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ABSTRACT

As large language models (LLMs) scale up, accuracy improves, but the autore-
gressive (AR) nature of decoding increases latency, since each token requires a se-
rial forward pass. Speculative decoding addresses this by employing a fast drafter
to propose multi-token drafts, which are then verified in parallel by the target
model. However, many deployments still rely on AR drafters, whose sequential
passes limit wall-clock gains. We revisit the drafting stage and present DiffuS-
pec, a speculative decoding scheme that reuses an existing pretrained diffusion
language model (DLM) as a drafter to produce multi-token drafts in a single for-
ward pass, while remaining compatible with standard AR verifiers. Because DLM
drafts are generated under bidirectional conditioning, parallel per-position candi-
dates form a token lattice in which the locally highest-probability token at each po-
sition need not form a causal left-to-right path. Moreover, DLM drafting requires
pre-specifying a draft length, inducing a speed–quality trade-off. To address these
challenges, we introduce two practical components: (i) a causal-consistency path
search (CPS) over this lattice that extracts a left-to-right path aligned with AR ver-
ification; and (ii) an adaptive draft-length (ADL) controller that adjusts the length
of the next proposal based on recent acceptance feedback and realized generated
length. Across benchmarks, DiffuSpec yields up to 3× wall-clock speedup and
outperforms strong baselines, showing that diffusion-based drafting can be a com-
petitive alternative to autoregressive drafters for speculative decoding.

1 INTRODUCTION

Large language models (LLMs) continue to improve with scale, yet autoregressive (AR) decod-
ing remains a latency bottleneck because generating K tokens requires K serial forward passes
(Leviathan et al., 2023; Hoffmann et al., 2022). A common line of work accelerates inference via
pruning and sparsity, quantization, or knowledge distillation, but these techniques often introduce
accuracy trade-offs or additional engineering complexity (Frantar et al., 2022; Frantar & Alistarh,
2023; Xu et al., 2024). Speculative decoding offers a nearly lossless alternative: a fast drafter first
proposes multi-token drafts, and then the target model verifies the drafts in parallel, which preserves
the target distribution while reducing wall-clock time (Xia et al., 2024). However, the speedup
hinges on two factors: the drafter’s per-step drafting throughput and the verification acceptance rate,
defined as the fraction of drafted tokens accepted by the AR verifier during parallel verification.

In practice, existing speculative decoding methods primarily try to improve one or both of these
factors. One line of work focuses on faster draft generation by using a smaller autoregressive
drafter (Leviathan et al., 2023; Chen et al., 2023) (Fig. 1a) or retrieval-based proposals (He et al.,
2023; Saxena, 2023), but the acceptance rate can be limited when the drafter does not approximate
the target distribution well. A complementary line, exemplified by EAGLE-style methods (Li et al.,
2024a;b; 2025), explicitly trains or calibrates the drafter to better match the target model, which
substantially improves acceptance. However, the drafter itself remains sequential and still requires
one forward pass per drafted token, so the overall throughput is fundamentally bounded by autore-
gressive generation. Even multi-token prediction (MTP) schemes such as Medusa (Cai et al., 2024),
which attach auxiliary heads to predict several future tokens in parallel from the current AR state,
ultimately advance the sequence one MTP step at a time; the maximum effective draft length per
step is bounded by the number and depth of heads, so end-to-end acceleration remains constrained
by the underlying autoregressive backbone.
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Recent advances in diffusion language models (DLMs) (Li et al., 2022) open a new avenue for spec-
ulative decoding. Several pretrained DLMs (Fig. 1b), such as Dream-style models, are obtained
by fine-tuning autoregressive LMs and therefore remain well aligned with the token distribution of
larger AR targets in the same family, while at the same time being able to propose a block of to-
ken candidates in a single forward pass (Ye et al., 2025). These capabilities directly match drafter
desiderata—higher per-step drafting throughput and strong proposal quality—making DLMs a com-
pelling fit for parallel generation with parallel verification. However, DLM proposals are generated
under bidirectional conditioning rather than strict left-to-right causality. This induces a diffusion
token lattice over per-position candidates, where the locally highest-probability token at each po-
sition need not define a causal left-to-right path. In addition, DLM drafting requires specifying
a draft length in advance. Together, these properties raise two practical questions we study: (i)
causal alignment: how to select, from this lattice, a left-to-right path aligned with AR verification
to maximize acceptance; and (ii) draft length: how to choose the block size to balance drafting
cost against verification acceptance, since longer drafts increase proposal cost without guaranteeing
higher acceptance. While prior work such as SpecDiff (Christopher et al., 2024) has begun to ex-
plore diffusion-based drafters, a systematic treatment of causal alignment and draft-length selection
in this setting remains under-explored.

To address these two issues, we present DiffuSpec, which reuses a pretrained DLM as the drafter in
place of the usual autoregressive model and wraps it with two lightweight components: (i) a causal-
consistency path search (CPS) over the diffusion token lattice that selects a left-to-right path aligned
with AR verification to improve acceptance; and (ii) an adaptive draft-length (ADL) controller that
sets the next draft length based on recent acceptance statistics and the realized generated length.
DiffuSpec is implemented as a plug-in drafter module on top of an SPS-style speculative decoding
interface (Leviathan et al., 2023): it only replaces the drafter side of the standard drafter–verifier
interface, requires no architectural changes to the target model, and integrates into existing serving
stacks with minimal modification. Across diverse generation tasks, DiffuSpec delivers up to 3×
wall-clock speedup over strong baselines.

In summary, our main contributions include:

• We introduce pretrained DLMs as drafters for speculative decoding and analyze two defin-
ing traits—bidirectional conditioning and preset draft length—showing how they jointly
affect verifier acceptance and end-to-end speedup and what challenges they pose.

