
One main difference from our work is that in the IRM framework training examples from different
environments are observed and no explicit description of the transformations is provided. Furthermore,
to argue about generalization on environments unseen during training, a structural causal model
is considered. Recent works have highlighted some drawbacks of IRM [Rosenfeld et al., 2021,
Kamath et al., 2021]. For example, how in some cases ERM outperforms IRM on out-of-distribution
generalization, and the sensitivity of IRM to finite empirical samples vs. infinite population samples.

Data Augmentation. A commonly used technique in learning under invariant transformations is
data augmentation, which involves adding transformed data into the training set and training a model
with the augmented data. Theoretical guarantees of data augmentation have received significant
attention recently [see e.g., Dao et al., 2019, Chen et al., 2020, Lyle et al., 2020, Shao et al., 2022,
Shen et al., 2022]. In this line of research, it is common to assume that the transformations form
a group, and the learning goal is to achieve good performance under the “source” distribution by
leveraging knowledge of the invariant transformations structure. In contrast, our work does not make
the group assumption over transformations, and our goal is to learn a model with low loss under all
possible “target” distributions parameterized by transformations of the “source” distribution.

Multi-Task Learning. Ben-David and Borbely [2008] studied conditions underwhich a set of
transformations T can help with multi-task learning, assuming that T forms a group and that H is
closed under T . Our work does not make such assumptions, and studies a different learning objective.
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A Uniform Convergence

We can use tools from VC theory [Vapnik and Chervonenkis, 1971, 1974] to obtain uniform con-
vergence guarantees that will allow us to establish our learning guarantees and sample complexity
bounds in the remainder of the paper. The starting point is a simple but key observation concerning
the hypothesis class H and the collection of transformations T . Specifically, consider the composition
of H with T defined as:

H ◦ T := {h ◦ T : h ∈ H, T ∈ T } , where (h ◦ T )(x) = h(T (x)) ∀x ∈ X . (9)

We next apply VC theory to the class H ◦ T to obtain our uniform convergence guarantees. Formally,

Proposition A.1. For any class H, any collection of transformations T , any distribution D over
X × Y , and any m ∈ N, with probability at least 1− δ over S ∼ Dm: ∀h ∈ H,∀T ∈ T ,

|err(h, T (S))− err(h, T (D))| ≤ c

√
vc(H ◦ T ) + log(1/δ)

m
.

Proof. Since the composition H ◦ T is a hypothesis class consisting of functions h ◦ T where
h ∈ H, T ∈ T , the claim follows from the definition of VC dimension and uniform convergence
guarantees for VC classes [Vapnik and Chervonenkis, 1971, 1974].

Proposition A.2 (Optimistic Rate). For any class H, any collection of transformations T , any
distribution D, and any m ∈ N, letting B(m, δ) := 1

m

(
vc(H ◦ T ) log

(
2em

vc(H◦T )

)
+ log(4/δ)

)
,

with probability at least 1− δ over S ∼ Dm: ∀h ∈ H,∀T ∈ T ,

err(h, T (D)) ≤ err(h, T (S)) + 2
√
err(h, T (S))B(m, δ) + 4B(m, δ),

err(h, T (S)) ≤ err(h, T (D)) + 2
√
err(h, T (D))B(m, δ) + 4B(m, δ).

Proof. The claim follows from applying relative deviation bounds, or optimistic rates, for the
composition class H ◦ T [see e.g., Corollary 7 in Cortes et al., 2019].

B Bounding the VC dimension of H composed with T

Given the relevance of vc(H ◦ T ) in our theoretical study, in this section we explore the relationship
between vc(H ◦ T ) and vc(H) which we believe can be helpful in interpreting our results and
comparing them with the sample complexity of standard PAC learning [which is controlled by vc(H)
Blumer et al., 1989a, Ehrenfeucht et al., 1989]. To this end, we consider below a few general cases
and prove bounds on vc(H ◦ T ) in terms of vc(H) and some form of capacity control for T . These
results may be of independent interest.

Finitely many transformations. When T is a finite collection of transformations, we can bound
vc(H ◦ T ) from above by O(vc(H) + log |T |) using the Sauer-Shelah-Perels Lemma [Sauer, 1972],

Lemma B.1. For any class H and any finite collection T , vc(H ◦ T ) ≤ O(vc(H) + log |T |).