• We propose DiffuSpec, a speculative decoding scheme that reuses a pretrained DLM as a
drafter and adds two lightweight components: CPS, which extracts a causal path from the
diffusion token lattice, and ADL, which sets the next draft length from recent acceptance
statistics and generated length; DiffuSpec plugs into an SPS-style interface and works with
existing AR verifiers with minimal serving-stack changes.

• We demonstrate that DiffuSpec achieves up to 3× wall-clock speedup across tasks, out-
performing strong speculative decoding baselines and showing that DLMs are effective
drafters for speculative decoding.

2 RELATED WORK

Speculative decoding. Speculative decoding accelerates autoregressive (AR) generation by letting
a fast drafter propose multiple tokens that a target LM verifies in parallel, while preserving the
target distribution (Xia et al., 2024; Sun et al., 2025). Existing methods differ mainly in how the
drafter is obtained and how verification is organized. One line of work uses a smaller pretrained AR
drafter (Leviathan et al., 2023; Chen et al., 2023) or retrieval/cache-based drafters that mine recent
n-grams or suffix structures (He et al., 2023; Saxena, 2023), often combined with verification-side
improvements such as block verification and massively parallel cache-tree validation (Sun et al.,
2024; Miao et al., 2024; Svirschevski et al., 2024). Another line reduces strict step-by-step depen-
dency without an auxiliary drafter via lookahead updates (Fu et al., 2024). A third line attaches
multi-token prediction (MTP) heads to the target LM (Cai et al., 2024; Ankner et al., 2024) or dis-
tills a separate drafter that operates at the feature/token level (Li et al., 2024a;b; 2025). However,
the first two lines often suffer from limited acceptance rates under distribution mismatch or weak
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(b) DiffuSpec：Speculative Decoding with DLM Drafter

.

.

bananas

apples

ADL adaptively sets the mask count.

<mask> X 3 <mask> X 5or

CPS searches for a causal-consistency path.

.whereeating

to youapples

with monkeylock

time mooncould

Diffusion token lattice

Figure 1: Speculative decoding: AR vs. DiffuSpec. (a) AR drafter: drafts are produced sequen-
tially and then block-verified by the target AR model. (b) DiffuSpec (DLM drafter): a single for-
ward pass proposes a block for one-shot parallel verification; within DiffuSpec, causal-consistency
path search (CPS) selects a left-to-right path from the diffusion token lattice, and the adaptive draft-
length (ADL) controller sets the next draft length by selecting how many masked positions to fill.

retrieval, while methods in the third line require additional training and interface changes, with their
drafters remaining fundamentally autoregressive and incurring non-negligible drafting latency.

Diffusion language models. Discrete/latent diffusion for text ranges from early D3PMs (Austin
et al., 2021) and Diffusion-LM (Li et al., 2022) to hybrids with pretrained LMs (Zhou et al., 2023; He
et al., 2022) and recent scaling/adaptation frameworks (Gong et al., 2024). Large pretrained DLMs
have been reported to be competitive with similarly sized AR baselines while retaining diffusion-
style parallel refinement (Nie et al., 2025; Ye et al., 2025). In particular, Dream-like models (Ye
et al., 2025) are finetuned from strong AR LMs in the same family, so their token distributions
remain well aligned with larger AR targets, making them especially suitable as drafters for specu-
lative decoding. At inference time, DLMs natively support parallel multi-token updates with itera-
tive refinement but pay for bidirectional attention and multiple denoising steps; this has motivated
deployment-time accelerators such as adaptive KV caching, dynamic cache eviction, and suffix-
dropout pruning (Liu et al., 2025; Song et al., 2025; Chen et al., 2025). These traits—single- or
few-pass proposal of token blocks together with strong proposal quality—make DLMs promising
candidates as drafters for speculative decoding.

Diffusion as a drafter for speculative decoding. Christopher et al. (2024) first showed that a dis-
crete diffusion model can draft sequences for AR verification, validating the feasibility of diffusion-
based drafting. However, prior work typically (i) trains or calibrates a dedicated diffusion drafter
and (ii) lacks a systematic analysis of how draft length and the diffusion-induced token lattice with
relaxed causality interact with AR verification. In contrast, DiffuSpec reuses pretrained DLMs as
drafters and introduces (a) a causal-consistency path search (CPS) over the diffusion-induced token
lattice and (b) an adaptive draft-length (ADL) controller that together improve accepted prefixes and
wall-clock speedups under AR block verification.

3 PRELIMINARIES—SPECULATIVE DECODING

Let pθ be the target autoregressive (AR) language model and x1:j the current prefix. Speculative
decoding (Leviathan et al., 2023; Chen et al., 2023; Xia et al., 2024) accelerates generation under
a drafter–verifier interface: a fast drafter proposes a short continuation, and the target AR model
verifies it in parallel while preserving the pθ distribution.

Drafting. Given x1:j , a drafter qϕ proposes a length-kt block ŷj+1:j+kt
= (ŷj+1, . . . , ŷj+kt

) con-
ditioned on x1:j , and records per-position conditional probabilities {qϕ(ŷj+i | x1:j+i−1)}kt

i=1. Here
t = 1, 2, . . . indexes speculative steps.

Parallel verification. The target model evaluates the drafted tokens in a single parallel pass, produc-
ing {pθ(ŷj+i | x1:j+i−1)}kt

i=1, and then processes them left-to-right with the standard acceptance

3
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rule:

αt,i = min

(
1,

pθ(ŷj+i | x1:j+i−1)

qϕ(ŷj+i | x1:j+i−1)

)
, i = 1, . . . , kt. (1)

If ŷj+i is rejected, a replacement is sampled from the residual distribution proportional to
[
pθ(· |

x1:j+i−1) − qϕ(· | x1:j+i−1)
]
+

, where [u]+ = max(u, 0), followed by normalization; all remain-
ing drafted tokens are discarded before continuing. This procedure is unbiased with respect to
pθ (Leviathan et al., 2023, App. A.1) and admits verifier-side engineering such as block or tree-
based parallel verification to further reduce latency (Sun et al., 2024; Miao et al., 2024).

Accepted prefix length. At speculative step t with proposal length kt, let At,i ∈ {0, 1} indicate
whether the i-th drafted token is accepted by the verifier given that positions 1:i−1 were accepted.
The number of tokens actually committed is

Lacc
t = max

{
m ∈ {0, . . . , kt} : At,1 = · · · = At,m = 1

}
=

kt∑
i=1

i∏
r=1

At,r. (2)

The verifier appends the accepted prefix ŷj+1:j+Lacc
t

and discards the remainder, yielding the up-
dated prefix x1:j+Lacc

t
. Decoding terminates early if an EOS token is accepted. We use Lacc

t as a
per-step measure of useful progress; holding latency fixed, larger values imply higher speedup.

4 DIFFUSPEC

As shown in Fig. 1b, DiffuSpec departs from conventional speculative decoding by replacing the
AR drafter with a pretrained diffusion language model (DLM) that proposes a length-kt draft in a
single forward pass, and by augmenting drafting with causal-consistency path search (CPS) and an
adaptive draft-length (ADL) controller. We next describe these three components in turn.

4.1 DLM AS A TRAINING-FREE DRAFTER

Unlike autoregressive models with fixed left-to-right factorization, diffusion language models learn
a non-autoregressive denoising mapping that reconstructs clean text from corrupted text (Austin
et al., 2021; Gong et al., 2024; Nie et al., 2025; Ye et al., 2025; Chen et al., 2025).

Training. Let x(0) be a clean sequence and x(η) its corrupted counterpart at noise level η ∈ [0, 1].
We define a forward corruption kernel r with a user-specified discrete noise prior πnoise:

r
(
x
(η)
i | x(0)

i

)
= (1− η)1{x(η)

i = x
(0)
i }+ η πnoise

(
x
(η)
i

)
, (3)

where
∑

v πnoise(v) = 1 (e.g., all mass on [MASK] or a mixture over noise symbols). A parameter-
ized denoiser qϕ is trained with token-wise cross-entropy to predict originals at corrupted positions:

L(ϕ) = −Eη,x(0),x(η)

[ ∑
i: x

(η)
i ̸=x

(0)
i

log qϕ
(
x
(0)
i | x(η)

)]
, (4)

where qϕ is a Transformer with bidirectional attention.

Inference (iterative refinement). Given a prefix r = x1:j and target length kt, initialize y(0) =
r ◦ ([MASK])kt with masked set M0 = {j+1, . . . , j+kt}, where ◦ denotes concatenation. For
refinement steps s = 1, . . . , S, compute per-position conditionals qϕ(yi | y(s−1)) for i ∈ Ms−1,
choose an update subset Us ⊆Ms−1 (e.g., top-K by confidence), and set

y
(s)
i =

{
argmaxv∈V qϕ

(
yi=v | y(s−1)

)
, i ∈ Us,

y
(s−1)
i , otherwise,

Ms = Ms−1 \ Us, (5)

until Ms = ∅. By default we use a single refinement pass (S=1) to isolate drafting cost; S>1 is
ablated in Sec. 5.

Integration with speculative decoding. At speculative step t with prefix x1:j , a pretrained DLM
proposes a length-kt block ŷj+1:j+kt in essentially one orward/refinement pass, and can expose
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Figure 2: DLM token-mass diffusion (Dream-
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during joint block refinement; the per-position
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Figure 3: Pruned candidate lattice and CPS.
We keep tokens via a cumulative-mass threshold
τ (e.g., 0.8), always retain EOS, early-stop after
the first EOS, and select the best path using a
DLM score plus a causal (n-gram) proxy.

per-position top-M candidate sets with log-scores taken under the current draft context y(S). For
verifier-side acceptance with a DLM drafter, we evaluate a left-to-right proxy by masking all future
draft positions when scoring the token at j+i:

qL2Rϕ (v | x1:j+i−1) := qϕ

(
v
∣∣∣ x1:j ◦ ([MASK])i−1︸ ︷︷ ︸

past in-block

, ([MASK])kt−i+1︸ ︷︷ ︸
future in-block

)
. (6)

We use qL2Rϕ in the standard acceptance ratio. Accordingly, Sec. 4.2 introduces CPS to align pro-
posals causally with the AR verifier, and Sec. 4.3 presents ADL to set kt near the speed–quality
sweet spot.

4.2 CAUSAL-CONSISTENCY PATH SEARCH (CPS)

Phenomenon and motivation. Under relaxed causality, the DLM refines tokens jointly within
a block. As a result, token probability mass spreads across positions and the per-position top-1
chosen by the DLM is not necessarily the best left-to-right choice for the AR verifier pθ (Fig. 2). To
mitigate this mismatch, we explicitly search before verification—for a left-to-right path that is both
high-confidence under the DLM and fluent under a causal proxy (Fig. 3).

Lattice and pruning. We first specify the search space. From the final DLM pass, for each po-
sition i = 1:kt we extract a candidate set Cj+i (top-M ) with log-scores ℓdlmj+i(v) = log qϕ

(
v |

x1:j ,y
(S)
\(j+i)

)
, i.e., conditioning on the current draft context except the target position. The naive

Cartesian product over {Cj+i}kt
i=1 is exponential, so we apply a training-free, mass-adaptive prun-

ing rule that respects local uncertainty. Let pj+i(v) = exp(ℓdlmj+i(v)). We retain the smallest prefix
exceeding a cumulative-mass threshold τ :

Mi = min
{
m ≤Mmax :

∑
v∈Top-m

pj+i(v) ≥ τ
}
, Cj+i ← Top-Mi. (7)

This makes |Cj+i| entropy-adaptive—peaky positions keep few candidates; flatter ones keep more,
capped by Mmax. In addition, we stop expanding once the first EOS is placed: diffusion proposals
tend to pad with EOS after the content is “complete” (qualitative trend in Fig. 4), so exploring
beyond the first EOS rarely yields causal gains.