Proof. Consider an arbitrary set of points P = {x1, . . . , xm} ⊆ X . To bound vc(H◦T ) from above,
it suffices to bound the number of behaviors when projecting the function class H ◦ T on P , defined
as

ΠH◦T (P ) := {(h(T (x1)), . . . , h(T (xm))) : h ∈ H, T ∈ T } .
Observe that

|ΠH◦T (P )| ≤
∑
T∈T

|{(h(T (x1)), . . . , h(T (xm))) : h ∈ H}| ≤ |T |
(

em

vc(H)

)vc(H)

,

where the first inequality follows from the definition of ΠH◦T (P ) and the second inequality follows
from the Sauer-Shelah-Perels Lemma [Sauer, 1972]. Solving for m such that the above bound is less
than 2m, implies that vc(H ◦ T ) ≤ O(vc(H) + log |T |).
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Linear transformations. Consider T being a (potentially infinite) collection of linear transforma-
tions. For example, in vision tasks, this includes transforming images through rotations, translations,
maskings, adding random noise (or any fixed a-priori arbitrary noise), and their compositions. Sur-
prisingly, for a broad range of hypothesis classes H (including linear predictors and neural networks),
we can show that vc(H ◦ T ) ≤ vc(H) without incurring any dependence on the complexity of T .
Specifically, the result applies to any function class H that consists of a linear mapping followed by
an arbitrary mapping. This includes feed-forward neural networks with any activation function, and
modern neural network architectures (e.g., CNNs, ResNets, Transformers).

Lemma B.2. For any collection of linear transformations T and any hypothesis class of the form
H =

{
f ◦W : Rd → Y | W ∈ Rk×d ∧ f : Rk → Y

}
, it holds that vc(H ◦ T ) ≤ vc(H).

Proof. By definition of the VC dimension, it suffices to show that H ◦ T ⊆ H. To this end, consider
an arbitrary h = f ◦W ∈ H where W : Rd → Rk is a linear map and f : Rk → Y is an arbitrary
map (see definition of H in the lemma statement), and consider an arbitrary linear transformation
T ∈ T . Then, observe that for each x ∈ Rd,

(h ◦ T )(x) = (f ◦W )(T (x)) = f(W (T (x))) = f(T ∗(W )(x)),

where the last equality follows from Riesz Representation theorem and T ∗ is the adjoint transforma-
tion of T . Thus, we have shown that there exists W̃ = T ∗(W ) such that (f ◦W )(T (x)) = (f ◦W̃ )(x)
for all x ∈ Rd. Therefore, H ◦ T ⊆ H.

Transformations on the Boolean hypercube. When the instance space X = {0, 1}d is the Boolean
hypercube, we can bound the VC dimension of H ◦ T from above by the sum of the VC dimension
of H and the sum of the VC dimensions of {Ti}di=1 where each Ti = {x 7→ T (x)i : T ∈ T } is a
function class resulting from restricting transformations T : {0, 1}d → {0, 1}d ∈ T to output only
the ith bit.

Lemma B.3. When X = {0, 1}d, for any hypothesis class H and any collection of transformations
T , vc(H ◦ T ) ≤ O(log d)(vc(H) +

∑d
i=1 vc(Ti)), where each Ti = {x 7→ T (x)i : T ∈ T }.

Proof. Every function h ◦ T ∈ H ◦ T can be viewed as x 7→ h(T (x)1, . . . , T (x)d), which is a
composition of h with d Boolean functions T (·)1, . . . , T (·)d : X → {0, 1} where each T (·)i is the
restriction of transformation T to the ith coordinate. The claim then follows from a direct application
of Proposition 4.9 in Alon et al. [2023], which itself generalizes a classical result due to Blumer et al.
[1989b] bounding the VC dimension of composed function classes.

C Proofs for Section 2

Proof of Theorem 2.2. We note that the proof follows a standard no-free-lunch argument for VC
classes, where the game will be to guess the support of a distribution.