Scoring and search. Let mmax denote the depth up to (and including) the first EOS encountered
during expansion. Given the pruned lattice, we score π = (π1, . . . , πm) by combining DLM confi-
dence with a small causal proxy (e.g., an n-gram or a tiny causal LM):

S(π) =
m∑
i=1

[
λ ℓdlmj+i(πi) + (1− λ) ℓngj+i(π1:i)

]
, (8)
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where ℓngj+i is the causal proxy log-score of x1:j ◦π1:i and λ ∈ [0, 1] trades off between DLM
confidence and causal fluency. We then run left-to-right beam search (beam B) on the pruned lattice
until EOS is placed. If C̄ denotes the average branching factor after pruning, the per-step complexity
is O(B C̄ mmax). As τ → 1 and B increases, the result approaches the unpruned optimum.result
approaches the unpruned optimum.

Effect. By entropy-adaptive pruning, early stopping at the first EOS, and the causal–denoising
score in equation 8, CPS pushes the first pθ–qϕ mismatch farther to the right, thereby increasing the
expected accepted length Lacc

t and improving end-to-end speed.

4.3 ADAPTIVE DRAFT LENGTH (ADL)

Phenomenon and motivation. Draft length kt jointly determines drafting cost, proposal quality,
and verifier acceptance. Short drafts often yield terse fragments; moderate drafts capture more
complete reasoning; very long drafts saturate content and trigger early EOS while also accumulating
off-path tokens that the verifier rejects (Fig. 4). Empirically, the EOS-aware generation length Lgen

increases with kt and then saturates, and the accepted length Lacc tracks it (Fig. 5). The saturation
point, however, is instance dependent and varies across prompts and along the trajectory, leading
to large variance as shown in Fig. 5. A fixed kt therefore either wastes compute when too long or
throttles progress when too short, which motivates an adaptive controller.

Signals. Given the drafted block ŷj+1:j+kt
, let st be the index of the first EOS (or +∞ if none) and

define the EOS-aware generation signal

Lgen
t = min(st − 1, kt). (9)

We compute st from the raw DLM draft before CPS; since CPS also early-stops at the first EOS,
both signals are aligned. After parallel verification we obtain the accepted prefix length Lacc

t as
defined in Sec. 3. To reduce volatility from occasional early EOS or transient rejections, we use
exponential moving averages:

L̃gen
t = (1− ρ)L̃gen

t−1 + ρLgen
t , L̃acc

t = (1− ρ)L̃acc
t−1 + ρLacc

t , ρ ∈ (0, 1]. (10)

Controller. With guardrails kmin ≤ kt+1 ≤ kmax, we adopt a one-line O(1) policy:

kt+1 = clip
( ⌈

L̃gen
t + δ 1{L̃acc

t ≥ L̃gen
t }

⌉
, kmin, kmax

)
, (11)

where clip(z, a, b) = min{max{z, a}, b} and δ > 0 is a small growth increment that activates when
the verifier keeps up, namely when the accepted length matches the generated length on average.
Intuitively, L̃gen

t estimates how much content the DLM is ready to produce before EOS, and L̃acc
t

6
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Algorithm 1: DIFFUSPEC (4-stage): DLM drafting + CPS + parallel verification + ADL
Input: prefix x1:j ; target LM pθ; DLM qϕ; ADL params (kmin, kmax, δ, ρ); CPS params

(Mmax, τ, B, λ).
Init: L̃gen

0 ←0, L̃acc
0 ←0; set k1←kmax.

for t = 1, 2, . . . until termination do
(1) Draft: run DLM to produce a length-kt block and per-position candidate sets
{Cj+i}kt

i=1 (top-Mmax ) with scores ℓdlmj+i(·).
(2) CPS: on a pruned candidate lattice (cumulative-mass τ , always keep EOS, early-stop

after the first EOS), run left-to-right beam search (beam B) using score S(·) in equation 8
to obtain a left-to-right path ŷj+1:j+mt (path length mt).

(3) Parallel verification: block verification of ŷj+1:j+mt with pθ; compute acceptance
using qL2Rϕ ; obtain Lacc

t ; append the accepted prefix and update j←j +Lacc
t ; if an EOS is

accepted, terminate.
(4) ADL: compute Lgen

t from the proposal’s first-EOS index st; update EMAs L̃gen
t , L̃acc

t ;
set kt+1 via equation 11.

indicates whether those tokens are reliably accepted; the policy increases kt only when both signals
align.

Effect. ADL tracks the instance-specific speed–quality sweet spot in real time. As kt grows into
the saturation regime, Lgen

t plateaus and the controller stabilizes; when acceptance lags, the policy
avoids oversizing drafts; when acceptance catches up, it expands gently via δ.

4.4 TRAINING-FREE, SERVING-COMPATIBLE FRAMEWORK

As summarized in Fig. 1b and Alg. 1, each speculative step in DiffuSpec follows a fixed four-stage
pipeline with no changes to the target model and only minimal serving-stack adjustments: (i) Draft-
ing with a pretrained DLM to produce a length-kt block and per-position candidates; (ii) CPS on
a pruned candidate lattice to select a left-to-right path aligned with AR causality; (iii) Parallel ver-
ification by the target pθ (using qL2Rϕ in the acceptance ratio) to return the accepted prefix length
Lacc
t and advance the prefix; (iv) ADL to update the next draft length kt+1 from the signal Lgen

t
and verifier feedback Lacc

t , within guardrails [kmin, kmax]. By improving the acceptance profile via
CPS and right-sizing proposals via ADL, DiffuSpec increases Lacc

t per step while keeping draft-
ing cost near the speed–quality sweet spot. For correctness, when the verifier applies the standard
speculative-decoding acceptance rule with qL2Rϕ , the classical unbiasedness analysis w.r.t. pθ applies.

5 EXPERIMENTS

Datasets. We follow the Spec-Bench protocol (Xia et al., 2024) and span six task families: Multi-
turn Conversation (MT; Zheng et al., 2023), Machine Translation (Trans), Summarization (Sum;
Nallapati et al., 2016), Open-domain QA (QA; Kwiatkowski et al., 2019), Mathematical Reasoning
(Math; Cobbe et al., 2021), and Retrieval-Augmented Generation (RAG; Karpukhin et al., 2020).
For additional details on the datasets, see Appendix A.

Speed metrics. We report (i) Mean Accepted Tokens (MAT), the expected length of consecutively
accepted prefixes per speculative step, averaged over all steps and examples; and (ii) Speedup, de-
fined as end-to-end throughput relative to the AR-greedy baseline on the same target model and
hardware. All timings are wall-clock and account for DLM drafting, CPS, ADL, and parallel verifi-
cation. To ensure comparable quality (quality-locked setting), verification is performed with greedy
decoding (temperature = 0), yielding task metrics statistically indistinguishable from AR-greedy.

Baselines. We compare DiffuSpec against a range of speculative decoding methods, including
SPS (Leviathan et al., 2023), Lookahead (Fu et al., 2024), PLD (Saxena, 2023), Recycling (Luo
et al., 2024), SAMD (Hu et al., 2024), EAGLE2 (Li et al., 2024a;b), EAGLE3 (Li et al., 2025), and
SpecDiff (Christopher et al., 2024). To isolate the effect of our ADL controller, we also evaluate a
Minions-style variant that is identical to DiffuSpec except that ADL is replaced by the length con-
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Method Speedup (× vs. AR, ↑) Mean (MAT / Speedup)
MT Trans Sum QA Math RAG

Lookahead 1.37× 1.16× 1.15× 1.33× 1.52× 1.21× 1.82 / 1.30×
PLD 1.83× 1.29× 2.76× 1.87× 1.55× 2.37× 2.11 / 1.93×

Recycling 2.15× 1.85× 2.03× 2.06× 2.45× 1.83× 3.13 / 2.07×
SAMD 1.99× 1.54× 3.38× 2.44× 1.63× 3.27× 2.18 / 2.35×

EAGLE2 2.47× 1.56× 1.64× 1.91× 3.18× 1.64× 3.47 / 2.09×
EAGLE3 3.01× 2.35× 3.03× 2.41× 3.12× 2.86× 4.28 / 2.80×

SPS 1.69× 1.64× 1.74× 1.50× 1.86× 1.62× 6.18 / 1.67×
SpecDiff 2.65× 2.61× 1.96× 2.41× 2.95× 2.02× 6.05 / 2.69×
Minions 3.02× 3.18× 2.37× 2.93× 3.91× 2.29× 6.44 / 2.97×

DiffuSpec 3.09× 3.38× 2.41× 3.03× 4.02× 2.38× 6.99 / 3.08×

Table 1: Main results on Spec-Bench. Per-task columns report Speedup only (unitless ratio vs. AR,
↑); the rightmost column reports the task-macro Mean (MAT / Speedup).

2.02

2.13

4.1

1.6 0.03

SPS  

DIFFUSPEC 

2.02

2.13

4.1

1.6 0.03

SPS   

D IF F USPEC 

Verification Drafting Path Search

Figure 6: Per-step wall-clock time (s). Mean
seconds per drafter–verifier round spent in draft-
ing, verification, and CPS (SPS vs. DiffuSpec).

CPS ADL Mean-MAT Mean-Speedup
✓ ✓ 6.99 3.08×
✓ ✗ 6.95 2.98×
✗ ✓ 6.43 2.73×
✗ ✗ 6.05 2.69×

Table 2: Ablation on DiffuSpec components.
✓ indicates the component is enabled. Both
ADL and CPS improve performance, with CPS
contributing the larger share of gains.

troller from Minions (Wang et al., 2024); we refer to this variant as Minions. All methods are run in
our unified evaluation stack under the same hardware and decoding configuration.

Targets and drafters. Unless otherwise stated, the target AR model pθ is Qwen2.5-32B (Xu et al.,
2025) for all methods, including ours. DiffuSpec uses Dream-7B (Ye et al., 2025) as the diffusion
drafter; SpecDiff and Minions are also evaluated with Dream-7B for a fair comparison. For SPS, we
follow the standard Qwen2.5-7B autoregressive drafter. Lookahead, PLD, Recycling, and SAMD
do not employ a separate drafter and operate directly on the target model or its cache/retrieval stack.
EAGLE2 and EAGLE3 attach trained drafter heads to Qwen2.5-32B; we implement them following
their official repositories.

Implementation details. Experiments run on a single NVIDIA A100 (80GB) with 11 CPU cores
and 100GB RAM, PyTorch 2.6.0. Following Kou et al. (2024); Luo et al. (2024), verification uses
greedy decoding with batch size = 1, KV cache enabled. Unless stated, DiffuSpec uses a single
diffusion refinement step (S=1) to isolate drafting cost. Controller and search hyperparameters are
fixed across tasks: kmin=20, kmax=30, beam size B=3, mass threshold τ=0.8, per-position cap
Mmax=15, mixing weight λ=0.5, controller increment δ=10 tokens, and EMA smoothing ρ=0.5.
The causal proxy is a 3-gram KenLM trained offline on a text corpus and reused across all tasks.