Let x1, . . . , x3k be arbitrary points. For each P ⊆ [3k] where |P | = k, define a transformation
TP that maps x1, . . . , x3k to some new and unique points TP (x1), . . . , TP (x3k). Then, define
classifier hP to be positive everywhere, except on the points {TP (xi)}i∈P which are labeled negative.
Let X = {x1, . . . , x3k}

⋃
P {TP (x1), . . . , TP (x3k)}, H = {hP : P ⊆ [3k], |P | = k}, and T =

{TP : P ⊆ [3k], |P | = k}.

It is easy to see that vc(H) = 1, since classifiers in H operate in different parts of X . Furthermore,
vc(H ◦ T ) ≥ k where we can shatter x1, . . . , xk with H ◦ T as follows: for each y1, . . . , yk,
let I = {i ∈ [k] : yi = −1} and P = I ∪ {j : k + 1 ≤ j ≤ 2k − |I|}, then (hP ◦ TP )(xi) =
hP (TP (xi)) = yi for all i ∈ [k].

Consider now a family of distributions {DP : P ⊆ [3k], |P | = k} over X × Y where each DP is
uniform over 2k points {(xi,+1)}i/∈P . For each P ⊆ [3k] where |P | = k, observe that by definitions
of DP ,H, T , supT∈T err(hP , T (DP )) = 0 since hP only labels the points {TP (xi)}i∈P negative
and {xi}i∈P are not in the support of DP . That is to say, our lower bound holds in the realizable
setting where OPT∞ = 0 (see Equation (1)).
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Next, consider an arbitrary proper learning rule A : (X × Y)∗ → H. For a distribution DP chosen
uniformly at random and upon receiving a random sample S ∼ Dk

P , A needs to correctly guess which
points from {x1, . . . , x3k} \ S lie in the support of DP in order to choose an appropriate h ∈ H with
small error. However, since the support is chosen uniformly at random, A will most likely incorrectly
guess a constant fraction of the support, leading to a constant error. This is a standard argument [see
e.g., Montasser et al., 2019, Alon et al., 2021], but we repeat it below for completeness.

Fix an arbitrary sequence S ∈ {(x1,+1), . . . , (x3k,+1)}k. Denote by ES the event that S ∈
supp(DP ) for a distribution DP that is picked uniformly at random. Next,

E
P

[
sup
T∈T

err(A(S), T (DP ))|ES

]
≥ E

P
[err(A(S), TP (DP ))|ES ]

≥ E
P

[
1

2k

∑
i/∈P

1[A(S)(TP (xi)) ̸= +1]|ES

]

≥ 1

2
E
P

1

k

∑
i/∈P∧(xi,+1)/∈S

1[A(S)(TP (xi)) ̸= +1]|ES


≥ 1

4
,

where the last inequality follows from the fact that A(S) ∈ H and that the remaining (at least k)
points that are not in S but in supp(DP ) are chosen uniformly at random, because DP is chosen
randomly. From the above, by law of total expectation, we have

E
P

E
S∼Dk

P

[
sup
T∈T

err(A(S), T (DP ))

]
≥ 1

4
.

By the probabilistic method, this means there exists P ∗ such that
ES∼Dk

P∗
[supT∈T err(A(S), T (DP ))] ≥ 1

4 . Using a variant of Markov’s inequality, this
implies that PrS∼Dk

P∗

[
supT∈T err(A(S), T (DP )) >

1
8

]
≥ 1

7 .

D Proofs for Section 3

Proposition D.1. For any class H, any ERM for H, any collection of transformations T , any
distribution D such that OPT∞ = 0, and any ε, δ ∈ (0, 1/2), with probability at least 1 − δ over

S ∼ Dm(ε,δ), where m(ε, δ) = O
(

vc(H◦T ) log(1/ε)+log(1/δ)
ε

)
,

∀T ∈ T : err(ĥ, T (D)) ≤ ε,

where ĥ is the output predictor of running ERM on the inflated dataset T (S) =
{(T (x), y) : (x, y) ∈ S ∧ T ∈ T }.