5.1 EFFECTIVENESS

Overall comparison. Tab. 1 summarizes wall-clock speedups on Spec-Bench. DiffuSpec achieves
the best overall performance, with a Mean-MAT of 6.99 and a Mean-Speedup of 3.08×, outper-
forming all speculative decoding baselines under the same Qwen2.5-32B target, hardware, and de-
coding configuration. Compared to strong autoregressive competitors, DiffuSpec improves both
quality and efficiency (e.g., vs. SPS: +0.81 MAT and +1.41× speedup; vs. EAGLE3: +2.71 MAT
and +0.28× speedup), even though EAGLE3 requires additional training and architectural mod-
ifications. At the task level, DiffuSpec attains the highest speedups on MT/Trans/QA/Math, with
3.09× /3.38× /3.03× /4.02×, indicating consistently longer accepted prefixes and faster end-to-
end progress at matched quality.
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Figure 7: Sensitivity to decoding/search hyperparameters. Each panel plots Mean-MAT and
Mean-Speedup versus a single knob under the quality-locked setting.

Comparison to diffusion-based and adaptive-length baselines. Among diffusion-based methods,
SpecDiff already demonstrates that a DLM can serve as an effective drafter, but DiffuSpec further
improves both metrics under an identical Qwen2.5-32B + Dream-7B configuration (Mean-MAT:
6.99 vs. 6.05; Mean-Speedup: 3.08× vs. 2.69×). This gain aligns with our design goals: CPS
explicitly extracts a causal left-to-right path from the diffusion-induced token lattice, while ADL
adapts the draft length toward the speed–quality sweet spot. Replacing ADL with a Minions-style
acceptance-only controller yields the “Minions” row in Tab. 1; DiffuSpec still achieves higher Mean-
MAT (6.99 vs. 6.44) and Mean-Speedup (3.08× vs. 2.97×), with consistent improvements across
all task families (e.g., 3.09× vs. 3.02× on MT and 4.02× vs. 3.91× on Math).

Where the speedup comes from. Fig. 6 decomposes wall-clock time into drafting, verification, and
CPS search. DiffuSpec reduces drafting cost relative to SPS by using a single DLM forward pass
to propose multiple tokens, while CPS adds only minor overhead (averaging 1.1% across tasks).
In our setup, SPS employs a 7B AR drafter close to the target’s capacity; the resulting sequential
passes dominate wall-clock and blunt the benefits of verifier parallelism—MAT remains relatively
high, yet end-to-end speedup is modest. By contrast, DiffuSpec with Dream-7B achieves substan-
tially larger speedups at comparable or higher MAT by combining two levers: (i) higher per-step
drafting throughput (non-AR DLM pass) and (ii) higher acceptance via CPS, with ADL right-sizing
proposals. Crucially, latency is governed by the number of drafter and target passes per accepted
token, not the drafter’s parameter count alone: although a single Dream-7B pass is heavier than a
single 1-layer drafter pass, its higher MAT and parallel drafting allow DiffuSpec to commit a sim-
ilar number of tokens with far fewer total passes, resulting in lower end-to-end wall-clock time on
the same Qwen2.5-32B target. Together, these mechanisms translate acceptance gains into tangible
wall-clock acceleration.

5.2 ABLATION

Tab. 2 quantifies the contributions of CPS and ADL. In the no-CPS variant, we skip causal-
consistency path search and directly form the draft by taking, at each position, the highest-
probability token from the DLM marginal (argmax) for a given draft length, which is then passed
to the standard SPS-style block verifier. In the no-ADL variant, we disable the controller and fix
the draft length to a constant for all steps, so that CPS operates on a token lattice of fixed width.
Enabling either module improves both Mean-MAT and Mean-Speedup over the plain variant, while
enabling both yields the best overall performance (6.99 MAT, 3.08×). Compared to the plain system
(6.05 / 2.69×), CPS-only raises MAT by +0.90 and speedup by +0.29×, whereas ADL-only adds
+0.38 MAT and +0.04×, respectively. Thus, CPS accounts for most acceptance gains—consistent
with its role in aligning diffusion proposals with AR causality—while ADL primarily translates
these gains into wall-clock speedup by adaptively setting kt. When combined, they deliver a to-
tal improvement of +0.39× over the plain system. Additional analysis of draft-length choices is
provided in Appendix C, and task-wise ablations with full results appear in Appendix B (Tab. 4).

5.3 HYPERPARAMETER SENSITIVITY

Across decoding/search knobs (Fig. 7a–7d), we observe consistent speed–quality trade-offs under
the quality lock. Increasing the number of DLM refinement steps S improves proposal quality
and acceptance (Mean-MAT 6.99 → 7.33 from S=1 to 10; Fig. 7a), but substantially reduces
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throughput (Mean-Speedup 3.08× → 0.93×), so we fix S=1. Enlarging the CPS beam B improves
causal paths and modestly raises Mean-MAT, peaking around B=3∼4 (Fig. 7b); however, overhead
causes speedup to plateau or regress beyond B=3, so we set B=3. Increasing the per-position cap
Mmax relaxes pruning and helps until Mmax≈15 (Fig. 7c); further branching yields negligible gains
and slightly hurts speed, motivating our choice of Mmax=15. Raising the mass threshold τ retains
more local probability and improves acceptance/speed up to τ≈0.8 (Fig. 7d); higher values add
compute with little benefit, so we use τ=0.8. Overall, CPS-related knobs (B,Mmax, τ ) are robust
over a broad range, while multi-step refinement S trades acceptance for latency. Orthogonally, ADL
controls proposal size, helping convert CPS-driven acceptance gains into wall-clock acceleration.

6 CONCLUSION AND FUTURE WORK

We introduced DiffuSpec, a speculative decoding scheme that reuses a pretrained diffusion language
model (DLM) as the drafter. To reconcile diffusion-based drafting with AR verification, we proposed
causal-consistency path search (CPS) and an adaptive draft-length (ADL) controller. Across six
task families, DiffuSpec produces high-quality multi-token drafts, delivering the strongest speedups
among competing speculative decoding baselines and approaching training-based systems under
quality-locked settings. Ablations indicate that both CPS and ADL improve acceptance and through-
put: CPS yields the larger gains by aligning proposals with AR causality, whereas ADL stabilizes
proposal size to avoid over-/under-drafting. DiffuSpec requires no additional neural training once
a suitable DLM drafter is available and integrates with existing targets with minimal serving-stack
changes. A current bottleneck is largely ecosystem-driven rather than algorithmic: in SPS-style cas-
cades, smaller AR variants are routinely released alongside the target family, whereas diffusion LMs
and their scaled checkpoints are still much less common. When no compatible DLM exists, one may
need to train or adapt a drafter or rely on heterogeneous-vocabulary alignment, but a single DLM can
then be reused across multiple targets and tasks, partially amortizing this cost. Looking ahead, we
see opportunities for further system-level acceleration of DLM drafting, stronger proposal-selection
objectives, and richer adaptive controllers that jointly tune draft length and search breadth, and
we hope DiffuSpec serves as a practical blueprint for bridging diffusion-based generation with fast
verifier-aligned decoding.
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A DATASET AND IMPLEMENTATION DETAILS

Datasets. We follow SPEC-BENCH (Xia et al., 2024) across six task families, using the official
splits and preprocessing; prompts match §5. For Multi-turn Conversation (MT) we use MT-Bench
with pairwise judging (Zheng et al., 2023). Machine Translation (Trans) follows Spec-Bench’s
public WMT-style news configuration. Summarization (Sum) is CNN/DailyMail (Nallapati et al.,
2016). Open-domain QA (QA) is Natural Questions (Kwiatkowski et al., 2019). Mathematical
Reasoning (Math) uses GSM8K (Cobbe et al., 2021). Retrieval-Augmented Generation (RAG)
follows the DPR pipeline over Wikipedia (Karpukhin et al., 2020).

Task Dataset(s) Metric(s)
MT MT-Bench (Zheng et al., 2023) Win rate (pairwise)
Trans Spec-Bench translation (WMT-style) BLEU
Sum CNN/DailyMail (Nallapati et al., 2016) ROUGE-L
QA Natural Questions (Kwiatkowski et al., 2019) EM / F1
Math GSM8K (Cobbe et al., 2021) Accuracy
RAG DPR over Wikipedia (Karpukhin et al., 2020) Accuracy

Table 3: Spec-Bench datasets and evaluation metrics used in our experiments.

Implementation details. We build our evaluation harness on top of SPEC-BENCH (Xia et al.,
2024), reusing its official data loaders, prompt templates and stop criteria. All systems share the
same hardware/software stack as §5 (single NVIDIA A100 80GB, 11 CPU cores, 100GB RAM,
PyTorch 2.6.0). Verification uses greedy decoding (temperature = 0) with batch size = 1 and KV
cache enabled; we report tokens/s averaged over the full evaluation set, excluding model-loading
and first-batch warmup. Wall-clock timing includes tokenization, drafter forward(s), path search,
verifier forward, and residual sampling.

Unless otherwise stated, DiffuSpec adopts a single diffusion refinement step (S=1). Controller
and search hyperparameters are fixed across tasks: kmin=20, kmax=30, beam size B=3, mass
threshold τ=0.8, per-position cap Mmax=15, mixing weight λ=0.5, controller increment δ=10,
and EMA smoothing ρ=0.5. The causal proxy is a 3-gram KenLM fitted only on the training split
of each dataset (no test leakage). Speedup is defined as a unitless ratio: throughput(method) /
throughput(AR-greedy) under identical runtime settings; MAT follows Sec. 3. CUDA events are
synchronized at measurement points to ensure consistent timing.

B FULL ABLATION RESULTS PER TASK

Table 4 expands Table 2 by reporting task-wise MAT and Speedup under different combinations of
causal-consistency path search (CPS) and adaptive draft-length (ADL).

CPS ADL MT Trans Sum QA Math RAG
MAT Spd MAT Spd MAT Spd MAT Spd MAT Spd MAT Spd

✓ ✓ 7.02 3.12× 7.35 3.40× 6.25 2.45× 7.49 3.05× 7.61 4.05× 8.04 2.40×
✓ ✗ 6.98 3.01× 7.29 3.28× 6.18 2.37× 7.40 2.92× 7.55 3.88× 7.96 2.34×
✗ ✓ 6.41 2.70× 6.72 2.79× 5.88 2.11× 6.92 2.55× 7.00 3.11× 7.25 2.14×
✗ ✗ 6.03 2.65× 6.48 2.61× 5.72 1.96× 6.75 2.41× 6.82 2.95× 7.08 2.02×

Table 4: Task-wise ablation of DiffuSpec components. CPS = causal-consistency path search;
ADL = adaptive draft-length. Both components improve MAT and speedup (Spd) across tasks; Spd
denotes Speedup (× vs. AR, ↑).

The task-wise breakdown confirms the complementary roles of CPS and ADL. CPS consistently
yields larger gains, especially on QA and Math where alignment with AR verification is critical.
ADL offers steady improvements by preventing over/under-drafting, with a visible effect on Sum-
marization. Combining both mechanisms produces the best overall results, robust across all tasks.
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C FIXED DRAFT LENGTH STUDY

For the fixed-k study, we set kt ≡ k ∈ {10, 20, 30, 50, 100} at every decoding step and run CPS on
the diffusion token lattice truncated to the first k positions; the AR verifier then performs standard
block verification on the resulting path, so the accepted prefix at each step has length ≤ k.