Proof of Proposition D.1. Since OPT∞ = 0, i.e., there exists h⋆ ∈ H such that ∀T ∈ T :

err(h⋆, T (D)) = 0, and since ĥ is the output predictor of running ERM on the inflated dataset
T (S) = {(T (x), y) : (x, y) ∈ S ∧ T ∈ T }, it follows that ∀T ∈ T : err(ĥ, T (S)) = 0. Thus, by
invoking the optimistic generalization guarantee (Proposition A.2), with probability at least 1−δ over
S ∼ Dm(ε,δ): (∀h ∈ H)(∀T ∈ T ) : err(h, T (S)) ⇒ err(h, T (D)) ≤ ε. Since ĥ ∈ H, it follows
that ∀T ∈ T : err(ĥ, T (D)) ≤ ε.

Lemma D.2. Let S = {(x1, y1), . . . , (xm, ym)} be an arbitrary dataset. For any distribution Q
over T and any predictor h, define the loss function ℓS(h,Q) = 1− ET∼Q err(h, T (S)). Then for
any sequence of predictors h1, . . . , hR, running Multiplicative Weights with η =

√
8 ln |T | /R (see

Algorithm 1) produces a sequence of distributions Q1, . . . , QR over T that satisfy

1

R

R∑
r=1

ℓS(hr, Qr) ≤ min
T∈T

1

R

R∑
r=1

ℓS(hr, T ) +

√
ln |T |
2R

.
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Proof of Lemma D.2. The proof follows directly from considering a two-player game, where the
T -player plays mixed strategies (distributions over T ) Q1, . . . , QR against predictors h1, . . . , hR
played by an arbitrary learning algorithm A, and in each round the T -player incurs loss ℓS(hr, Qr) =
1− ET∼Qr err(hr, T (S)). Then, the regret guarantee of Multiplicative Weights [see e.g., Theorem
2.2 in Cesa-Bianchi and Lugosi, 2006] implies that

1

R

R∑
r=1

ℓS(hr, Qr) ≤ min
T∈T

1

R

R∑
r=1

ℓS(hr, T ) +

√
ln |T |
2R

.

E Proofs for Section 5

Proof of Theorem 5.1. The proof follows from the definition of ĥ (Equation (8)) and using uniform
convergence bounds (Proposition A.1). Let h⋆ ∈ H be an a-priori fixed predictor (independent of
sample S) attaining

inf
h⋆∈H

sup
T∈T

{err(h⋆, T (D))− OPTT }

or is ε-close to it. By setting m(ε, δ) = m(ε, δ) = O
(

vc(H◦T )+log(1/δ)
ε2

)
and invoking Proposi-

tion A.1, we have the guarantee that with probability at least 1− δ over S ∼ Dm(ε,δ),

(∀h ∈ H) (∀T ∈ T ) : |err(h, T (S))− err(h, T (D))| ≤ ε.

Since ĥ, h⋆ ∈ H, the inequality above implies that

∀T ∈ T : err(ĥ, T (D)) ≤ err(ĥ, T (S)) + ε.

∀T ∈ T : err(h⋆, T (S)) ≤ err(h⋆, T (D)) + ε.

∀T ∈ T :
∣∣∣OPTT − ˆOPTT

∣∣∣ ≤ ε.

Furthermore, by definition, since ĥ minimizes the empirical objective, it holds that

sup
T∈T

err(ĥ, T (S))− ˆOPTT ≤ sup
T∈T

err(h⋆, T (S))− ˆOPTT .

By combining the above, we get

∀T ∈ T : err(ĥ, T (D))− OPTT ≤ sup
T∈T

err(ĥ, T (S))− ˆOPTT + 2ε

≤ sup
T∈T

err(h⋆, T (S))− ˆOPTT + 2ε

≤ sup
T∈T

err(h⋆, T (S))− OPTT + 3ε.

This concludes the proof by definition of h⋆.

Similar to Section 3, we develop in this section a generic oracle-efficient reduction solving Objective 7
using only an ERM oracle for H. This reduction may be favorable in applications where we only have
black-box access to an off-the-shelve supervised learning method. The techniques used are similar to
those used in Section 3, and Agarwal and Zhang [2022] who developed a similar reduction when
having access to a collection of importance weights instead of a collection of transformations (which
is the view we propose in this work).