We evaluate fixed proposal lengths k∈{10, 20, 30, 50, 100} as well as the adaptive controller (ADL).
Table 5 shows the trade-off: longer drafts increase acceptance length but reduce throughput due to
higher rejection rates and drafting overhead.

Policy k=10 k=20 k=30 k=50 k=100 ADL
Mean-MAT 5.53 6.56 6.49 6.51 6.69 6.99
Mean-Speedup 2.74× 2.98× 2.98× 2.91× 2.78× 3.08×

Table 5: Fixed-k vs. adaptive proposal length (quality-locked). Means are computed across all
tasks. ADL achieves the best speedup while also reaching the highest MAT, indicating a better
speed–acceptance trade-off than fixed-k policies.

As k increases from 10 to 100, Mean-MAT generally rises (peaking at k=100 with 6.69), but Mean-
Speedup peaks earlier at k=20/30 (both 2.98×) and then declines due to higher drafting and rejec-
tion costs. The adaptive controller (ADL) balances this trade-off online, attaining both the highest
Mean-MAT (6.99) and the strongest Mean-Speedup (3.08×). This confirms the benefit of dynamic
proposal sizing over fixed-k policies.

D VOCABULARY MISMATCH AND HETEROGENEOUS TOKENIZERS

In our main experiments, the drafter and target share the same tokenizer. In practice, speculative
decoding often needs to operate under heterogeneous vocabularies, where the drafter and target
use different tokenizers. A naı̈ve implementation can then become inefficient or even fail, since
drafted tokens must be mapped into the target’s vocabulary. This challenge has been studied in
the SPS setting, and heterogeneous-vocabulary speculative decoding is now integrated into standard
implementations in transformers (Timor et al., 2025).

DiffuSpec, like SPS, interacts with the target model only through the drafter’s output probabilities
and the target’s next-token probabilities; it does not require access to hidden states or KV caches. As
a result, DiffuSpec can directly reuse the same heterogeneous-vocabulary adapter at the probability
interface without changing its core algorithm.

To illustrate this, we evaluate a setting where the drafter and target differ in both architecture and
vocabulary: the target is Qwen3-32B, while the drafter is either Qwen2.5-7B (for SPS) or Dream-7B
(for DiffuSpec). Both methods use the same heterogeneous-vocabulary adapter to bridge the drafter
and target tokenizers. Table 6 reports results on Spec-Bench under this heterogeneous-vocabulary
configuration.

Method / Target = Qwen3-32B Speedup (× vs. AR, ↑) Mean (MAT / Speedup)
MT Trans Sum QA Math RAG

SPS (Qwen2.5-7B drafter) 1.05× 1.11× 0.89× 0.96× 1.16× 0.99× 2.91 / 1.03×
DiffuSpec (Dream-7B drafter) 1.23× 1.66× 0.96× 1.40× 2.17× 1.05× 3.02 / 1.42×

Table 6: Heterogeneous-vocabulary setting. Target is Qwen3-32B; SPS uses Qwen2.5-7B as the
drafter, and DiffuSpec uses Dream-7B. Both methods employ the same heterogeneous-vocabulary
adapter at the probability interface. Speedup is measured relative to Qwen3-32B greedy decoding
with its own tokenizer.

Even under heterogeneous vocabularies, DiffuSpec consistently yields higher speedups than SPS
(Mean-Speedup 1.42× vs. 1.03×) while maintaining comparable Mean-MAT (3.02 vs. 2.91). This
indicates that diffusion-based drafting remains effective when the drafter and target do not share a
vocabulary, and that future advances in heterogeneous-vocabulary SPS can be directly adopted by
DiffuSpec, since it only relies on the probability interface between drafter and target.
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E OUTPUT VISUALIZATIONS

We provide qualitative k-sweeps showing how draft length shapes proposal style: short drafts tend
to be terse; moderate drafts begin to exhibit step-by-step reasoning; very long drafts may drift or
repeat. (All runs use the same prompt; only k varies. Visualization samples are raw drafts before
CPS/verification and are not correctness-checked.)

Algebra: Solve for x: 3x+ 5 = 20

k=6: Subtract 5 and divide by 3.
k=60: To solve for x, subtract 5 from both sides and then divide
by 3 to isolate x.
k=200: To solve for x, we first isolate the variable by removing
constants and normalizing the coefficient of x ...

Word problem: A train travels at 60 km/h for 2.5 hours. How far?

k=6: 150 km.
k=20: Distance = speed × time = 60× 2.5 = 150 km.
k=60: To find the distance, multiply the constant speed by the
elapsed time; units remain in km.

Calculus: What is the derivative of f(x) = 3x2 + 2x+ 1?

k=6: 6x+ 1
k=30: The derivative of f(x) = 3x2 + 2x+ 1 is 6x+ 2.
k=40: The derivative of f(x) = 3xˆ2 + 2xx + 1 is ’ ( xxx

As k increases, drafts shift from terse answers to step-by-step reasoning (often with emerging chain-
of-thought), which initially raises the verifier’s accepted length: MAT grows for small-to-moderate
k. Beyond a task-dependent sweet spot, however, we observe a clear plateau: very long drafts tend
not to yield longer accepted prefixes—diffusion proposals begin to drift, repeat, or include partial
phrases, so the AR verifier rejects earlier. Consequently, end-to-end speedup drops due to extra
drafting and residual resampling, even though the draft itself is longer. This motivates adaptive
proposal sizing (ADL) to stay near the knee of the MAT/speed trade-off, and causal-consistency
path search (CPS) to keep proposals informative yet easy for the verifier to accept.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used off-the-shelf LLMs solely for language polishing (grammar and wording). No datasets,
results, or analyses in this paper were generated by LLMs. All technical content, experiments, and
conclusions were produced and verified by the authors.
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