Theorem E.1. For any class H, collection of transformations T , distribution D and any ε, δ ∈
(0, 1/2), with probability at least 1− δ over S ∼ Dm(ε,δ), where m(ε, δ) ≤ O

(
vc(H◦T )+log(1/δ)

ε2

)
,

running Algorithm 2 on S for R ≥ 8 ln|T |
ε2 rounds produces h̄ = 1

R

∑R
r=1 hr s.t.

∀T ∈ T : err(h̄, T (D))− OPTT ≤ inf
h⋆∈H

sup
T∈T

{err(h⋆, T (D))− OPTT }+ ε.
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Algorithm 2: Reduction to Minimize Worst-Case Regret

Input: Black-box learner ERMH, dataset S = {(x1, y1), . . . , (xm, ym)}, and transformations T .
1 For each T ∈ T , run learner ERMH on T (S) and denote its output by ĥT .
2 For each T ∈ T , set Q1(T ) =

1
|T | .

3 Set R = 8 ln|T |
ε2 .

4 for 1 ≤ r ≤ R do
5 Draw mERM i.i.d. samples (X1, Y1), . . . , (XmERM , YmERM), where each (Xi, Yi) is drawn by

randomly drawing a transformation T according to Qt and randomly drawing (X,Y ) from
Unif(S), and letting (Xi, Yi) = (T (X), Y ).

6 Run learner ERMH on (X1, Y1), . . . , (XmERM , YmERM), and let hr denote its output.

7 For each T ∈ T , update Qr+1(T ) =
Qr(T ) exp(η(err(hr,T (S))−err(ĥT ,T (S))))

Zr
, where Zr is a

normalization factor such that Qr+1 is a distribution.

Output: 1
R

∑R
r=1 hr.

Proof of Theorem E.1. Let S = {(x1, y1), . . . , (xm, ym)} be an arbitrary dataset, and let A be an
(ε, δ)-agnostic-PAC-learner for H. Then, by setting R ≥ 8 ln|T |

ε2 and invoking Lemma D.2, we are
guaranteed that Algorithm 2 produces a sequence of distributions Q1, . . . , QT over T that satisfy

sup
T∈T

1

R

R∑
r=1

err(hr, T (S))− err(ĥT , T (S)) ≤
1

R

R∑
r=1

E
T∼Qr

[
err(hr, T (S))− err(ĥT , T (S))

]
+ ε.

At each round r, observe that Step 3 in Algorithm 1 draws an i.i.d. sample from a distribution Pr over
X × Y that is defined by Qr over T and Unif(S), and since ERMH is an (ε, δ)-agnostic-PAC-learner
for H, Steps 5-6 guarantee that

E
T∼Qr

err(hr, T (S)) = E
T∼Qr

1

m

m∑
i=1

1 {hr(T (xi)) ̸= yi} ≤ inf
h∈H

E
T∼Qr

err(h, T (S)) + ε.

Combining the above inequalities implies that

sup
T∈T

err(h̄, T (S))− err(ĥT , T (S)) ≤
1

R

R∑
r=1

inf
h∈H

E
T∼Qr

[
err(h, T (S))− err(ĥT , T (S))

]
+ ε+ ε

≤ inf
h∈H

sup
T∈T

[
err(h, T (S))− err(ĥT , T (S))

]
+ 2ε.

Finally, by appealing to uniform convergence over H and T , with probability at least 1 − δ over
S ∼ Dm, we have

∀T ∈ T : err(ĥT , T (S)) ≤ err(h⋆
T , T (S)) ≤ OPTT + ε,

OPTT ≤ err(ĥT , T (D)) ≤ err(ĥT , T (S)) + ε.

Thus,

∀T ∈ T : err(h̄, T (D))− OPTT ≤ err(h̄, T (S))− err(ĥT , T (S)) + 2ε

≤ inf
h∈H

sup
T∈T

[
err(h, T (S))− err(ĥT , T (S))

]
+ 4ε

≤ inf
h∈H

sup
T∈T

[err(h, T (D))− OPTT ] + 6ε.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We see no violation of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper contributes theoretical/foundational results addressing the problem
of statistical learning under distribution shifts. Our work will potentially lead to further
theoretical study, as well as practical methodological development with direct impact on
downstream applications. There are many potential societal consequences of our work, none
of which we think must be specifically highlighted here.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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